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Introduction

1. The Sclutions In This Manual.

The solutions of all the exercises in the text are given in full.
The primary reason is to save professors' time., Choosing exercises for
homework assignments can be a laborious matter if one must scolve fifteen,
twenty or more to determine which are most suitable for his class. &
glance at the sclutions will expedite the choices.

The second reason is that in many institutions calculus is taught
by teaching assistants who have yet to acquire both the training and ex-
perience in handling many of the mathematical and physical problems. The
availability of the solutions should help these teachers.

2. Suggestions For The Use Of The Text.

The one-volume format of this second edition should give profes-
sors more latitude in the choice of topics which might be suitable to the
interests of the students or to the length of the course.

Several types of choices might be noted. Because precalculus
courses have become more common since the publication of the first edi-
tion, scome of the analytic geometry topics may no longer have to be
taught in the calculus course. The most elementary topics of analytics
have been put in an appendix to Chapter 3, Section 4 of Chapter 4, Sec-
tion 5 of Chapter 7, and the Appendix to Chapter 7. If familiar to the
students, all or some can be omitted.

Though I believe strongly in the importance of physical and, more
generally, real applications to supply motitation and meaning to the
calculus, again class interests and available time must enter into de-
termining how many of these applications can be taken up. I have there-
fore starred all those sections and chapters which can be omitted without
disrupting the continuity.

The last chapter, which is intended as an introduction to the
thecry or rigor, can be taken up at almost any point after Chapter 10.
However, I persconally believe that the intuitive appreoach should be
maintained throughout and that this chapter should ke left for the last
and then taken up only if time permits.

The complete text is intended for a three semester, three hours a
week course. However, in view of the number of sections and chapters
that are not essential to the continuity the text can be used for shorter
courses including those offered in the fourth high schoel year,

3. Some Additional Topics.

Some physical applications which were included in the first edi-
tion were omitted in_ the second one and replaced in the text preoper by
applications to economics and to other social science areas. A few of
those omitted are reproduced here. They may be useful as suggestions



for additional work which bright or somewhat advanced students can under-
take, as fili-ins for periocds which for one reason or another cannot be
used for regular work, or as material for a mathematics club talk. Ex-
ercises and solutions relevant to these additional topics are alsoc in-
cluded here.

A. The Hanging Chain.

In the text proper we derived the eguation of the chain or cable
suspended from two points (Chap. 16, Sect. 4) on the asgsumption that the
weight per unit length of the cable is the same all along the cable.
However, the theory developed there can be used to solve more general
problems. One is to determine the shape of the cable if the weight per
unit length or, one can say, the density per unit length is specified.
The second is, given the desired shape of the cable, how can we fix the
distribution of the mass along the cable so that it assumes the desired
shape? Both of these problems are readily solved with the theory at hand.

The derivation of (21), the equation of the cable, in the text
proper, presupposed that the weicht ¢f the cable per unit foot is con-
stant all along the cable. Let us now see what we can do when we let the
. weight of the cable vary from point to point. Let us denote by w{s) the
function that gives the weight per unit foot at point s. Then (11) and
(13) still held, but (14) must be changed to read

(1) T, = [w(s)dx + D.
If we divide this equation by (11} and use the fact that T_/T. is y', we
cbtain Y ox

(2) y' = %% fw(s)ds + D'

where D' is D/T.. If the function w(s) is given, we can calculate
fw({s)ds. The guantity D' can now be fixed by letting s be 0 at y' = 0.
We now have y' as a function of s. Next we may proceed as we did in the
case where w(s) is a consgtant and seek to obtain s as a function of x
through

g‘.ﬁ: r2
= \/l+y

but yv' is now given by (2). If the integration can be performed and s is
cbtained as a function of x, we can substitute this value of s in (2) and
attempt to obtain v as a function of x.

We can also solve the second problem. Suppese that we wish
to distribute weight along the cable so that the cable hangs in a given
shape; that is, we presume that we know the equation of the cable and we
wish to find w({s). To solve this problem, we differentiate (2) with
respect to x. On the left side differentiation with respect to x pro-
duces y". On the right side to differentiate with respect to x we use
the chain rule and differentiate with respect t¢ s and multiply by ds/dx.
The derivative of fw(s)ds with respect to s must be w{s) because the
integral is that function whose derivative is w(s). Thus our result is



(3) vt = s g

0
Because we presume that we know the equation of the curve, we can calcu-
late y" and ds/dx. Hence we can find w(s), that is, the variation of
weight along the curve that produces the particular shape of the hanging
cable, Of course, the shape of the cable need no longer be a catenary.
It is often called a non-uniform catenary.

The theory presented in this section is useful under more general
conditions than those so far described. In the derivations of the text
and of (2), we attributed the weight tc the cable., However, the weight
w(s) might be the lcad on the cable, that is, the lcad of the bridge
itself, if the cable's weight is negligible, or the combined weight of
cable and load. 1In the case of the theory in the text this lcad would
have to be proportional to the arc length cof the cable; that is, the load
would have to be the same for each unit of length of the cable, In the
case of (2), the lecad could vary along the cable or the c¢ombined weight
of load and cable could vary along the cable, and the function wi(s) would
have to represent the wvariation of the total weight with arc length.

Exercises:

1. Find the law of variation of the mass of a string suspended from two
points at the same le vel and acted upon by gravity so that it hangs
in the form of a semicircle. Suggestion: Take the semicircle to be
the lower half of x?+y? = 2ay and use (3).

2. The derivation given in (2) for a cable whose lcocad varies with arc
length applies also to a cable whose load varies with horizontal dis-
tance from, say, the lowest point. Thus 'I‘X =T, and (1) becomes

Ty = fw(x)dx+D. Then {2) is y' = (l/TO)fw(x)+D'. Given that the load
per horizontal foot is w(x) = ax?*+b, find the equation of the cable.
' Ans., y = (ax”+6bx2)/l2To.

3. A heavy chain is suspended at its two extremities and forms an arc of
the parabola y = x?/4p. Show that the weight per horizontal foot is
constant. Suggestion: Use (3).

Sclutions:

1. The lower half of the semicircle is given by y = a-/a%?-x*. Then
yi o= x(a?-x2)"? ana y" o= azta?—xz)-3/2, ds/dx = J1+y'2:a(a2—x2)—l/2.
Then from (3), wi{s) = aTo/(a2~x‘).

2. Carry out the obvious integrations and use the facts that y' and y are
0 at x = G.

3. We can think of w(s)ds/dx as a functicn w(x) of x since s is. Now use
(3). Since y = x2/4p, y" = kp, and w(x) is a constant.

B. Projectile Motion in a Resisting Medium.

After taking up projectile motion in a vacuum {(Chap. 18, Sect. 4)
one can take up the case of motion in a resisting medium. Since the



analysis of projectile motion breaks down into a separate consideration
of the horizontal and vertical motions, the mathematics involved, apart
from the use of parametric equations, is no more than what was taken up
in Chapter 12, Sections 6 and 7, where horizontal and vertical motion in
a resisting medium were considered independently. However, the combina-
tion of the two and the implications for projectile motion are new and

provide an interesting comparison with projectile motion in a vacuum.

The effect of air resistance on the motion of projectiles was
first investigated seriously by Newton, Huygens, and Euler. We shall
suppose that as the projectile travels through the air, the resistance of
the air is proportional to the velocity and directed opposed te that
velocity. As in the text, we shall apply Galileo's principle and con-
sider the horizontal and vertical motions separately, Now, the hori-
zontal and vertical components of the velocity at any point of the
projectile's path are x and y, respectively, where x and y are functions
of t that represent the horizontal and vertical motion and the dot means
differentiation with respect to t. Hence the air resistance, because it
is oppositely directed, should have the components -Kx and -Ky, where K
is the proporticonality constant.

To cbtain the parametric equaticns of the motion, we use Newton's
second law of motion, namely, that the net force acting must equal the
mass times the acceleration of the projectile. We shall apply this law
to the horizontal and vertical motions separately. Suppose that the pro-
jectile is shot out with an initial velocity of magnitude V inclined at
angle A to the ground. This initial velocity does give the projectile a
constant horizontal velocity of V cos A but no acceleration in the hori-
zontal direction and therefore no continuously acting force in the hori-
zontal direction. However, there is a horizontal force acting at any
time t, namely the air resistance -Kx, Hence Newton's second law says
for the horizontal motion that ma = -Kx. However, the horizontal accele-
ration ig the time derivative of the horizontal velocity so that

mii = -K}.(a

If we divide both sides by m and replace K/m by k, we obtain
(1) X = -kX.

In the case of the vertical motion there are twe forces acting at
any time t, the force of gravity which is -32m and the vertical component,
-Ky, of the air resistance (the upward direction is positive). Hence the
differential equation for the vertical motion is, by Newton's second law,

my = ~32m ~ Ky.
if we divide both sides of this equation by m and again replace K/m by k,
we obtain
(2) ¥ = -32 - ky.
To integrate {l) we first write it in a more familiar form. Since
X = v, r we have
dv

X

Fe - Kk



The right-hand side contains the dependent variable, so we convert to

at _ -1
av kv °
X X

Then
_ 1
t = klog v + C
or, by solving for Vg s
v = e—kt-c _ e—kte—C . De—ktr
X
where D = e—C. Because vx = Vcosh when t = 0,
{3) Ve T V cos Ae-kt.

Equation (3) should be compared with (6) of the text proper. Now v, =
dx/dt; hence, since x = ¢ when t = 0,
V cog A -kt

(4) x = ———i;-(l - e .

This equation should be compared with {7) of the text. In (3} and (4)
we have the formulas for the horizontal velocity and horizontal dis-
tance traveled as functions of t,.

To integrate (2) we perform similar steps. We write ¥y as v_.

Then {2) reads Y
ac _ . _1_
dvy, 32+kv.
3 y
By integration
- -1
t = k1oq{32+kvy) + C
or
32 + kvy = e-ktukc = De_kt,
where D = eﬂkc. Then
_ Lokt
(5) vy = k(De 32).

We know that vy = VsinA when £t = 0. Substitution of these values yields
D= kVsina + 32,
and so {5) becomes
kt 32 -kt 32

{(6) vy = V gin Ae + -T(—e -5

By one more integration we obtain



g = - Vs]::nAe—kt__ Sit + C.

Because v = 0 when t = 0,

V sin A 32
= L8n8 _ 22 4 C.
0 * k2

We solve for C and substitute its value in the preceding eguation. Then

VeindA -kt 32 -kt 32t Vsin A 32

y = - —-—]-{—e - k_ze - k + ]{ + i—
or
32t Vsinh 32 ~kt
(7} = - + + =1l - e .
y k k K2 )

We have in (6} and (7) the formulas for the vertical velocity and height
above ground of the projectile. These formulas should be compared with
{8) and (9} respectively of the text.

It would, of course, be interesting to determine what effect air
resistance has by comparing results cobtained here with the results ob-
tained for projectile motion witheout air resistance. A few of these com~
parisons will be left for the exercises. {See also the work on infinite
series in Chap. 20, Sect. 12.) At the moment we might mention that the
projectile fired with a fixed initial velocity V, at a fixed angle A to
the ground, and moving in the resisting medium as opposed to a vacuum
takes less time to reach maximum height, reaches maximum height closer

¥

Path in
vacuum

|
.HQI

Figure 1.

to the gun (Fig. 1), and attains less maximum height than if fired in a
vacuum. Moreover, the maximum height H2 is attained beyond the mid-

point of the range. The first part of the path is straighter than in a



vacuum and the latter part steeper. The projectile strikes the ground
at a steeper angle and with less speed than that with which it was
fired. Finally, the maximum range is obtained at an angle of fire of
less than 45°.

Exercises
1. Find the direct equation relating y and x by eliminating t between
(4) and (7).

, 32 x 32
Ans. = (Vsgind + =) —= = + ZZ 10 1l -
=hs. ¥ ( k)VcosA k? g

kx )
Veoosd

2. Find the time t2 it takes the projectile to reach the highest point
of its path.

kV sin A

Ang. t, = 35

> log (1 + ) .

~|H

3. Find the coordinates (x,,y,} of the highest point of the projectile's
path.

Ans. x. = v’sin A cos A _ VYsinadA _ é-g-log (1+ kv sinA)
=== "2 " 32 + kvsina’' Y2 k P 32

4. show that the projectile moving in the resisting medium attains its
maximum height at a value of x closer tc the starting point than it
does when shot out at the same angle A and with the same initial
velocity V in a vacuum. Suggestion: Compare (15) of the text and the
value of X, in Exercise 3,

5. As a check on the results in Exercises 1 and 3, we could do the
following. We know that the slope of the projectile's path is 0
at the maximum height., Calculate dy/dx from the result in Exercise
1, substitute in it the value of X, given in Exercise 3, and see if
the slope is 0.

6. (a) What is the terminal horizontal velocity, that is, the velocity as

t becomes infinite, of the projectile moticn discussed in the
text? Ans. 0.
(b) What is the terminal vertical velocity? aAns. -32/k.
{c) Using the results of parts {(a) and (b), describe the path as t
becomes infinite.

7. Using the result of Exercise 1, describe the path as x approaches the
value (Vcosd)/k. Does the result agree with the answer to part (c)
of Exercise 67

8. An airplane flying horizontally with speed U releases a bomb of mass
m. If the air resistance is km times the velocity, where k is a pro-~
portionality constant, show that the horizontal and vertical dis-
tances traveled by the bomb in time t are x = U(l - e X% /k and
y = 32(e~kt _ 1 4+ kt}/k?, respectively.

2. A bomb is released from an airplane traveling horizontally at a speed
of U ft/sec and at an altitude of H feet. If the air resistance of
the bomb is km times the velocity, where k is a proportionality con-
stant, show that the path of the bomb t seconds after its release will
be inclined to the horizontal at the angle tan~!{32(ekt -1)/kv].




Solutions to the Exercises on Projectile Motion

1. From (4) we have 1 - ekt = kx/VcosA and t = {-1/k)log(l -kx/V cosAi).
Inserting these values in (7) gives the text's answer.
2. At the highest point ¥ or v, is 0. Hence use (6) to sclve for t

when v, = 0. Y

3. Use the value cof t2 obtained in Exercise 2 and substitute for t in (4)
and (7). We have from Exercise 2 that ekt = (32 + kVsina)/32 and
"Xt i¢ the reciprocal. Hence 1 - e Kt _ xvsinA/(32 + kVsinA). The

rest is straightforward to get the text's results.

4, Following the suggestion we must show that V®sin Acos A/(32+ kV sin A)
is less than V2?sin 2A/64. Rewrite the first of these quantities as
VZsin 2A/(64 + 2kV sinA). Since 2kV sind is positive, the expression is
less than VZsin 24/64. :

5. Calculate dy/dx from the result in Exercise 1 and substitute for x the
value of Xy given in Exercise 3. Mere algebra shows dy/dx = 0.

6 (a) As t becomes infinite, e kt apprcaches 0. Then, by (3}, Vg, ap=
proaches 0.
{b} By (6), vy approaches -32/k.

(¢) 8ince the heorizontal wvelocity approaches 0 and the vertical velocity
appreoaches a constant the path must approach more and more a ver-
tical straight line.

7. As x approaches V(cos A})/k, v in Exercise 1 apprcaches -«, This agrees

with &6(c).

8. We start with (1) as in the text here. However, when t = 0, v, = U.

Hence in our case v, = Ue-kt. Then, integrating, and using x = 0

when £t = 0 (which means x is measured from the point where the bomb

is released, we get x = U(l - ehkt)/k. I1f we measure distance down-
ward as positive we have for the vertical motion as in {2) (except
for sign) ¥ = +32 - k¥ and so by usging the method of the text here in

the derivation of (5} we obtain ¥y = (32 =~ De_kt)/k. Since ¥ = 0 when

t =40, D=32 and ¥y = (32 - 32e_kt)/k. Integrating and using 'y = 0
when t = 0, we get the result for y.
9. We may take over from Exercise 8 that v, = Ue_kt and vy = (1/k)
(32 —32e“kt}. Then the direction of the bomb is given by tan § =
v /v, = (32 - 32e7K%) sxve KL,

C. The Brachistochrone Problem.

This problem, one of the famous ones in the history of mathe-
matics, like the preceding topic, belongs under the subject of rectan-
gular parametric equations (Chap. 18).

In Section 8, the text proper takes up tangential and normal
acceleration along curves and arrives at the formula (78):

(1) 52 = 64 (y,~y) -



This says that the velocity acquired by an object which slides along a
curve under the action of gravity and starts at the point (xo,yo) with

zerp velocity is dependent only on the vertical distance fallen and is
independent of the shape of the curve. (The arc length s is measured
from {xo,yo)).

With this result at our disposal we can examine the proof that
John Bernoulli {(1667-1748) gave in 1697 ¢f the brachistochrone property
of the cycloid. The term brachistochrone means shortest time and it
enters in the folliowing way. Suppose that a particle starts from rest
and is allowed to slide along a curve (Fig. 2) from © to B under the
action of gravity. What should the shape of the curve be in order that
the time of travel be least?

One's first thought is that the curve Jjoining © and B should he
a straight line, This curve would indeed furnish the shortest distance
from O to B, but it need not be the one that makes the time of travel
least. If a curve is used that ig steeper at 0 than the line 0B, the

-

Figure 2

tangential acceleration caused by gravity will be greater, and therefore
the velocity acguired will be greater at least at the outset. If the
incipient wvelocity is greater and kecause the particle gains velocity

as it travels along the curve, it may still take less time to traverse
a curved path from ¢ to B even though this curved path is longer than
the straight line path from C to B,

Let us consider, then, a curve from O to B. .We choose the co-
ordinate axes so that y is positive downward. We learned in (1) that
the velocity along the curve at a point (x,y) is the vertical distance
traveled by the particle if it starts from rest. Because our particle
starts from rest at O and y = 0 at 0O, then by {1)

ds

(2) EE—-V-sJ;.
This eqguation is correct, but it certainly does not incorporate any
condition about the curve being the one for which the time of travel is
least. It is, in fact, true for any curve.

Here John Bernoulli applied a brilliant thought. He said, sup-
pose that light were to travel from QO to B with a variable velocity v
given by (2). According to Fermat's principle, light always takes the
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least time. Perhaps if we analyzed v1
how light travels when the velocity
varies, we might obtain the clue to
the solution of our problem. Now
light changes speed when it passes
from one medium into another., In- a2 ve
deed, we showed (formula {(16) of
Chapter 8) that when light passes
from a medium in which its veloccity
is £ to another in which its veloc-

ity is Vo then Figure 3

v 8in o
) o
2 2

where oy and o, are the angles of incidence and refraction and are the

2
angles shown in Fig. 3. This is Snell's law of refraction of light.
Note that if v2>v2, a2>al.

The law of refraction applies when there is a sudden or discon-
tinuous change in the velocity of light. However, Bernoulli wished to
consider the behavior of light when it travels with a continuously
changing velocity. He therefore supposed that the space from C to B was
broken up intc a series cf layers (Fig. 4) within each of which the
velocity is constant. Suppose now that light passes from the ith layer
in which the velocity is v, to the (i+l)-st layer in which the velocity .

L5 [

% e

N

Figure 4
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is v, .
i+l

refraction. Then according to (3)

Let oy be the angle of incidence and o.

i+l the angle of

sin o, in o,
%3 sin i+l

. v,
i i+l

]

v
This eguation holds at the boundary ¢f each laver, so that

2

= = - 4w =

sing sin o gin o
1 n

v Va Yn
what this equation says is that

sin o,
(4) —~——= = gonstant.

V.
1

Let us now increase the number of layers between the level of O and the
level of B, Then (4} will hold at each boundary. If the number of
layers becomes infinite, each horizontal line between the horizontal
through O and the horizontal through B becomes a boundary, and we have
in place of (4} that

sin o
(5 5

= gonstant

where o and v are now functions of y. Moreover, if we think of light as
following the curved path OB (Fig. 5), the direction o of the incident
and refracted light at any point (x,y) is the angle that the tangent to

o

FPigure 5

the curve at (x,y) makezs with the vertical, However, we also gee from
Fig. 5 that

sin o = =
ds

so that (5) becomes
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= constant

<[al&

or, because dx/ds = 1/(ds/dx),

1 C

N A:
de_ l+(dx)

where B is some constant and C = 1/B,.
Thus through the study of light we have learned something about wv.
We now use this fact in (2} and write

<
I

& = 8/5 .
gzz
L+ (3

It we solve for dy/dx, we obtain
(6) %Z ﬁJ D -y
X y

where D is a new constant,
We now try to integrate (6). Because the right side is a function
of y, let us invert and write

dx _
dy 4/ D -y

so that

X = J -JEL-—-dx
A=y

In view of the presence of the radical, let us use the change of variable

(7) y = D sinZu.

Then

sin u ,
= |m— 2D u co u
X Jcos m sin cos u d

or

x JED sin?u du.

The integral is readily evaluated by changing sin®u to (1 - cos 2u) /2
so that
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X = g—(.?u- sin 2u) + C.

Now, % = 0 when y = 0 and when y= 0, u=0. Then C = 0 and

(8)

x=

(N1 lw)

(2u - sin 2u) .

We could now solve {(7) for u and put this value of u in (8) to obtain the
equation relaing X and y. However, we can equally well take the equations

x = %{m - sin 2u) ,

y = D sin®u = %(l - cos 2u)

as the parametric equations of the curve with u as the parameter. We can
iet 2u = & and let D/2 = R so that the eguations become

(9)

x = R(8 - sin 8)

R(1 - ¢os 6} ,

Il

y

and we can now see that the curve is a cycloid.

Wwe do want the curve to pass through the given point B. If the

coordinates of B are {xl,yl), we want the cvcloid which for some value

of

8 and some value of R yields (xl,yl). That is, we must have
Xy = R(B1 - sin 81},

¥y, = R(1 - cos el).

These equations do determine R and do it so that for this value of R
the eguations (9) will pass through (xl,yl) when 68 = 0.

Thus John Bernoulli showed that the cycloid is the curve along

which a particle slides under the action of gravity from one point to
another in least time.

This problem is a peculiar one insofar as the calculus is con-

cerned. We note that it is a kind of minimum problem. That is, we did
seek something that would make time of travel least. However, we did
not, as one does in the usual maxima and minima problems, find a value
of x at which some dependent variable y is least. We found a curve

for which the dependent variable, time, is least. Such problems cannot
usually be done with the calculus and, in fact, must be handled with
the techniques of a branch of mathematics called the calculus of varia-
tions, which is an extension of the calculus. The solution of the
brachistochrone problem by means of the calculus proper was possible
only because Bernoulli used an ingenious argument.

Exercises

1. Would you say that Bernoulli used an entirely mathematical argument

to solve the brachistochrone problem?
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2. Would you say that Bernoulli was able to solve the brachistochrone by
relying entirely upon mathematics and concepts of mechanics such as
velocity and acceleraticn?

3. Specifically, what did Bernoulli accomplish by introducing the motion
of light?

4. What is the essence of the argument that the cycloid requires least
time?

Solutions

1. No. He used the physical fact that light takes the path reguiring
least time to obtain an important fact about the velocity of motion.

2. No.He used the principle of least time which as Bernoulli used it, is
a principle of optics, not mechanics.

3. The key fact obtained by studying the motion of light is that
v = C/V1+(dy/dx) 2. This tells us how the velocity of the motion must
be related to the slope of the curve along which the motion takes
place if the time of travel is tc be least.

4. There are two key ideas in Bernoulli's proof. The first is that for
motion along a curve under the action of gravity (starting from rest)
the velocity attained is v = 8/¥ where vy is the vertical distance
fallen. However, as the text points out, this fact holds for any
curve, The problem is to single out the curve requiring least time.
Here Bernoulli calls upon the behavior of light. The principle of
least time implies the law of refraction {(Chapter 8, formula (16)}).
The law of refraction extended to a continuous change ir the medium
implies v = C/vI+{dy/dx)%. This equation relates the slope of the
curve requiring least time to the velocity. However, the velocity is
not uniquely fixed by this last equation. If we now add that the
velocity at any level is 8Vy, that is, the velocity determined by
gravity, to the condition which least time imposes, we get enough
information to determine the unigue curve along which the particle
must move.

D. Kepler's Laws.

In the text we arrived at formula (35}, namely
h2
GM

l+e cos(B+a) *

(1) p =

ag the equation of the path of a planet which is attracted to the sun in
accordance with the law of gravitation. We then sought to determine e,
primarily, so that we could learn which conic section is the actual path.
To simplify the work we adopted the initial conditions that at
time t = 0 the planet is on the polar axis at a distance p_ from the
pole (which is the location of the sun) and that the planet has at t = 0
a velocity Vo which is perpendicular to the polar axis, These initial
conditions enabled us to determine the nature of the conic section and

it turns out that whether the conic is an ellipse, parabola or hyperbola
depends on the value of V-
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One can, with the mathematics at our disposal, deduce a more
general result which is of value to mathematical astronomers. Instead
of supposing that v, is perpendicular to the pelar axis we allow it to

make an angle A to that axis. The position of the planet at time t = 0
will still be on the polar axis at a distance Po from the sun. Moreover;

we do not suppose that the line from focus to directrix is the polar axis
so that o need not be O or T. Under these more general initial condi-
tions we can still determine e, as well as o and h and we arrive at the
surprising conclusion that only the magnitude of v, but not the direction

A which it makes with the polar axis determines the particular conic
section.
The derivation of this conclusion under the more general initial
conditions is somewhat lengthy but elementary.
Let us suppose that the planet
starts out at some point Py in space

(fig. 6) whose distance Oq from the
v A

sun at O is known. Further at P_ sup- -

pose the planet has an initial spped ///ﬁ///

v whose direction makes an angle A

Potar axis

0 O F Po f2
with the line jeoining © to PO. We

chocse the peolar axis of our polar

cocrdinate system to be the line OPD Figure 6

so that & is measured from OPD counter-

clockwise. What these initial conditions tells us is that

(2) at 8 = 0, p = ST

Since v cos A is the radial component of the velocity and vy is ‘p, then
{3) Py = vocosA

where the subscript in 60 denctes the value of é at 6 = 0, Likewise
since vosinZ\ is the transverse component of the velocity and Vg = po
then

{4) poeo = v051nA .

We must understand in (4) that eo is 0 but 80 is the time rate of change

of 6 at 6 = 0 and this is not zero. .
We can determine h at once. By (19) of the text proper h = p28.

Since h is a constant we can use its value at 0 = 0. Then by (4),
(5) h = pv,sina.

We are now going to obtain relations involving o and e which will

enablie us to determine both. From (1) when 6 = 0 and so p = Pq
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hz
Po = GM{1+e cos a)

from which we have, by solving for e cosa,

h?
GMpO

il

e Ccos Q

Then, in view of (5),

: povésinzA
(6) ecos o = —=r— = L.

If we could get a value for & sina we would be able to use it and (6] to
find e and o separately. To involve sina we go back to (1) and dif-
ferentiate. The algebra is simpler if we first write (1) as

1 _ GM[l+e cos (6+a)]

P h?
Now
1 dp _ _ GM X
{7} °F 5 7T © sin(8+a) .
By setting 6 = 0 we can get an expression for e sino but this expression

would de no good because we do not know the value of %% at 8 = 0. How-
ever, we have in (3) the value of 50 or %% at 6 = 0. This suggests that
we use the fact that

dp .
ds

2
DJlQJ
Dt

By {19) of the text proger,

2

dp . dp p-
dg ~ dt h
Substitution of this result in (7) gives

do _ GM
it - h e sin(6 +o)

and at 8 = 0

Then
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ard in view of {5) and (3)
o vés:?.n Acos A
(8) e sina = .
GM

With (6) and (8) we can obtain e. We sguare (6) and {(8) and add. Then

2p_v%sin®A  p v'*sin?a
(9) g2 = 1 - —20 + 20
GM G2mM?
To obtain o we have but to divide (8} by {(6). Thus
povésin Acos A
(10} tan g = .
p visin?a - GM
0o

Having cobtained (2) and (10), let us try to profit from them.
We can write (9) as

(11) e? = 1 4+ =22 (=2 - 2).
GM GM

If pové/GM < 2, the quantity in parentheses will be negative, and because

all other quantities are positive, e?, which is necessarily positive,
will lie between 0 and 1. Then the conic¢ section will be an ellipse.
We may put this statement thus:

2GM

{(12a) if v, >

; the path is an ellipse.
o]

From (ll) we also see that if oové/GM - 2 0, then e = 1, or

(12b) if V, = 26M . the path is a parabola.

Py
Finally, if povg/GM > 2, then e > 1, or

{12c) if Vo >1/%?ﬂ . the path is a hyperbola.

Q

We see, then, that only the magnitude of the initial velocity but
not the direction determines the particular conic section that the at-
tracted body follows. The shape and location of the particular conic
section does depend on angle A but the fact that it is an ellipse, say-:
does not.
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The problem scolved in the text proper under the more specialized
initial conditions or the same problem with the more general initial
conditions treated here is known as the simplified or modified two-body
problem. The simplification consists in assuming that the sun is fixed
and that a single planet is attracted to the sun. Actually each body,
sun and planet, attracts the other and both move. This more general
problem and extensions to the three-body and n-body problems are treated
in texts on celestial mechanics but the mathematics invelves far more
of the subject of differential equations than can be taken up in the
calculus. Moreover, exact solutions cannot be obteined.

Morris Kline

August 1976
New York City



Solutions

Solutions to Chapter 2

CHAPTER 2, SECTION 1

1. Independent wvariable is n; dependent variable is A.

2. t = v/32, Yes.

3. x = +/y/5.3 . No.

4. (a) A = 7mr?;: (b) A = wa?/4.

5. r = +/A/7; no; the positive root because real radii are positive
lengths,

6., VXZ<=

7. 30 miles per hour is 30-5280/60-60 or 44 ft/sec, Hence d = 44t,

8. Other side is 4/x. Hence p = 2x + 2(4/x).

CHAPTER 2, SECTION 1, SECOND SET

2, £(0) = 0; £(2) = -22; £{(~2) = 14; £{(9) = -162; £(-9) = 0,
3. Replace a in answers given by x,.
4, (a) £(x) = x - (L/x); f(x) = -x - (1/-x) = =x + 1/x. Hence
f(-x) = ~£{x)
(by £{L/x) = (/%) - 1/(1/%x} = 1/x - x = -f{x).
5. £(0) = =-9/7; £(2) = -5/3; f£{(-2) = -5/3: £{/7) has no value.
6. £(2x) = (2x)% - 7(2x) = 4x® - 14x; f{x+h} = (x+h)?* - 7(x+h) =
x*+ 2xh + h? - 7x - 7n.
8. £(-2) = 9 and g{(-2) = -15, Hence f(-2)-g{(-2) = -135.
9. £(3) -26; f(-1) = =2; f{(1/x) = 3/(1/x) - (1/x})3% = 3x - (1/x%),

10, £(0) = 8; £(4) = 6; f(g?) = (g + 32)/{g® + 4),

11. g(-x) = (-x)? = -x?* = -g(x),

12, gl(-x) = (-x}" + 2(-x)%2 + 1 = x* + 2x% + 1 = g(x)

13. The fallacy is that we cannot chocse f(sin x) to be x sin x. This
ig not a function of sin x alone but of x and sin x.

CHAPTER 2, SECTION 2

1. (a) Parabola; vertex (0, 0); opening upwards.

(b} Upper half of circle; radius 1; center (0, 0).

(¢} Lower half of circle; radius 1; center (0, 0).

(d) Hyperbola with asymptotes x = 3, y = 0. See (3) of the text.

{(g) Straight line through (-3, 0) and (0, 3) with the point (3, 6) omitted.

(h} Caution: The point (1, 3) is not on the graph.

(m) The graph consists of two half lines emanating from the origin and ex-
tending diagonally upward to the left and to the right, The graph is the
same as for y = {x|.

2. (a) Graph is the same as for k = 16 + h except that the point (0, 16) is not
included.

