CHAPTER 0
INTRODUCTION

0.1 IDENTIFICATION AND ADAPTIVE CONTROL

Most current techniques for designing control systems are based on a
good understanding of the plant under study and its environment. How-
ever, in a number of instances, the plant to be controlled is too complex
and the basic physical processes in it are not fully understood. Control
design techniques then need to be augmented with an identification tech-
nique aimed at obtaining a progressively better understanding of the
plant to be controlled. It is thus intuitive to aggregate system
identification and control. Often, the two steps will be taken separately.
If the system identification is recursive—that is the plant model is
periodically updated on the basis of previous estimates and new data—
identification and control may be performed concurrently. We will see
adaptive control, pragmatically, as a direct aggregation of a (non-
adaptive) control methodology with some form of recursive system
identification.

Abstractly, system identification could be aimed at determining if
the plant to be controlled is linear or nonlinear, finite or infinite dimen-
sional, and has continuous or discrete event dynamics. Here we will res-
trict our attention to finite dimensional, single-input single-output linear
plants, and some classes of multivariable and nonlinear plants. Then, the
primary step of system identification (structural identification) has
already been taken, and only parameters of a fixed type of model need to
be determined. Implicitly, we will thus be limiting ourselves to
parametric system identification, and parametric adaptive control.
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Applications of such systems arise in several contexts: advanced flight
control systems for aircraft or spacecraft, robot manipulators, process
control, power systems, and others.

Adaptive control, then, is a technique of applying some system
identification technique to obtain a model of the process and its environ-
ment from input-output experiments and using this model to design a
controller. The parameters of the controller are adjusted during the
operation of the plant as the amount of data available for plant
identification increases. For a number of simple PID (proportional +
integral + derivative) controllers in process control, this is often done
manually. However, when the number of parameters is larger than three
or four, and they vary with time, automatic adjustment is needed. The
design techniques for adaptive systems are studied and analyzed in
theory for unknown but fixed (that is, time invariant) plants. In practice,
they are applied to slowly time-varying and unknown plants.

Overview of the Literature

Research in adaptive control has a long and vigorous history. In the
1950s, it was motivated by the problem of designing autopilots for air-
craft operating at a wide range of speeds and altitudes. While the object
of a good fixed-gain controller was to build an autopilot which was
insensitive to these (large) parameter variations, it was frequently
observed that a single constant gain controller would not suffice. Conse-
quently, gain scheduling based on some auxiliary measurements of
airspeed was adopted. With this scheme in place several rudimentary
model reference schemes were also attempted—the goal in this scheme
was to build a self-adjusting controller which yielded a closed loop
transfer function matching a prescribed reference model. Several
schemes of self-adjustment of the controller parameters were proposed,
such as the sensitivity rules and the so-called M.I.T. rule, and were
verified to perform well under certain conditions. Finally, Kalman
[1958] put on a firm analytical footing the concept of a general self-
tuning controller with explicit identification of the parameters of a
linear, single-input, single-output plant and the usage of these parameter
estimates to update an optimal linear quadratic controller.

The 1960s marked an important time in the development of con-
trol theory and adaptive control in particular. Lyapunov’s stability
theory was firmly established as a tool for proving convergence in adap-
tive control schemes. Stochastic control made giant strides with the
understanding of dynamic programming, due to Bellman and others.
Learning schemes proposed by Tsypkin, Feldbaum and others (see Tsyp-
kin [1971] and [1973]) were shown to have roots in a single unified
framework of recursive equations. System identification (off-line) was
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thoroughly researched and understood. Further, Parks [1966] found a
way of redesigning the update laws proposed in the 1950s for model
reference schemes so as to be able to prove convergence of his controller.

In the 1970s, owing to the culmination of determined efforts by
several teams of researchers, complete proofs of stability for several
adaptive schemes appeared. State space (Lyapunov based) proofs of sta-
bility for model reference adaptive schemes appeared in the work of
Narendra, Lin, & Valavani [1980] and Morse [1980]. In the late 1970s,
input output (Popov hyperstability based) proofs appeared in Egardt
[1979] and Landau [1979]. Stability proofs in the discrete time deter-
ministic and stochastic case (due to Goodwin, Ramadge, & Caines
[1980]) also appeared at this time, and are contained in the textbook by
Goodwin & Sin [1984]. Thus, this period was marked by the culmina-
tion of the analytical efforts of the past twenty years.