(b) Graph is the same as for k = h? except that (0, 0} is not included.

{(¢) Graph is the same as for k = 9 + h? except that (0, 9) is not included.

(d) Graph is the same as for k = 9h + h? except that (0, 0) is not included.

(e) Graph is the same as for k = h— 1 except that (1. 0) is not included.

3. The limit is 3.



CHAPTER 2, SECTION 3, FIRST SET

1.

2.

Yes, because there is less and less time for the speed to change prior to
the third second.
128 ft/sec.

CHAPTER 2, SECTION 3, SECOND SET

1.

2.

o
2 Q

e

Let the position be s, at time t, and s, at time {,. The change in distance is
s, — 8;; the rate of change of distance is (s, — s,)/(t, — t,).

In the notation of Exercise 1,t;, =3, t, =5, g, =16(3)?, s, = 16(5)2.

Thus distance traveled from t = 3 to t =5 is 256 ft; the rate of change of
distance or average speed is 128 ft/sec.

The average speed is the distance traveled during some interval of time
divided by the interval. Instantaneous speed is the speed at an instant of
time and is obfained as a limit of average speeds as the interval of time
which starts or ends at the instant approaches 0.

The limit concept.

(a) t, =0, t, = 5; hence (s, — s,}/(t, — t;) =80 ft/sec. (b} t, =4, t, =5; hence
(s, — 8,)/(t; — t;) = 144 ft/sec. (¢) Calculate the average speed for the in-
terval 5 to 6, 5 to 5.1, 5 to 5.01, ete. The limit, determined at this stage
only by seeing what number the average speeds seem to be approaching, is
160 ft/sec.

The result should be the same as that obtained in the text, namely 128 ft/sec.
Not necessarily; the speed may change at any instant or instants during the
next hour.

CHAPTER 2, SECTION 4
1. (a) The limit of 3h% as h approaches 0 is 0; the limit of h® as h ap-

proaches 0 is 0. For the purpose of finding the limit of 3hZ2/h? as h
approaches 0, we may divide numerator and denominator by h?. The
quotient is 3 and the limit of this quotient as h approaches 0 is 3 be-
cause the quotient is always 3.

(b) Use (a) as the model. The limits are 0, 0, ¥%.

(c) . As in (a) the limits of numerator and denominator are 0 and 0., To find
the limit of the quotient we may divide numerator and denominator by
h, obtaining 3h + 1. The limit as h approaches 0 is 1.

(d) The method is the same as in (a). The limits of the numerator and the
denominator are 0 and 0. The quotient after division of numerator and
denominator by h is 3h% + 3h + 1. The limit as h approaches 0 is 1.

(e) Same method as in (a). The limits are 0, 0, 0.

(f) Same method as in (a). The limits are 0, 0, O.



hrase what is done in Section 4.

i. E(,Z;:iﬁ the notation of the text, s, = 16-3% = 144, s, + k = 16(3 + h)?, and k/h
) = 96 + 16h. The limit of 96 + 16h as h approaches 0 is 96. 2
(b) The same process as in (a); here, however, s, = 16(5)?, s, +k = .16(5 + h)2,

and k/h = 160 + 16h, The limit of 160 + 16h as h approaches 0 is 160, ,
(c} The same process as in (a); here, however, g, = 16(6)?, s +k :-16(6 + h)2,

and k/h = 192 + 16h. The limit as h approaches 0 of 192 + 16h is 192.
4. (a) The value of s when t =3 15/240 ft. Y

(b} (s, — 8,)/(4— 3) = (256 — 240)/1 = 16 ft/sec.

{c) %Vfa g0 st)l{I(‘Ollgh the method of increments. s, = 240, s, + k = 128(3 + h)

— 16(3 + h)?, and k/h = 32— 16h. The limit of k/h as h approaches

0 is 32.
5 h - t2t2 _hhi4+2) . To obtain the limit as h approaches
"Yh+4-2 Jh+d+2 h

0 we may divide numerator and denominator by h. This gives vh + 4 + 2,
Now vh + 4 approaches V4 so that the limit is v& + 2 or 4.
6. (a) No; they differ at h =0, ’
(b) Yes, because to determine the limit as h approaches 0 we consider the
values of either function as h takes on values closer and closer to 0
but we do not consider the value h =0,

CHAPTER 2, SECTION 5

1. Certainly as At becomes smaller and smaller, 16At becomes smaller
and smaller. Moreover we can get 16At as close to 0 as we wish by taking
At small enough. Specifically we have but to let At be l/16 of whatever small
quantity we wish, to have 16At be that small quantity.

2. (a) As =163 + 1>~ 16+3% = 113,
(b) As =16(4 + 1% - 16+42 = 144,
(c) As =16(4+2)2— 16-42 = g8,

3. As=16(5 + At)2~ 1652 = 160At + 18(At)2. As/At = 160 + 164t and the limit
as At approachesg 0 is 160,

4. As =16(t, + At)2 - 162 = 32t, At + 16(At)2. As/At = 32t, + 16At and the limit
as At approaches 0 is 32t,.

5. As =2.6(4 + At — 2.6(4)% = 20,84t + 2.6(At). As/At =20.8 + 2.6At and the
limit as At approaches 0 isg 20,8,



9.

el

As = 432(5 + At)2 — 432(5)% = 4320At + 432(At)2. As/At = 4320 + 432At and

the limit as At approaches 0 is 4320,

By taking At be 0.01 and calculating As/At.

Use the method of increments in each case and at the value of t stated. Thus

(a) As = 4(3 + AL)? — 4(3)% = 24At + (A1)2. As/At = 24 + At and the limit as
At approaches 0 is 24,

(b) %,. (¢} 0. (d) 10.

A limit is a constant or fixed number.

10. A limit is an exact value.

CHAPTER 2, SECTION 6

o

10

2.
3.

4.

= O W 0~
*« & 4 L

In each case use formula (30). The answers not in the text are: b) 128,

d) 160, f) 26, h) x,.

Use formula (30). The answer not in the text is b) 60 ft/sec.

The third sentence merely rephrases the problem in mathematical terms.
A =7r?, A, + AA = n{r, + Ar)’. Hence AA = 27r,Ar + g{Ar)® = 21007 ft.

y'= 2x,. Since for y = ax?, y'= 2ax, the effect of the constant factor a in the
function is that it multiplies the derivative of x2.

A = g%, Hence A'= 2s,. The result is intuitively reasonable because it says
that the area increases at the rate which is fixed by the lengths of two ad-
jacent sides. As these sides increase the area of the whole square increases
and the rate of increase depends on the lengths of these two sides. Compare
the discussion of (28} in the text.

Since A =fw and { is kept fixed dA/dw = 2. Geometrically, if % is
kept fixed and w changes by an amount Aw, the change AA = 2LAw.

The instantaneous rate of change A depends then on the length of
% at the value w; of w at which the rate is computed.

AY «

Ay/AX.,

' (x¢) or y' or dy/dx evaluated at xy.
The derivative of v = £(x} at x = Xp.

Ax is the independent wvariable and Ay/Ax is the dependent variable.



CHAPTER 2, SECTION 7

1. ds/dt = v = 10t.
2. (a) The velocity (or instantaneous rate of change of distance with respect
to time) at time t is 32t.
{b) Same as (a) except that 5t replaces 32t.
{c) The instantaneous rate of change of velocity with respect to time (or
acceleration) at time t is —32.
(d) The instantaneous rate of change of y with respect to x at any value
of x is 4x.
Alternative characterizations are, for example: The derived function of s is

32t, etc.
(e) The instantaneous rate of change of y with respect to x is 8x.
(f) The instantaneous rate of change of f(x) with respect to x

is -3x.

3, (b) 8§ = ~6t; (d) dy/dx = lé6x; (f) y' = -2x; (h) y' = 54x;
{3) dy/dx = -15x; (1} y' = 2VZx

CHAPTER 2, SECTION 8

1. y + Ay = b(x+4sx). Subtract y = bx. Then Ay = bAx and
Ay/Ax = b. Hence since b 1is a constant, 1lim Ay/Ax = b.
Ax~>0
That is, dy/dx = y"' = h,
2. y + Ay = ¢. BSubtract y = c. Then Ay = 0; Ay/4x = 0. Hence
lim Ay/Ax = 0. That is, dy/dx = y' = 0.
Awero
b) y-—'4X, dd=-9,1 §=0
y, = ax}, y, + Ay = a(xl + Ax)S Ay = 3ax®Ax + 3ax,(Ax)? + a(Ax)?, Ay/Ax
= 3ax} + (3ax; + aAx)Ax. Hence y'= 3ax’. '
dV/'dr = 4xr?, the surface area of a sphere of radius r.

The correct conjecture is that the derived function is obtained from the

given function by multiplying by the exponent 4 and lowering the exponent by
one to 3. Thus y'= 4ax®. The method of increment gives Ay/Ax = 4ax? +
[6ax? + 4ax, Ax + a(Ax)?]Ax from which the result follows.

7. The formula for arc length is s = rf where r is the radius of the circle
and 81is the central angle in radians. Here r =5; hence s =54 and ds/dé@ = 5.

8. Acceleration equals v. Since v = 32t, v = 32,

9. (a) dy/dx = ny, (b) dy/dx =kx, (c) dy/dx =kx, (d) dA/dr =kr.

10, The argument is false. The derivative of a function which is always constant

(or of a constant term in a function) is 0. It is true that the derivative of any
function is defined at a fixed value of x and the function is constant at the
value of x but if the function varies as x changes the function is not a con-
stant for all values of x and its derivative need not be 0.

EJ"\LJ‘I ..J-\LJJ




CHAPTER 2, SECTION 9

1.
2.

3.
4.

10.

11.

. dC/dx

2x-7; (f) y' = -2x+14; (g} y’ =-7;

il

(by s = 20t; (e) ¥
(h) y' = 6v2x + /3.
The method of increments gives Ay/Ax = 2ax; + b. Hence

dy/dx 2ax + b.

£ (x) 2x; £1(2) = 4; £'(-2) = -4.

For both functions y'= 2x. We can argue that this must be the case for either
of two reasons. We have some evidence to the effect that the derivative of

x? + 5 is the sum of the derivatives of x* and 5 and the derivative of 5 is 0.
The second reason is that the addition of a constant to x® does not change
the rate at which x* varies because the constant does not change and so

does not contribute to the rate of change.

s =100 + 32t. At t =4, § =328 ft/sec.

At all values of x, T or dT/dx = —0,004. Since T'is the limit of AT/Ax and
T is negative it must be that AT/Ax is negative. As x increases by the
amount Ax, AT must then be negative. Hence the temperature must de-
crease as the altitude increases.

x = 18 — 6t. Hence we get the answers to (a), (b) and (c) by letting t be 2,

3, and 4 respectively. As for (d), since the formula gives the amount bemg
produced of the third substance a negative rate is physically meaningless.

If after a certain value of t the combination of the two separate substances
stops and thereafter the third substance decomposes into the original two
and if the original formula holds for the decomposition a negative rate could
mean physically the rate at which the third substance is decreasing because
it is decomposing.

10x + 15. At x = 15, d¢/dx = 165, Yes.

dc/dx 6x - 4, No.

dP/dx = 4x - 6. No. His profit may be declining when dP/dx is
negative but he may still be making money.

dC/dx = 6 - ,004x. When x = 1200, dC/dx = 1.2 dollars. A low

marginal cost means a cheap cost of production and so is
desirable.

hn

[}



CHAPTER 2, SECTION 10

1. (a) 8 =32t + 100; hence § = 32.
(b) d?s/dt? is an alternate notation for 8, d?s/dt? = 32.
(c) §=v =32.
(d) s=32.
(e) v=8 =232.
2. § =d%s/dt® =v = ~32. Same answer for all parts.
3. v=kv.
4. y" = d2y/dx? = 0,
5. (b) 8 =a=~32; (d) ¥ = -6;(e) y" = 8; {g) y" = 0; (h) y" - 2V/5;
(5) & = a = 32.



Solutions to Chapter 3

CHAPTER 3, SECTION 1

[y

(b) y=5x+C; (d) v=—32t+C; (f) y =3x + C.

2. (e)s=—82+50t+C;(d) y=¥%x2+7Tx+C; f) y=—(2/2) x* + 8x + C; (g)

{g) y=50x—%x®+C;(h)y=25x2~38x+C; (k) s =50t-(V2/2)2 +C; (1) s

= (v2/2) 12 + 50t + C; (n) s = — 1.25t% + 1.6t + C; (0) y =3t + 5t + C; (p) y = v6x2
—-%,V3x + C.

CHAPTER 3, SECTION 2

1. Choose the downward direction as positive for distance traveled. Then
a=v =232and v =32t + C, Measuring t from the instant of release, we
have v =0 when t =0, Thus C =0 and v =§ = 32t. Then s = 16t* + C. If s
is measured from the point at which the object is released then s =0 at
t =0. Thus C =0 and s = 16t>. When the object reaches ground, s = 1000;
thus t =vI000/16 = 5v10/2. The velocity at this time is v = 32(5,v10)
= 8010 ft/sec.

2. Asin No. 1, v =32t and s = 16t* + C, At the instant of release, the object
is 50 feet in the pogitive direction (i.e., below the roof). Thus s =50 when
t =0 and so C = 50. Then s = 16t + 50, The distance fallen in t seconds
is the position at time t minus the original position and so is equal to
(16t + 50) — 50 = 1612,

3. Distance is measured upwards. Hence a = —32, v = —32t + €. The balloon
is stationary and the object is dropped. Hence v=0at t =0, Then C =0,
v =—32t and s = —16t* + C. Distance is measured from the ground upward;
hence s =1000 at t =0, Then C = 1000, and s = — 162 + 1000,

4. As in exercise 1, v =32t + C. Since v =0 at t = 10 (the time of release),

C = —-320. Then v =32t — 320. Hence s = 16t2— 320t + C. Since s =0 at
t =10, C =1600. Then s = 16t% — 320t + 1600,

5. As in Exercisel, v =32t +C. Since at t = 0, a positive velocity of 100 is
imparted to the object, then when t =0, v = 100, Then C =100 and v = 32t
+ 100. Hence s = 16t* + 100t + C. Since s =0 at t =0, C =0 and s = 16t2
+ 100t,

6. There is no acceleration. Then a =0 and v =§ = C. Since the initial speed
is 100, v =100 when t =0, Then C = 100 and s =100t + C. If s is to be
distance traveled then s =0 at t =0, Thus s = 100t.

7. As in Exercise 3, a = —~5.3, v = —5.3t, s =—(5.3/2)t* + C. The object is at a
height of 500 feet in the positive direction at t =0. Thus s = —(5.3/2)t% + 500,

8. As in Exercise3, v=—32t + C. At t =0, a speed of 50 is imparted in the
negative direction. Hence v=-50at t =0 and C = —50, Then v = — 32t
—50 and s = —16t2 —50t + C, At t =0, the height is 200 in the positive di-
rection. Then at t =0, s = 200 and so C =200, Thus s = — 16t — 50t + 200,



11.

12,

13.

14,

This problem is a rewording of exercise 1.

Yes. By Exercise 1, the distance fallen in time T is s = 16T?. The mean
velocity, ¥, between t =0 and t =T is (0 + 32T)/2 = 16T, With this mean
or average velocity the distance traveled in T seconds is 16T - T and this
is the same result.

45 miles per hour is 66 ft/sec. Now taking the positive direction of distance

to be that in which the train is running, a = —%,. Then v =—-%,t+ C, If we

measure time from the instant the brakes are applied then v = 66 when

t=0 and C =66, Thus v =—%t+ 66. Then s =—%,t%+ 66t + C. If we

measure s from the point at which the brakes are applied then s = 0 when

t=0 and C =0. Thus s =—?%t? + 66t. The train runs until v = 0. This oc-

curs when t = 49.5 sec. If we substitute this value of t in the expression

for s we obtain s = 1633.5 ft.

For the first drop we have v=0 and s =0 at t = 0, thus s = 16t%. For the

second drop, v=32t + C. But v=0 when t =1. Hence C =—32 and so

v=32t—32. Now s =16t* - 32t + C, At t =1, s = 0. Hence C = 16. Then

s = 16t% - 32t + 16, At t =2 (i.e., 1 second after the second drop is released)

we have 16-2% -~ (16.2% —- 32.2 + 18) = 48 ft.

Denote the unknown acceleration by a. Measuring t and s from the time

and point when the plane touches ground, v =at + 100 and s = ¥, at? + 100t,

When the plane stops, v = 0, thus t =—100/a. At this time s =Y, hence we

obtain the equation Y, = % a(—100/a)* + 100(—100/a) for a. This yields

a = —20,000, hence the deceleration is 20,000 mi/hr2. We could start with

—a and a positive and obtain the same result.

We measure time from the instant the first body is dropped.

Since the body is dropped the time to f£all 100 feet is given

by 100 = 16t? or £t = 5/2. The second body is projected down-

ward with some initial velocity vy at t = 5/2. We have for

it a = 32; hence v = 32t = C, At t = 5/2,v = vy. Hence

vo = 32(5/2) + Cor C = vg - 80, Then v = 32t + vy - 80.

Integrating gives s = 16t? + vot - 80t + C. At t = 5/2, s = 0,

Hence C = =(5/2)vy + 100 and s = l6t? + vyt -~ 80t ~(5/2)}vo + 100.

Now when t = 12.55 the two distances fallen must be equal. Then
16(12.5)% = 16(12.5)% + v(12.5)-80(12.5)=(5/2)vo+100.

Hence vg = 90 ft/sec.
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15. (a)
(b)
(c)

(d)
(e)

(f)

Since s = R6, & = R4.

From s = R6 we have § = R = Ra.

= . Then 6 = at + C. Since # =0 when t =0 then C =0. Then

6= at and 0 = (a/2)t> + C. Let 8 be measured from the position of the
object at £t =0. Then #=0 when t =0 and 8 = (a/2)t2, When t = 120
sec., 0 = 3600 27 radians. Then 72007 = (@/2)(120)% or « = 7 rad/sec?,
As in part (¢), 6 = ot and 8 = (/2)t?. Here when t =5, 8 = 12.5(27).
Then « = 27 rad/sec? andat t =5, 6 = 27-5 = 107 rad/sec.

b=a w=at+C. At t =0, w =27, hence w = at + 27, The wheel
comes to rest when w =0 and t =~27/¢. Now w = . Hence 8 =Y, at?
+ 27t + C. If we measure 6 from the instant when the friction applies
(t=0)then C =0 and 4 = (a/2)t* + 27t. The wheel stops when

t =—2n/0 and 6= 10-27. Hence an equation for « is 10-27

=Y oa(-27/a)® + 27(=27/@) or & =-7/10,

@ = a. Hence § = at, v=RO=1-at. For t =10 min = 600 sec,

v = 100 {t/sec. Hence 100 = 600 or a =Y, ft/sec?. Then v = Yot and
0 =Yt At t=15v="7 ft/sec and 6 =79, rad/sec.
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CHAPTER 3, SECTION 3

lo

-1 )

w

10,

11.

Formula (27) gives the height above ground., Thus at £ =5

this height is 240 ft., However, at t = 5, the object is

headed downward; hence the distance traveled is the maximum
height plus the distance traveled downward after reaching the
maximum height or 272 ft (compare figure 3-3).

Foliow the derivation of (27) except that 160 replaces 128.

Let s = 512 and solve for t. We obtain t =4 and 8. The object is at a height
of 512 it both on its ascent and on its descent,

v =8 = 144 — 32t; hence at t =9, v =—144 ft/sec. But at t =9, s = 0. Hence
the object has just returned to the ground,

As in the derivation of {25) and (27) v =—32t + 1000, s =-—16t + 1000t. Max-
imum height occurs when v =0, i.e., at t = '"%%, and at this value of t,

s = 15,625 fi.

Here a =v =—5.3 if we take the upward direction as positive. Then v
—_5.3t + C and since v = 96 when t =0, v =—5.3t + 96. Then s =—(5.3/2)t*
+ 96t + C. ¥ s is measured from the surface then s =0 when t = 0. Hence
C=0 and & =—(5.3/2)t2 + 96t. At the maximum height v =0 or t=96/5.3

= 18,1 sec. At this value of t, s = 869.5ft.

By following the derivation of (27) except that 96 replaces 128 we have V
~—3%t + 96 and s =—16t% + 96t. When the stone reaches the ground s = 0.
Hence t =0 and t = 6. The value t = 6 is the value at which the stone hits
the ground. At t =6, v =—96. Note that this is the same as the initial ve-
locity but of opposite sign.

Follow the derivation of (27) except that v, replaces 128 and g replaces 32.
Use the result of Ex. 8 except that g = 32. Thus s = v & — 1612, When t =20,
s = 0, Hence v, = 320 ft/sec.

v=-32 and so v=—232t + C. At t =5, v =200, Hence C = 360. Then v

= —32t + 360 and s =—16t? + 360t + C. If s is measured from the ground up,
s =0 when t = 5. Then C =—1400. Hence s =—16t% + 360t — 1400 =—16{ — 5)°
+ 200(t — 95).

For the first object if we follow the derivation of (27) except that 200 re-
places 128 we have s =—16t? + 200t. For the second object, v=~32 and
and so0 v =~32t + C. Here at t =5, v = 300. Hence C =460, Then v =—32t
+ 460, Now s =—1642 + 460t + C, At t =5, s =0. Then C=-1900 and s

= —16t2 + 460t — 1900. When the two objects meet, the two s-values are
equal. Then t = 7.3 sec approx. This is the number of seconds after the
tirst objeet is thrown up. If we substitute this value of t in either formula
for s we obtain 606 fi approx.
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12, As in the derivation of (25) and (27) except that v, replaces 128 we have v
=—32t + vy and s = 16t% + v,t. The height of 1000 ft is to be the maximum
height. There v =0 so that t =v,/32, Af this value of t, s is to be 1000,
Hence 1000 =—16(v,/32)2 + v,(v,/32). Hence v, = 80vV10 ft/sec.

13. This Exerciseis just a rewording of Exercise 12.

14, As in the derivation of (25) and (27) except that V replaces 128 we obtain
v=—32t + V, s = 16t + Vt. At the maximum height v=10 and t =V /32,
Then s =—16(V/32) + V(V/32) = V¥/64,

15, We start with v = 8 so that v = 8t + C, Since the train starts {rom rest v
=0 when t =0 sothat C =0, Then v =8t and s = 4t* + C, If we measure
s from the first station s =0 when t =0 and so s = 4t2, When v =20, t
=%, and s = 25. During the second portion of the trip which lasts for some
unknown time t,, the additional distance covered is s, = 20t;,. The decelera-
tion stage of the trip is best treated separately. We have v=—12 and v
=—12t + C,. Let us measure t from the instant the deceleration begins.
Then when £t =0, v =20 and C =20. Thus v=—12t + 20 and s =—6t* + 20t
+ C. I we measure this s from the point where the deceleration begins then
s =0 when t=0 and so C =0. Then s =—6t? + 20t. The train comes to rest
when v =0 and so t = % and s =—6(%)% + 20(3,) = %9. Thus the total dis-
tance traveled is 25 + 20t, + %% and this equals 400 ft. Then t, =2!%,,. The
total time traveled is %, + 2%/, + %, = 22Y/, sec.

16, After the fuel is exhausted, a =—32, v =—32t + C, If time is measured
from the instant the fuel is exhausted, v =176 when t = 0, Then C =176
and v =—32t + 176. Then s =-—16t% + 176t + C. If the distance is measured
from the ground then s = 52800 when t =0, Thus C = 52800 and s =—16t2
+ 176t + 52800,

17. (a)} We follow the derivation of (25) and (27) except that 96 replaces 128

and height is measured from the roof. Then s =— 16t% + 96t,

(b) When the ball reaches the ground s =-112, For this value of s, t =7,

18, (a) v =-32t+ 96. Then s =~ 16{? + 96t + C. If height is measured from the

ground and since t is already measured from the instant the ball is
thrown up, s = 112 when t = 0. Then C = 112,

(b) When the ball reaches the ground s = 0. Since s =—16t% + 96t + 112,
when s =0, t =7, The other root t =—1 has no physical significance
here.

19, a=v=~—11, Then v=—11t + C. I { is measured from the instant decelera-
tion begins then v = 88 when t =0 and so C = 88, Then v =-—11t + 88 and
s = — /%2 + 88t + C, If distance is measured from the point where deceleration
begins then s =0 when t =0 and C =0, Then s =~—*/i2 + 88t. When the
object comes to rest, v=0. Then t =8 and for this t, s = 352 ft,

20, We found in the text that it takes 4 seconds for the ball to reach maximum
height. When it reaches the ground ‘s = 0, From (29) we have 0 =—16t2
+ 128t or t = 8, Hence it takes 4 seconds to go from maximum height to
the ground.
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After braking v =~a and v =-at + C. If time is measured from the instant
the brakes are applied, v =v, when t = 0. Then v=—at+v, and s = —at?/2
+ vt + C. If distance is measured from the point where the brakes are ap-
plied, s =0 when t =0 and s0o s =—at¥2 + v,t. The car stops when v=20
or t =vy/a. Then for this t, s =—(a/2)(vy/a)* + v,(v,/2) = v2/2a. During the
one second of reaction time the car travels v,7.

Here a=-5 and v=-5t + C, If time is measured from the instant of brak-

ing v=44 when t=0 and so v=—5t + 44, Then s =—5t2/2 + 44t +C, If

distance is measured from the point at which the brakes are applied then

s=0 when t =0 and s = —-5t%2 + 44t. When the car stops v=0 and = 44/5.

In this time the distance traveled is 193.6 ft,

During the first part of the a =f, v=1t and s = t2/2 if time is measured

from the beginning of the trip and distance likewise. For the second part of

the trip, a =—r and v =-—rt + C. Suppose the first part of the trip lasts t,

seconds. Then when t=t,, v=1{t, and so C = ({ + r)t,. Then v=—rt+ { + r)t,

and s =-rt¥2 + (f+ r)t,t + C. When t =t,, s =ft2/2, Then C =~ (t2 /2)(f + r).

When the trip ends v=0 or —rt+ (f + r)t, = 0, Now t is specified so that

t, = rt/(t + r). If we substitute this value of t, in the expressicn for s we

obtain s= [fr/(f + r)]t%2.

(a) a=-32 and so v=-32t + C. When t =0 (the instant the bomb is re-
leased) v = 1500. Hence C = 1500 and v =—32t + 1500. Then s =— 16t2
+ 1500t + C, i we measure height from the ground then s = 10000 when
t=0 and so s =—16t% + 1500t + 10000. When the bomb reaches the
ground s = 0, If we solve for t we obtain about 100 sec.

(b) After 100 sec the bomber will be 120,000 ft. away horizontally from the
point at which the bomb is released and 10,000 ft above the ground.
Hence its distance from the bomb will be given by the Pythagorean
theorem, that is, ¥{120,000)% + (10,000)? or about 24 miles,

x =9t — (t¥6) + C and since x =0 when t = 0, then C = 0. At t =4, x = 25Y,

ms,

gFc»r the first body, if time is measured from the instant it is dropped and

distance from the ground up, a =—32, v =—-32t, s =—16t% + 300, For the

second body, a =—32, v=—32t + C and since v =120 when t =2, C = 184

and v =—32t + 184. Then s =—16t%2 + 184t + C. For this second body s =0

when t =2 and so C =—304, Then s =—16t? + 184t — 304, When the two
bodies meet their s-values are equal. Hence —16t% + 300 =— 16t2 + 184t

— 304. Then t = 3.3 sec approx. (after the first body is dropped). For this

t either formula for s gives 126 ft. approx,

Take the downward direction as positive. a = 32 so that v =32t + C. When

t=0, v=—20 and so C=-20, Then v =32t - 20 and s=16t2-20t + C, I

s is measured from the balloon thenat t =0, s =0 and C =0, Then s

= 16t* — 20t. When t =6, s = 4586 {t.

We can use the general result of Exercise 8, namely, 8 = vt — gtz/z. Iiswe

select any value s, of s and solve for t we obtain t = (v, = VvZ — 2gs,)/8.

But v = v, gt. i we substitute the two values of t in the formula for v we

obtain v = +vv2 — 2gs,. The numerical values of v are the same., Note that
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{(g)

(h)

(i)

(3)

a relative maximum: at x = -1 there ig a relative maximum;
at x = 1 there is a relative maximum.
Fix) = x"%; £'(x) = 4x?. Hence x = 0 is a pessible value.

f'(x) does change from negative to pesitive around x = 0.
Hence at x = 0 there is a relative minimum,

f(x) = x + 1/x; £'{x) = 1 - 1/%x%. Hence x = 1 and x = =1
are possible values. For x slightly less than -1, say -5/4,
£'(x) is positive and for x slightly more than -1, say -3/4,
£'(x) is negative. Hence there is a relative maximum at

Xx = -1, At x =1, £'(x) changes from negative to positive;
hence there is a relative minimum at x = 1.

f(x) = xvx-1; £'(x) = (x/2vx~1) + vVx~1. Now f'{(x) = 0 at

x = 2/3. But the function has no real value at x = 2/3.
Hence th§re are no maxima and minima.

£(x) = x"/(x~1); £'(x) = (x2-2x)/(x-1)%., Possible values
are x = 0 and x = 2. At x = 0, f'(x) changes from positive
to negative. Hence there is a relative maximum there. At
x = 2, £'(x) changes from negative to positive. Hence there
1s a relative minimum there.

2. (a) y’=-2x+ 6. Hence x =3 is a possible relative maximum or minimum.

(b)

At x =3, y’changes from + to —. Hence there is a relative maximum
whose value is 16. The absolute maxima and minima may occur at the
end values 0 and 5. At x=0, y=1T7 and atx =5, y= 12. Hence the
relative maximum of 16 is also the absolute maximum and the absolute
minimum isg 7.

y=3x(x —-2). At x =0, y’changes irom + to —. Hence there is a relative
maximum of 4. At x =2, y‘changes from — to +. Hence there is a rela-
tive minimum of 0. At x=-2, y= —16. This is the absolute minimum.
At x =4, y = 20. This is the absolute maximum.

yE2x — )+ 1P+ 2 (x +1)(x — 1)°=4x(x + 1)(x — 1). At x= -1, y’changes
from — to +. Hence there is a relative minimum and its value is 0. At x

:0,

y“changes from + to —. Hence there is a relative maximum whose value

is 1. At x = 1, the behavior of.y’is as at x = ~1 and the relative minimum is
again 0.

Here y’= — 2/3(x — 1) 'This y”is never 0. However the function may have a

relative maximum or minimum where the derivative fails to exist. We see that

(x -

1)2{ * is positive for every value of x and this is subtracted from 3. The

least we can subtract is 0 and this occurs when x =1, Then y=3 is a rela-
tive maximum. As x increases or decreases from the value of 1, y contin-
ually decreases.

(a)

The function y = x is an example. However y = ~x* in the interval from

-« to 0 isa better example. Here as X increases, f'(x) actually de-
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so must be a value actually aitained by the object or the values of t and of
v will be complex.

Again from Exercise 8, v=v,— gt and at the maximum height v = 0 so that
t=v,/g. Since s = vt — ot¥2 we find that the maximum height is vﬁ/ 2g. To
attain twice this maximum height we must replace v, by V2v,.

CHAPTER 3, SECTION 4

1.

o

10.

Weuse (35) to calculate the time. In (35) s = 200 and A = 30°. Hence 200 = 8t2
and t = 5 sec. Tocalculatethe velocity weuse (34) wherein A = 30° and t = 5.
Hence v = 80 ft/sec.

. If s is the distance the object slides, then sin 30° = 100/s or s =200 ft. The

rest is the same as in Exercise 1,

. The only change over Exercise 2 is that A is 15°, Hence sin 15° = 100/s.

Since sin 15° = ,2588, s = 386. Now use (35) with s = 386 and A = ,2588 to
calculate t, The result is approximately 10 sec. We then use (34) with sin A
= .2b688 and t = 10, Here if the value of 1 were calculated very accurately
we would get the same 80 ft/sec as in Ex. 1, Note that the velocity at the
bottom is the same if the height from which the object descends is the same,
See Ex. 6(b) below.
Yes.
(@) Here sin A =h/¢, We use (35) in which sin A =h/¢ and s ={. Then

0 =16t%h/¢ or t = 0/4Vh, '
(b) We use (34) in which sin A is now h/f and t= £/4vh, Then v = 8h.
(@) By Ex. 5 (@), t,= £,/4V and t, = €, /4R, Then t,/t, = £,/4,.
{b) By Ex. 5 (b) both velocities are 8vh. ,
From the formula s = 16t? we find that the time to fall the dis-
tance OP is t, = vOP/4. For the motion along OP' we use (35),
that is, s = l6t%sin A. The distance OQ that the object slides in
time t. is 0Q = 16(0P/16)sin A. Then sin A = QQ/CP. Suppose Q is
not on the circle but R on OP' is. Then X OPR is 4 A by the use of
right triangles. Then sin A = or/OP. Buf sin A ="0Q/0P. Hence
0 = R and Q lies on the circle.
At any given time t the bead which falls straight down falls some distance
OP. By Ex. 7, Q lies on a circle with OP as diameter. But the argument in
Ex. 7 was not restricted to any specific angle A. Hence Q’, Q",... all lie on

the same circle, _
If we consider circles with O as highest point (so that the diameters are all

vertical line segments from O downward) the smallest of these circles which
reaches C is the one which first touches it as the circles expand from O.
The time for a bead to fall straight down will be least for this circle as com-
pared with larger ones because for any one circle there is a time value to
reach it and the time increases with the diameter (See Ex. 7). In this time
the object sliding from O to Q will reach Q.

We start with (33), namely, a=32sinA, Then v =32t sinA + C, At t =0,

v =v, Then C =v, and v = 32t sinA + v,. Integrating gives s = 16t2sinA
+vt +C. At t=0, s =0, Hence s =162sinA + v t,
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CHAPTER 3, APPENDIX, SECTION 2

L V89; (4 AO.

2, Formula (1) is unaltered if x, and x, and y, and y, are interchanged.

3. AB = 10; BC = V125; AC = /125.

4. The lengths are v34; V34 and V36 .

5. If we use Fig. 3A-1, locate the midpoint (xg,y,) on the line segment P,P,,
and draw y, we find that y,,y, and y, are parallel lines and y, cuts P, P,
in half. Then it must cut the other transversal RS in half and s0 X4
=[x, — x,)/2]+ %, = (x, + x,)/2. Further y, is the median of the isosceles
trapezoid RP,P,S and so is (y, + yz)/ 2.
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CHAPTER 3, APPENDIX, SECTION 3

1. Formula (2) applies in each case:
® %; (@ -%; @& No slope.

CHAPTER 3, APPENDIX, SECTION 4

1. In each case we have buf to find the tangent of the given angle,

2. In each case we have but to find the angle whose tangent is given,

3. The slope of each line is found by using formula (2) and we then find the
angle A whose tangent is the slope.

CHAPTER 3, APPENDIX, SECTION 5§

1, By using (2) we find that both lines have a slope of 1/,3 and S0 are parallel.

2. The slope of the first line is % and the slope of the second one is —~2/3. Each
slope is the negative reciprocal of the other,

3. The given line has slope 1; then the perpendicular line has slope —1 or
inclination 135°.

4, The slope of the perpendicular is —% and the inclination is the angle whose
tangent is —1/2 or the angle whose supplement is 26°30’ (approx.). Hence
153°30°.

5. The given line has slope —~%. Hence any perpendicular has slope 7/B or
1.1666, Then the inclination is 59° {approx.).

6, If two sides have slopes which are negative reciprocals of each
other, the triangle is a right triangle. The slopes ar?
(a) 9/4, 4/9, -1; (b) 3/4, -4/3, 7; (c) 1/2, -6/5, —4/9rb _
(@) (=5v3-5)/(5/3-5), (-5+5/3)/(-5-5/3), 1. Thus only () is
a right triangle.

9. The slopes of the sides are 3/7, -2, 3/7, =2.
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CHAPTER 3, APPENDIX, SECTION 6

1.

2.

(a) Use formula (7) with m, =4 and m, = 3. Then find 6,

(b) Since tan 30°=+v3/3 and tan 185°=—1, let m, =+v3/3 and m, =—1, and
use (7). Then tan 8 =—3.7 approx, and ¢ = 105°. The result can be ob-
tained from a figure at once,

(¢) Let m,=-2 and m, =3 and use (7).

The first line has slope 1 and the second, —%. Let m, =—%, and m, = 1 and

use (7).

CHAPTER 3, APPENDIX, SECTION 7, FIRST SET

1,

2.

3.

(a) Use (8).

(b) We substitute 2 for x and 3 for y in y~ 2 =5(x— 1). The equation is
not satisfied and so (2,3) does not lie on the line,

For (a), (b), and (c) use (8) and merely substitute the given values,

(d) use (8) or (8). In (8) b is 5.

We {ind the equation of the line determined by (3,6) and (4,7). The slope is
1 and so the equation is y ~ 6 = 1{x — 3), To show that (5,8) lies on this
line we substitute 5 for x and 8 for y, Then 8 — 6 = 1(5 — 3) and the equa-
tion is satisfied,

(a) The desired line must also have slope 2. Now use {8).

(b) The desired line must have slope —%,. Hence by (8), vy — 2 =~ (x — 4).

. Since the given lines, by (9), have slopes 3 and —2, now use (7) with m, = 3

and m, =~—2,

CHAPTER 3, APPENDIX, SECTION 7, SECOND SET

1.

(a) We solve the given equation for y; then y =—2,x — %,. By comparison_
with vy = mx + b we have the answers,

(b) Asinf(a), y=%x-",. Then m=3%, and b =-7,.

(c) Asin {(a), y=—3%,x. Then m=—5%, and b =0.

Parallel to the x-axis and 3 units above it.

The line 3x + y+ 7 = 0 has slope —3. Hence the desired line is y— 2

=—3(x — 1).

The given line has slope — 3. Hence the desiredline has slope ¥,. Then the de-

sired equation is y + 1 = Y, {x ~ 5).

Since (0,0) must lieon Ax+By+C=0, A.0+B.0+C =0,

The slope of the first line is —A/B and of the second —a/b. Then the

equality of these two slopes gives the result.

The slopes of the two given lines are —?} and 3,. These slopes are negative

reciprocals,

The slope is —2%,. Hence find ¢ for which tan 6 =—2/, Hence ¢ = 146° 20’

(approx.).

The two given lines have slopes of —%, and Y, Use (7) with m, =—3%, and

m,; =1,



18

10.
11.
12,

A method is given in the problem. Only in (a) do the three given
peints lie on one line.,

{a) -A/B = 3/2; (b) A = (-1/4)C and B = -1/3C; (c) C = 0:
(d) A = 0; {(e) B =0

The equation of a curve (including straight lines)isan equation involving
x, y and constants. For a fixed curve only x and y can vary. In the equa-
tion x? + y2 = r?, r must change with x and y if any given x and y are
substituted in the equation. Hence r is not fixed as we choose different
(x,y)’s along the straight line.

CHAPTER 3, APPENDIX, SECTION 8

1.

In each case we use formula

B = “'1, and C =2, (14). Thus for (b)’ X =33 y. = 2, A =4,



Solutions to Chapter 4

CHAPTER 4, SECTION 3

2. In each case find the derivative at the given value of the independent variable,
Thus
{a) §=8t andat t=2, s =16,

b} 4; () 25 (d) O.

3. In each case find the slope of the tangent and since m =tan A, then find A,
Thus
(@) y'=2x, At x =3, y'=6, Then tan A =6 and A = 80° 32’ (approx.).

(b) 89°7'; (¢) 104°2'; @ 0% (e} 0°.

4, The direction of motion is given by the slope or the inclination of the tangent.
Since y'=-8x + 16, at x =3,v'= ~8. Then the inclination is 97°7’. These
values also distinguish the sense of the motion; that is, the notion of slope
presupposes that we consider whether the line rises or falls as we go from
left to right. Hence the object is moving downward at x = 3.

5, y'= -8 + 16, Af x = 2,y'= 0. Thus at this point the object is moving hori-
zontally, i.e., perpendicular to the wall and so direct impact.

6. (@) y'= 2x. Thus the tangent thru x =—3, y = 9 has slope —6. Hence the

equation of the tangent is y~9=-6(x +3) or y=—6x— 9.
(bh) y=—-2x-4.

7. The slope is given by the derivative. For (a)y'= x/50. At x =3,y'= 3/,
(b) x =5,

8. The value of the slope of the tangent to the curve at any point x is given by
2x, This function does not have the same value for two distinct values of x.

9, Sincey'= 3x%, the values of y'at x=0, 1, and —1 are 0, 3, 3.

10. The slope of the tangent at any point x is 3x2 At x =4, the slope is 48;
this is also the slope at x =—~4 or at the point (-4,—64).

11. The derivative is positive at x = a, decreases to zero at the crest, then
becomes negative, then increases to zero at the trough, and then becomes
positive.

12, At t =0; at t =Db; at maximum point.

13. The two curves are the same except that one is 5 units above the other. At
any given x value their tangenis are parallel.

4, @y'=x; 0 y=k¥)?* (@) vy =%F/x.

CHAPTER 4, SECTION 4

1. (a) p = 5/2; hence y = (1/10)x2%; (b) p = 1.5; hence y = (1/6)x>
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13.

20

. Compare formula {9). Then p = 3. Hence the focus is (0,3} and

the directrix is y = -3,

. Since the focus is (0,3) and the right-hand point on the parabola at that

height is (x,3), we let y =3 in y =Y,,x* and obtain x = 6, The width across
the entire parabola at the height of the focus is then 12, For any parahola of
the form y = (1/4p)x?, the focus is at (0,p). The points on the parabola at
the same height are obtained by letting y = p in the equation so that x

=+ 2p, Then the width of the parabola is 4p.

. One would expect that the x and y axes are interchanged in (92} .

One would expect that y sheould be replaced by -y 1n (9},

(a) v = (1/16)}x%, p = 4, focus (0,4}, directrix y = -4, latus
regtum 16

(b} x = (~1/8)y2, p = 2, focus {-2,0), directrix x = 2, latus
rectum 8.

(c) x = (2/9)y%, p = 9/8, focus (9/8,0), directrix x = -9/8,
latus rectum 9/2.

(@ vy = (-3/4)x*, p = 1/3, focus (0,1/3), directrix y = -1/3,
latus rectum 4/3.

{a) Porm is x = {l/4p)y2£ p= 5.

(b} Form is v - (L/4p)}x*, p = 2.

(c) Form is x {(1/4p)v?, p = 1/2.

. To obtain the equation directly let (x,y) be any point on the parabola. Then

VE - 0F + (y — 0)2 =y + 2p. Then y= (1/4p)x? — p. If we compare Fig. 4-15
with Fig, 4-12 we see that the y-values in Fig. 4-15 are p less than those
in Fig, 4-12.

If (x,y) are the coordinates of any point on the parabola then Vi - 4P + (y— 0)?

=y + 8. Simplifying gives the answer in the text,

(a) All the y-values of y =x?+ 6 are 6 units above those of y = x2,

(b) Fach y-value of y =3x% is 3 times as large as the y-value of y = x?
for the same x-value.

() If we write y= (x + 6)? as y =x'? where x'=x+ 6 we see that x = x'— 6.
Then each x-value is 6 units to the left of the x™-value, Thus y = (x + 6)*
is obtained from y =x'2 by shifting or translating the latter 6 units to
the left. .

(@) The tangent line at x =x, is y —(x3/4p) = (x,/2p) (x — X,). This line cuts
the x-axis at x = x,/2 because y = 0 there, and we solve for x.

(b) Draw the straight line between the points (x,,x3/4p) and x,/2,0).

Choose axes so that the origin is at the lowest point or vertex of the parabola.

Then one point on the parabola is x = 1400 and y = 148. Since the form of the

equation is y = (1/4p)x2, substitute 1400 for x and 148 for y to determine

p. Then y = 37x%/490,000.

If the axes are chosen so that the origin is at the center (top) of the arch,

the equation of the arch is of the form y =—x%4p. Since the point (25,~25)

lies on the arch, 4p = 25 and the equation of the arch is y = —x2/25, The

right-hand wheels of the truck are at x = 23. Then the y-value of the point

on the arch whose X value is 23 is —21%,. The roadway lies along y = —25.

Hence the clearance is only 32Y feet, whereas the truck needs 10 it
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Compare Fig, 4-17 with Fig, 4-12. Then p = 15; hence y = x%/60,

Choose the coordinate system so that the parabola is given by y = (1/4p)x2.

The tangent at the vertex is y = 0 or the x-axis. The tangent at any point

(X0, ¥o) on the parabola has slope x,/2p. The perpendicular from the focus

to any tangent line has slope -2p/xo. The equation of the tangent line is

¥y — Vo = (Xo/2p)(x — X,) and the equation of the perpendicular is y — p

= (- 2p/X,)(x — 0). We solve these last two equations simultaneocusly for their

point of intersection, To do this take the value of x from the second equation

and substitute it in the first one. If we use the fact that y, =x%/4p we find
that v = 0 or the two lines intersect on the x-axis.

Assume that the coordinate system is as in Exercise 12, The tangent line

at x =x, is y— (x3/4p) = (x,/2p}{x — x,). Similarly the tangent at x =x, is

y— x2 /4p =-(x, /2p){x — x,). If these lines are perpendicular then x,/2p

= —2p/x0 or X, = —4p2/x0. Now solve the first two equations simultaneously

and use the relation between x, and x,. When solving take the value of x

from one equation and substifute in the other. All we need to show is that

the y-value of the point of intersection is —p. '

(a} Let P have coordinates (x,,x2/4p). The tangent P is y — x2/4p

= (%,/2p){x — %X,). The point Q has coordinates (0,x2/4p) while T (the inter-

section of the tangent with the y-axis has coordinates (0,—xZ/4p). Thus the

midpoint of QT has coordinates (0,0) which is the vertex.

(b} The normal has slope —2p/x, and passes thru (x,,x2/4p). Thus the
equation of the normal is y —x3/4p = (~2p/Xy)(x — X,). It then'follows
that the coordinates of R are (0,x23/4p + 2p) and hence RQ has
length 2p.

CHAPTER 4, SECTION 5, FIRST SET

1. In finding the slope of the tangent line to the parabola.
2. No. We showed merely that the parabola does have the reflection property.
3. Suppose (Fig. 4-23) FP is a ray starting from the focus. Then PD is the

reflected ray and this is parallel to the x-axis. Likewise QD’ is parallel to
the axis. Thus {D'QF +/DPF = 180°, Then the sum of the supplement of
/D'QF and the supplement of /ZDPF is 180°, By the law of reflection one-
half of this sum lies inside the triangle QPR, where R is the intersection of
the tangents. Then the remaining angle at R must also be 90°.

. It is better to take the parabola in the posi-

tion shown here. Then m; = slope of L = 0; t
m; = slope of t =22p/y1; m3; = slope of

s = 4dpy1/{y{ = 4p”°). Now by using formula 7 = Y
of the Appendix to Chap. 3 we find that tan g =

2p/y1 and tan B = 2p/yv,. Hence a = B.
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CHAPTER 4, SECTION 5, SECOND SET

1.

2.
3.

4.

(a) Tcos§ =T, = constant, No.

(b) Tsinf =wx, Yes.

T = (wx/2y)Vx3+ 4y, .

The equation of the cable is of the form y = x%4p. The point (60,15) lies on
the parabola. w = 15%, =%, tons/ft. Then from Exercise 2, where we now
calculate T at x = 60, y = 15, we have T = 75V5 tons.

Since y = x?»/240, we can substitute in the formula for T of Exercise 2. Then
T = (w/2)v(240)? + 4x%, We see that T increases with x and is a maximum
at x = +60 and 2 minimum at x = 0,

. Yes as long as the weight of the roadway per horizontal foot (that is, not

along the curved roadway) is constant,

We can use (17) but in place of wx we must use 5x2, Then

y' = 522 /T, and y = (5x°®/3T,)+C. We can determine C as in the
text to be 0. However, this answer is correct only to the right
of the origin. To the left the answer is y = -5x®/3T, because x
is negative. Or we may say that y' = -5x* /T, because y' is
negative and so obtain y for negative x.

CHAPTER 4, SECTION 6

1
2.
3

. Tangent exists everywhere except at (0, 0).

No because there is no unique slope at (0, 0),

. The graph consists of the negative x-axis and the ray which starts at the

origin and lies in the first quadrant and makes an angle of 45° with the
positive x-axis. Then for x < 0, y'=0 and for x >0, y'=1. There is no
derivative at (0, 0).
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The slope of the chord or secant joining (x,~Ax, f(x,-8x)} and
{(x,+4x, f{x,+4x).
If we add and subtract f(x;) in the numerator we have

i, + Ax) — £(x,) + £(X,) — [{x,A%)
2AX

and this equals

Y [f(xo + Ax) — (x,) + £(x,) — £(x, — AX)]

AX AX

We can see geometrically that apart from the factor 1/2 the first quotient is
the slope of the secant joining (x,,f(X,)) and (x,+ x,f(x, + AX)} and the second
quotient is the slope of the secant joining (x, — Ax,f(x, — Ax)) and (x,,f(x,)).
Both slopes approach the slope of the fangent at (x,,1(x,)) as Ax approaches
0 and the entire quantity approaches f'(x,).

Analytically the first quotient is in the form of Ay/Ax (see also Exer-
cise 7) and surely approaches f'(x,). To write the second quotient in the
customary form of [i{x + Ax) - £(x)]/Ax, let us first write
[£(x, — AX) — £{x,)]/(~ 6x). Now in the definition of the derivative Ax can be
negative. Let us use a new Ax which is the negative of the old Ax, Then our
quotient becomes [f(x, + Ax) — £(x,)]/Ax and this approaches f'(x,), even
though this Ax is negative, because Ay/Ax must have the same limit when
AX approaches O through positive or negative values,
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Solutions to Chapter 5

CHAPTER 5, SECTION 2, FIRST SET

1. (b) y' = 1; (c) y' = 5x"; {(d) y' = 20x*; (e) y' = 10%°;
(g) y' = 8x7; (h) y' = (7/2)x5.

2. The limitation to a positive integral value of n is necessary be-

cause after step {(8) we use the fact that there are (n-1) terms

in the brackets. This is so because when n is a positive integer

the binomial expansion in (5) has n+l terms. If n were any other

kind of number the binomial expansion would contain an infinite

number of terms and the statement on line 4 of p. that

Ax{n-1) |A| approaches 0 as Ax does would not be possible.

Yes and because nxnN-l is 0 as it should be when y = 1.

Use the method in the text which leads to (9). Here n = 3.

W L
= .

Vv = x*. Then av/dx = 3x°. , ,

This is the derivative of y = x* at x = a. Hence 3a”.

We can think of p as x¢ and ¢ as Ax. Then the answer in the fext
is cbvious.

g. If we use the suggestion we get 2[f(x+t) -f(x)1/t. Hence 2f'(x).

-1 LR
oo

CHAPTER 5, SECTION 2, SECOND SET

b “/44C; () = 3x2/2+C; (e) y = x%/6+C; (f) y = 7TxW/11+C;
o oy ?{i) = 2x5/3zc; (h) v = £(x) = x*+C; (i} yv = £{x} = 4x®/34C.

(g) v = C
2.(b) y= x*/4+C; (d) v = x*/2+C; (e) y = x+C.
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CHAPTER 5, SECTION 3

2.

By repeating the derivation of (15) with a replacing 5 we obtain x,

= (2%, + @/

By repeating the method used to derive (15) but with y = x2— 5 we obtain

Xy = J'/2[}% + (5/x,)].

Repeat the work of Exercise 3 with a replacing 5. Then x, = %[x, + (a/x)].
Repeat the method used to derive (15) but work with y = x*— a. Then x,

= (1/n){(n - Lx, + @/x>4].

The method applies. One uses the method used to derive (15) but applied to
y =x%— Tx + 5. One obtains x, = (2x3 — 5)/(8x%2 — 7). The root which is ap-

proximated depends on which root the choice of x,; is close to.
No.

Let y = f(x). Take a, to be an approximation to a root of £(x)=0
and let y, = £(a;). The equation of the tangent at a, is y= v1=
£'(a, )(x—a;) To obtain the point where the tangent cuts the
x-axig, set v = 0 and solve for x. Then x = a, = a,-f(a1)/f'(a;).
Under proper theoretical conditions, namely, that f(al) and
f"(al) have the same sign and f£"(x) does not change sign in
a, < x <vr, then a, is a better approximation to r than a,.

CHAPTER 5, SECTION 4

-
L]
-

O Uk W

7.

b (p/3}~ l
™= (p/3 2/3

(a) y
g = (1/3)t”
3

(1)
{m)
(e)
Eg (m)
(n) £(x) = 4/3Jx3/2+2x 72, y
(b) vy = 2x'/2+C; (d) s = 2t/ 2,4¢, (f) s = (5/8)t*/ %+C.
No. The variable may be taken on the values .8, .99, .999, etc.
As x apprcaches 0, the values of 1/x% become arbitrarily large.
Ay/hx = [1/(xn+ax) - 1/x,1/0% = -1/x, (x,+Ax) . Hence y' = -1/x?
for X, # 0,

As X increases from 0 to «, the slope decreases from = to 0.

= 5/DxIH (0 v o= @/ME Y ()
= (5/3)t*° 5 (3) & = (3/2)£71/2, (1)
(x) = (5/3)x%/%; (n) £'(x) = (5/3)x?*/3 y
= (1s5/4)x%%+c; (@) v (3/5)x5/3+c (e) s = (9/5)t5/3+c
= (3/;)1:2/3 (i) s (5/8)tB +9 (k) s 7 (8/3)t% 2+
= f(x) = {3/8)x¥ 3+ (2/5) x>/ %+C;

\;.. -

0 0 g

§. For the upper half of the parabola y = vBvX. Then y' = (v8/2)x~ /%=

2x'1/2- At (2,4) y° vZ2/¥2 = 1, For the lower half of the parab-

ola y' = —/3;1/2. At (2,-4}, y' = =2,

9. For the upper half of the parabola y = 4x'/2, y' = 2x~1/2, a¢

X
For the lower half of the parabola y =

= 4, y'" = 1, Then the equation of the ta&gent is {y- 8) }(x 4y,
and y' =

At x = 4, y' = -1. The equation of the tangent is (y+8) = —l(x-4).
10, See the answer to exercise 7.

11. No., dv/ds = 4/¥5 and as s increases, dv/ds decreases.
12, dT/dL = (2n/V32) (1/2)4~1/2 = (n/4/3) 4~/2. ves.
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Solutions to Chapter 6

CHAPTER 6, SECTION 2

1.

[\

(a) Continuous for all x; (b) continuous for all x; (c} continuous
where defined, i.e., for x = 1; (d) continuous except x =0
{e) continuous where defined, i.e., for x = 3; (f} continuous where
defined, i.e., for x = 1,

. Noj; it jumps from 0° to 180° as P crosses the maximum point of the curve.
. Yes, because the slope is at first positive, then 0 at the maximum point,

and then negative,

CHAPTER 6, SECTION 3

R

= O WO~

1.

W 2

(b) Yl’: 20/3 X‘l/3; (d) y'lz 20X3 + 7/3x-2/3;
(f) yr=21x2 + 14x; (h) y'= 3x®— 4x — 3;
i) y'= 4x-1/2. G) v'= 9xL/Z + 2xB/3,

1) yt=x2 + ¥B/3)x275,

cy =1 x) - gl (x%).

y'= cf'(x).

. (a) y'=30x — 3x%; for x = 2; y'=48 ft/mile.

(c) The slope of the graph is, of course, the value of yr,
(d) Yes. By contrast in the vertical motions discussed in Chap. 3 the

graph is not a picture of the motion.
The rate of change of the volume of a sphere at any value of the radius is the
surface area of the sphere, Since V = %mr® V'= 47r? and this is the value of
the surface area.

. dc/dx = x° + 2, )
. P = (x-BO)/]z.O. R=xp = x /10 + 8x., dR/dx = (x/5) + 8.
. drR/dx = 12x° - 6X.

P(x) = %% + 4x -~ x°/3 - 2x -~ 4., dP/ax = -x? + 2x.
dc/dx = 3 + 4x, When x = 50, dC/dx = 203, This is the cost of
producing the 51st unit.

CHAPTER 6, SECTION 4

1.

(a} Use (31); (b) Use (32); Ans. y'=4x®+ 6x® - 2x — 2; (c) Use (40);
(d) Use (40); Ans, y'= (x*+ 6x + 1)/ (x + 3)% (e) Use (40);

() Use (40) first, but to differentiate x(x®— 1) in the numerator one must

use (31); Ans, y'= (2x® + 9x% — 3)/(x + 3)%;

(g) Use (40);

(h) Differentiate the sum and use (40) to differentiate the second term;
Ans. y'= 14x~ 3/ — 1)
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Ly = g E{x)-E{x) g (x) 1 /g% {x).
f(X)g(x) = x¥(2x)+(2x+7)4x°® = 2x5+8x"+28x %),
Ly o= VR/REFL). Oy o= [(x2+}} (L/2)yx~ 1/ 2 AK(2x}1/{x2%+1)? =
[-(3/2)x3/24(1/2)x~ 1/ 2] /(x2+1) 2,
vt o= [2x/(x+1) %]-1/x2, y
. Just to use the product law y' = (1/2)x" 1/ 2{1/x) - x! 2(-1/x2),

This can be simplified te (-1/2) (1/x3/2),

. C = (2500+3x+7x2%) /(100+2.5x2}+dC/dx =

[(100+42,5x%) (3+14%) ~{2500+3x+7x2) (5x)1/(100+2.5x2) .
This can be simplified to (-7.5x2-6100x+300)/(100+2,5x2)2,

. Yes. The argument is the same,

Starting with the step y = x¥=x.x*? we may apply the result (31). Now

y'= xd(x*1)/dx + x¥1.1, By the hypothesis of the mathematical induction
process y'= x(k — 1)x¥2 + x*1 = kx*¥1, Since the result holds for n =k on the
assumption that it holds for n=k -~ 1 and since it holds for « = 1, the re~
sult holds for all positive integral n.

R = xp, By using (31) we have dR/dx = x(dp/dx)}+p.

A = C(x}/x. By using (40) we have da/dx = x(dC/dx) ~C(x)) /%2
dc/dx is M.

V = 2500(1+t)"1; dav/dt = -2500/(1+t)2. Clearly dv/dt is greatest
when t = 0,

R = xp = [640x/{x+9)]-40x. dR/dx = [5760/(x+9)2]-40. Now

dR/dx » 0 when [5760/(x+9)21-40 . 0,or 5760 > 40{x+9)2,0r x < 3,

CHAPTER 6, SECTION 5

1.

(@) By Theorem 8 we may integrate x? and multiply the result by 8.

(b) Same argument as in (a). Use (37) of Chap. 5 to integrate.
Ans. y =3/ x5/3 1+ (C,

(c) Write y'as v8vx = V8x!/2 and use Theorem 8 and (37) of Chap. 5.

(d} Use Theorem 9 and the resuits of (b) and (c¢)

(e) Using Theorem 9, we may integrate each term separately

{f) y'=+V4vx =2x"% Then y = ¥x%2+ C,

(g) Integrate each term separately. Ans. y =-7,x%— 3x2 + 3x + C,

(h) First divide through so that yr=x2+ 3.

(i) First divide through so that y'=x72 + 3x¥2, Ans. y = 2/ x%?2 + ¢, x¥2 4 C,

(j) Since a, b and ¢ are constants we may use Theorem 9.

(k} Use Theorem 9 and integrate each term separately. Ans. y = . x5 — 7, x8
+%,x% — 6x + C.

(b) v = L4x'/%4c; (c) y = 7x+(8/3)x3+C;
(e) v = (x3/3)-(21/5)x%/34C; (£) y = (2/3)x%/24(9/5) %%/ 3+C;
(h} v = t3-2t%:C,
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CHAPTER 6, SECTION 7

1

3-

. (@) Use (52); (b) Use (52), y=—%,x%%;

(c) We can write y = 2x"* and use (52) or differentiate as a quotient;

(d) Write y=x VY2 Then by (52), y'=—¥,x"37;

(e) Write y= (1/V3)x V2,

{{) Write y=x71+ Tx?; then y'=—x"2 - 14x3, One can also differentiate
as a quotient,

(a) Use (53). (b) Use (53). Ans. y =2xV2 + C,

() v=x"Y2 now use (b). () y'=Yx? by (8) y=—Yx'+C.

(&) y'=(1/¥8)xV2; then y = (2/V8)xV2 + C.

(b) v = (-1/4)x"*-2x~1/24¢c; (¢} y = -4x'/*+c;

(@) y = (-2/5)x~%/2+c; (£) ¥ = (=3/2)x~t-2x"1+C.

4, The tangent at any point x, is y — 1/x,= (- 1/x3)(x — x,). Hence in Figure 6-8

the coordinates of the points K, P, L are respectively (0,2/x,), (x,,1/%,),
(2%,,0) from which the result follows at once.
Using Figure 6-8, the area cuf off is 1, OK-OL = },(2/%,){(2x,) = 2 = constant.

. Since I = A/4nr? = (A/4mr2, I'= (—A/27)r 3. Now let r = 20 and then r = 200

to obtain the text’s answers, When r is very large, a small change in r
causes very little change in the value of I because I varies inversely as the
square of r or, speaking physically, I is spread out over such a large sphere
that per unit area I is verv small and changes very little as r changes.

7. dC/dx = (1/2)x‘1/2-(1/2)x“3/2. When x = 100, 4dC/dx = 1/20-1/2000.

Yes., Even under efficient production it must cost more to pro-
duce additional unitg of a commodity.

CHAPTER 6, SECTION 8
1.

2.

By (59), W = GmM][(1/r) — (1/r))] where r is the final distance of the object
from the center of the earth, Here r = R. Using (61) the result follows,

Use the formula of Exercise 1 with m = 100, R = 4000 X 5280 and r,

= 4500 X 5280. Ans, (22,528-10%)/3 ft-pdl.

. 8,448-10°% ft-pdl, It is greater because for points above the surface the

force of gravity is actually less than 32 m,

. The work done in raising the satellite is numerically the same as the work

done by gravity in pulling the satellite down, Hence use the formula in
Exercise 1 with m = 1000 and r, = 1500 - 5280 ft. The result is 18,432 .107
ft-pdl.

. By (58), W = GmM/r + C. Since W = O when r=R, C =—GmM/R and

W = GmM/r ~ GmM/R. Using (61), W =32mR[(R/r) —1].

Measure r downward from the top of the well. Then the force on a length

of cable of length r is the force (weight) per unit length times r. Thus

F = 32mr = 64r. Using the relation dw/dr=F derived in the text, we find
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(since W =0 for r = 0), W = 32r2, Thus the work to lift the entire cable is

32(200)2 = 1,280,000 ft-pdl.

In addition to the work done in Exercise 6, we must lift 300 1bs a distance

of 200 feet. Thus the additional work is 32(300) X 200 ft-pdl and so the total

work is 3,200,000 ft-pdl.

a) vyes; repeat the derivation of (59) verbatim,

b) Repeat the derivation of (59) and Exercise 1 with 32 replaced by 5.3
and R being the radius of the moon. Ans, W = 5.3mR(1 - R/r}).

Use the answer to Exercise 8 with m = 100, r, = 5005280, and R

= 1100 - 5280. Ans. 96,195 - 10* ft-pdl.