Given the firm, analytical footing of the work to this point, the
1980s have proven to be a time of critical examination and evaluation of
the accomplishments to date. It was first pointed out by Rohrs and co-
workers [1982] that the assumptions under which stability of adaptive
schemes had been proven were very sensitive to the presence of unmo-
deled dynamics, typically high-frequency parasitic modes that were
neglected to limit the complexity of the controller. This sparked a flood
of research into the robustness of adaptive algorithms: a re-examination
of whether or not adaptive controllers were at least as good as fixed gain
controllers, the development of tools for the analysis of the transient
behavior of the adaptive algorithms and attempts at implementing the
algorithms on practical systems (reactors, robot manipulators, and ship
steering systems to mention only a few). The implementation of the
complicated nonlinear laws inherent in adaptive control has been greatly
facilitated by the boom in microelectronics and today, one can talk in
terms of custom adaptive controller chips. All this flood of research and
development is bearing fruit and the industrial use of adaptive control is
growing.

Adaptive control has a rich and varied literature and it is impossi-
ble to do justice to all the manifold publications on the subject. It is a
tribute to the vitality of the field that there are a large number of fairly
recent books and monographs. Some recent books on recursive estima-
tion, which is an important part of adaptive control are by Eykhoff
[1974], Goodwin & Payne [1977], Ljung & Soderstrom [1983] and Ljung
[1987]. Recent books dealing with the theory of adaptive control are by
Landau [1979], Egardt [1979], Ioannou & Kokotovic [1984], Goodwin &
Sin [1984], Anderson, Bitmead, Johnson, Kokotovic, Kosut, Mareels,
Praly, & Riedle [1986], Kumar and Varaiya [1986], Polderman [1988]
and Caines [1988]. An attempt to link the signal processing viewpoint _
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with the adaptive control viewpoint is made in Johnson [1988]. Surveys
of the applications of adaptive control are given in a book by Harris &
Billings [1981], and in books edited by Narendra & Monopoli [1980]
and Unbehauen [1980]. As of the writing of this book, two other books
on adaptive control by Astrom & Wittenmark and Narendra &
Annaswamy are also nearing completion.

In spite of the great wealth of literature, we feel that there is a need
for a “toolkit” of methods of analysis comparable to non-adaptive linear
time invariant systems. Further, many of the existing results concern
either algorithms, structures or specific applications, and a great deal
more needs to be understood about the dynamic behavior of adaptive
systems. This, we believe, has limited practical applications more than
it should have. Consequently, our objective in this book is to address
fundamental issues of stability, convergence and robustness. Also, we
hope to communicate our excitement about the problems and potential
of adaptive control. In the remainder of the introduction, we will review
some common approaches to adaptive control systems and introduce the
basic issues studied in this book with a simple example.

0.2 APPROACHES TO ADAPTIVE CONTROL

0.2.1 Gain Scheduling

One of the earliest and most intuitive approaches to adaptive control is
gain scheduling. It was introduced in particular in the context of flight
control systems in the 1950s and 1960s. The idea is to find auxiliary
process variables (other than the plant outputs used for feedback) that
correlate well with the changes in process dynamics. It is then possible
to compensate for plant parameter variations by changing the parame-
ters of the regulator as functions of the auxiliary variables. This is illus-
trated in Figure 0.1.
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Figure 0.1: Gain Scheduling Controller
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The advantage of gain scheduling is that the parameters can be
changed quickly (as quickly as the auxiliary measurement) in response to
changes in the plant dynamics. It is convenient especially if the plant
dynamics depend in a well-known fashion on a relatively few easily
measurable variables. In the example of flight control systems, the
dynamics depend in relatively simple fashion on the readily available
dynamic pressure—that is the product of the air density and the relative
velocity of the aircraft squared.