Use the result of Exercise 8 with m = 1000, r, = 1500.5280 and R

=1100- 5280.

a) Use the relation aw/dr=F derived in the text.Thus
dw/dr=w8inA and W=(w sinA)x+C where r is
the distance the object is pushed. At r =0,

W =0, hence C =0. If the length of the plane is
denoted by R, we have W = wR sinA. From the
figure sinA =h/R, thus W = wh.

R

b) Notice that this is the same result as would be obtained if the object were
lifted straight up against gravity!



Solutions to Chapter 7

CHAPTER 7, SECTION 3

1. {a)
(b)
()
()

(e)

(£)
)
(h)
(@)

(3}
(k)

{1}

Let u=x3+ 1, Then y=u® Apply (12).

Let u=x2—17x + 6, Then y =u? and by (12}, dy/dx = 4(x% — Tx + 6)3(2x — 7).
Let 4 =t°~5 and apgly (12). Then ds/dt = 8(t?-5)t.

Write as (az—ng"_ and let u = a®-x2. Apply (12). Then

dy/dx = 4x(a‘-x ) 5.

Differentiate as a quotient of two functions and in
differentiating 5-2x% let u = 5-2x. Likewise for 5+2x.

Ans. 10/(5~2x)*.

Letu=x2+ 1. Then y =ul/3, Apply (12).

Let u=x/(x+1). Then y=u% Ans. dy/dx = 4x3/(x + 1)5,

Let u =x2 —x. Then y =u¥2, Apply (12).

First differentiate as a product so that dy/dx = vx% — x - 2x

+ (x? + 1) dvx? —x)/dx. To differentiate vx2 — x, let u=x?—x and let
z = u¥2, Then calculate dz/dx = (dz/du)(du/dx) and substitute the result
in the expression for dy/dx. Ans. dy/dx = (6x® — 5x% + 2x — 1)/2Vx% — x,
Let u=x/(1+x). Then y=u'/2, Apply (12).

One can write y =V1 —x2, Let u=1—x2% Then y = u¥2, Apply (12).
Ans. dy/dx =—x/¥1 — xZ,

Let u=y .Then y = u? Then dy/dx = 2y'y".

2. We are given w as a function of x and are told that x is a function of t. We
want dw/dt. Now dw/dt = (dw/dx)(dx/dt). We can calculate dw/dx from the
given formula and we have that dx/dt = 100.

3. R =

4. (a)

(b)

(¢}

x VZ50-9% = x(250-9x) /% | am/dx = (250-9x) /2 +
x(1/2) (250-9x) =1/ % (_9) .
Differentiate first as a product. v' = (x2+2) (1) +

(x-3)d(x°+2) */dx. Now let u = x%’+2 and apply (12). Then
y' = (x2+2)3+(x—3)3(x2+2}22x. One can simplify the result
to get the text's answer.

Let u = (x-1)/(x+l) so that y = u'/2, Then by (12)

v' = {(1/2)u~!'/?%du/dx. To find du/dx use the gquotient rule.
du/dx = 2/(x+1) 2,

Let u = 5x®+1. Then by (12) y' = (-2/3) (5x2+1)-5/% (10x%) .
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CHAPTER 7, SECTION 4

= 0; = 0; bx+dy{dy/dx} = 0;
1. (a) x(dy/ax)+y = 0; (b)) 2x+2v(dy/dx) 0; (o) N ;
(a) 2x+§(dy/dx)+y+2y(dy/dx) = (0, hence dy/dx = (-2¥-y)/(x+3yg
(e) 3y2(dy/ax)+x2y(dy/dx)+y2+dy/dx+2 = 0; (£) 2y{dy/dax) = 4.
2 2x+2y(5y/dx) = 0, On the lower half of the circle we must take

= - -X~, _
3. gy(dy/dx) = 8. Then dy/dx = 4/y. At P, x = 2 and y = -4, Hence

dy/dx = -1. . iy of
4, In differentiating dy/dx = -xX/y we must regard v as a function

. 2 _
x and differentiate the right side as a quotlenF. Hence d*y/dx? =
—{y-xy"') /y?., If we substitute the value of y' in this last
egquation we get the text's answer,.

5. Here dy/dx = 2p/y and at (x,,¥,), dy/dx = 2p[yu. Now use the
point-~slope form of the equation of the straight line,

6. If we set y =0 in the answer to Exercise 5 and solve for x we obtain
X =X, — y5/2p. But y2=4px,.

7. The slope of the normal is the negative reciprocal of the slope of tangent,
The latter (Exer. 5) is 2p/y,. Hence the equation of the normal is Y~ Y,
= —(¥o/2p)(x — x,). To obtain the x-intercept, set y = 0 and solve for x,
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CHAPTER 7, SECTION 5

Take any point (x,y) on the circle and use the Pythagorean theoren,

. Slope of AC = y/(x+1}. Slope of BC = y/(x-1)., But y = /I=x? =0

that the two slopes are the negative reciprocals of each other.

By comparison with (27) we see that a =4 and b = 3. Since ¢ = vaZ — b2,

c=V1; e =c/a =T/4.

Divide both sides by 80 so that x2/10 + y?/8 = 1. Now follow Exercise 1.

Ans. a =10, b=v8, c =v2, e =V5/5,

Since a =6 and b =+10, 2a = 12 and 2b = 2vV10.

(a) By (27) we get the text answer. (b) Here 2c =4 and since b? = a% — c?,
b =+60. Then x2/64 + y?/60 = 1.

(b) We have by (27), x¥/25b% + y/b% = 1, Since (7, 2) lies on the curve we
may substitute 7 for x and 2 for y and b?=1%/_ Hence x2/149
+ 25y%/149 = 1,

(d) 2a =12 and 2b = 8. Now use (27).

. We want twice the y-value at x = ¢. By (27) when x = ¢, y2 = (a% — c?)(b¥a?)

=b%¥a2. Then 2y = 2b¥a. -
Repeat the derivation of (27) but with x and y interchanged.

. We may use (27). Here 2a =50 and b = 25.
. The least distance is a — ¢ and the greatest distance is a + ¢. Then

11.

12,

13,
14

15,

16 .

17 L]

(@ —c¢)/(@ + c) =2/, Divide numerator and denominator by a. Then
(1-e)/(1+e)= 29/:0. Solve for e,

If we compare with (37) we have a =4 and b= 3. Since ¢?=a%+b?, ¢ =5,
c/a =5,

If we divide through by 30 we have x%/10 — y?/8 = 1. Now repeat Exercise 11
a=+v10, b=+V8, c = VI8, e = 3/V5.

2a = 12 and 2b = 6.

(@) Use (37). (b} 2c =20, sothat ¢ = 10. Since h® =¢2— a2, b =6, Now
use (37). (¢} Use (37). (d) 2a =12 and 2b = §. Now use (37).

Since for the hyperbola a? + b* =¢? and a < ¢, all we can conclude is that

a may be greater than, equal to or less than b,

We want twice the y-value at x =c¢. By (37) at x =¢, y? = (c2 — a?) (b¥/a?).
Since ¢2— a2 =b? y=Db¥a.

Repeat the derivation of (37) but with x and y interchanged.
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The argument given in connection with (38) rests on the fact that if a product
vanishes then one of the factors must vanish, To apply this argument correctly
in the present case we should consider the product (5x + 2y — 25)(5x ~ 2y — 16)
and conclude that the equation 25x% — 4y% — 2056x + 18y + 400 = 0 represents
the two lines.

CHAPTER 7, SECTION 6

1.

o

:-JG‘J

We find from y = (b/a)Vx® — af that y' = (b/a)x/V%7 - aZ. At x

= a the slope is infinite, As x increases the slope decreases and as x be-
comes infinite the quantity x/vx? — a? approaches 1 because x is very large
compared to a. Then the slope approaches b/a which is the slope of the
asymptote y =bx/a.

From the given equation we have, by differentiating, 8x + 10yy'= 0 so that
y=—4x/5y. At x=1, y=+6/Y5 and y'= 7 (2/5/15). Now use the point-slope
form of the equation of the straight line,

. At x=—1, y=+6/V5. The slope (see Exer, 2) is y'= « (2/5/15). Hence,

using the point-slope form gives y ¥ 6v5 =+ (2/5/15)(x + 1).
The method is the same as in Exercise 2.

. At x =5, y=+viZ, From the given equation y'= 4x/5y. At x =5, y'==2/V3,

Hence y 3 V12 =+ (2/¥3)(x — 5).

The method is the same as in Exercise 5, Here x =—5.

{a) We shall show that the angle beiween FP and the tangent equals the
angle between F'P and the tangent by using formula (7) of the Appendix
to Chap. 3. The tangent line has the slope —b?</a%y. the line FP has
the slope determined by (x,y) and {c,0) and so y/(x — ¢). In using
formula (7) we must remember to let m, be the slope of the line with
the larger inclination and that our formula gives the tangent of the angle
between the upward directions on the lines. Then application of (7) gives
for the first angle (b2~ a%y? + b?xe)/(alxy ~ a?yc — b2xy). In the
numerator we use the fact that b%? + a?y® = a®b® and in the denominator
we use the fact that a2 ~ b? = ¢2, Then the fraction becomes b%*'yc. In
using formula (7) to get the angle between F'P and the tangent we must
remember again that the formula gives the tangent of the angle between
the upward directions of the two lines, This angle is the supplement of
the one we are interested in and the tangent of the latter is the negative
of the one we find by formula (7). Hence we apply (7) with m, = ~b?x /a2y
and m, = y/{x + ¢}, as above, and take the negative of the result, This
negative is also b?/yec. Hence the two angles are equal,

(b) The law of reflection for light says that the reflected ray will travel
toward F,
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The problem assumes that a%? > b2, As k varies from 0 to b2, the locus is
an ellipse. For k =b? there is no locus {though if we multiply through first
by (a%2— k)}(b® — k) we get y = 0, which is the x-axis). For k between b?
and a2 we have a hyperbola. For k = a? there is no locus (or, as before)
the y-axis. For k> a% there is no locus,

The student could be asked to show that a confocal ellipse and hyperbola can
be represented in the form given in Exercise 8. Thus if x%/a? + y2/b? =1 is
the equation of an ellipse and x2/A%2 — Y#/B? = 1 is the equation of a hyperbola
we know that b? =a% — ¢2 and B? = ¢? — A? if the two curves have the same
foci. If we write AZ% = a? — k, which does not restrict A because k is still
arbitrary, then B? = ¢2 — a? + k, Thus the hyperbola becomes X&/{a? — k)

— Y#/(c? —a% + k) = 1 or, reverting to the usual x and y, x¥/(a? - k)

— y2/(k — b?) = 1 or x¥(a®— k) + y¥/(b® — k) = 1. That is, a hyperbola confocal
with an ellipse can be represented with an a2 and b? which differ from those
of the ellipse by the quantity k, except that for the hyperbola a? > k >b?,
Then the slope of the ellipse is —b%x/a%y and the slope of the hyperbola is
x(k — b?)/y(a% — k). The points of intersection of ellipse and hyperhbola are
obtained by solving the two equajions simultaneously and they are given by
x? = a?(a? — k) /(a% — b?), y? = b2k — b?)/(a% - b?). To make the algebra easier
all we need show is that the product of the slopes of the ellipse and hyper-
bola, which product is — b?(k — b?)x%2/a%(a? — k)y? has the value —1 at the
points of intersection. If we substitute the x2 and y® of the points of inter-
section we do obtain —1,

The tangent line to the ellipse at (X,y,) may be written as b®xx + a?y,y

= 12x2 + a?y? = a?h%. Thus the distance of any point (x,y) to the line is

(b2xx + ay,y — a?b?)/V(b%x,)? + (@%y,)%. The foci have coordinates {c,0),
(—c,0). Thus the product under consideration is given by

(a%b? — b2x,c)H(a2b? + b%xe)/ (b*%32 + atyZ). Multiplying out, using ¢ = a® — b? in
the numerator and a%(a?y?) = a®*(a®b? — b%3) in the denominator, this fraction
reduces to b?.

The method is precisely the same as in Exercise 7. One need watch only the
differences in signs.

The slope at any point (x,,y,) of a hyperbola is y'= b*x,/a%y,. The equation
of the tangent at that point is y — y, = (0%%,/2%y,) (& — X,) or bx.x — a?y,y

= b?x2 — a?yZ. The equations of the asymptotes are bx —ay =0

and bx + ay = 0, We find the point of intersection of the tangent and the

first asymptote and the same for the second. Then the distance from (%, ¥,)
to each point of intersection is the same,.

The slope of the tangent line at (x,,y,) i8 y'= 2p/y,. The equation of the
tangent line is y — y, = (2p/y,) (x — X,). Let y =0 and solve for x, Then

X =X, — y3/2p. But y%/2p = 2x,.
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14. Since the slope of the tangent to the ellipse at P which has coordinates
(%4, ¥o), 52y, is —b?x,/a%y,, the slope of the normal is a?y,/b®, and the
equation of the normal is y — y, = (a%y,/b?k,}(x — X,). The length OG is
the x-intercept of the normal, Set y = 0 in the equation of the normal. Then

X

=X, — (b¥a2)x, = x4l — (p¥a2)] = x,(c¥a?) = e?x,,

15. The slope of the tangent to the ellipse at P, which has coordinates (x,,¥,)
say, is — (b®x,/a%y,) and the equation of the tangent is y — y,
= — (b%x,/a%y,) (% — %,). The length OT is the x-intercept of the tangent. Set
y =0 and solve for x. Then x = a?y2Z/b?*x,+ x,. This is OT. Since ON =x,,
ON . OT =a%?%/b? +x2. If we add and use the fact that b?xZ + a?y2 = a%b?, we
have the result. The second part of the problem calls for the same procedure
except that Ot is the y-intercept of the tangent and OM = y,.

CHAPTER 7, SECTION 7

1. {a)
(o)
(c)
(d)

(e}
(£)

(g}
{h)

(1)
(3)
( k)

(1)
{m)

Ignore temporarily the factor 4, Then if u = (%% + 1} we have the form
(47) and (48) gives the integral. The 4’s cancel and the text’s answer
results.

Let u=x%+ 1, Then we have the form (47}, and (48) gives

y =& +1)*+C.

We can write the given dy/dx as dy/dx = 1/2(x%+1)%*2x. Now ig-
ncre the 1/2 for the moment and we have the form (47) Then
{48) and the factor 1/2 yield the text's answer.

Let u = (x2+7x}. Then apart from the constant factor 4 which
can be temporarily ignored, our dy/dx is in the form (47).
Ans. vy = (x2+7x)*+C,

Same as (d) except for the facter 4,

If we let u = x?+6x%, then we need 2x+6 as our du/dx. Hence we
write dy/dx = 1/2[x2+6x)" (2x+6). HNow except for the constant
factor 1/2, dy/dx is in the form (47). Then by (48), dy/dx =
(x2+6x) 53 /10+C,

If we write dy/dx = (x%+6)~%2x and let u = x%+6 we have the
form (47). Then (48) gives the text's answer.

We could expand (1+5x)5, But it is easier to let u = 1+5x,
Then du/dx = 5, Hence write dy/dx = 1/5(1+5x)°5 and so except
for the constant factor 1/5 we have the form (47). Then, by
(48) v = (1+5x)8/30+C.

dy/dx = (1+5x)1/%2 ., Now use the method of (h) to obtain the
text's answer.

dy/dx = (2-3x)~1/2, Let u = 2-3x. Then du/dx = -3. Hence
write dy/dx = -1/3(2- 3x)~1/2(-3). Then by (48) y =

~2/3(2-3x) 1/2+C,

dy/dx = (x?+4)73 2% = 1/2(x2+4)~%*/22%, TLet u = x2+4. Then
apart from the constant factor 1/2 we have {47) and (48) gives
the text's answer.

We can write dy/dx = 2(1+x/2)%{(1/2). Now let u = l+x/2. Then
(48) yields y = 1/2[1+{x/2)]*+C.

In this exercise the choice of u is not obviously helpful and
must be regarded as a,trial. If we Qo let u = 4+5x then dy/dx
= Ja(u-4)/5 = (1/5)us/2-(4/5)ul/2, mThis expression is still
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not in the form (47) because each term lacks the factor du/dx
OYr 5 and so we write dy/dx = (l/25)u3/25-(4/25)u1/25. Now each
term, apart from a constant factor,is in the form (47) and

(48) applied to each term, yields the text's answer.

{a) et u = x*+5, Then we have the form (48).

(b) Write the given integral as (1/2)[(x*+5)7%2x dx. Let u = x+5,
Then we have the form ( 48) and the answer is (1/2) (x2+5)3/3 =
(1/6) (x>+5) *+C.

(c}) Write the given integral as {(x2+5)—2x dx and apply the method
of (b). The answer is (-1/2) (x%+5)~1+C.

(d) Write the given integral as (3/2) {(x2+5)'22x dx and proceed as
in {(c}. The answer is (-3/2) (x%+5) " '+C.

(e) Let u = x3+ x?., Then the integral is in the form (48).

{f) Let u = x%+7x. Then the integral is in the form (48). The
answer is 2 (x%+7x) '/ %+cC.

(g) write the given integral as 1/2 [ (x?*+2x)~2(2x+2)dx and let
u = (x2+2x). By (48) the answer is (~1/2) (x%+2x)7!+C,

(h) Write the given integral as (3/2) I(x +2x) T2 (2x+2)dx and use
{48) with u = x + 2x. The answer 1s (-3/2) (x?+2x~1+C,

. Using the suggestion in the text we get dAW/dx = k(c—x)/[p2+(c-x)2]“é-

Then AdW/dx = k[p2+(c—x)2]“3/21c-x). Let 9 = p%+ (c-x)2. Then
du/dx = =2(c-x). Then dW/dx = ~(k/2)u” ¥ 2qu/dx. By (47)
W=%ku 1 24C = k[p2+{c-x)2]"/2+C, Now x varies from 0 to g.
When ¥ = 0, W= 0. Hence C = -k(pz+c2)_1/2. When x = g , W=
k[p>+(c-g )2]1-1/2-k (p24c2)~1/2, From Fig. 7-20 we see that

W = k/b-k/a.

4. If we expand (2x — 1)¥/8 we get 2x%— 4x3 + 3x2 — x + ¥, + C for the integral.

On the other hand if we expand (2x — 1)® we get 8x% — 12x%® + 6x — 1 and if we
integrate we get 2x*— 4x3 + 3x%2 — x + C, The two results seem to differ by
.. But the constant of integration in the second case can be taken to be

Y + C’ where C’ is some new constant. That is, the two solutions differ
seemingly by Y, but the constant of integration can always be adjusted to
take into account any constant, such as the ¥, here, because the constant of
integration is an arbitrary value,

. If we use the fact that f{x) = g’(x) then y’ = g{x)g'(x). Now let u = g{x). Then

du/dx = g'(x). Then y’ =u(du/dx) and we have the form (47). By (48), y
= @¥2) + C ={[gx)j/2} + C.

CHAPTER 7, SECTION 8

1. We have but to apply (65) in which r, =5000-5280, GM = 32R? and R

2.

= 4000+ 5280, The rest is just arithmetic to get the text’s answer,

Formula (65) gives the velocity acquired in falling from rest or zero velocity
and from the height r, above the center of the earth to the surface. As the
text points out, if we shoot an object up from the surface with the velocity
acquired in falling to the surface it will arrive at height r, (above the cen-
ter of the earth) with 0 velocity. Then the least velocity with which the

_object should be shot up is given by (65) with R = 4000-5280, GM = 32R?

r, = 8000 - 5280. The arithmetic gives 3200766 ft/sec,
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We could solve this problem by the methods of Chapter 3, Section 3. See for
example Exercise 12 there. Or we can use the technique of this chapter to
argue that ¥ =—-32 and, by (61), v(dv/dr) =—32 so that v¥/2=-32r + C. K
we measure r from the surface of the earth (which we may do in this prob-
lem as opposed to the use of (59)) thenwhatwe want is that v should be 0
when r = 4000-5280. Then C = 32(4000-5280) and v¥2 =—32r + 32(4000 - 5280).
We seek the value of v when r = 0. This is 6400v33 ft/sec. This value is
larger than the value in Exercise 2, as it should be, because the acceleration
of —32 is larger than the true acceleration of gravity and so more initial
velocity is required to have the object reach a height of 4000 miles,

For the particle which falls under the true acceleration of gravity, the ve-
velocity on reaching the earth’s surface is given by (65) where r, = 2R,
Then v3/2 = GM/2R or vZ=32R in view of (58). To obtain the velocity ac-
quired by a particle falling from rest with the acceleration of 32 ft/sec? we
may use the reasoning of Exercise 3 which leads to v¥/2 =—32r +C, Now
v=0 when r = R/2 so that C = 16R and v¥2 =-32r + 16R. When the object
reaches the surface r =0 and v3 = 32R. Hence the two velocities are equal.
According to (68) the escape velocity is 8VR. In Exercise 3 we calculated
the velocity required to send an object 4000 miles up if the acceleration of
gravity were 32 ft/sec? all'the way. There we obtained 6400vV33, This is the
value of 8VR, since R = 4000 -5280.

The problem assumes the body has a velocity V in the downward direction.
We may use the result {63) but must now determine C by the condition that
at r=r,, v=V, Then V¥2=GM/r, + C or v¥/2 = GM/r — GM/r, + V¥2,
Since in the determination of C only V2 enters we cannot be sure that the
signs are correct. However GM/r — GM/r, is positive because r < r,, Then
the value of this difference adds to V2, as it should to produce a larger v,
When r = R we obtain v =—vV? + 2GM/R — 2GM/r,, the minus entering be-
cause a downward v should be negative.

The velocity of 1000 ft/sec. is in the upward (positive) direction. The initial
velocity must be such that it supplies the loss in v which is due to gravity
and still leave a velocity of 1000 at the height of 8000 miles from the center,
Hence the velocity we seek is really the opposite sign from that calculated

in the latter part of Exercise 6, That is, we seek v,=+vV? + 2GM/R — 2GM/r,
where V = 1000, R =4000-5280 and r, = 8000.5280, The calculation yields
26,016 ft/sec.

Use (65) with v, = 10,000, and R = 40005280 and solve for r,, The answer
is 320 miles approximately,

Again use (65) with v, = 5280 and R = 4000.5280 and solve for r,. The an-
swer is about 84 miles,

The object will certainly never return, In mathematical terms

lim GM/r, > 0.

1 —=co

In the theory of the section we have hut to let M stand for the mass of the
moon and R stand for the radius of the moon,

In view of the answer to Exercise 11, we can use (67) if we let M = M/81
and R be 4R/15. Then v, = vRGM/81){15/4R) = {15/324)(2GM/R). Now M




38

13.

14,

15.

16.

17,

18,

and R still refer to the mass and radius of the earth, Hence v, =

¥15/324 V2GM/R = .21V2GM/R. We can use (68), so that v, = .21(7mi/sec)

= 1,50 mi/sec approx.

We use (65) with r, = (240,000)(5280) and R = (4000)(5280) to calculate v,.

The arithmetic yields 8VR+v59/60. Since 8VR =7 mi/sec, the result is about

6.88 mi/sec.

Here we use (65) but with M, the mass of the moon, R, the radius of the

moon, and r, = 240,000 mi, From the data of Exercise (12) we know that

M = M/81 and R =4R/15. Then (65) reads: v&/2 = (GM/81)(15/4R)

— (GM/81)(1/240,000-5280), We can see by looking at the value of v, in

Exercise 12, that the value here will be slightly less than the value there,

The result is 1.49 mi/see approximately.

We start with (63) and let v=v, when r =R, Then C =(v2/2)— (GM/R}. Sub-

stituting this value for C in {63) gives the text’s answer,

(a) The given differential equation in the Suggestion replaces (59) and the
reason is that two accelerations both in the direction of negative r act
on the object and so the accelerations add. To integrate we replace
d?r/di2 by v(dv/dr), as justified in (61), and integrate with respect to
r. Then v¥2=GM/r + GS/(r +d) + C, We want v to be 0 when r
=r,. This gives the value of C so that (1) v¥/2 = GM(1/r — 1/r,)
+GS[1/(r + d)—1/(r, + d)]. This is the velocity acquired in falling from
rest at the distance r, irom the surface of the earth to the distance r
from the surface. The velocity acquired on reaching the surface of the
earth is obtained by replacing r by R. This latter velocity is also the
velocity with which the object must be shot up from the surface of the
earth to just reach r,.

{(b) As in the derivation of (67) we use (1) above in which r =R and r, be-
comes infinite, Then the escape velocity v, is given by v3/2 = GM/R
+GS/(R +d). To calculate v, we use the fact that S = 330,000M and
d = 93.10° mi. Then vZ = (2GM/R) + [2G - 330,000M /(R + 93 10%)], or
vZ = (2GM/R){1 + 330,000/[1 + (93 - 10%/R}]|} = (2GM/R}(15.2). The arith-
metic gives, since v2GM/R =17, v, = 27.3 mi/sec.

The equation involving r, says that the earth’s gravitational attraction on

the mass m just equals the moon’s gravitational attraction of the mass m,

Then, as noted in the text, r, = 54R. Hence we must now calculate the ve-

locity required to shoot an object up from the surface of the earth to just

reach the point r, = 54R, We use (65) so that v = 2GM/R — 2GM/54R

= (2GM/R)(1 ~ %,,). Then v, = V2GM/RV®/,, = 7(.99) = 6.93 mi/sec. The

result in the text, 6.86, i5.99 times the more accurate value than the

7 mi/sec, namely, .99(6.93).

The object must be shot up from the moon to just reach the point which is

6R from the moon’s surface, R being the radius of the earth, We use (65)

with M = M/81 and R = 4R/15 and r, = R, Then v% = 2G{(M/81)(15/4R)

—2G(M/81)(1/6R). Or v2 = (2GM/R) (1%,4, — Yase) = (2GM/R){(.038), Then

v, = 1.40 mi/sec. The precise answer depends, of course, on the accuracy

to which the calculations are carried.
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(a) H r is measured positively in the direction up from the earth’s surface
toward the moon, then the acceleration due to the earth’s attraction is
negative and is —GM/r?, The moon’s attraction is in the positive direc-
tion and when the object is r units from the earth’s center it is 60R ~r
units from the moon’s center because the distance between centers is
60R. Then the acceleration due to the moon is G(M/81)/(60R — r)2.
These two accelerations act at all distances r from the earth’s surface
to the moon’s surface, Hence the differential equation in the text takes
into account the continuing accelerations of the earth and moon,

(b) The differential equation of the text can be written as
v{dv/dr) = - GM/r? + (GM/81l)/(60R-r) 2, Integration yields
v2/2 = GM/r - [(GM/81}(60R-r)~2(-1)dr + C or v?/2 =
GM/r + (GM/81)/(60R-r) + C. We now require that v = 0
at the stagnation point where r = 54R. This yields C =
-8GM/9.54R, so that v2/2 = GM/r + GM/81(60R-r) - BGM/9.54R.
We now wish to find v when r = R. Hence v?/2 =
(GM/R) (1+(1/81.59)~(8/9.54)). If one uses GM = 32R?, then
v is in ft/sec., First one ocbtains v?/2 = (GM/R) (.9837).
Now depending on the accuracy of the calculation one obtains
v = 6,96 mi/sec.

CHAPTER 7, SECTION 9

1,
2.

Since V = %, dV/dt = 3e?de/dt. Now de/di = 0,05 and thus the text answer.
The volume of a cone is V = 7r2h/3. We are giventhat r = h/3 so that

V = 7h%/27, Then dV/dt = (mh?/9)dh/dt. Weare given that dV/dt = 1728.3
cu.in/min, when h = 6. Then dh/dt = 1296/7 in/min.

The suggestion is fo assume that dV/dt = kA, Since V = 4#r¥/3, dv/dt

= 4nr3dr/dt. Also A =4wr?, Then dr/di =k and r =kt + C, When t =0,

r =Y, Then r=kt+ %, When t =6, r =Y, so that k=—%,. Then r

= (t/24) +,.

. We may use the text result of gect,g namely dW/dt =— (GmM/r?)dr/dt. At

the surface of the earth r =R and GM/R? = 32; m = 10, and dr/dt = 25,000.

Then dW/dt = 8-10%, At the height of 100 miles, r = 4100. Just to compare

results write r = (4100/R)R where R = 4000 miles. Then substituting in

dw/dt gives (40/41)? times the preceding result.

(a) From A =7r?, we have dA/dt = 27rdr/dt.

() Here r =5 and dr/dt = 1/2 so that dA/dt = 57 sq ft/sec.

(¢) No. r certainly changes from instant to instant and dr/dt may also
change from one instant to another,

(d) No, because even if dr/dt is constant, r changes during the next second.

Since A =s?, dA/dt = 2sds/dt. Let s =5 and ds/dt = 1, Then dA/dt

= 10 sq ft/min.

The distance the first ship sails east is 20t, where t is measured from

noon, The distance the second ship sails south in t hours is 25(t — 1). The

distance r between them is given by the Pythagorean theorem; r

= V{B0LR + 252(@t — 1) = V10252 — 1250t + 626. Then dr/dt = (1025t — 625)/rV2,

Now let t = 2. Then dr/dt = 285/V89 it/sec.
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The volume of water at any r and h is V = 7r2h/3. At any value of the water
height h and the radius r of the water surface r/h =%, by similar tri-
angles. Then V = 497h%/432 and dV/dt = ¥/, wh?dh/dt. The net change in
dv/dt is 10. Hence when h = 6, dh/dt = 40/497 ft/min.

. From y? = 2x we have y'= 1/y = 1/¥2x, Think of y'as some new variable

z. Then z = (2x)"V2 and dz/dt = — Y, (2x)y¥2[d(2x)/dJ(dx/dt) = — (1/V8xF) (dx/dt).

Now let x = 32 and dx/dt = 1/2, Then dz/dt =—¥,,, unit/min.

(@) The distance r from the station is r = vx¥ y?, Since y? =4x, r =
vx¥ +4x, Then dr/di = (dr/dx)(dx/dt) =[x + 2)/Vx* + 4x)dx/dt. At x =9
and dx/dt = 2, dr/dt = 22/¥117 unit/min.

(b) When x is large the length r is nearly horizontal and increases at about
the same rate as x does,

CHAPTER 7, APPENDIX, SECTION A2

1.

(a) We use equations (6) on p. 186 with 8 = 45°, Then x = (V2/2)&’ — y")
and y = (V2/2)(x’ + y’). Substitution in x% +4xy + y% = 16 gives the text
answer,

(b) I tané =2 then siné = 2/v5 and cos @ = 1/V5. Now use (6)on p. 186.
Then x = (1/¥5)(x’ — 2y’) and y = (1/V5)(2x’ + y'). We substitute these
values in 3x®~ 4xy + 10 =0. Ans. x"2 —4y'? = 10,

() If tang =3 then sin6 = 3/V10 and cos 6 = 1/V10. Now proceed as in
parts (@) and.(b). x = (1/V10)&' — 3y'); y = (1/V10)(3x’ + y'). Substitution
in 3x% — 3xy - y? =5 yields 3x'2— Ty'2 = 10.

(d) As in (b), x = (1/VB)(x’ — 2y') and y = (1/V5)(2x" + y'). Substitution in
the given equation yields x'2 =0. |

Yes because the points of the circle have the same position with respect to

the new axes that they do with respect to the old.

(a) To determine the angle of rotation we use (10) on p. 137. In this exercise
A=1, B=2V3 and C =—1. Then tan26 = ¥3. In this case we may rec-
ognize at once or see from the trigonometric tables that 26 = 60° and
so @ = 30°. Then sing =Y, and cos ¢ = v3/2. We now use the equations
(6) on p. Then x = Y, (V3x’ — y') and y = Y,(x" + V3y’). Substitution
in the given equation yields the text answer,

(o) The angle of rotation is given by tan26 =~16/(17 — 17). This means, as
pointed out in the text, that 26 = 90° and ¢ = 45°. Then siné = v2/2 and
cos 8 = v2/2. From (6) onp.186, x = (/2/2)(x' — ¥y} and y =(¥2/2)x" +¥).
Substitution in the given equation yields 9x'% + 25y'% = 225.

(¢) The angle of rotation is given by tan28 =—+3. Since tan (180 — 26)
=—tan26, tan (180 — 26) =3 and 180 — 26 = 60°. Then 26 = 120 and
8 = 60°, Then sing = v¥, and cosd = Y%,. By (6) of p.186 , x = Y3z -y
and y = ¥ (x’ + v3y’). Substitution in the given equation yields the text’s
answer,

(d) Tan26 =4/(1— 1). This means 26 =90° and 6 = 45°. Then, as in (b),

x = (V2/2) %' — y') and y=(2/2)(x’ +y"). Substitution in the given equa-
tion yields 3x'2 —y'? = 16.
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Tan26 =—2/(1 — 1). Then 26 =90, and & = 45°. By (6) of p.186 ,

x = (V2/2)(x’ — y') and y = (V2/2){(x’ +y’). Substitution in the given equa-
tion yields the text’s answer.

Tan2¢ = 1/(0 — 0) or 26 = 90° and 9 = 45°. The equations (6) are as in
(e) and substitution in xy = 12 yields x'2— y'2 = 24,

Tan26 = 14/(25 — 25). Then 26 = 90° and ¢ = 45°. The equations (6} are
as in (e) and substitution in the given equation yields the text’s answer.

4. Yes. If we took an x’-axis parallel to the straight line we could put its
equation in the form y’ =d.

CHAPTER 7, APPENDIX, SECTION A3

1. (@)

(o)

{c)

(@)

(e)

)

&)
(h)
()

()

If we let x =x' +h and y =y’ +k, substitute in the given equation, take
the terms involving x’ and set the coefficient equal to 0, we find h
=—16. Likewise if we set the coefficient of y' = 0 we find k = 2. The
sum of the constant terms in the new equation becomes —212. Hence
the answer in the text. Graph the new equation with respect to the new
axes and then put in the (x,y)-axes.

The method is the same as in (a). We find that h=2 and k =%,. The
transformed equation is 3x'2 +4y'2 — 29/4 = 0. Graph as recommended
in (a). )

Use the method of (a). We find that h =—5 and k = 3. The final equation
is x'2 + 4y'2— 11 =0.

I we replace x by X’ +h and y by y'+ k we can set the coefficient of
x’ = 0 and find that h =—3. Now set the sum of the constant terms
equal to 0; this yields k =—23/4., The resulting equation is that in the
text.

The method is the same as in (d). We find that h = 4 and k=—77/4. The
resulting equation is in the text,

The method is the same as in (e) except that now we first find k to
eliminate the y' term and then set the constant equal to 0 to determine
h. We find that h =—1 and k = 5. The resulting equation is y’2 — 6x’ = 0.
The method is as in (a). We find that h =—4 and k =—"7. The resulting
equation is as in the text,

The method is as in (a). We find that h = 3 and k =—2. The resulting
equation is x'2 + y'2 = 25,

I we replace x by x* +h and y by ¥’ + k we find that we can take k
to be 0 and so eliminate the y’ term, Setting the constant term equal
to 0 given h = 2. The resulting equation is in the text.

The method is as in (f}). We find that h =—1 and k = 3. The resulting
equation is y'z = 8x'.

2. Yes. By choosing new axes with origin at any point on the line we can elim-
inate the constant term. This is obvious geomeirically because the line
would go through the new origin.
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3. We see by inspection that if we let X' =x~— 3 and y’ =y + 2 the equation
reduces to the standard form. Then the equations for translation are x
=x"+3 and y=y — 2.

4. (a) If we substitute x =x’ +h and y = y'+ k in the given equation we find
that we can eliminate the x’ term by setting its coefficient equal to 0.
This gives h =~b/2a. Now we can fix k so that the constant term is 0.
This gives k = ah? + bh + ¢, and in view of the value of h,

k = (4ac — b?)/4a. The new equation becomes y’ = ax’? which is of
the form y = x2/4p with a = 1/4p,

(b) The focus of y =x%4p is at (0,p) or for the equation y’ =ax"? at
(0, 1/4a). The translation determined in {(a)’is x =x"—b/2a, y
=y’ + (4ac — b?)/4a. The coordinates of the focus with respect to the
new axes are (0,1/4a). These are the x’ and y' of the focus, Then the x
and y of the focus are (—b/2a, (4ac — b% + 1)/4a). The coordinates of
the vertex of y’ =ax’? are (0,0). Then the coordinates of the vertex in
the xy-system are (—b/2a, (4ac — b?)/4a).

(¢c) The directrix of y = x2/4p is y =—p. Then for y’' = ax’? the directrix,
since p = 1/4a, is y' =—1/4a. To obtain the equation of this line
in the xy-system we have that y =y’ + k = (4ac — b2 — 1)/4a.

5. In each of the parts of Exercise 5, we could follow the method used in Exer-
cise 1 of replacing x by x' + h and y by y' + k to eliminate the x and y
terms. However it is well to teach the method of completing the square which
in this exercise and the next one also gives the answers we want more
readily,

(a) Write the given equation as 16(x? — 8x) — 25(y® + 6y) = 369. Now com-
plete the square in each parenthesis and compensate by adding the
equivalent term on the right side. Thus 16(x? — 8x + 16) — 25(y% + 6y + 9)
= 369 + 256 — 225 or 16(x — 4)2 — 25(y + 3)2 = 400. Then if we let x’
=x—4 and y =y + 3 we have 16x’2 — 25y'% = 400 or x'%/25— y'?/16 = 1.
We see that a =5 and b =4, The x’ and y' of the center is (0, 0).
Hence the x and y of the center are (4,—3).

(b) Use the method in (2). The, equation becomes (x — 4)%/36 — (y + 5)%/36
=—1 and the translated equation is x'?/36 — y'%/36 =—1. According to
Exercise 17onp.164 , a=6 and b=6. Since X' =x—4 and y=y' +5
the coordinates x and y of the center are (4,—5).

(c}) Use the method of {a). After completing the square the equation becomes
(x + 3)%/16 — (y — 2)%/36 = 1. The answers are in the text.

(d) The numerical answers in this exercise would be simpler if the constant
on the right side were changed to 288. Then the method of (a) leads to
(x + 6)2/45 — (y — 4)%/80 = 1 andto x'3/45 — y'?/80 = 1. Then a = V45,

b =80 and the xy-center is (~6,4).

(e) Use the method in (a). The given equation can be put in the form
(x + 4)%/16 — (y — 5)%/25 = — 1, According to Exercise 17 on pl64 ,a =5,
b =4 and the center is (-4, 5),

6. See the introduction to Exercise 5.

(a) Completing the square yields (x — 3)2/25 + (y + 6)2/36 = 1. We note here
that the larger number of 25 and 36 is under the y? term. This means
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that (see Exercise § on p.163) that the foci are on y' -axis. Then a
=6, b =5 and the center is (3,—6).

Completing the square yields (x — 3)%/25+ (v — 2)%16 = 1. Hence a =5,
b =4 and the center is (3,2).

Completing the square yields (x + 2)%/25 + (y + 3)20 = 1. Hence the re-
suits in the text.

Completing the square yields (x + 3)%/36 + (y — 3)¥/9 = 1. Hence a =6,

b =3 and the center is (-3, 3).

The exercise is 49x® + 16y® — 196x — 96y — 444 = 0. Completing the
square yields (x— 2)¥/16 + (y — 3)%/49 = 1. Here as in (a) the foci are

on the (new) y’ -axis. Hence a =7, b =4 and the center is (2,3).

We rotate first. Tan20 =—4/3, To avoid decimals we shall use the
formulas on the bottom of p.189 . We {ind that cos 20 =—3/5, the minus
entering because 26 is a second quadrant angle. Then siné = 2/v5 and
cos 0 = 1/¥5. The equations for rotation are x = (1/¥/5)(x’ — 2y’) and

y = (1/¥5)(2x’ +y'). Substitution in the given equation gives the final
result. No translation of axes need be applied.

Tan26 = 6/(5 — 5). Hence 6 = 45°. The equations for rotation are x

= (¥2/2)(x’ - y¥') and y = (V2/2)(x" + ¥'). Substitution in the given equa-
tion yields 8x'2 + 2y’2 4+ 8V2x" — 14v2y’ + 21 = 0. Now translation of
axes gives the text result,

Tan26 =%,. To avoid decimals use the formulas on the bottom of p.189 .
cos 260 = 3/¥I3. Then sind =v (/13 — 3)/2/13 and cos 8 =(/13 + 3)/2/13.
Also sin @ cos 6§ =1/V13. Substitution of the equations (6) for rotation
yields x™(%, — y13/2 ) + y'*(8, + 415/2) ~ 4 = 0. No further simplifica-
tion by translation can be obtained.

Tan 26 = 2/, Hence the equations for rotation are the same as in (c). The
result of the substitution gives (2 + 11//13)x'2 + (2 ~ 11/V13)y'2 + linear
terms. Translation of axes must now be applied to eliminate the linear
ferms,

Tan26 =—2/(1 — 1). Hence 6 = 45° and we proceed as in (b). The resuli
is in the text.

Tan26 = 2/(1 — 1). Hence 8 = 45°. Proceed as in (b). We obtain just by
rotation x’2 — 2v2y'= 0,

Since there is no xy-term we need apply only translation, We can de-
termine h to eliminate the x-term and then determine k to eliminate
the constant. h=-3, k=-1.

Tan26 = 10/(13 — 13). Hence 8 = 45°, Proceed as in (b). The result of
the rotation is 18x'2 — 8y’2 — 18x" + 24y’ — 27 = 0. Now translate axes.

CHAPTER 7, APPENDIX, SECTION A4

1. We have but to apply B? — 4AC to each part of Exercise 7 of the preceding
list. Thus in (@), B=4, A=1 and C =4, Then B?—4AC =0 and the curve
is a parabola. This fact is confirmed by the answer in (a).
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. The equation represents a degenerate hyperbola. That is, the graph con-
sisting of two intersecting straight lines must be classed among the hyper-
bolas if we are to include all second degree equations among the conic
sections,

(a) No. Slope of a line is defined relative to the x-axis. I we rotate the
X-axis the slope must change.

(b) If we substitute equations (6) in y = mx + b we have x’ sind + y’ cos g
=mx’ cosf—y sind) + b. I we now write this equation in the form
y =m'x’ + b’ we obtain the slope m’ relative to the new axis.

(a) Yes. The angle is a geometric fact about the two lines and so is inde-
pendent of the choice of axes.

(b) I we have two lines y =mx + b, and y = m,x + b, and rotate axes,
according to Exercise 3(b), mj = (m, cos § — sin8)/(cos § + m, sin 6} and
mg = (m, cos § — sing)/(cos ¢ + m, sing). If we now calculate tan @
= (my ~ my)/(1 + mmj) we obtain tand = (m, - m;)/(1 + m,m,).

. No, The slope of a curve is defined to be the slope of the tangent line. The

latter (see Exercise 3(a))} is not invariant under rotation.

(a) Yes. Under translation the x’ -axis is parallel to the x-axis and so the
inclination of the line and therefore its slope remains the same.

(b} Replace y and x in y=mx+ b by y' + k and x’ + h, respectively. Then
determine the slope in the transformed equation.

Yes. The reason is the same as in Exercise 4(a).

(.'31) Yes, because for any (X,y) the expression x% + y? represents the square
of its distance from the origin. Under rotation this distance remains
the same.

(b} Replace x and y by the values given by (6). We find that x2 + y2 =x"2 4 y'2,

(a) No, because under translation the distance of the point from the origin
changes.

(b) Replace x and v by X' +h and y’ + k, respectively. Then x2 + y?
= x'2 + y'2,



Solutions to Chapter 8

CHAPTER 8, SECTION 2

1. (@) y'=6x"—18x —24= 6(x + 1){(x —4). We see that y’= 0 at x = 4 and

(b)

(c)

@)

x = —-1. For x slightly less than 4, y‘is negative and for x > 4, y/is
positive. Hence at x = 4, y has a minimum of —124. For x < —1, y'is
positive and for x slightly greater than —1, say, 0, y’is negative.
Hence y has a maximum at x = —1 and the y-value is 1.

The method is the same as in (a). Here y’= —3(x + 3)(x —1). Then y’is
0atx=1and x=-3. At x=1 there is a maximum of 20 and at x= -3
there is a minimum of —12.

The method is the same as in (a). y/= 4x® - 4x = 4x(x — 1){(x + 1}. At

x = 0, y/changes from + to — ; hence at x = 0 there is a maximum
which is 0. At x=-—1, y’changes from - to + ; hence at x = -1, there
is a minimum which is —1. Likewise at x = 1, there is a minimum

of —1.

y=2x —2x"' y=0 at x=—-1. At x= -1, y/changes from — to +.
Hence there is a minimum whose value is 2. At x = 1, y/changes from
— 10 +. Hence there is a minimum whose value is 2.

y'= —6(x —1)}x +1)/x*+1)%. y=0 when x=—1 and when x=+1. At
x = —1, y/changes from —tio +; hence there is a minimum whose value
is —3. At x=1, y’changes from + to —; hence there is a maximum
whose value is 3.

-1

CHAPTER 8, SECTION 3

1.

(a)

{bh)
(c)

{a)
(e)
(£)

Yy = 16-3%-9%° ; y' = =-3-18x, v' = 0 when x = -1/6. For x
slightly less than -1/6, y' is negative and for x slightly
greater, y' is positive. Hence at x = -1/6, y has a relative
minimum, Substitute x = -1/6 in the function to find the
minimum y-value.

y = -8x+2, Here y' = -8 and is never 0. Hence no relative
maxima or minima,

y = 2x%-6x; y' = 6x?-6; y' = 0 when x = +1 and x = -1. For x

slightly less than 1, y' is negative and for x slightly greater,
y' is positive., Hence at x = 1 the function has a relative
minimum, For x slightly less than -1, say -5/4, y' is positive
and for x slightly greater than -1, say -3/4, v' is negative.

Hence y has a relative maximum at x = ~1.

y = 2x°+8x+3; y' = 6x°+8., y' is not 0 for any real values of x.
Hence no relative maxima or minima,

y = x* ; y' = 3x%2 ., y' = 0 when x = 0. However, y' does not
change sign at x = o, Hence no relative maxima or minima.

v = x'-2x*+12; y' = 4x’=4x = 4x{x-1) (x+1). Hence x = 0, -1 and

1 are possible values. By testing each in turn for a change in
sign in y' at 0, -1, and 1 we see that at = = 0, there isg
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{(g)

(h)

(i)

(3)

a relative maximum: at x = -1 there ig a relative maximum;
at x = 1 there is a relative maximum.
Fix) = x"%; £'(x) = 4x?. Hence x = 0 is a pessible value.

f'(x) does change from negative to pesitive around x = 0.
Hence at x = 0 there is a relative minimum,

f(x) = x + 1/x; £'{x) = 1 - 1/%x%. Hence x = 1 and x = =1
are possible values. For x slightly less than -1, say -5/4,
£'(x) is positive and for x slightly more than -1, say -3/4,
£'(x) is negative. Hence there is a relative maximum at

Xx = -1, At x =1, £'(x) changes from negative to positive;
hence there is a relative minimum at x = 1.

f(x) = xvx-1; £'(x) = (x/2vx~1) + vVx~1. Now f'{(x) = 0 at

x = 2/3. But the function has no real value at x = 2/3.
Hence th§re are no maxima and minima.

£(x) = x"/(x~1); £'(x) = (x2-2x)/(x-1)%., Possible values
are x = 0 and x = 2. At x = 0, f'(x) changes from positive
to negative. Hence there is a relative maximum there. At
x = 2, £'(x) changes from negative to positive. Hence there
1s a relative minimum there.

2. (a) y’=-2x+ 6. Hence x =3 is a possible relative maximum or minimum.

(b)

At x =3, y’changes from + to —. Hence there is a relative maximum
whose value is 16. The absolute maxima and minima may occur at the
end values 0 and 5. At x=0, y=1T7 and atx =5, y= 12. Hence the
relative maximum of 16 is also the absolute maximum and the absolute
minimum isg 7.

y=3x(x —-2). At x =0, y’changes irom + to —. Hence there is a relative
maximum of 4. At x =2, y‘changes from — to +. Hence there is a rela-
tive minimum of 0. At x=-2, y= —16. This is the absolute minimum.
At x =4, y = 20. This is the absolute maximum.

yE2x — )+ 1P+ 2 (x +1)(x — 1)°=4x(x + 1)(x — 1). At x= -1, y’changes
from — to +. Hence there is a relative minimum and its value is 0. At x

:0,

y“changes from + to —. Hence there is a relative maximum whose value

is 1. At x = 1, the behavior of.y’is as at x = ~1 and the relative minimum is
again 0.

Here y’= — 2/3(x — 1) 'This y”is never 0. However the function may have a

relative maximum or minimum where the derivative fails to exist. We see that

(x -

1)2{ * is positive for every value of x and this is subtracted from 3. The

least we can subtract is 0 and this occurs when x =1, Then y=3 is a rela-
tive maximum. As x increases or decreases from the value of 1, y contin-
ually decreases.

(a)

The function y = x is an example. However y = ~x* in the interval from

-« to 0 isa better example. Here as X increases, f'(x) actually de-
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creases. In fact in an interval to the left of any relative maximum we
have another example.

{(b) The latter two examples in (a) answer this point.

{¢) Consgider an interval to the left of a point where f(x) has a minimum.
There £'(x) is increasing but f(x) is decreasing.

. No. The example of y=x" at x = 0 shows that y increases there but y’= 0.

CHAPTER 8, SECTION 4

(a) y=3x"— 6x — 9=3(x — 3)(x + 1). The possible maxima and minima oc-
curat x=3 and x= -1, y’"=6x — 6. At x=—1, y”is negative. Hence
a maximum occurs at x = —1 and this maximum is 7. At x =3, y”is
positive. Hence a minimum occurs at x = 3 and this minimum is —25.

(b) y/=2x—16x 2 y’=0 at x=2. y=2+32x°% At x=2 y”is positive.
Hence there is a minimum at x =2 and y = 12.

(¢) y™=2(x + 1)}{x —2)(2x — 1). Hence there are possible maxima or minima
at x=—1, x=%and x=2. y%= 4(x + 1}(x —2) + 2(x + 1)(2x —~ 1}
+2(x — 2)(2x —1). At x= ~1, y¥is positive; hence a minimum which is
0 At x =¥, y”isnegative; hence a maximum which is %Y/, At x=2,
y"is pos1t1ve hence a minimum which ig 0.

(d) y=4x® —6x® —dx = 2x(2x + 1)(x —2). y*= 12x® - 12x —4. At x=0, y’is
negative. Hence a maximum which is 1. At x =—%, y”is positive.
Hence a minimum which is *js. At x = 2, y”is positive; hence a mini-
mum which is —7. :

(e) y'= (~ax®+a%)/x%®+ a)’. y7= (2ax® —4a’x)/(x® + a®®. At x = -a, y¥is
positive; hence a minimum which is ~%,. At x=a, y”is negative; hence
a maximum which is Y.

) y'=12x® -12x% - T2x = 12x(x — 3)(x + 2). y%= 36x% —24x —72. At x= -2,
y”is positive. Hence a minimum which is —4. At x =0, y”is negative;
hence a maximum which is 60. At x = 3, y”is positive; hence a minimum
which is —129.

(8) v'= 4x® —4x=4x(x — 1){x + 1). y= 12x* —4. At x = —1, y¥is positive;
hence a minimum which is 9. At x= 0, y“is negative; hence a maximum
which is 10. At x= 1, y”is positive; hence a minimum which is 9.

(h} y'=3(x%+2x +3). There are no real roots.

y’=-3x>+6x+9. Call y, z and find the maximum value of z. z’= —6x + 6.

z’=0 for x =1. 2" = -6. Hence x = 1 is a maximum for z and this

maximum is 12,
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h =80 ~32t; h = —32. Hence at t = 2% there is a maximum which is 100.

If x and y are the dimensions of any rectangle P = 2x + 2y. We also have
the condition that xy = A where A is constant. Then y = A/x

and P=2(x + A/x). P'= ¢ implies x = +/A, x = VYA give the minimum. Thus
for least perimeter x =vA and y= A/x = vA; that is, we have the square.
A=xy and 2x +y = 100. Hence A = 100x — 2x% and A’= 100 — 4x. Then x

= 256 and y = 50.

Let the distance from the foot of the altitude to B be denoted by t. Then
CB=+vh2+12, CA=+h* + 2a—{} and P =2a + yh? + {7 + vh? + (2a — t)%.
P’=0 implies t =a from which CB = CA follows.

Let a be the given base and set b=2s —a—-c¢, Then A

=vs(s — a)la + ¢ — 8)(8 — ¢) where only c is variable, dA/dc =0 implies

2s —2c —a =0. Since 2s =a+ b+ ¢, we have b=c,

Let x and y be the lengths of the sides. Then P = 3x + 2y, Since xy = 864,

y = 864/x and P’=3x + 1728/x. Then P’= 3 — 1728x?, P’= 0 implies x = 24,
Then y = 36.

If the sides have length x and y, then vx? + y2 = 10, The area A =xv100—x2
Then A =100 — x2 - x?/V100 — x2. A’=0 implies x = 5V2, Then from vx% + y2
= 10 we have y = 5V2.

The surface area A = 27r?+ 27rh. But #r?h =1, Then h=1/#r® and A

= 2712 + 2/r. A =0 implies the answers in the text.

We wish to minimize D = vx% + y? with xy = A, where A is constant. To
save work we can argue that to minimize D is also to minimize D2, Call

D2, z. Then z =x2+ y? and y = A/x, so that z =x® + A%x2 Hence z’

= 2x — 2A%x"® and z'= 0 implies x = VA, Hence y = VA,

Since the rectangles are inscribed in a circle, the diameter is 2. We may
then use the method of Exercise 7 with 10 replaced by 2. The result is a
square with side V2.

Let (x,y) be any point on the parabola, Then the distance in question is
D=Vx—p¥+y+V{x—a)®+ (y— b)®’. To make D a function of one variable
we can use the fact that y? = 4px and we can replace x by its value in terms
of y or y by its value in terms of x. Alternatively we can keep x and y

and regard y as a function of x, However in the first radical we can replace
y% by 4px and obtain D=p +x + ix — a2 + (y — b)2, Then dD/dx
=1+[(x—a)+ (y—b)y]/Mx—a)2+ (y — b. Set dD/dx =0, replace y’ by 2p/y
and solve for y. To solve put the term 1 on the other side of the equation
and then square both sides. One finds that y — b is a factor of the equation
and s0 y=Db is a root, Alternatively, one knows that y = b should be a value
of y at which dD/dx = 0, If we substitute b for y in dD/dx we get dD/dx
=1+(&—-a)/fx—a)% Now fx —a)2=|x—al| because the radical sign stands
for a positive value. However the numerator (x —a) is negative because x
necessarily lies to the left of a. Hence dD/dx =1 + (1) = 0. One could test
dD/dx to see that it changes sign at y = b but this step is often omitted in
physical problems and would be lengthy in this one.
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I we calculate dF/dr we see that it is rever zero.
For the given function y'= 1~ x® Then y¥'= 0 when x =~1 and x = +1,
Since y% 2x™® we see that at x =—1, y“is negative. Hence at x =—1 there
is a2 maximum whose value is 0. At x =1, y”is positive and so there is a
minimum there, The minimum value is 2 and larger than {he maximum.
The agsertion is false, Consider y=x—a
y'= 0 implies x =—-b/2a, Since y’= 2a, the value —b/2a yields a maximum
if a <0,
y'= 3x% + 2bx + 3. We wish to have no real roots. The diseriminant of this
quadratic is 4b® — 36 and we wish this to be negative. Then | b} must be
less than 3,
Since y'= 3x2, y’is 0 at x = 0. However, y“is also 0 and so we have no
text. If we use the test that y/change sign at x = 0 we see that it does not.
Moreover since y is positive to the left and right of x = 0, the function is
always increasing. Hence there is no relative maximum. However because
the function is always increasing there is an absolute maximum at x = 4,
The rectangle will have dimensions 100 4+ x and y. The perimeter of the
entire rectangle will be 200 + 2x + 2y = 300, Then A = (100 + x)y with
v = 50— x., Hence A = (100 + x}(B0 — x) = 5000 — 50x ~ x2, Then dA/dx= -50~2x
and there is no positive value of x which maximizes A, The domain of
possible values for x is 0 = x = 50, In this domain the maximum value of
A is given by x = 0 because A decreases as x increases from O on. Then
X =0 and y = 50. The dimensions are 50 by 100.
If (x,y) is any point on the parabola then D = x ~ 1} + y2. Since y® = 4x,
by eliminating v we have D = vx ~ 1) + 4x, As nofed in Exercise 9 we can
minimize D? in place of D, Let z=D2% Then z = (x—~ 1)? + 4x and 2z’
= 2(x — 1) + 4, When z'= 0, x = -1, However x =—1 does not correspond to
any point on the parabola and so there is no relative minimum for x-values
of points on the parabola. However there may be an absolute minimum. The
domain of X is x = ., We see from the expression for 2 that z = {x + 1)?
and the smallest value occurs at x =0.

K we eliminate x from D we have D = Vi(y¥/4) — 1] + y* and 2
= [(y%/4) — 1} + y%. Then z'=[(y¥4) ~ 1}y + 2y and 2= 0 when y =0, Since
z¥= 3y%/4 + 1 we see that z”is positive when y =0, Hence y = 0 furnishes a
minimum, Then x =0,
Here D = v(x — ¢)% + ¥2. As in Exercises 9 and 19 let us work with D? or z,
Since y2 = (b¥aB)@%~ x3), z = (x — ¢)® + (v¥a%)(a® — x?). Then z'= 2{x - ¢)
~ 2(b¥a?)x. Since 2%~ b? = c%, z'= 0 when x = a%e. Since a/c > 1, this
value of x is larger than a and so lies outside the domain of admissible x.
However z can be put in the form {cx — a®)%/a?, This expression is least
when cx is as close to a? as possible and this is when x i5 a for x inth
domain —a to a,

¥ we eliminate y from D?* after writing D =x2 — Zex + ¢* + y% by
x = avb? — y¥'b and differentiate I? we find that the only real root of z
is y = 0. This does furnish the relative minimum though the testing b
z”is lengthy {and can be ignored}.
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If we let AC =x, then the time for the trip as t =v1 +x2/3 + (1 — x)/5.
dt/dx = x/3V1 + x% — 1/5. If we set this expression equal to 0 and solve for x
we obtain x =3/, We could test d?t/dx? to see that x = %, furnishes a
minimur,
In place of the previous dt/dx we have dt/dx = x/4v1 + x2 — 1/5. If we set
dt/dx = 0 and solve for x, we obtain x = %, Since x cannot be larger than
1, this value of x does not furnish a minimum in the domain 0 =x = 1,
However the man does save time by rowing as much as possible even to
reach a point % of a mile from A, Hence he should certainly save as much
time as possible by rowing to B, Alternatively, we can see that dt/dx is
negative for 0 < x = 1, because x/v1+x* < 1/¥2 for 0 <x =< 1, Hence
x/4V1 + x2 < 1/42 wh1ch is less than Y. Hence t decreases and is least
when x =1,
It is obvious in this case that using the diagonal saves as much time as
possible since he can row as fast as he can walk., Hence the diagonal path
PB is best.
Let PA+ PB+ PC =8, Then S=2vx% + 62 + 3 — x. Since dS/dx =
2x/Vx2+ 62— 1, dS/dx = 0 at x =12, This value of x does not yield a point
on CD. There is no relative minimum for P on CD. However dS/dx is
negative for 0 =x = 3 and so S decreases as x increases. Hence the
minimum 8 occurs at x =3 or when P is at C,
There is no relative maximum or minimum, The maximum and minimum
values occur at the end values x =r and x =—r of the permissible x-values,
Denote the sum by S, then 8 = (m, —m)® + (m, ~ m)®+, ..+ (m, — m)2, Then
dS/dm = 0 implies (m—m)) + (m—m,) +,, .+ (m~-m) =0 or m =
=(m, + m, +.,..+m_)/n.
Follow the method in the text used to derive (16). Here B lies on the same
side of CD as A does and v, = v,. Hence we end up with sina/sing = V,/V,
and 80 a=§.
In Exercise 27 we prove that the time AP + PB is least but as the suggestion
points out this also means least distance. Hence the problem is the same as
Exercise 27 with just a different physical interpretation.
No matter where the bridge is placed the distance PQ must be covered in
any case. Hence the problem reduces to minimizing AP + QB. Label the
foot of the perpendicular from A to CD, R and the foot of the perpendicular
from B to EF, S. The distance RS is fixed; let it be d. Let x denote RP.
Then QS=d—x. Let AR be a and let BS be b. Then AP+ QB =1¢
=vaZ+ x2 +Vb? + (d - x)2. To minimize £, we calculate df/dx which is
x/vaZ + x2 — (d — x)/vb® + (d — x)%. This derivative set equal to 0 gives
x/vaZ + X2 = (@ — x)/vb? + (d — x)2. The left side = cos APR and the right side
= c0os QSB. Then ZAPR =/8s and AP and QB are parallel.

30. Flnd ds/dt and set it equal to 0. There t = 4.09°Centigrade.

d s/dt is negative in 0 < t < 0. Hence at t = 4.09 C the
specific weight is a maximum.



51

CHAPTER 8, SECTION 6, FIRST SET

1.

10.

11l.

12.

13.

A=058 = x26x+15. Then & = 2x-6 = 0 so that x = 3 for minimum A.
X dx

Hence the minimum A is 32-6.3+l5 or 6. Now dC/dx = 3x%-12x+15.
At x = 3, dC/dx = 6.

. Profit = R-C and R = Px. Hence P = 55x-3x%-x%+15x%-76x-10 =

-x3412x%-21x~10. Then dP/dx = -3x%+24x-21. When dP/dx = 0, x = 1
and x = 7. At x =1, P = -20 and this would mean a deficit. When
x =7, P=88. If we test d%P/dx? at x = 7, we find that it is
negative so that x = 7 yilelds a maximum profit.

. P = R-C. Hence dP/dx = dR/dx-dC/dx. When dP/dx = 0, dR/dx = dC/dx.

P = px~C = 75x~2x° - 350-12-x%/4 = (~9/4)x*+63x-350. dP/dx =
(-9/2)x+63. When dP/dx = 0, x = 14, The price at maximum profit is
75-2.14 = 47, The maximum profit which occurs when x = 14 is

(-9/4) (L4)2+63+14-350 = 92 dollars.

. P = x(100-.10x)-1000-50x = -1000+50x~.10x*. Then dP/dx = 50-.20x.

When dP/dx = 0, x = 250.

. Let x be the number of articles to be produced. Then the total cost

of x articles is C = 100+x/2+x?/100. The average cost is A = C/x =
100/xt5+x/100, dA/dx = -100/x2+1/100. When dA/dx = 0, x? = 10,000
or x = 100,

. C = atcyX. Then A = C/x = a/xtc/vVx. dA/dx = -a/x?-c¢/2x%*{ 2, Setting

dA/dy = 0 gives ~a/x%-¢/2x%7% = Q. Multaply through by x°“%. Then
-a/x*’*=c = 0 or -a-cx'/%¥ = 0, Hence x}/? ==a/c or x = al/c?

CT .
. Let x be the interest rate offered. The dollars D attracted will be

D = kx, The return to the bank will be R = .07D. The interest paid
by the bank will be xD = kx?. The profit is P = .07kx-kx?.
dP/dx = ,07k-2kx. Hence when dP/dx = 0, x = .035.

. Let the dimensions of the floor be x and y, with x the front and back

lengths, Then if the cost per foot of the side walls and back is d,
C = 2dy+dxt2dx, But xy = 10,000. Hence y = 10,000/x and C =
20,000d/x+3dx. dC/dx = -20,000d/x%+3d, When dC/dx = 0, 3x? = 20,000
and x = ¢y20,000/3. The height is immaterial.