Although gain scheduling is extremely popular in practice, the
disadvantage of gain scheduling is that it is an open-loop adaptation
scheme, with no real “learning” or intelligence. Further, the extent of
design required for its implementation can be enormous, as was illus-
trated by the flight control system implemented on a CH-47 helicopter.
The flight envelope of the helicopter was divided into ninety flight condi-
tions corresponding to thirty discretized horizontal flight velocities and
three vertical velocities. Ninety controllers were designed, correspond-
ing to each flight condition, and a linear interpolation between these
controllers (linear in the horizontal and vertical flight velocities) was
programmed onto a flight computer. Airspeed sensors modified the con-
trol scheme of the helicopter in flight, and the effectiveness of the design
was corroborated by simulation.

0.2.2 Model Reference Adaptive Systems

Again in the context of flight control systems, two adaptive control
schemes other than gain scheduling were proposed to compensate for
changes in aircraft dynamics: a series, high-gain scheme, and a parallel
scheme.

Series High-Gain Scheme
Figure 0.2 shows a schematic of the series high-gain scheme.
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Figure 0.2: Model Reference Adaptive Control—Series,
High-Gain Scheme
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The reference model represents a pilot’s desired command-response
characteristic. It is thus desired that the aircraft response, that is, the

output y,, matches the output of the reference model, that is, y,,.
The simple analysis that goes into the scheme is as follows: con-

sider 13(s) to be the transfer function of the linear, time invariant plant
and k the constant gain of the servo. The transfer function from y,, to

yp i kﬁ(s)/ 1+kP(s). When the gain k is sufficiently large, the
transfer function is approximately 1 over the frequencies of interest, so
that y,, ~ y,.

The aim of the scheme is to let the gain k£ be as high as possible, so
that the closed-loop transfer function becomes close to 1, until the onset
of instability (a limit cycle) is detected. If the limit cycle oscillations
exceed some level, the gain is decreased. Below this level, the gain is
increased. The limit cycle detector is typically just a rectifier and low-
pass filter.

The series high-gain scheme is intuitive and simple: only one
parameter is updated. However, it has the following problems

a) Oscillations are constantly present in the system.

b) Noise in the frequency band of the limit cycle detector causes the
gain to decrease well below the critical value.

¢) Reference inputs may cause saturation due to the high-gain.

d) Saturation may mask limit cycle oscillations, allowing the gain to
increase above the critical value, and leading to instability.

Indeed, tragically, an experimental X-15 aircraft flying this control sys-
tem crashed in 1966 (cf. Staff of the Flight Research Center [1971]),
owing partially to the saturation problems occurring in the high-gain
scheme. The roll and pitch axes were controlled by the right and left
rear ailerons, using differential and identical commands respectively.
The two axes were assumed decoupled for the purpose of control design.
However, saturation of the actuators in the pitch axis caused the aircraft
to lose controllability in the roll axis (since the ailerons were at max-
imum deflection). Due to the saturation, the instability remained
undetected, and created aerodynamic forces too great for the aircraft to
withstand.

Parallel Scheme

As in the series scheme, the desired performance of the closed-loop sys-
tem is specified through a reference model, and the adaptive system
attempts to make the plant output match the reference model output
asymptotically. An early reference to this scheme is Osburn, Whitaker,
& Kezer [1961]. A block diagram is shown in Figure 0.3. The controller
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Figure 0.3: Model Reference Adaptive Control—Parallel Scheme

can be thought of as having two loops: an inner or regulator loop that is
an ordinary control loop consisting of the plant and regulator, and an
outer or adaptation loop that adjusts the parameters of the regulator in
such a way as to drive the error between the model output and plant
output to zero.

The key problem in the scheme is to obtain an adjustment mechan-
ism that drives the output error eg=y, -y, to zero. In the earliest
applications of this scheme, the following update, called the gradient
update, was used. Let the vector 6 contain the adjustable parameters of

the controller. The idea behind the gradient update is to reduce e3 (6)
by adjusting 6 along the direction of steepest descent, that is

db
dt

9 2
~8 % (eg (0)) 0.2.1)

~28e00) 2 (e0®) = -28e00) 55 (30) (022)

where g is a positive constant called the adaptation gain.