The cost per mile times the miles per hour = cost per hour. At
speed v the cost per hour is C = 125+(1/10)v®. At speed v the miles
ger hour is v. Hence the cost per mile or M = ¢/v = 125/v+(15}g)v2
hen dM/dv = -125/v*+(2/10)v. When dM/dv = 0, v = =5 .
Let x be the number of new wells produced. Then the number of wells
will be 25+x. The number of barrels of o0il produced per well will be
100-3x, The total number of barrels T is T = (25+x)(100-3x) =
25004+25x-3x?. dT/dx = 25-6x. Hence when dT/dx = 0, x = 25/6.
Let x be the number of cards to be printed. The cost C =
10,00045x+x? (in pennies). The income is 100x. Hence the profit
P = 100x-10,000-5x-x?%. dP/dx = 100-5-2x., When dP/dx = 0, x = 47%.
(a} Suppose the building contains x floors. Then the cost is
¢ = 500000 + 100000 + 200000 + --- + 100000x. Then x
C = 500000 + 100000(1+2+...4+x) oxr C = 500000 + 100000[2(1+x)1 or
€ = 500000 + 50000x* + 50000x. The profit P after the first year
is P = 300000x - 500000 - 50000x® - 50000x. We find dP/dx and x
when dP/dx = 0, x = 2%. Practically one would choose 2 or 3.
(b) To maximize the percentage of profit we wish to maximize the
return each year divided by the total cost. Then, using f(x)
for the percentage,

f(X) —_ 300000X = 30x
500000+50000x%+50000x 50+5x+5x2

o
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Using the quotient rule gives

£1 ) = L300-150x2
(%) = T505xF5x2y?

0 gives x = V/I0. Again practically x would

Then f'(x)
be 3 or 4.
At x miles per hour the number of hours required to make the 100

mile trip is 100/x. The cost per hour is C = 10+x%/50. Hence the
cost of the trip is

100 x%, 1000
C = -——(10 + 50 = = + 2%,
Then dC/dx = -1000/x2%+2. At dC/dx = 0, x = /500.
This exercise and the next one follow the second illustrative ex-
ample. Let x be the sale price. Then the reduction in price will
be 30-x, For each $2 in 30-x there will be ten more sales. Hence

the additional sales are 10(30 %Y. The revenue will be R =

500x + (10/2) (30-x)x or R = 500x+150x-—5x2 = 250x-5x?. Then
dR/dx = 250-10x and when dR/dx = 0, x = 25 dollars,

Using the same method as in #15, R = 100x +10[(25-x)/2]x or
R éggx§525x 5x* Then dR/dx = 225-10x. When dR/dx = 0,
X

fl

[
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The cost function becomes C(x) = 3x+2x. The revenue is stlll Xp
where P = 10-3x. Hence the profit is P(x) = xp-C = 10x- 3x%-5x =
5x-3x%. P'(x) = 5-6x and this is a maximum when x = 5/6 and the
price at which the commodity wlll be sold is p = 10-3(5/6) = 15/Z2.

. Under nc tax P(x) = 10x-3x =-3x%= 7x-3x2 Then P'(x) = 7-6x and

x = 7/6. The price p = L0-3(7/6) = 13/2.

. Now the consumer must pay 125% of what he previously paid. Hence

the demand changes because the price is higher. The new demand
function can be obtained from the old one by replacing p by (5/4)p
so that (5/4)p = 10-3x ox p==(4/5)(10—3x). (Of course since

3x = 10-(5/4)p, for a given price p the demand will be less than
under 3x = 10-p.) The cost function for the producer remains the
same. Hence P(x) = x(4/5)(10 3x)-3x = 5x-(12/5)x%. Then

P'(x) = 5-(24/5)x and P"(x) = 0 for x = 25/24 The maximum profit
is 125/48 and the corresponding price p is 11/2 without sales tax.

. The solution follows that of exercise 3 except that 53/4 is re-

placed by 11/10. Thus the new demand function is p = (10/11) (20-4%)
and since C(x) = 4x, P(X) = x(lO/ll)(20-4X)—4x , P'x) =
(200/11)—(80{ll)x- P'(x) = 0 when x = 1.95. The corresponding
price p is $11.10. The quantlty sold comes from solving p =

(10/11) (20-4x) for x when p = §$11.10. x = approximately 2.
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CHAPTER 8, SECTION 7

1. (@), (b) and (c). Find the relative maxima and minima and points of inflec-
tion and use these as aids to plotting.

@ y'=%x¥3, y'=19.x"V3 No relative maxima or minima and no points of
inflection. Point for point plotting with some attention to the behavior of
v and ¥"is all one can apply.

(e} v =-2x/&™ 1)%. There is a relative maximum at x = 0. Since y"-
(6}{2—2)/(1@ +J.)5 there are points of inflection at x = tq/m
and y approaches 0 as x approaches +w and —«,

(f) and (g) See (a), (b) and (c}

(h) y'= (~x2+ 1)/(x2+ 1)2. There is a relative minimum at x =—1 and a
relative maximum at x =+1. y"= 2x(x? — 3)(x® +1)/(x? +1)% There are
points of inflection at x =0, x = V3 and x = —/3

i) y'=(x— 9)/(x+ 3). There is a relative minimum at x = 1. y"= 36/(x + 3)2.
There is no point of inflection. When x is very large and positive or
negative, vy is close to +1. As x approaches —3 from the left y ap-
proaches +«, As x approaches —3 from the right y approaches -eo.
Then y goes to a minimum of —%/,, at x =1 and increases gradually to
y = 1. The curve is always concave upward,

() y'=4/(x+ 4)?. No relative maxima or minima.y"=—8/(x + 4)%. There
are no inflection points. y is infinife at x =—4. As x approaches —4
from the left y approaches +<, As x approaches —4 from the right
y approaches —«, y approaches 2 as X approaches +« or —s,

2, y'is negative from A to C, positive from C to E, negative from E to G,
positive from G to 1.

3. Using the factored form of y we find y" = 2a(3x — r, — r, — r,}). Hence the
inflection point is x = (r; + r, + r,)/3,

4. The horizontal tangent occurs at ¥ =0 or 3ax? + 2bx + ¢ = 0. The point of
inflection occurs at y" =0 or 6ax + 2b = 0. Since these equations hold at the
same value of x, we take the value of x from the second one and substitute
in the first one. Then b®* — 3ac =0.

5. y" = 12x2-48x. Hence y" = x{x-4). The zeros are clearly x = 0 and x = 4.
Also y" changes sign at x = Oand x = 4.
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CHAPTER 9, SECTION 2

1. Divide up the length from x =1 to x =5 into n equal parts Ax. Then we
have 3Ax + 3(1 + Ax)Ax + 3(1 + 2AR)AX + - -+ + 3[1 + (n— 1)AX]+ Ax
= 3nAx + 3(Ax)*[1 + 2 + - -+ + (n — 1}] = 3nAx + 3(Ax)%*(n — 1)n/2. Since
Ax = 4/n, we have 3n(4/n} + 3(4/n)?(n%2 — n/2) =12 + 24 — 24/n. As n be-
comes infinite the limit is 36.

2. Divide up the length from x =1 to x =5 into n equal parts Ax, Then S,
= 3(1 + Ax)Ax + 3(1 + 2AX)AX + -+ - + 3(1 + nAX)AX = 3nAX
+ 3(Ax)?[1 + 2 + -+ + n] = 3nAx + 3(Ax)*n(n + 1)/2. Since Ax =4/n we have
3n(4/n) + 3(4/n)2(n%/2 +n/2) =12 + 24 + 24/n. As n becomes infinite the
limit is 36.

3. Divide up the interval from x =0 to x =5 into n equal parts. Then S,
= (AX)?Ax + (2A%)2Ax + (BAXPPAX + - -+ + (nAX)2AX = (Ax)P[1 +4 + 8 + -+ - n?]
= (Ax)*(n¥3 + n%/2 + n/6). Since x = 5/n, we have 125(} + 1/2n + 1/6n?).
As n becomes infinite the limit is %%/,

4. Divide up the interval from x =1 to x =5 into n equal parts. Then using
the smallest y-value in each subinterval, S, = 1Ax + (1 + Ax)?Ax
+ (1 + 2Aax)%Ax + ' +[1+ 0 - 1)axfax
=Ax[1+1+2Ax + (Ax)P + 1 + 4Ax +4{Axf+ -+ +1+2(n—1)Ax

+ (n — 1)*(Ax)?]
= AxX[n+ Ax(2 + 4+ - +2n—2) + (AXZ(1 + 4+ + (n - 1)7)]
= Ax[n + Ax(n — 1)n + (Ax)?(n%/3 — n¥2 + n/6)]. Now x = 4/n. Hence we get
(4/n)[n + 4(n - 1) + 16(n/3 - % + 1/6n) = 4 + 16 — 16/n + *%/, — 64/2n + 64/6n°].
As n becomes infinite the limit is 2%/,

5. Let us divide up the interval from x =0 to x =5 into 10 equal parts. Then
S0 = (AX)AX + (2A%)AX + -+ - + (10Ax)%Ax = (Ax)*[1 + 4 + - -+ + 100]. To get
the sum of the squares from 1 to 100 we use {11) with n = 10. Then
S, = 99, + 50 + ¥, and now, since Ax = ¥,,= Y, 8,0 = (¥,)°(*°%%; + 50 + %)
=385/

6. Divide up the interval from x =0 to x =1 into 10 equal parts. Then

1 1
= —_— 4+ ———— P — e
S, =1lax + 1+ (Ax)? Ax 1T @ax) Ax + + 1+ @A) AX,

Since Ax = 0.1, 8, = .1+ (1/1.01)(.1) + (1/1.04)(.1) + - - * + (1/1.81)(.1). Then
8y=.1(1 +1+.96+.9 + .86 + - +.55) = 0.75 approx.
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CHAPTER 9, SECTION 3, FIRST SET

1. (a)

(d)
2. (c)
3. (b)

1/3? 2/3! tre f5/3; (b) 1’ 4, 9’ 16’ 25; (C) 1/33 :%.1.3 4/5: 5/6! 6/?;
4,5/Y2,6/V3,1/V4, 8/V5.

2+ (1/27); (@ 1*Y(1/n); (e} 1/n(n +1).

I is easier to see the limit if one divides numerator and denominator
by n. () Write as (n + 1)/n and divide numerator and denominator
by n. (d) The magnitudes of the terms approach 1, but the signs
alternate so that there is no limit. (e) The terms become infinite;
no limit. (f) The terms approach 0. (g) FEach term is 1; hence
the limit is 1. (h) If we divide numerator and denominator by n we
see that the fraction becomes infinite as n does. (i) Divide numer-
ator and denominator by n. Thenthefractionapproaches 0. i) 5.

CHAPTER 3, SECTION 3, SECOND SET

1. (a) The area bounded by the parabola y = x2, the ordinates x = 1 and x = 3,
and the x-axis,
(b) The area bounded by y = x5, the ordinate x = 5 and the x-axis.
(c) The area bounded by the straight line y = x+3, the x-axis,
and the ordinates at x = 2 and x = 5,
(d) The area bounded by y = x? and the x-axis from x = 1 to x = 4.
(e) The area bounded by the parabola y = 9-x2? and the x-~axis from
x =1 to x = 3,
(f) The area bounded by the straight line y = x-3 and the x-axis
from x = 3 to x = 8.
(g) The area bounded by the upper half of the parabola y? = x,
the x-axis and the ordinate at x = 5.
2. ()
4. ["sx?ax. 5. [®3x%ax. 6. [ °x/xP-2 ax.
1 -2 2

CHAPTER 9, SECTION 4

1. (a)
(d)
(g)
(1)
2, (a)

x’/3] = 26/3; (b) x“/4|; = 1/4; (c) -x*ljj = 1/2;

x3/3|2
~3

35/3; (e) 3x”/4|z = 1875/4; (f) 2V5 x3/2/3[;”= 20/50/3;

xa—x2+5x|: 120; (h) (4x+1)3/2/6ff = (213/2-53/2y /¢,
5x2/2—x3/3f: = 33/2,

A= [ x%x = x3/3|z = 69 1/3; (b) A = fsxzdx = x3/3|z =
4

8%/3-43%/3 = 448/3.



3. A = fexdx = x2/2|z = 10. The area of the trapezoid
4. A = }69xdx = 9x?/2| ) = 63/2.

5. A = } x/3dx = 3xP/0/4|° = 12-3-217%2,

6. A = fsxzdx = x%/3]° = 125/3.

7. A = j (x+1)1/2dx = 2{x+l)3/2/3| = 2(63/2-23/2y /3,
g, %irg S = fo x®dx. By the fundamental theorem Alx) = x4,

56

Then A =x¥4|' =7,

= 1/2{2}) {(6+4)=10

9. Lim§, = [ 3x?dx. Then A(x)=x* and A = x3{ = 124.
10. Lim$, = [, 3x*dx. Then A(x) =x° and A = x|’ =216 - (-8) =224,
11. LimS, = [ 2x*dx. Then A(x) = 2x%/3 and A = 2x¥3] = 126.
12. Lims, ~f vx2 — 2xdx. Then A =Y. (x% — 2)3/2 gnd
A= 1/3(2{2 _ 2)3/2 I:O = 1/3[(98)3/2 _ 23/2] = 228/3.
CHAPTER 9, SECTION 5
1. IS-Bxdx = - %x2|§ = -75/2. The geometrical area is 75/2.
0
2. {(a) j 3xdx = -xz] =3 .16 - 3 9 = 21/2,
2 2 2
(L) f 3xdx + j 3xdx = - Ez + 24, However, the geometrical area
-3 0
27/2 + 24,
3. [P-x%ax = —x3/3| = -9-(+9) = -18.
-3
(b) Since the entire area lies below the x-axis the geometrical
area is 18.
4

i

o " (x=3) (x=2) (x+1)dx = [ (x?-4x?4x+6)dx =

82 3 4 0
"= [T+ [ = 22/3 -(-7/12)+47/12 = 71/6. //]
0 2 3
\LJ
\J 4

3 1

. [Peaxt1) Y %ax = (-1/2) [T ox+1y Y/ 20dx = (—1/3)(2x+l)3/2[: =

-(11%/2-3%/2y /3, The geometrical area is the positive result.

4
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CHAPTER 9 , SECTION 6

1o ffe+xydx = [fxrax o+ [Txtax = x¥3 [0+ xva |’ = 84y,
1 _ 1 1 _ i 1
2 [0 maen = [foax— [Mxan = oxfl -3 -,
3. flﬁ(xs+9“Xz)dx:flsxsdx-luflsgd)(—jl.sxzdx:1564_36*411/3: 1502/3.
4, BCDE=ACDF—ABEF=5/3 (4% — 2%}

— (43 — 23) = 371/3

¥
1

Fig.1 ¢

5. ABCD= -Y%+1=2]

Fig. 2 0
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6. OABD = OABC — ODBC = (22 — (?)
_1/3(23~_03)=4/3

A

|

|

0 :c
]

Fig. 3 0 2

> X

7. OABD = OABC - ODBC = % /5[({5)%/2 — 0%2] — v [#5)® — 05] = ¥,

Y
4

B
’
|
|
|
. iC .
Fig, 4 0 % > X

g. OBCD = ABCDE
— ABODE = 18V2

Fig. 5




16.

11.

53

. BCDF = ABCDE — ABFDE
= 323

y=x2
y=81~4

o

!

Il

|

|

|

|

B |

e

) A
Fig. 6 0 Ao 1+23 *

BCDF = ABCDE — ABFDE
= 102/:'3 y

B

}
i
}
!
|
!
i
]

A o,
Fig. 7 -2 ) 2 T
OABD = OABC ~ ODBC = 8%/,
y
A
y2 = x3
y2 = 16x
A IB
|
D |
'c

Fig. 8 0 4 > X
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12. Since the curve of y =x®— 8 cuts the x-axis at x = 2, the area between
X =1 and x = 2 lies below the x-axis, This area is obtained from A
= x%4 — 8x by letting x = 2, then x = 1 and subtracting the second result
from the first. This gives —4Y,. The area above the x-axis lies between
x = 2 and x = 3, This area is 8%,. Hence the physical area is 12Y.
13. Let F(x) be any indefinite integral of y(x), where y(x) is the given function

of x. Then Lb cydx = ¢cF(x) |: = ¢cF(b) — cF(a) = ¢[F(b) - Fa)] = ¢ f:’ydx.

14. Let m» = x and v = x2.

15. The function y =x" is shown in the figure. The graph of the inverse
function x = y'/" ig the graph of y = x». However when writing y = xi/»
for the inverse function its graph is merely the interchange of x and

y

—_ b —

y in x = y!/" Hence the graph of y =x'/? is symmetric to that of

y = x" about the line y = x. Then the area between y =x*/® and y =x
equals the area between y =x and y = x°. Hence the given area is twice
the area of the triangle bounded by y = X, the x-axis and x =1 or the

area is 1.
dﬂ.
16. We have to show that dea dx = (1/a) fca xdy where x =y!/%, Here x = y'/

is the equation of the curve with y as the independent variable. We have
but to integrate by the use of inverse of the power rule and the result follows.
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CHAPTER 9, SECTION 7

1. 0. The definite integral is a constant.
. By (29) the answer is x°., If we evaluate we get u"/4|% = x"/4-a*/4
a
and by differentiating with respect to x we again get x°.

3. By {29) dg/dx = v/x%+2. Then d?g/dx? = (1/2) (x2+2) 71/ 2(2x).

4, Let 2z = x . Then g(z) = fz fi{u)dau. dg/dx (dg/dz) (dz/dx)

il

0
= f(z)2x = £(x?)2x. Check by letting f(u) x to convince students.
5, One cannot regard an area as a sum of line segments.

CHAPTER 9, SECTION 8, FIRST SET

l, Here h = 1 and n =4, Also y, = f(1) = 1, y1 = £(2) = 4, y
vy, = £{(3) =9, y; = £(4) = 16 and y, = £(5) = 25. Substitution in
{32) yields 42. Use of the fundamental theorem gives

5
[ x2ax = x3/3]: = a11/5.
1

2. Here h =.1. Then yy = £(0) =1, y;, = £{.1) = 1/1.01, f(.2) =
1/1.04, £(.3) = 1/1.09, £(.4) = 1/1.16, £(.5) = 1/1.25. Sub-
stitution in (32) yields 0.463.

3. Here h = 1/2 and yo = £(0) = 1, y; = £(1/2) = 1.06, £{1) = 1,41,
£{3/2) 2.09, £(2y = 3, £(5/2) = 4,08, £(3) = 5.29. Substitution
in (32) yields 7.39.

4. Here the h is evidently 1 and there are 10 subintervals. The
values of £(0}, £(1),-..,f(1l0) are given. Hence we can substitute
at once in {(32). The result is 10.06,

CHAPTER 92, SECTION 8, SECOND SET

1. Here n = 4 and h = .25, vy, = £(0) =1, v, = £{.25) = 1/3.25,
vy, = £{.5) = 1/L.5, ys, = £(.75) = 1/1.75, vy, = £(1) = 1/2,
Substitution in (36) yields (.25/3}[1+1/2+2(1/1.5)+4(1/1.25+1/1.75)]

= ,693,
2. Here n = 4 and h = 1, y, = £(1) =1, y, = £(2) = 4, y, = £(3) =9,
¥z = £(4) = 16 and vy, = £{5) = 25, Substitution in (36) gives

{1/3) {1+25+2{9}+4 (2+16)}] = 124/3. The exact value is alsoc 124/3
because we are dealing with a parabeola y = x° to start with and
Simpson's rule fits a parabola to each arc of y = x?%.

3. We use {36}, 1In this example h = 1/2 and n 6. The y-values are
vo = £(0) =1, y, = £(.5) = 1.06, y, = £(1) 1.4, y, = £{1.5) =
2,09, yy = £(2) =3, y, = £(2.5) = 4.08, y, = £(3) = 5.29. Sub-
stitution in (36) yields 1/6(44.03) = 7.34"

4, Here n = 6 and h 1. The fuanction values are given by the table,
Thus yo = 32, vy, 38,+-+,ys = 38. Bubstitution in (36) yields
37.33.

[x

[

([l
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5. Heren =4 and h = 1/8. Here y;, = £(0) = 1,
1/(1+1/64), vy, = £(1/4) = 1/(1+1/16), v, = £(
vy, = £{(1/2} = 1/{1+1/4). Using (36) gives
(1/24) [1+4/5+2(16/17)+4 (64/65+64/73)] = 0.464,

Y. = £(1/8) =
3/8) = 1/(1+9/64),
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Solutions to Chapter 10

CHAPTER 10, SECTION 2

1. (a)
(b)
()
(@
()

€)
(2)
(b)

A sine curve with period 27/3 and amplitude of 1,

A sine curve with period 27 and amplitude of 3,

A sine curve with period 7 and amplitude of 3

A sine curve with period 7/2 and amplitude of 2

A sine curve which is displaced 7/2 units to the left of the normal
y = sinXx.

A sine curve which is raised 7/2 units above the normal sine curve
A sine curve which is displaced one unit to the right of y = sinx.
Graph y = 2 gin3x and turn it 180° about the x-axis.

3. Bketch y=x and y =—x. The final curve oscillates between these two lines
with zeros at the usual zeros of y = sinx,
5. Sketch y =x? and y = sinx and then add ordinates at a number of values of x-

CHAPTER 10, SECTION 3

1. By following the method indicated we have (1 — cos?x)/x(l + cosx)
= 8in®*x/%{1 + cosx). Then 111101 sin?x/x(1 + cosx) = lim sinx/x-
X = X=*0

%irglsin x/(1 + cosx) =1-0=0.

2. (@)

(b)
()
@

()

)l(in% sin2x/x = iin%z 5in 2x/2x = 2 lin;l) sinz/z with z = 2x. Since z — 0

as x — 0, the answer is 2,

Use the same method as in (a) except that a replaces 2.

Think of Ax as just a variable z. Then the limit is 1.

Lm (1 - cosx)/x% = lim [(1 — cosx)(1 + cosx}]|/x3(1 + cosx)

Lim sin®x/x*(1 + cosx) = lim sinx/x - lim sinx/x Lim 1/(1 + cosx)
=1-1-Y,.

lim tanx/x = lim sinx/x cosx = lim sinx/x lim 1/cosx=1-1,

CHAPTER 10, SECTION 4

1. (a}
(b)
()

Let u = 2x and apply the chain rule,

Let u = 5x and apply the chain rule. Ans.y'=—5 sinbdx.

The constant 3 merely multiplies the derivative of y = cos2x. Let
u = 2x and apply the chain rule.



3.
4,
5.
6
7

8.
10.

11,
12,
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(d) Let u=5x, Then y =05 tanu. Apply the chain rule. Ans. y‘= 30 sec?5x.
(e} Let u =4x and apply the chain rule.
(f) Differentiate as a product of two functions. Ans. y'= ~sin?x + cos?x.
() Let u=2x. Then y = 1/cos2u. Differentiate with respect to u and
multiply by du/dx.
(h) Since cotx = cosx/sinx, y = cosx and y": - sinx.
(i) Since tanx = sinx/cosx, y = sinx and y'= cosx.
(i) 1-— cos?x = sin?x. Hence y = sinx and y'= cosx.
(k) 1+ tan®x = sec?x.
(1) Let u=2— cos?x and apply the chain rule. Then y'= Youve.
d(2 — cos?x)/dx. Now let v =cosx. Then y'= Yu¥2. (2 cosx sinx).
The quantity 2 —cos?x =1+ 1 — cos?x = 1 + sin®x.
(a) Let u=sinx. Then y = u3.
(b) Differentiate as a product and use (a) to handle sin®x, Ans. y
= 5in®x(3 cos?x — sin?x).
(c) Let u=sin2x. Then y=u®, To find du/dx apply the chain rule again
to sin 2x.
(d) Write y = sin¥’3x and let u = sinx. Ans. y'= cosx/3(sinx)?3,
(e} As in (c), let u =cos 2x. Then y = u? To differentiate u apply the chain
rule again to cos 2x.
() Let u=x% Then y=sinu and y'= cosu(3x?) = 3x? cos x®,
(&) Since cot2x =1/tan2x, y=1.
(h) Let u=1/x. Then y = sinu. y = cosu (~1/x?) = (- 1/%%) cos (1/x).
(i) Treat as a product. To differentiate cos (1/x) use the method of (h).
(j) Let u=sinx® Then y=uY2 To find du/dx apply ¢). Ans. y=
3x? cos x3/2vsin x3.
(k) Let u = sinx. Then y = cosu.
(1) y=1. Hence y'=0.
(m) Since sin2x = 2 sinx cosx, y =2 cos?x. Let u=cosx.
I we use the identity we have Ay/Ax =2 cos (x, + Ax/2) sin (ax/2)]/ Ax
= €08 (X, + Ax/2)[sin (Ax/2)]/(ax/2). Then y'= cos X,
Let u=7/2—x. Then y = sinu, Apply the chain rule. Then y'= cos u-1).
But cos (1/2 — x) = sinx, Then y'=-cosx.
Differentiate the quotient by the theorem on a quotient of two functions. The
result is (20).

. Same method as in Exercise 3. The result is (23).
. Same method as in Exercise 3. The resuit is (26).

Same method as in Exercise 3. The result is (29) or the last line on p. 240,
V=-sinx; y'=—cosx.

R = (V¥16)(cos? A — sin?A). R'= ¢ implies cos?A = sin?A and so A = 7/4,
I we form Ay/Ax for the function y = sin2x we get the expression in the

tgxt. The limit as Ax approaches 0 is the definition of the derivative of
sin2x. Hence y'=2 cos2x.



13.

14.

15.

16.
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If we express Ay/Ax for the function y = sinx at the value x, = 7/2 of x

we obtain {sin{(r/2) + ax] —sin (7/2)}/Ax. Now let Ax =x — 7/2. Hence we get

the expression in the text. However limit of Ay/AX as Ax approaches is the
derivative of y = sinx at x = 7/2. Hence the answer is cos (7/2) or 0.

The mass m is pulled downward with a force (its weight) of 32m. This force

is transmitted directly to the mass M and pulls it upward. However (see

(33) of Chap. 3) there is an acceleration of 32 sinA and therefore, by New-

ton’s second law, a force of 32M sinA pulling the mass M down the plane,

Hence the net upward force on M is 32m — 32M sin A. The net upward accelera-
tion by F = (M+m)a, a = (32m-32M sin A)/(Mtm). If we let x represent
the variable distance up the plane measured from the bottom then,
since a = d%x/d+t?, we integrate and apply the initial condition

% = 0 when t = 0. Integrate again and apply the initial condition

x = 0 when £t = 0., This gives x = 16(m-M sin A)t?/(M+m). The length
of the plane to be covered is h/sin A. Then h/sin A = 16 (m-M sin A)t®/
(M+m) . Thus the time to travel up the plane is t =

/R /4 [sin A(m-M sin A]~1/%2, If we now find dt/dA (by letting

u = the guantity in the brackets and applying the chain rule we find
from dt/dA = 0 that sin A& = m/2M. There is another possible root,
namely cos A = 0 and A = 90° but this answer cannot be considered be-
cause it gives an imaginary value for t unless m > M. But m need not
be > M; it need only be greater than M sin A to provide an acceleration
up the plane. Moreover A = 90° is another situation entirely.

The force F acting on the whele system acts on both masses m and M
and this is why we must write F = (m+M)a. Another way to see this is
to take into account the tension T in the string. The forces acting
on M are T-32M sin A, and hence Newton's second law says
{1) T-32M sin A = Ma. The total forces acting on m are 32m-T, and
by Newton's second law (2) 32m-M = ma. Hence by adding (1) and (2)

(3) 32m-32M sin A = (Mim)a. From {3} we see that the acceleration of
the whole system is a = (32m=-32M sin A)/(M+m).
Let A be the angle of inclination of the desired straight
line (Fig. 1). A is measured from the horizontal dis- d
tance d clockwise and so is also the inclination of the
inclined line on which the particle slides., Then if x is
measured from the point along the inclined line, X

== 32 8inA and since X =0 when t =0 and x =0 when
t =0, x = 16t? sin A, Then t = ¥,vx/sinA. But the dis-
tance x to be covered is d/cos A. Hence t

= Y /d/sin A cos A = (Vd/4)(sin A cos A)2, Now find Fig. 1
dt/dA (by letting u = sinA cos A). When dt/dA = 0, cosZA

=gin’A and A = /4,

Picture the pendulum making an angle A with the vertical. Then the height
of the pendulum above the level of its lowest position is h =4~ 4 cos A.
Hence dh/dt = 4 sinA dA/dt. At A = 30° and for dA/dt = 18° = 7/10 rad.
per sec., dh/dt = 7/5 ft/sec.



17.

8.

19.

20,

21.
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If A is the angle of elevation of the plane at any time and x is the hori-
zontal distance traveled by the plane (measured from directly above the
observer) when the elevation is A, then x = 2 cot A. Hence dx/dt
=—2 csc?A dA/dt. When A = 30° and dA/dt = —15° =—7/12 rad/sec, dx/dt
= 27/8 mi/min.
Measuring the distance, x, along the shore from the foot of the perpendicular
from the heacon to the shore and taking A as the angle between th1s per-
pendicular and the beam, we have x = 3600 tanA. Hence dx/dt =
= 3600 sec?A-A. Now A is constant and is 47 rad/min. Hence X
= 14,400 n/cos? A,
(a) Here A=0 and cosA =1,
(b) Here cos A =380 =%/
Take A to be the angle which the line from the center of the wheel to the cab
makes with the vertical from the center of the wheel to the ground. Then
the height of the passenger above the ground is h = 30— 25 cos A. Hence
h = 25(sin A)A, When h = 40, cos A =—1%,, =—%,, and sinA =+21/5. (When
h is increasing and above 30, A is a second quadrant angle.) A is 7 rad/min,
Then h = 25(/21/5)7.
We use the suggestion that we need consider only those situations in which
the destroyer heads straight for the battleship. However, the destroyer
does not know at what angle ¢ to head. Let us determine ¢ by the condition
that C'D is to be a minimum. C'D = AD — AC’ = v4 + 100t% — 8t, If we dif-
ferentiate with respect to t and set the derivative equal to 0 we get { = “/15.
To find what ¢ is, we have that at this value of t, BD = 10t = #,, Then
tan¢ = BD/AB = %, and sin¢=0.8.
From Fig.10-12, x = OA cos 6§ = (27— OB)cos #. But OB = 8/sin6. Then

=[27 — (8/sin 9)] £osd =2T7cosd —8 cot§. We find dx/d6 and set it equal
to 0. This gives siné = 2/3 Then cos 6 =5 5/3 and the minimum possible
value of x is 5V5 ft,

CHAPTER 10, SECTION 5

1. (a) Write y'— Y. cos (3x)3 and let u = 3x. Use (38).

(b) Write y'= 1/4 sin (4x)}4 and let u = 4x. Answer y=-%,cos4x + C.

(¢} Use sinx = {1 — cos2x)/2. Then y'=Y,— %, cos2x = 1/ Y. cos (2x)2.
In the second term let u = 2x and use (38) Integrate and use sin2x
= 2 sinx cosx to get the text’s answer.

(d) The method is the same as in (c) except cos = V(1 + cos 2x)/2.

Ans. y = x/2 +(sinx cosx)/2 + C.

() Let u=sinx. Then y'=u? du/dx.

(f) Let u=sin3x, Then y‘= u® cos3x. We need 3 cos3x for our du/dx.
Hence write y'= Yu2cos3x .3 = Y u?du/dx. Then y = Y sin®3x +C.

(g) Write y'= sec?x secx tanx and let u = secx. Then we have the proper
du/dx to apply the inverse of the power rule,
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(h) Let u =cotx. Then du/dx =-csc?x. Then y'=-u*du/dx. Hence y
=—(cot®x/5) + C.

(i) Let u=tan2x. Then du/dx = 2 sec?2x. Write y'= Y u?du/dx. Then y
is as in the text.

(j) Write y'= cot®2x csc?22x. Let u = cot 2x. Then du/dx =—2 cse?2x,
Hence write y'=~%u?du/dx. Then y =¥, cot?2x +C = ¥ tan?2x + C.

(k) Write y'=cot*?xecse2x. Let u=cotx. Then du/dx = —cscZx. Hence
write y=-—u*?du/dx and integrate.

(1) Write y'=csc®ax cscax cotax. Let u = escax. Then du/dx
=-—a cscax cotax., Hence write y'=—(1/a)u®du/dx. Then £ (x)
= —1/(4a) esctax + C,

{m) Write y'= sec*x secx tanx and let u = secx.

(n) Write y'= (tanx + 3)/?secx. Let u =tanx + 3. Then du/dx = sec?x.
Hence y = 2(tanx + 3)/2 + C.

(o) Let u=x2 Then f'(x) = (cog uw)x = 1/2(cos u)2x = 1/2 cos u
du/dx. MNow use (38). Hence f(x) = 1/2 sin u + ¢ =
1/2 sin x2%+4C.

. The constant of integration has been ignored. y = (sin®k}/2 + C in one case

and y = —{cos?x)/2 + C’ in the other. The two constants differ in value. In

fact if we let C' = C + Y, we get the first answer.

. Yes. Whatever behavior f(x) has in one period it will have in another. In
particular f'(x)} will be the same in the two periods because f'(x) depends

only on the values of £{x). '
o y’= 1 + cosx is periodic. Its graph is that of cosx but raised one unit above

the x-axis. However y =x +sinx and this is not periodic. Exercises 1{c}
and 1{d) above give other examples.

m il
= [ sin xdx = -cos x[o = ~(=1)+1 = 2,
G
m/2 3T/ 2 zm
. A= f cos x dx ~j cos x dx +j cos x dx =
0 T/ 2 3M/ 2
/2 s/ 2 27T
sin x| - sin x| + sin x| = 1-0-{-1-1)+(0-(~-1)} = 4
0 /2 3w/ 2

The two curves y = cos x+1 and y = 3/2 intersect at cos x = 1/2
so that x = /3, v = 3/2 are the coordinates of the point of inter-
section. Then the area must be broken up into two points thus:

'I'T/3 T T|'/3
a = [(cos x+1)-3/2)dx + [ [3/2-(cos x+1)dx = sin x - x/2|0
¢ /3
v
+ %x/2 - sin x) | = Y3/2 - 1/6 + (/2 - w/6 + V3/2) = /3 + /6.
T/ 3
T/ 2 T/ 2 T/ 2

sin’x dx = | (l~cos 2x)dx/2 = x/2 - 1/4 sin 2x|0 = 1/4.
0 o}



68

9 . We must find the point of intersection of y = sec?x and y = 8 cosx, Solving
simultaneously gives x = 7/3. The area under y =8 cosx from x =0 to
x = 7/3 is given by integrating A’'=8 cosx. Then A, = 8 sinx, Now substi-
tute 7/3 and 0 and subtract the second result from the first. Then A,
= 4V3, The area under v = sec?x from x =0 to x = 7/3 is obtained from A’
= sec?x. Then A, =tanx, Again substitute 7/3 and 0 and subtract the
second from the first. Since tan(7/3) = V3, A, =+V3. Then A=A — A, =373,

y

y = sec? x

|
I
1 l y =8cosx
!
|

i3

i i i in the entire
10. The error is replacing v {1-cos X)/2 by -!-s:.n(x/Z). in
interval (0,4w}. 1In (27,4rn), sin{x/2) is negative and one must use
-sin(x/2).

CHAPTER 190, SECTION 6, FIRST SET

1, At t =0 we must have —D = C sin¢. Since y = Cvk/m cos (Vk/mt + ¢) we
must have at t =0, 0 = Cvk/m cos ¢, The right side canbe 0 if C is 0 or
¢ =7/2. But C =0 will not satisfy the first condition, Hence ¢ =7/2 and
C =—D satisfies both initial conditions.

2. At t=0, y must be 0. From (55) we have 0 = B cos0. Hence B =0, Then
so far y = A sinvk/mt. Then y = Avk/m cosvk/mt. At t =0, y = 5. Then
A =5Vm/k. With these values of A and B, (55) reduces to y
= 5vm/k sinvk/mt and the amplitude is 5Vm/k,

3. To write (61) in the form (55) we rewrite (61) as
y = vvim/k + D?[(v,/Vvim/k + D?) sinvk/mt — (D/v¥ik/m + D?) cos Vik/mt].
Now we introduce an angle ¢ whose cosine is voVv2m/k + D? and whose sine
is D/YvZm/k + D? Theny = vv2m/k + D?sin (Vk/mt — ¢). The amplitude is
the radieal.

4. From (60) we have y = DVk/m sinvk/mt. This velocity y is greatest when
the sine function is 1 or vk/mt = 7/2 + 2n7, where n is any integer. Then
t =vVm/k (7/2) + 2nmVm/k. The acceleration, given by §, is greatest when the
cosine function is 1 or vk/mt = 0 + 2nm, or when t = 2n7Vm/k.
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If gravity is ignored the spring is not extended by the addition of the mass

m to the lower end. Then (50) is irrelevant and (51) remains the same except
that y now means displacement from the:end of the unextended spring. Since
(51) remains the same the solution is still (52),

We may start from (52) and then use the initial conditions. The only differ-
ence from what was done on p. 253 in applying the initial conditions there is
that in the present exercise y =2 in. or ¥, ft when t = 0. Hence in place of
(60) we get y =1/, cosvk/mt. We are also told that m =¥, and d =Y ft.
Hence by (50), k (%) = 32(Y,) or k = 24. Hence the final formula is y

=Y cosv96t.

. We may first of all determine k by the use of (50), When m =1, d = Y/, ft.

Hence by (50), k = 768. When the mass of 3 pounds is attached to the spring,
it will stretch 1Y, in. or %,,it. Hence the equilibrium position is 3/ ft.
below the lower end of the unextended spring. By placing the mass on the
spring and then releasing it suddenly we are fixing the initial condition that
y = %,, when t = 0, Hence by arguing as in Exercise 6 or by using (60) with
—D replaced by %,,, with k=768 and m = 3 we have y =3/, cosv256 t
=¥, cos 16t, The period of the motion is 27/16 or about 0,393 sec. The
mass will fall until it reaches the lowest point on the cosine curve, Since
the amplitude is ¥ it will fall %; it or 3",

As in Exercise 7, k = 768, The initial conditions here are y =0 when

t=0 and y=1 when t =0, If we use (52) and apply the condition y = 0 when
t =0 we get B =0. Then, so far, y = Asinv768/4t. Then ¥

= AV192 cosvi92t., When t =0, y = 1. Hence A =1/Y192. Then y

= (1/¥192) cosv192t.

Suppose, as Fig 10-16 shows, the particle is a distance x, to the right of 0.
Then the pull to the left is the amount of stretch in the left hand portion of
the string. When the particle is at 0 the stretch (extension over the normal
length ¢) is already a — £ and by pulling the particle a distance x more to
the right the stretch is a — £ +x, If the “spring” constant is k, then by
Hooke’s law the force pulling the particle to the left is k(a — £ +x). Simi-
larly, the stretch of the right hand portion is a — £ — x and the force pulling
the object to the right is k(@ — £ — x). The net force (in the positive x-direc-
tion) is k(@ — ¢ — x) — k{a — £ + x) = —2kx. By Newton’s second law, mX
=—2kx. I we compare this equation with (51) we see that it is of the same
form with 2k replacing k. Hence we may use (52) with 2k replacing k and
y = A sinv2Zk/mt + B cosv2k/mt. Now if the particle is pulled initially a
distance D to the right, say, and then released, we have y=D when t =0
and ¥ =0 when t = 0. Then as on p. 253 we can determine that A =D and
B=20.

If we let 8 be the angular displacement then ¢ is of the form 6 =a sinbt.
We are told that a = 7/2 and 27/b =Y, so that b =47. Then 8 = (r/2) sin4st.
Then 0 = 272 cos4nt and § =—87® sin4nt. When t =2, ¢ = 2792 rad/sec and
8=0.
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CHAPTER 10, SECTION 6, SECOND SET

1. This equation is of the form (51) or (65). If we use (51) we see that k in the

present case replaces k/m there,

2. We use (66). We have as our initial conditions that 6 = 0.1 when t =0 and
¢ =—0,05 when t = 0. The first condition substituted in (66) gives B = 0.1.
To meet the second condition we first obtain from (66) that ¢
=32/l Acosv32/lt— 32/l BsinV33/Lt. Since § =—0.05 when t =0
A =-0,05v2/32, Then 6 =-0.05V4/32- sinv32/0t + 0.1 cos V32 /Lt.

3. We use (66) with the initial conditions 6 = 0 when t =0 and § = 0.1 when
t = 0. Now follow the method of Exercise 2. We find that B=0 and A
= 0.1V/4/32,

4. Since s = £6 (p.293 ) we have, by (66), s = £ Asinv32/l{ + £ BeosV32/Lt.

. From (70) we have 6 =-0.1vV32/f sinv32/{t. Hence the angular velocity
varies sinusoidally with an amplitude of —0.1v32/f and the period is 2m{/32.

6. The period is given by (67). To make T twice as large we must increase

£ by a factor of 4.

The period does not depend on the mass of the bob.

8. When the bob is at its highest peint, its linear and angular velocities are 0.
Hence the bob is momentarily stationary. Moreover its velocity is small
near that point of its path.

9. The amplitude is 7/16 and the period is %, seconds. From (67) we see that
VI/32 = 4/3n so that V32/f = 3n/4. If we now assume that the pendulum
started from the equilibrium position with some initial velocity then we may
use the form ¢ = A sinVR2/t, (Compare Exercise 3.) Then
(a) 6= (r/16) sin (37t/4)

(b) The angular velocity is ¢ = (37%/64) cos (37t/4). The maximum value
occurs at t =0 or any multiple of 27. At such values 6 is 37%/64.
10. As pointed outin the text, § = 28. Then from (70) S =

-2 {0.1)siny/32/3t.

o

-1

CHAPTER 10, SECTION 6, THIRD SET

1. We saw in the derivation in the text that the component of the force of gravity
which causes the motion (p.298 } is PQ = kmx, In a longer tunnel x varies
over a longer range of values and the motion starts out with a larger ac-
celeration. Hence the object acquires more velocity. The path is longer
but the greater velocity acquired compensates. Mathematically we see from
(76) that % = —x,Vk sinvkt. This shows that, though the velocity is 0 at t = 0,
as t increases the velocity depends on x,.

2. The motion is given by (76) with x, = 100 and k is the constant GM/R3.
Hence x = 100 cosvkt. Then % =—100vk sinvkt. The maximum veloeity is
the amplitude, namely, 100vk.
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. Before we applied any initial conditions we derived (75). Now our initial
conditions are x =X,/3 when t =0 and x = 0 when t =0, I we follow the
procedure of fixing A and B that was used in the text, we obtain x

= (x0/3) cosvVkt. The period is still 2r/vk., This last fact is interesting be-
cause the period is the same as when the object traverses the entire path UV,
. If we start with (75) and apply the initial conditions x =0 at t=0 and X =0
at t =0 we get in place of (76) just x = 0.

. I we start with (75) and apply the initial conditions x = X when t = 0 and

and ¥ =0 when t =0 we get x =X cosvkt in place of (76). Thus for every
value of X except 0, the periodis 2n/vk . For X =0 the periodis 0 (as
in Exercise 4). Hence the graph of period versus X is a line segment parallel
to the X axis and extending from —x; to +x, but with no point on the line
segment at X = 0,

. The physical phenomenon discussed here is best compared with the phe-
nomenon of the bob on the spring. Equation (a) is the analogue of (50).
Equation (b) is the analogue of (49). And the quantity (¢) is the quantity —ky be-
low (50). The resulting differential equation is the analogue of (51) and is
100y = —~32 - 15.6wy. Here when the cylinder is depressed below its equilib-
rium position the buoyant force of the water replaces the upward pull of the
spring. When the cylinder rises above the equilibrium position, there is a
downward force which is its weight in air minus the buoyant force on the
portion of the cylinder still in the water. This is the analogue of the down-
ward force exerted in the case of the spring, when the y-value is positive

but less than d; the force is the weight of the bob minus the upward pull of
the spring.

Since the differential equation (m¥ = net force) is ¥ =—4.9927y, we can
use (52) with k/m replaced by 4.9927. Then y = A sinv4.992nt
+ B cosv4.99271t, The initial condifions are that y=-2 when t=0 and y =0
when t =0, Then y=—2 ¢cev4.9927t.

. We start with the formula T = 27/¥k where k = GM/R3. Since the theory of
the text does not restrict M and R to be the mass and radius of the earth
we may let them be the mass and radius of the moon. Then, letting the
letters M and R still stand for values of the earth’s mass and radius,

T = 29/{GM/B1)/BR/11)® = (54v3 7/11VI1){(1/VK).

One may choose to let M and R stand for the mass and radius of the
moon, in which case GM = 5,3R?, and k still stands for GM/R® but M and
R refer to the moon, Then T = 27/Vk = 2n/VGM/R® = 27/V5.3RYR®
= 29vVR/v5.3. This is also a correct answer. If in the next to the last ex-
pression one replaces 5.3 by 32/6, R by 3R/1l and then 32R? by GM one
obtains an answer in terms of the k of the fext where M and R refer to
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values for the earth. This latier answer can be put in the form

T = 6V27/V11k. Here k has the value GM/R® where M and R stand for the
earth’s values., Of course the replacement of 5.3 by 32/6 is an approxima-
tion,

CHAPTER 10, SECTION 6, FOURTH SET

1. The function, if we use the more convenient form (80}, is y = asin[(27/7)t + ¢].
Then y =a{2n/7) cos[(27/7)t +¢]. The maximum value of y occurs when the
cosine is 1 and then y is 2wa/T,

2. From Exercise 1 we see that the maximum velocity is the amplitude a
times 27/7, where T is the period. Then 2 = 27a/% and a = 1/57.



Solutions to Chapter 11

CHAPTER 11, SECTION 2

. (b)
. (b)
. ()

W 0O N

. Solve for x,

~30% () 120° () -17°27;  (h) 180°.
—7/2.
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¥3/2; {c) 2/v3; d) v3/2; (e} V3/2; ) 0.5; () —1.

CHAPTER 11, SECTION 3

1. Start with y = cotx, Then dy/dx =—csc?x. Hence dx/dy =—1/csc?x
=—1/(1 +cot®?x) =—1/(1 +y?). Changing to x and y for independent and de-
pendent variables, respectively, we have dy/dx =—1/(1 +x2).

2. (a}
(b)
(c)
(d)

(e)
t)
()
(b)
i)
(1)
(k)

Use (22) with u = x/3.
Use (23) with u = x2, Then y'=-2x/v1— x%.
Use (24) with u = 1/x.

Use {22) with u = {x — 1)/X. We obtain first y'={1/VT~[(x - 1%/x2]} (1/x%).
In taking the x? out of the radical we must write | x| because the value
of the entire radical i8 positive. Since 1/x? is also positive we must

write y= (1/] x[){1/V2x —1).

First £'(x) = 2 sin~*xd(sin-') /dx.

Use (24) with u=vxZ+ 1. Then £'{x) = (x/V/ITx?) (1/(24x2%}1.
Use (22) with u = cosx, Then y'=—sinx/| sinx]|.

Use (24) with u =vx ~ 1. Then £'(x) = 1/2x/%-T .

Use (26) with u = 3x. Then y'=+1/3xv9x® — L.

Use (26} with u = 2x-3. Then y' = +#1//3x-x%2-2.
Use (25) with u = 3x%. Then y' = -6x/(1+9x"*).

3. See Figure 1,

The slope is always positive.
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4, For 0=x=17/2, y=1/2—x; for n/2=x = 31/2, y=x— n/2; for
3n/2 < x =27, y=51/2~-x. - -

5. In each case f;nd d?y/dx? and set it equal to 0 to find the abscissa of the
point of inflection. Ans, to (b): x =0. o . ard dx/dy as

6. dy/dx = 1/(dx/dy). Now to differentiate with respect to x, reg .
ayfunction of y with y as a function of x, Th_en_ d?y/dx® = [(~d%x /dy?)/(dx/dy)?]
(dy/dx). Since dy/dx = 1/(dg/dy). we have thé text result. )

7. (@) tan'x/x = (tan"x - tan"*0)/(x ~ 0). Then lim tan?x/x = d{tan™ x)/dx

at x = 0, From (24) we see that the answer is 1. o .
(b) The idea here is the same as in (a) except that we have the derivative o
tan''x at x = 1, From (24) we see that the answer is ,.

8. From Fig. 13-12 we see that ¢ = tan™*(y/a). Now 6 = do/dt = (do/dy)(dy/dt).
From (24) we find that d8/dy = a/(a% + y2) = cos?0/a. Also dy/dt = v. Hence
f = (v/a) cos? 8. Now & = dé/dt = (v/a)2 cos 6(—sind)d =~ (2v%/a?) cos® 6 sin 6.
8. 6 =tan™! (gt¥2a). Here ¢ is a function of t. To find § use (24) with u = gt¥2a,
Then the text answer follows at once and to find & merely differentiate 6
with respect to t.

CHAPTER 11, SECTION 4

1. (a) Let u=x2 Then we have the form (28).

(b) Let u=x3 Then we have the form (28).

() Write y'= (1/a){1/[1 + (x/a)?]}. Then we have the form (30) with u = x/a.

(@ Write y'= (1/a2}{1/[1 + (bx/a)?|}. Let u=bx/a. Then du/dx = h/a,
Hence write y'= (1/ab}{1/[1 + (bx/2)?]}(b/a). Hence y = (1/ab) tan™? (bx/a)
+ C,

(e) Except for the factor Y, the y’is in the form (32) [or (33)]. Hence y
=1, sec'x +C.

(f) Write y'= (1/V5)(1/V1~ (4x%/5). Then y'is in the form (28) with u
= 2x/V5. Then du/dx = 2/¥5. This constant factor can be introduced and
the result is in the text.

(&) Write y'= Y, {1/[1 + (3%/4)%]}. Then y’is in the form (30) with u = 3x/4,
except for the factor %,. The answer is in the text.

(h) Write y/= ¥,(1/V1 — (3x/4)%). Then y' is in the form (28) with u = 3x/4,
except for the factor %,. The answer is in the text.

(i} ¥ is in the form (32) [or (33)] with u = 2x. Then du/dx = 2. Hence write
y'= Yd1/(u/u? = 1)](du/dx). Then y = Y, sect2x + C.

(J) Let u = x* and write f(x) = (1/3) /3x?dx/YI-(x°J 7. Now use (28).
f(x) = (1/3)sin~'x%+C.
(k) £Ux) = fxdx/(x*+3) = (1/2)f2xdx/[(x2)2+3]. Use (30). f(x) =

{(V3/6)tan™? (x2/¢V3)+C.
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(L) Write the given integral as {1/2) f2sec xtan xdx/v/32+(2secC x)°.
Use (30). Then y = (l/6)tan—1[2sec(x/3)]+c.

(m}) Break up the given integral into fxdx/vI-x? + 3fdx/vi~x?. The
first integral is evaluated by letting u = 1-x? and using the
inverse of the power rule. The second integration uses (28).
Then y = ~y1-x°+3 sin™ x+C. '

(n} Write the given integral as dx/[(x+5)2+45] = (1/5)fdx/[((x+5)//5)2
+1]. Now let u = {(x+5)}//5 and use (30). Then y =
(v5/5) tan=* [ {y+5) /V51+C.

vicl
2. By our formula for area, dA/dx = y or A = f dx/(9+x2), Then with
VE
(30), A = 1/3 tan"'{x/3). Now substitute v3 and -v3 for x and sub-
tract. Thus A = 1/3[tan~!(/3/3)-tan"'(-v3/3)]. But tan *(-/3/3) =
-tan~!'{/3/3). Hence A = (1/3)2 tan~!(v¥3/3). We can use the table to
find that tan—'{(v/3/3) = /6 or happen to remember this. Then A = 7/9.

CHAPTER 11, SECTION 5

1. The steps parallel those of the text where the substitution x = a siné was
used. The two answers agree because sin™!(x/a) and cos™!{x/a) differ by
a constant,

2. Our method of finding areas is to start with dA/dx = y, Here v = (b/a}va’-bh<,
Hence we must integrate (b/a)v¥a? — x?, The integral in view of (53) is
(ab/2) sin™! (x/a) + (bx/2a)va? — x2. If we now substitute a for x and then
0 for x and subiract the second result from the first we get mab/4.

3. Whenever a radical occurs a change of variable which eliminates the radical
is usually helpful,

(@) This can be done by factoring the 9 out of the radical and thus reducing
to (28), But to use change of variable let x = 3 sin¢, Then dy/d9
= (dy/dx)(dx/dg) = (1/V9 — 9 sin?9)3cos# =1, Then y=0+C or y
= sin"! (x/3) + C.

(b) Let x = ¥ sinf. Then dy/dé = (dy/dx)(dx/d8) = ¥,(1/cos ) ¥, cos 8.
Hence y = 6/3 + C = Y, sin™ (3x/4) + C.

(¢) Let x =% tan© and follow the procedure of {a) or (b).

(d} This is (48) with a = 3. Hence read off the answer from (52).
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(¢) If x =atand, then dy/de =[1/(a® + a? tan?#)*?]a sec?6 = (1/a2) cos 6.
Then y = (1/a2) sin# + C. I tan @ = x/a then sin g =x/Va®+ x2,

@) Let x=a sind. Then dy/de = (1/a?) sec?8; y = (1/a% tan g
=x/a%a% - x* + C.

(g) Let x =4 sin#. Then dy/dd = 16 sin® 9. Replace sin?6 by (1 — cos26)/2.
Then v =86 — 4 sin268. Replace sinZé by 2 sinf cos @ and transform
back to x.

(h) Let x =5 sind. Then vy
transform back to x.

(i) Let x=5sin6. Then y = f(csc?0-1})d6. Then y = -cot 6-9
Transforming back to x gives y = V25 = x¥/x) — sin! (x/5) + C.

4, The procedure is the same as in Exercise 2, However instead of the end

values a and 0 we have here 2 and 0.

[

ftan?6d8 = f(sec?0-1)d6 = tan 6-8. Now

CHAPTER 11, SECTION 6

1. Use (69) with r, = R + 2000 - 5280 = 3R/2 and r = R. The calculation is exten-
sive and the accuracy of the answer willdepend on how many decimal places are
carried. The text answer is approximate. A result between 1250 and 1300
seconds is good enough for present purposes. We could also use (70 and
calculate the 6 for which R = (3R/2)cos?0 and then substitute in (70) .

2. Since an acceleration of 32 ft/sec? is greater than the actual gravitational
acceleration the object will acquire greater velocity and take less time to
fall 2000 miles. To calculate the time we use the method of Chapter 3. That
is, a=-32, v=-32t+ C; C =0because v=0when t=0.Then s =—16t2+ C
and if s is measured from the height of 2000 miles, s = 3R/2 when t = 0.
Hence s = —16t2 + 3R/2, Now calculate t when s = R. Then t = vR/32 = 812
seconds,

3. The time of flight is the same as if the object were dropped from a height of
100,000 ft and traveled to the surface of the earth. Thus, as in Exercise 1,
we can use (69) or (70. In either case r, = 40005280 + 100,000 and r
4000 - 5280. Let us use (7¢) Then we must first use (65) to find the value
of 6 when r = 4000 -5280. This gives § = 86°20’ approx. Use of (70) gives
98 sec. approx. Again the accuracy will depend on the number of decimal
places carried.

4. As in Exercise 3 the time required is the same as if an object falls from a
height of 240,000 miles to the surface of the earth, We can use (69) or (70).
In either case r; = 240,000 miles = 60R and r =R, The arithmetic is again
lengthy and the accuracy depends on the number of decimal places carried.

5. Following the suggestion we start with v&/2 = v%/2 + GM/r — GM/R. Here v,
is the velocity at the surface of the earth and v is the velocity at the distance
r from the center of the earth, We let v, be the escape velocity Y2GM/R.
Then v¥2 = GM/r and v = V2GM/r. Then since v =dr/dt, dt/dr = rV%/V3GM
and t = 2, r¥?v2GM + C. If we let t =0 when r = R, C =—2R%¥2/3V2GM and
so t = 2r%2/3V2GM — 2R%¥2/3V2GM.
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6. The force of attraction acting say on the sphere to the right is, according to
the law of gravitation, wherein now M = m and the distance between the cen-
ters of the two spheres is 2x, is —Gm?%4x®, Then mX = —-Gm?%4x2 or %
= —Gm/4x2%. Then, following the suggestion, we take over the theory of the
text, starting with (62), but replace GM by Gm/4. We may then go directly
to (69) and replace GM there by Gm/4. In our case r, =3 and r = 1 because
the spheres are in contact when each is 1 foot away from the origin. The
answer of two hours is approximate because the accuracy of the answer
depends on the number of decimal places carried.

7. () We cannot use (69) because letting r, be infinite does not give a clear
value for t. We start with a = d?r/dt* =~ GM/r? and write dv/dt =—-GM/r?,
Then as in Chap. 7, sec. 8, v dv/dr =—~GM/r2, Integrating gives v¥%2
= GM/r + C. Now our initial condition is that v = 0 when r becomes
infinite, Hence C =0 and v¥2 = GM/r. Then v =—VGM/r; the minus
sign enters because v is negative, Since v = dr/dt, dt/dr =—rV%V2GM.
Then t=—-%,r¥?v2GM + C. If we agree to measure time from the instant
the body reaches the center, then t =0 when r =0 and C =0, Then
r = (- 3/2)¥¥(2GM)V3t?/3, We must understand t to be negative as the
formula for t shows. That is, by taking the acceleration negative and
then the velocity negative, r must decrease with increasing t. Since t
is 0 when the object reaches the center, it is negative previously.

() We see from the expression for t that when r is infinite (and positive)
t is — . Hence it takes an infinite time to reach the center,

(c) We see from the expression for v that v is infinite when r is 0.

(d) Yes. The factor (—-3/2)¥* is positive. For positive t values r is
positive,

(e) Since r increases with t, starting from r =0 for t =0, the object
would have to move away from the center in the direction of increasing
r as t increases. This would not happen physically because the body
never reaches the center. Hence in the present situation the formula
has no physical meaning for positive t.
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Solutions to Chapter (2

CHAPTER 12, SECTION 2,

1. (b) 2.8451; (d) 2.8451
2. (b) 2.5353; (d) 2.7535; (e) log2l=1log7 +log3, log3 =Y¥,log9.
Ans. 1.3222.

CHAPTER 12, SECTION 3 (p. )

1. (a) K x =1log, 3, then e* =3, Since e is about 2.7, x is somewhat greater
than 1.
(b) log.9 =2 log,3; by (a), the integral part is at least 2.
(c) Since 3*=81, e*< 81; hence 4 is a good estimate,
(d) Log of 1 to any base is 0,
. (b) 4; (c) O.
(b) 2.94444; (d) 7.697 — 10; {e) 9.307— 10 =-0.6931,
(@) 0.600; (¢) 30.
Compare Figs, 12-1 and 12-2,
(a) The y-values of 3 logx are three times as large as those of logx.
(b) Add 2 to each y value of y = logx.
(¢} The curve of y = log {(x + 3) is the curve of y = logx translated 3 units
to the leit.
(d) The curve is that of logx translated 2 units to the left and with each
y-value then multiplied by 3.
(e) Log (—x) is the reflection in the y-axis of logx. The curve of y
= log (5 — x) is the curve of y =log (—x) translated 5 units to the right.
7. Let e =a™ =x, Then log,e* =log,a™ = m log.a = log,X log.a. Hence
log.x = log x log,a. Then if y =log,x, y = (1/log,a)log.x. Hence y'= 1/x log.a.
8. (a) Let u=x? and use the chain rule (20).
(b) Let u=1logx. Then y'=2(logx)/x.
(€) Let u=x/(1+x). Then y'= (1/u) du/dx =[{1 + x)/x][1/(1 + x)?].
(d} Let u = sinx. Then y'= (1/sinx) cosx = cotx,
(e) Let u=x2+ 3x. Then y'={1/(x® + 3x)](2x + 3).
{f{) Differentiate as a product. y'= logx + 1.
({g) In view of (f), y= logx.
(h) Differentiate as a quotient. Hence y'= (1 — logx)/x2.
(i) Let u=1logx. Then y= (1/logx)(1/x).
9. Yes, We now know that the integral of logx is x logx — X.

O G1 = 2 D2
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10. (a) Keeping aside the factor Y, we can apply (19).

11,

12,

13.
14.

15.

(b) Let u=x+ 2, Then du/dx = 1. Hence apply (21). y=log x +2) + C.
(c) Let u=x2%+ 1. Then du/dx = 2x. Hence apply (21). \
(d) Let u=x2+ 1. Then du/dx = 2x, Write y'= ¥,[1/(x2 + 1}]2x. Apply (21).
Then y =Y, log (x®+ 1} + C.
(e) let u=x2—6x+ 10, Then du/dx = 2x — 6, Write
y'=Y,{1/(x% — 6x + 10)]{2x — 6). Apply (21).
(f) Let u=sinx. Then du/dx = cosx. Apply (21) or more generglly (31).
(g} Let u=cosx. Then du/dx =~sinx, Write y'=—(1/cosx) (~sinx).
Apply (21) or more generally (31},
(h) See {g).
(i) See {(f).
(1) Let u=1-cosx, Then du/dx = sinx. Hence by (21) y = log (1 — cosx) + C.
(k) Let u=tanx. Then du/dx = sec?x, Apply (21) or (31).
(1) Let u=logx, Then du/dx = 1/x, Write y'= (1/logx){1/x).
v =log (logx) + C.

(a} Let u = x2%+2., Then du/dx = 2x. Write the given integral as
3/2[2xdx/ (x*+2). Hence (3/2)log(x?+2)+C.

{b) Let u = 1l-x?, Multiply the numerator by -3 and divide outside the

integral sign by ~1/3. Since du/dx = -3%2%, then the answer is
(-1/3)1log|1-x?|+Cc. The absolute value takes care of values of x
for which 1-x? > 0 and 1-x? < 0.

(c) Let u = x*+2x+5. Then du/dx = 2x+2. Multiply the numerator of
the given integral by 2 and divide outside by 1/2. Hence
{1/2)Ylog {x% +2x+5)+C.

{d) Break up into a difference of integrals. Let u = 2x-5 in the
first and u = 2x+3 in the second. Multiply numerators by 2 and
divide outside by 1/2. Then (l/2)log|2x-5¥—(l/2)log[2x+3[+c =

2X~-5

2X+3|+C'
(e} ftan(x/2)dx = fsin(x/2)dx/cos{x/2). Let u = cos{x/2). Then
du/dx = -(1/2)sin(x/2). Multiply numerator of integral by -1/2

and outside by -2. Hence -2log|cosi{x/2) [+C = 2log|sec(x/2) |+C.
10 1o

A={ dx/x = log x|1 = 2.3026-0 = 2,3026.
1

drR/ds = k/S. R = klog S+C.

For n=1, d(logx)/dx = 1/x. Since 0! is defined to be 1, the theorem holds
for n=1. Now assume for n =k that d*(logx)/dx*= (- 1)*"}(k - 1)!/xX. Then
d¥Ylogx)/dx*= (- 1)**(k — 1)1 -K)x ¥ We see that if the theorem is true
for n =Kk it is true for n =k + 1, Since it is true for n = 1 it is true for all
positive integral n.

Lim logx/(x — 1) = lim (logx — log1)/(x — 1). This is the expression for the
derivative of logx at x=1, or y'=1/x at x=1 or 1.
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CHAPTER 12, SECTION 2, FIRST SET

1.