The interpretation of ey (6) is as follows: it is the output error (also
a function of time) obtained by freezing the controller parameter at 6.
The gradient of ey(f) with respect to 6 is equal to the gradient of y, with
respect to 6, since y,, is independent of 6, and represents the sensitivity
of the output error to variations in the controller parameter 6.
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Several problems were encountered in the usage of the gradient
update. The sensitivity function dy, (f) /46 usually depends on the unk-
nown plant parameters, and is consequently unavailable. At this point
the so-called M.I.T. rule, which replaced the unknown parameters by
their estimates at time ¢, was proposed. Unfortunately, for schemes
based on the M.L.T. rule, it is not possible in general to prove closed-
loop stability, or convergence of the output error to zero. Empirically, it
was observed that the M.I.T. rule performed well when the adaptation
gain g and the magnitude of the reference input were small (a conclusion
later confirmed analytically by Mareels et al [1986]). However, examples
of instability could be obtained otherwise (cf. James [1971]).

Parks [1966] found a way of redesigning adaptive systems using
Lyapunov theory, so that stable and provably convergent model refer-
ence schemes were obtained. The update laws were similar to (0.2.2),
with the sensitivity dy, (6) / 36 replaced by other functions. The stability
and convergence properties of model reference adaptive systems make
them particularly attractive and will occupy a lot of our interest in this
book.

0.2.3 Self Tuning Regulators

In this technique of adaptive control, one starts from a control design
method for known plants. This design method is summarized by a con-
troller structure, and a relationship between plant parameters and con-
troller parameters. Since the plant parameters are in fact unknown, they
are obtained using a recursive parameter identification algorithm. The
controller parameters are then obtained from the estimates of the plant
parameters, in the same way as if these were the true parameters. This is
usually called a certainty equivalence principle.

The resulting scheme is represented on Figure 0.4. An explicit
separation between identification and control is assumed, in contrast to
the model reference schemes above, where the parameters of the con-
troller are updated directly to achieve the goal of model following. The
self tuning approach was originally proposed by Kalman [1958] and
clarified by Astrom & Wittenmark [1973]. The controller is called self
tuning, since it has the ability to tune its own parameters. Again, it can
be thought of as having two loops: an inner loop consisting of a conven-
tional controller, but with varying parameters, and an outer loop consist-
ing of an identifier and a design box (representing an on-line solution to
a design problem for a system with known parameters) which adjust
these controller parameters.

The self tuning regulator is very flexible with respect to its choice of
controller design methodology (linear quadratic, minimum variance,
gain-phase margin design, ...), and to the choice of identification scheme
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Figure 0.4: Self-tuning Controller

(least squares, maximum likelihood, extended Kalman filtering, ...). The
analysis of self tuning adaptive systems is however more complex than
the analysis of model reference schemes, due primarily to the (usually
nonlinear) transformation from identifier parameters to controller
parameters.

Direct and Indirect Adaptive Control

While model reference adaptive controllers and self tuning regulators
were introduced as different approaches, the only real difference between
them is that model reference schemes are direct adaptive control
schemes, whereas self tuning regulators are indirect. The self tuning
regulator first identifies the plant parameters recursively, and then uses
these estimates to update the controller parameters through some fixed
transformation. The model reference adaptive schemes update the con-
troller parameters directly (no explicit estimate or identification of the
plant parameters is made). It is easy to see that the inner or control
loop of a self tuning regulator could be the same as the inner loop of a
model reference design. Or, in other words, the model reference adap-
tive schemes can be seen as a special case of the self tuning regulators,
with an identity transformation between updated parameters and con-
troller parameters. Through this book, we will distinguish between
direct and indirect schemes rather than between model reference and self
tuning algorithms.
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0.2.4 Stochastic Control Approach

Adaptive controller structures based on model reference or self tuning
approaches are based on heuristic arguments. Yet, it would be appealing
to obtain such structures from a unified theoretical framework. This can
be done (in principle, at least) using stochastic control. The system and
its environment are described by a stochastic model, and a criterion is
formulated to minimize the expected value of a loss function, which is a
scalar function of states and controls. It is usually very difficult to solve
stochastic optimal control problems (a notable exception is the linear
quadratic gaussian problem). When indeed they can be solved, the
optimal controllers have the structure shown in Figure 0.5: an identifier
(estimator) followed by a nonlinear feedback regulator.

Reference Control Plant Output
Signal r . Signal u ant Quipu
——————»{ CONTROLLER > PLANT | Yp
A
HYPERSTATE
CALCULATION
Hyperstate

Figure 0.5: “Generic” Stochastic Controller

The estimator generates the conditional probability distribution of the
state from the measurements: this distribution is called the hAyperstate
(usually belonging to an infinite dimensional vector space). The self
tuner may be thought of as an approximation of this controller, with the
hyperstate approximated by the process state and process parameters
estimate.

From some limited experience with stochastic control, the following
interesting observations can be made of the optimal control law: in
addition to driving the plant output to its desired value, the controller
introduces probing signals which improve the identification and, there-
fore future control. This, however, represents some cost in terms of con-
trol activity. The optimal regulator maintains a balance between the
control activity for learning about the plant it is controlling and the
activity for controlling the plant output to its desired value. This pro-
perty is referred to as dual control. While we will not explicitly study
stochastic control in this book, the foregoing trade-off will be seen
repeatedly: good adaptive control requires correct identification, and for
the identification to be complete, the controller signal has to be
sufficiently rich to allow for the excitation of the plant dynamics. The
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presence of this rich enough excitation may result in poor transient per-
formance of the scheme, displaying the trade-off between learning and
control performance.

0.3 A SIMPLE EXAMPLE
Adaptive control systems are difficult to analyze because they are non-
linear, time varying systems, even if the plant that they are controlling is
linear, time invariant. This leads to interesting and delicate technical
problems. In this section, we will introduce some of these problems
with a simple example. We also discuss some of the adaptive schemes
of the previous section in this context.

We consider a first order, time invariant, linear system with
transfer function

kp
s+a

where a >0 is known. The gain k, of the plant is unknown, but its sign
is known (say k,>0). The control objective is to get the plant output to
match a model output, where the reference model transfer function is

1
s+a

P(s) = (0.3.1)

M(s) = (0.3.2)

Only gain compensation—or feedforward control—is necessary,
namely a gain 4 at the plant input, as is shown on Figure 0.6.

A
M

Ym

1
+a

stpa Y

Figure 0.6: Simple Feedforward Controller

®

Note that, if k, were known, 6 would logically be chosen to be 1/k,.
We will call

0* = — (0.3.3)

the nominal value of the parameter 6, that is the value which realizes the
output matching objective for all inputs. The design of the various
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adaptive schemes proceeds as follows.

Gain Scheduling

Let v(t) € IR be some auxiliary measurement that correlates in known
fashion with k,, say k,(t) = f(v(z)). Then, the gain scheduler chooses at
time ¢

6(t) = (0.3.4)

1
Jv(@))

Model Reference Adaptive Control Using the ML.L.T. Rule

To apply the M.LT. rule, we need to obtain dey(6)/36 = dy,(6)/96,
with the understanding that 4 is frozen. From Figure 0.6, it is easy to
see that

3y,(6) ~ k, B
5 - 3+a (0r) = kyym (0.3.5)

We see immediately that the sensitivity function in (0.3.5) depends on
the parameter k, which is unknown, so that dy,/d6 is not available.
However, the sign of k, is known (k, > 0), so that we may merge the con-
stant k, with the adaptation gain. The M.LT rule becomes

0 = -gegym g>0 (0.3.6)
Note that (0.3.6) prescribes an update of the parameter 6 in the direction
opposite to the “correlation” product of ey and the model output y,,.

Model Reference Adaptive Control Using the Lyapunov Redesign

The control scheme is exactly as before, but the parameter update law is
chosen to make a Lyapunov function decrease along the trajectories of
the adaptive system (see Chapter 1 for an introduction to Lyapunov
analysis). The plant and reference model are described by

Vo = —ay, + ky0r (0.3.7)

Vm = —QYm+T = =AYy + ky0'r (0.3.8)
Subtracting (0.3.8) from (0.3.7), we get, with eg = y, — yp,

éo = —aeyg+ ky(0-0)r (0.3.9)

Since we would like 6 to converge to the nominal value 6* = 1/k,, we
define the parameter error as

¢ = 0-06" (0.3.10)
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Note that since 6* is fixed (though unknown), ¢ = 6.

The Lyapunov redesign approach consists in finding an update law
so that the Lyapunov function

v(eo,d) = ef + k,¢? (0.3.11)
is decreasing along trajectories of the error system
o = —aey+ kyor
¢ = update law to be defined (0.3.12)

Note that since k,>0, the function v(eq, ¢) is a positive definite func-
tion. The derivative of v along the trajectories of the error system
(0.3.12) is given by

V(e d) = -2ae} +2k,eopr + 2k, 66 (0.3.13)
Choosing the updat(eo'féllvzs2
f = ¢ = —eor (0.3.14)
yields
v(ep¢) = —2aed <0 (0.3.15)

thereby guaranteeing that e§ + kp¢2 is decreasing along the trajectories of
(0.3.12), (0.3.14) and that ey, and ¢ are bounded. Note that (0.3.15) is
similar in form to (0.3.6), with the difference that e, is correlated with r
rather that y,,. An adaptation gain g may also be included in (0.3.14).
Since v(eg,¢) is decreasing and bounded below, it would appear

that eg—0 as ¢t - o0o. This actually follows from further analysis, pro-
vided that r is bounded (cf. Barbalat’s lemma 1.2.1).

Having concluded that eg— 0 as ¢ - oo, what can we say about §?
Does it indeed converge to 6*=1/k,? The answer is that one can not
conclude anything about the convergence of 8 to 6* without extra condi-
tions on the reference input. Indeed, if the reference input was a con-
stant zero signal, there would be no reason to expect 6 to converge to 6*.
Conditions for parameter convergence are important in adaptive control
and will be studied in great detail. An answer to this question for the
simple example will be given for the following indirect adaptive control
scheme.
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Indirect Adaptive Control (Self Tuning)

To be able to effectively compare the indirect scheme with the direct
schemes given before, we will assume that the control objective is still
model matching, with the same model as above. Figure 0.7 shows an
indirect or self tuning type of model reference adaptive controller.

—

6-1/7

Figure 0.7: A Simple Indirect Controller

The identifier contains an identifier parameter «(¢) that is an esti-

mate of the unknown plant parameter k,. Therefore, we define =* = k.
The controller parameter is chosen following the certainty equivalence

principle: since 6* = 1/k, and =*=k,, we let 6(¢t) =1/ =(t). The hope is
that, as ¢t - oo, 7(t) > k,, so that 6(¢) > 1/k,.
The update law now is an update law for the identifier parameter

m(t). There are several possibilities at this point, and we proceed to
derive one of them. Define the identifier parameter error

W) = w(t)-=* (0.3.16)
and let

1 1
W= s+a(0r) "~ s+a

The signal w may be obtained by stable filtering of the input u,‘since
a >0 is known. The update law is based on the identifier error
e = TW-Y, (0.3.18)

Equation (0.3.18) is used in the actual implementation of the algorithm.
For the analysis, note that

(u) (0.3.17)
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. K or) = «* 0.3.19
y”_s+a(r—7rw 0.3.19)
so that
e = yw (0.3.20)
Consider the update law
o=y o= —gew g>0 (0.3.21)

and let the Lyapunov function
v = y? (0.3.22)

This Lyapunov function has the special form of the norm square of the
identifier parameter error. Its derivative along the trajectories of the
adaptive system is

v = —gyw? (0.3.23)
Therefore, the update law causes a decreasing parameter error and all

signals remain bounded.

The question of parameter convergence can be answered quite sim-
ply in this case. Note that (0.3.20), (0.3.21) represent the first order
linear time varying system

Y = —gwiy (0.3.24)
which may be explicitly integrated to get

t
W) = W0) exp (- g [wir)dn) (0.3.25)
0

It is now easy to see that if

t
f wXr)dr - oo as t — oo (0.3.26)
0

then ¥(¢)—0, so that =(t)—«* and 6(t)—>1/k,, yielding the desired
controller. The condition (0.3.26) is referred to as an identifiability con-
dition and is much related to the so-called persistency of excitation that
will be discussed in Chapter 2. It is easily seen that, in particular, it
excludes signals which tend to zero as ¢t - oco.

The difficulty with (0.3.26) is that it depends on w, which in turn
depends on u and therefore on both 6 and r. Converting it into a condi-
tion on the exogenous reference input r(¢) only is another of the prob-
lems which we will discuss in the following chapters.
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The foregoing simple example showed that even when simple feed-
forward control of a linear, time invariant, first order plant was
involved, the analysis of the resulting closed-loop dynamics could be
involved: the equations were time-varying, linear equations. Once feed-
back control is involved, the equations become nonlinear and time vary-

ing.