(a)
(b)
()

(d)
(e)
(f)
&)

y = 3¢* has y-values 3 times as large as y=e*,

y = e* is the reflection in the y-axis of y = e¥,

The curve of y = e’™?® is the curve of y = e* displaced two units to the
left.

The graph of y =e*+ 2 is 2 units higher than that of y = e*.

Add ordinates of vy =x and y = e*,

y = €% is steeper than y = e*,

Compare (f) and then reflect in the y-axis,

CHAPTER 12, SECTION 4, SECOND SET

1.

(a)

()
()
(£)
()
()
(i)
()
The
Use
(@)
(b)
()
{d)
(e)

()
(b)
()

(a)
{b)

(c)

Let u =x2 and use (38). (b) Let u=-2x and use (38). Then

Ytz __28_23(_

Let u=-1/x and use (38), (d) Let u=sinx; then y'=es"*cosx.
Differentiate as a product; y'= e¥x + e* logx.

Ditferentiate as a product.

Differentiate as a product; then y'=-—-e>(cos2x + 2 sin 2x).

Let u =e%,

Differentiate as a quotient. Then y'=2/(e* + e )2,

Let u = eY(1 +e9. Then y'= (1/u) (du/dx) = [(1 + e9)/eX][e¥ (1 + &9)?]
=1/(1 + 9.

slope is, of course, y'at x =0, Hence 1,

the e-table to make a table of values.

Let u =—x, Write y'=—e™(—1) and use (40).

Let u =%, Write y'= ¥,e**. 2x and use (40). Then y = /2 + C,

Let u = sinx. Apply (40).

Let u=—1/x. Then du/dx = 1/x2. Apply (40). Ans, y=e¥*+C,
Let u = -x/2. The&zdu/dx = -1/2. Write £'(x) = —2e-x/2{—l/2) .
Hence f(x) = -2e %/ <4+(C,.

Let u =e*+ ¢, Then the numerator is du/dx and we have the form
y*= (1/u){du dx). Hence y = logu + C.

Multiply numerator and denominator by e* and the problem reduces
to (a).

Let u =1+ e, Then du/dx = 2e%*. Write y'= %, 2e?¥(1 + *) and we
have the form y'= % (1/u)(du/dx).

Let u = 4x, [edXdx =-(1/4) [ed®ddx = (1/4)e**+cC.

Let u = l/xi. Then du/dx = -2/x°, Now J‘el/}'zz/dx/x3 =
(-1/2) [el/*" (c2/x%)ax = -1/2e1/%%4c

2 2
Let u = ~x%43, Thexg du/dx = -2x. [e™® +3xax = —(l/2)fe'x +3
(-2x)dx = -{1/2)e™X 3¢,
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(d) (eX+2)2 = e2Xy4eX+d, Integrate each term separately. Answer is
(1/2)e?*14e¥1ax+C,

(e) Let u = eX+1l. Then du/dx = e*. The given integral is
fud(du/dx)dx = (u°/5)+C = (eX+1)3/5+C.

(f) Let u = e2%X+3, ©Then du/dx = 20X, Hence the given integral is
1/2f(1/u) (du/dx)dx = (1/2)1log u+C = (1/2) Log (e2¥+5) +C.

1 1
7. A= [ xe¥’ax = (l/2)féx22xdx = (l/2)ex2|: = (1/2)e-1/2.

] a

2 2 .
8. (ay F(2} = f e ¥ dx. Since the curve lies above the x-axis, the area
]
is positive.

=2 2 0 2
(b) F(~2) = [ e dx = -] e™*'dx. This area is the same as F(2)
0 2
except for the minus sign. See (a} for F(2).

{c) F(3) = fse_xzdx. This covers mcre area than F(2).
(d) As t ingreases F(t) covers more area to the right of the y-axis.
Since the area is always above the x-axis, F(t) increases.
9. The graph is the reflection of y = e* in the y-axis.
10. Graph e™ and sinx on the same set of axes and choose a number of x-values,
At these multiply (roughly) the values of ¢ and sinx.
11. At x=0, h,2h,..., y=1, e, e We see that the y-values are in
geometric progression with common ratio e, If the x-values are a,a+h,
a+ 2h,..., then the common ratio is still ek,
12, im (et~ 1)/h = 1}11_1310 (e®—1)/(h — 0), This is lim Ay/Ax for the function

Ao =)
e* at x =0, Hence the answer is the derivative of e*at x=0 or 1.

13. y' = kDekX = ky.

14. The average cost A = 5eX/8/x. fThen A' = [x(5/8)ex/8—5ex/8}/x2.
ex/8(5x/8—5)/x2. A" = 0 when x = 8. RAlso A' -changes from - to +.
Hence X = 8 is a minimum.

CHAPTER 12, SECTION 5

1. Let T be the temperature of the object. Then Newton’s law states that
T =—k(T — T,), the minus entering, when k is positive, because T de-~
creases with increasing time and so T is negative. Then dt/dT = — 1/k(T - T,).
Let u=T— T, Then t= (-1/k) log (T — Ty) + C. Then log (T — T,)
=—kt +KC or T = T,+ e, Since kC is also arbitrary, T = T, + De"*,
In our problem when t =0, T = 100. Hence D =100 — T,. Also k = 0.01.
Then T =T+ (100 — T )e -,
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. Here we argue that at the end of any one minute the temperature is .99 times
that at the beginning of the minute. Then T = 100(0.99)¢. The problem does
not call for continuous change at each instant.
. Here this is continuous change but the rate is not proportional to the existing
temperature. Rather we are given the change as a fixed quantity. In t min-
utes the loss is 0.01t. Hence T = 100 — 0.01t.
. We know merely the net change at the end of each year. Then, as in Exercise
2, the population at the end of any year is 1.03466 times the population at
the begimning of the year. If P, is the population when t = 0, then P
= P,(1.03466)*. Presumably the population increases continuously at some
rate r per year of the existing population at any instant. f we knew r, then
doing the problem as one of continuous rate of change proportional to the
existing population we would have P = rP and as our solution P = Peett. The
e’ is the 1.03466, The problem is analogous to continuous compounding to
money at the rate of 0.04 per year. The net rate per year as pointed out in
(46) is e%°0%,
. Use (64). In our problem we know that when t = 0, P = 5000. Hence D = 5000.
Also when t = 20, P = 15000, Then 15,000 = 5000e2%, As in the text follow-
ing (54} we determine k. Taking logarithms of both sides, 20k = log, 3
= 1.09861, Hence k = .055 = .06, This gives the text’s answer,
. We take over from Exercise 1, that T = T, + De ™, In our case when t = 0,
T = 100. Hence D = 100 — T,. Our T, is 40°. Hence so far T =40 + 60e™**,
We know that when t = 2, T = 80°. Hence 80 = 40 + 60e-2%, Then —2k = log?,
=9.594 — 10 =—.,406 and k = .204. Hence T = 40 + 60e-°-20%, To find t when
T = 43°, we have 43 = 40 + 60e °2°4 or — 0,204t = log (.05) = 7.004 — 10
=—2.996. Then t = 14.6 minutes,
Let S be the amount of undissolved sugar at any time t, Then § =—kS, the
minus entering because S is decreasing {and k is taken positive), Then, as
in going from (47) to (49), S = De™™, When t =0, § = 200. Hence D = 200
and S = 200e"¥, When t =2, §=200— 100 or 100, Then 100 = 200e %X,
Taking logarithms and solving k gives k = ,347. Then 8§ =200¢°%347  To tind
t when S = 200 — 150, we have 50 = 200e79-3%¢"t_ Since log .25 = 8.614 — 10
=—1.,386, t = 4 minutes. From the formula for 8, we see that when S =0,
t must be infinite, Formally, —0.347 = log 0 = — e,
. If the population is P,, the increase after one year is P,r and the population
is P, + P,r. After 2 years the population is P, + Pyr + r(P, + P,r)
= (Py + Pr)(1 + 1) = Py{1 + ). After t years, P = P,(1 + r)t, If the popula-
tion increases continuously then after t years P = Pget. Then (1 + r)t =e¥
or k=1og (1 +r).
. Asin (54) N =De™, When t =0, N = 100. Hence D = 100. We are given that
k = 0.2, Hence the text’s answer.
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Let I denote intensity and d, depth, Then I'= di/dd. We have that 1 =—KI

and so I = De®Xd We know that D = I, = intensity when d = 0, We are told

that when d =10, 1/I, =Y, Hence Y, = e"1% or —-10k = log ', = 9,307 — 10

=—0.693. k= 0.693. H we take I=XI to start with then k =—0.0693.

From N =-kN, we have N = D¢, When t = 0, N = 10!2. Hence D = 10!2,

Hence, so far, N = 10'%e™*, When t = 4.5 1(°, N = %, 10*2, Hence —4.5- 10°k

= logl, =—-0.693 or k= 1.6-107°,

Since U=u(l —e™) and u= P(1 - e ), the net amount of uranium at any

time t is u— U=P(1 - e™M)e™, We have that P = 3400 and we are to de-

termine whether there is a value of t for which u— U = 800. Let ™ =z,

Then 800 = 3400(z — z2) or 17z — 17z + 4 = 0. Then z = (17 + V17)/34. Now

z = e, Hence —At = log[(17 + V17)/34]. We know that X = Yolog2 = .0693.

It is not necessary to get the precise values of log[(17 + V17) /34] and

log[(17 — V17)/34]. We need merely note that both numbers are positive and

< 1. Hence they have negative logarithms and so there are two values of t

at which u — U = 800. Moreover the function u— U is of the form Pz — PzZ,

The two values of t for which u— U = 800 correspond to two values of z

at which u— U = 800, In between these the curve has a maximum and so

u — U rises above 800. Hence disaster,

Let Q be the number of pounds of salt in the tank at time t. The rate of in-

crease of salt at any time t, which is due to the inflow is 2 lbs/min, Since

Q is the amount of salt present at any time t, Q/100 is the sali per gallon

present because there are always 100 gallons present. The rate of outflow

of salt is 2Q/100 because 2 gallons of the mixture constantly flow out. Then

dQ/dt =Q =2 — 2Q/100 = (100 — Q)/50. Then dt/dQ = 50/(100 - Q). To

integrate let u = 100 — Q. Hence t =—50 log (100 — Q) + C and Q = 100 — De™*/%0,

When t = 0, Q = 150, Hence D =—50 and Q = 100 + 50e"*/5% When t =1 hr

= 60 min,, Q = 100 + 50e~%5, To calculate e ‘2 use the e-table. e"!-2

=el.e 2= (,368)(.819) =.3. Then Q= 115 lbs,

Let y be the number of gallons of impurities or impure quantity present at

time t. Since there are 10 gals of mixture in the tank at any time t then y/10

is the amount of impure quantity present per gallon of water. Since 10 gal/hr

flow out constantly the rate of change of impure water is 10(y/10) and this

is y. However, y is negative because y is decreasing. Hence y =—y. Then

y =yt where y, is the number of gallons of impurities present at t =0,

We are asked to find t when y =y,/2. Then ¥, = et and ~t = log?

=—0.693 or £=10.7 hr.

We are asked to find t when N(t} = N(0)/2. Then Y, = e, Hence —kt =log Y/

=—0.693 and t = 0.693/k.

(a) We are to find N(f) when t = 100. N({100) = N(0)e °-%43  Use of the
e-table gives 0.958 N(0).

(b} We have to find when N(t) = N(0)/2. Then Y, = e-0°%433¢ Hence —.000433t
= log Y, = —0.693. t = 1600 years.
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17. 8 = -s85. Then § = Soe“St, where t is the time in yvears and s is the
rate. When S(t) = (1/2)S_, e °C = 1/2; -st = log_(1/2) = -0.693.
e
Hence t = 0.693/s. 0.02¢
18. We have that dpP/dt = 0.02P. Hence P = De"" . When t = 0(1970),
I = 3 billion. Then P = 3e0’02t. When P = 20, 20 = 3e0'02t. Then
.02t = log{20/3) = 2.4 - 1.1 = 1.3. Then t = 65 years.
19. dp/dt = k(20-P) where k 1s positive. Then 4dt/dP = (1/k)[1/(20-P)}]

= (-1/k}[1/(20-P}]{~1). Integration by letting u = 20~P gives
t =-({1/k)log(20-P)+C. Then P = 20-De *%, _

20. As in earlier exercises (see #15), C = Coe where k = log 2/5570.
Next C = (l/lO)CO s¢ that 1/10 = e-(log 2/5570)t. Then t =

5570 log 10/log 2 = 5570 2.303 /0.683 = 18,500 years.
21. By the method used many times (see for example (54)) we obtain P(t) =
De"(c/w)t and since P = P_ when t = 0, P = Poe“(c/w)t.
22 . (a/ —czt —clt (cl—cz)t
- = c - - L= =
Yy ) cl)](cze cle ). At y 0, e 01/02

kt

so that t = [l/{cl—cz)]log(cl/cz).
CHAPTER 12, SECTION 6' FIRST SET

1. According to Newton’s second law mv =—KvZ or v =—kv2, Then dt/dv
=—(1/k)(1/v?). Then t=1/kv+ C. When t =0, v = 100. Hence C =—1/100k.
Then v = 100/(1 + 100kt).

2. Integrate with respect to t the result of Exercise 1. Let u =1+ 100kt.

Write v = dx/dt = (1/k)[1/(1 + 100kt)}{100k). Then x = (1/k) log (1 + 100kt)
+C. If x=0 when t=0, then C=0. This gives x = (1/k) log (1 + 100kt).

3. When t becomes large, the velocity in the case of Exercise 1 becomes
smaller and smaller. However if we look at (61) this is also true when the
resistance is proportional to the velocity. However when the velocity be-
comes less than 1, the resistance in one case is kv? and in the other kv.
Then the resistance is less in the former case and for very small v the
resistance is much smaller in the case of kv? than in the case of kv, Hence
the object loses less velocity and travels much farther.

4, @) v=-kVv. Then dt/dv = 1/k)(1¥¥). t = 2/kWv + C. When t =0, v=V.

Hence C = 2VV/k. Then v = (V — kt/2)?;

(b) To integrate the expression for v, it is easier to let u = VV — kt/2. Then
x = (—2/3k)(VV — kt/2)® + C. When t =0, x = 0, Hence C = (2/3k)V¥%,
Hence x = (-2/3kK)(VV — kt/2)3 + (2/3K)V¥2,

(c) Take the value of the parentheses from (a) and substitute in the answer
to (b). Then x = 2(V%2— y8/2) /3K

(d) The particle moves until v = 0, We see from (c) that then x = 2V¥%/3k.
If we use the answer to {b) we get o for x but physically this cannot be
correct because the particle does reach 0 velocity and there is no force
to give it an acceleration at that point. The mathematics fails to repre-
sent the physics after v becomes 0.
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5. This is mathematically the same as in the text from (60) to (65) except that
the 100 there is now v,.

6. In place of ¥ =—kv we have vdv/dx =—kv. Then dv/dx =—k and v=—kx + C
When x =0, v=v, Hence C=v, and so v =v,— kx, '

7. We may take over the result of Exercise 1 with 100 replaced by V. Then
v = V/(1 + Vkt). Likewise from Exercise 2, x = (1/k) log (1 + Vkt). In our
case k = 0,0068. We find first the time in which v becomes V/2. This
occurs when t = 1/VK. If we substitute this in the formula for x we obtain
x = (1/k) log (1 + 1). Since log2 = .693 and k = 0.0068, x = 101.9 it,

&. In place of ¥ =—kv? we have v dv/dx =—kv? or dv/dx = —kv. Then by the
usual method of working with dx/dv we find v = Ve~ Now let v = V/2.

Then Y%, = €™ or e =2 and kx = log 2 so that x = (log 2)/k. Since k = .0068
x = 101.9 ft. ’

CHAPTER 12, SECTION &, SECOND SET

1. If we take k negative then v = -kv-32 Hence dt/dv = -1//{(
. = - kv+32
t = _fdv/(Evg32) = ~1/kfkdtd(kv+32) = ~{l/k)log(kv+32)+C{ Then) and
kv+32 = De or v = (D/kle -32/k. When t = 0, v = 0, so that.D =232

2. In the vacuum case v = 32t )
3. Use {68) and the fact that at t =0, v = 1000. Hence 1000 = 32/k - D/k. Then
D = 32 — 1000k. If we substitute this in (68) we have v = 32/k— (32 — 1000k)e™""k
=32/k ~ (32/k — 1000)e*¢,
4 , (a) The procedure is exactly as in Exercise 3except that V replaces 1000.
Hence v = 32/k —(32/k— V)e*t, If V> 32/k the parenthesis is negative.
Then as t increases, because e decreases, v decreases, If V = 32/k,
the velocity v is constant and 32/k. I V < 32/k, then v increases as
t increases because less is subtracted.
(b) The terminal velocity is 32/k in each case., We know that the basic
differential equation is ¥ = 32 — kv. Sinee to start with v=V, if V
> 32/k the acceleration is negative and this remains so until v = 32/k.
If V =32/k, there is no acceleration at the start and then v continues
at the value 32/k so that again there is no acceleration. If the initial
V is < 32/k, then the initial acceleration is positive and the velocity
increases. This keeps happening until v =32/k (at t = «).
5. From Exercise 3 we have v = 32/k — (32/k — 1000)e™*. Then y = (32/k)}
+ (1/k)(32/k — 1000)e™¥ + C. If we agree that y =0 when t =0 then C
= (-32/k2) + 1000/k. Then y = (32/k)t + (1/k)(32/k — 1000)(e™** — 1).

¢ . The terminal velocity is always 32/k (see Exercise 4 ). Hence 32/k =12
and k = %,. With this value of k we may use (69) and (71) to compute v and
y respectively at t = 2. From (69) v =12(1 - ¢’1¢/%) and y = 12.2
+ (9/2)e™%/3 — %/, The values are v = 11.94 ft/sec and y = 19.53 ft.
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. In falling freely v = 32t. Hence after 10 seconds the aviator’s velocity is

320 ft. This is his initial velocity when the motion under air resistance
beging., We may then use the result of Exercise 4 (a) with V = 320. We ob-
tain v = 32/k — (32/k — 320)e 'k,

. We have to start with that v = v, + ky. Then y = v, + ky. Integrating by work-

ing with dt/dy, and since y = 0 when t=0, y = (v,/k) (e — 1), Now we can
differentiate y to get v = v e* and a = v = kv e,

. The assumption that v = ky is a special case of Exercise (8 ) in which

Vo = 0. Then according to the result in (16} y =0 for all £. The body does
not fall,

Here we start with a = ky. Now a =V = v dv/dy. Hence v dv/dy = ky

or v¥2 = (ky¥2) + C. Since v =v, when y =0, then C =v%/2. Then v*

= ky? + v2 or ¥=vky?+ v3. Then dt/dy = 1/vky® + v2. Now use formula No,
38 in the integral tables {(or derive it by a change of variable). Then, with
u = vky, t = (1/Vk) log (Vky + vkyZ + v2) +C or vky + vKyZ + vZ = Devit |
Since y =0 when t =0, D=v, and x/%y + Vky? + v2 = voev'kt | To solve for
y, write vky? + v2 = vsev®® — vky and square and simplify.

CHAPTER 12, SECTION 7

[y
-

At this point v = 0 and this occurs at the maximum height,

The type of problem which neglects air resistance was treated in Chap. 3.
In this case a =—32 and v =—-32t + 1000,

We know that § or v is 0 at maximum height. Hence use (75) and solve for
t when v = 0. The algebra is straightforward and the answer is in the text.
Since (77) gives the height at any time t we substitute the value of t, ob-
tained in Exercise 3 for t in (77). There is no difficulty in the algebra. One
uses the fact that e™1°8% = 1/e!92z = 1/z. The answer is in the text,

The formulas here, as in Chap. 3, are v = 1000 — 32t, y = 1000t — 16t2, When
v=0, t =125 sec. and y = 15,625 ft.

We must calculate t, in Exercise 3 with k = 0.5, Then t, = 2 log (1 + 12%,)

= 2(2.777) = 5.554 sec. Now we calculate y, in Exercise 4 with k = 0,5, Then
¥y = 2000 — 128 log (1 +12%}) = 2000 — 128(2.777) = 2000 — 355 = 1645 ft.

We see from the comparison with Exercise b that the object reaches the
maximum height very much faster but does not g0 nearly as high.

Let T be the value of t when ¥y = 0. Then because we see that both (77) and
(75) involve (32 + 100k)e ™t we try to see what results from taking the value
of this quantity from (77) and substituting it in (75). From (77) with y=0

we find that (32 + 1000k)e* = —32kT + 32 + 1000k. If we substitute this value
in (75) we find that v = 1000 — 32T. This is the value of v when the object
reaches the ground. In the case of no air resistance v is also 1000 — 32T
but in this case, the value of T is 1000/16 and so v = —1000,



87

9.(a) Take the upward direction as positive. During the upward motion
the resistance is downward and so is -Kv® where K is positive.
Then by Newton's second law mv = -32m-KvZ.
(b) No. During the downward motion the air resistance is upward and
should be positive. 3ut -Kv? is negative.
10.{a) Given v = -32-kv?, dt/dv = -l/(32+kv2}. This form suggests
an arc tan integral (Ch. 11, sec Y. Write t = -(1/32)
fav/[1+(x/32)v?] and let u = vk/32 v. Since du/dv = vk/32
we write t = (~1/32)vV32/k fl/{1+u2)vk732 av = ~1/¥32k fdu/[l+u2].
Then t = -1//32k tan~!u+C. Now replace u by its value and solve
for wv.
(b} Using the result of {(a) let v = 1000 when t = 0. Then
v = ¥32/k tan (oa-v¥32K t) where o = tan~'vk/32 1000.
{c) a = tan" /7p.005732)1000 = tan"'12.5. Hence o = 85°25' = 1.491
rad. approx. Then v = 80 tan(1.491-0.,4t). Now v = 0 when

t = 3.7 sec. approx.
11i.{a) We have y = ¥32/k tan(a—v32k t). Replace tan by sin/cos and let

u = cosf{a—-¥32k t). Then du/dt = v¥32k * sin(a-v32k t). Hence
write v = [(1/k}[sin{a-v32k t)/cos(a-V32k t)1/32k dt =
(1/k) [{1/u) (du/dt)dt = (1/k) [{(1l/u)du = (1l/k)log u+C =
(1L/%)1log cos{a=v32k t)+C.

(b) If we measure height from the ground up then y = 0 when t = 0.
Then ¢ = ={1/k)log cos a.

(c) We wish to calculate y = (1l/k)log cos(a~-v32k t)-(1/k)log cos a
when o = 1.491 rad. (see exercise 10{c}) and k = 0.005., Now

log cos 1.491 = 8.90260-10 = -1.0974. Hence y = 200 log cos
(1.491-0.4¢t})- 200(-1.0974). We know from exercise 10(c) that
the time to reach max. ht. is 3.7 sec. Hence max. ht. = 219.5 ft.

12. From exercise 10(b) we know the formula for the velocity at any
time t. At maximum height v = 0. Hence w-v32k t = 0 where
¢ = tan"! (YK/32 1000). Hence t, = (1/V/32K)u.

13. From {(lla} and (llb) we have the formula for the height at any time t.
In exercise 12 we calculated the time to reach maximum height when
vy = 1000. Using the value t; = (1/v/32k)tan”'a, substitute this in
the formula for height. This gives vyv; = (1/k)log cos 06-{1/k)locg cos o

= (1/k)log cos[tan™*vk/32 1000]. The ccsine of the angle whose
tangent is v/k/32 1000 is 1//1+(k/32)10002. Then'y, = -1/k

log (1/vI+k/32Y10002) = {(1/2k)log[l+(k/32)10002].

CHAPTER 12, SECTION 8 , FIRST SET

1. {a) Since tanhx = sinhx/coshx, if we substitute ~x for x in {78 ) and
(79 ) we see that sinh{-x) =-sinhx and cosh (—x) = coshx.

(b) Replace tanh (x/2) by sinh (x/2)/cosh (x/2) in numerator and denomina-
tor and simplify. This gives sinhx = 2 sinh (x/2) cosh (x/2). Now use
the definitions of sinhx and coshx in (78) and (79) to form the right
side, Multiplication gives sinhx.

{¢) Replace tanhx by sinhx/coshx and simplify. Use cosh®x — sinh®*x =1,

(d) Use the definitions sinhx and coshx in (78 ) and (79 ) and form
2 sinh x coshx,
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(e) Use the definitions of sinhx and coshx in (78 } and { 79) to form
cosh®x + sinh®x.

{f) Use (e) and replace sinh®x by cosh®x — 1,

{g) Use (e) and replace cosh®x by 1 + sinh?x.

(h) tanh2x = sinh2x/cosh2x = 2 sinhx coshx/(cosh?x + sinh?x)} by (d) and
(e). Now divide numerator and denominator by cosh?x.

(i) Replace each function by the definitions in (78 ) and (79) . Of course
sinh (x + y) = [e®Y — e~ %) /2,

(i} Proceed as in {i}.

(a) Since sinhx = (e*—e7¥)/2, if we differentiate with respect to x we ob-
tain (e* + e*)/2 which is coshx.

(b) Write tanhx = sinhx/coshx and differentiate the quotient. Use the re-
sult of (a) and (80) to carry out the differentiations.

{(c) Write cothx = coshx/sinhx and differentiate the quotient, using (a)
and {80.) to carry out the differentiations,

(a) Use the definition { 96) of sinh™'x and differentiate.

{b) Use the definition { 97) of cosh 'x and differentiate.

(¢} Use the definition ( 98) of tanh*x and differentiate.

CHAPTER 12, SECTION 8, SECOND SET

1.

To calculate the velocitg we use (111) or (116) with k = 0.005 and

t =3.7. Then y = 80[(e®**?5-1)/(e?*%%+1)] = 72 ft. approx. To
calculate the distance fallen in 3.7 sec. we use (115) or (118) with
k = 0.005 and t = 3.7. Then y = 200 logl[(e!**%+e~1%%) /2] =

171 ft. approx.

- We have from (115) that 219.5 = (1/k)logl{a+l/a)/2] or 219.5k

=log[(a? + 1)/2a] or et!= (a%+ 1)/2a or 3 = (a% + 1}/2a. If we solve for a
we get a =0.17 and a = 5,83, Then ¢”%¥ =0.17 and e"%%% = 5,83, Taking
logs of both sides we see that the first value of t is negative (which has no,
physical meaning, and the second yields t = 4.4 sec. approx.

On first thought we might argue that the object should fall the 219.5 feet
faster than rise 219.5 feet because on the way down gravity helps the motion
whereas it hinders the upward motion; the air resistance hinders the motion
both ways. However the object is shot up with a velocity of 1000 ft/sec and
covers some distance before losing a good deal of its velocity. On the way
down the object starts with 0 velocity and air resistance opposes what little
velocity the object gains. Even if the object took 3.7 seconds to fall and there
were no air resistance it would attain a velocity of only 32(3.7) ft/sec. 1t
cannot cover much distance because then its average velocity would be
1. (32)(3.7) or about 80 ft/sec and in 3.7 seconds it would fall 222 ft. Hence
with no air resistance it would cover only slightly more than the 219.5 feet.
The retardation due to air resistance of .005v% is small but this is an accel-
eration which constantly reduces the velocity and so the object should take
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more time to fall. We can also argue that the terminal velocity, v32/k,
amounts to 80 ft/sec in this case. This shows that the object doesn’t come
near reaching the 1000 ft/sec veloeity with which it is shot up.

. We use (111 to calculate the velocity when t = 4.38 sec. and k= 0.005. We
tiave y = V6400 (e2¢-#(4.38) _ 1) /(209 @.38) 1 1) = 8(0(33.19 - 1)/(33.19 + 1)

= 75,2 ft/sec. We see how little velocity the object acquires by the time it
hits the ground compared with the 1000 ft/sec with which it was shot up.

. We have v dv/dy = 32 — kv? or dy/dv = v/(32 — kv?), Let u = 32 — kv®. Then
y = (—1/2k) log (32 — kv2) + C. When y =0, v = 0. Hence C = (1/2k) log 32.
Then y = (1/2k) log 32 — (1/2k) log (32 — kv?), which is the text’s answer,

. We start with the step in Exercise 4 where y = {~1/2k) log (32 — kv?) + C;
only now when y =0, v =v,, Then C = (1/2k) log (32 — kv&). With this value
of C the answer is that in the text,

. From the answer to Exercise 5 (see text) 29 = (32 — kv,)%/(32 — kv?). Then solving
for v gives v = V(32e® + kv2 — 32)/ke®™. Now we see from (115) that as t
becomes infinite, y becomes infinite. The terms involving y in the expres-

sion for v are 32e2, These become infinite as y does and the radicand
approaches 32/k. Hence the terminal velocity is v32/k.

. We know from Exercise 6  that v32/k = 16. Hence k = ¥,, Now we use
(111) to find t when k=Y, and y = 15.8 sec., Then 15.8 = 16(e* — 1}/(e* + 1),
Solve for e*. e* =159, Then 4t = log 159. The log 159 is not in our natural
log tables but we see from table V that e5=148.4 and e®=403.4. Hence

log 159 = 5,04 approx. Hence t = 1.26 sec approx.

. The terminal velocity is v32/k. Hence we have but to calculate this quantity
for the two given values of k.

. We can use the result of Exercise 4 which states that

y = (1/2k) log{32/(32 — kv?)]. The v in one case is .95(170) = 161.5 and in the
other case it is .95(15) = 14.25. Substitute these values of v in the formula
and calculate y, The answers are in the text,

From Exercisel3 of Section 7 , with V replacing 1000, we have

y; = (L/2k) log[L + (V?k/32)]. This is the height to which the object will rise.
Now to calculate the velocity it acquires in falling this distance we use the
result of Exercise 4 in this list and first solve for v in terms of y. We
obtain v2 = 32/k — (32/k)e?¥.If we now substitute y, for y we have

v? = 32/k — (32/k)[32/(32 + VZk)]. We have used the fact that e 1082 = eloa?’
=z '=1/z. Hence v? = 32V (32 + V2k), which equals the result in the text,

1
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CHAPTER 12, SECTION 9

(a)
()
(c)

(d}

(e)

(£}

Write logy = x logx® = 2x logx. Then (1/y)}y'= (2x)(1/%) + 2 logx

=2 + 2 logx. Then y'= (2 + 2 log x} (x%)*.

Write logy = 2x logx® = 4x logx. Then (1/y)y'=4 + 4 logx.

y'= (4 + 4 logx) (x2)2*,

Write logy =logV2x + 5 — log vx% + 7 =Y} log (2x + 5) — ¥, log (x2 + 7).
Then (1/y)y'=[1/(2x + 5)] — [x/{x* + T)]. Hence

y=[1/(2x+5) —x/(x2+ T)] [V2x + 5/vx? + T].

log v = 3 log(x2+2)+4 log (1-x%). Then (l/g)dy/dx =

6%/ (x+2)+12x%/{1-x%). Then dy/dx = (x%+2)7(1-x*)*

[6x/ {x+2)+12x%/(1-x*)].

Write log v = 6 log(x?+1)+4 log(3x°®-5)+3 log(x“—Zx). Then
(L/y)y' = l2x/x2+1)+36x2/{3x2-5)+(12x°~6)/x"-2x). Multiplica-
tion of both sides by y gives the result.

log v = log x+2 log (1-%x2)-1/2 log(l+x?®). Then {(1/y}y' =
1/x-4%/ (1-x2) -x/(1+x?). One now multiplies by y as in (d).
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Solutions to Chapter 13

CHAPTER 13,SECTION 1

1.

2.

10,

11,

In each case we use (8). (b} dy = ¥, x 42dx; (d) dy = cosxdx;

(£} dy = (1/x)dx; {g) dy =e*dx; (1) dy = 4(x% + 1)°2xdx.

If yv=vX, dy =1/2/xdx. When x = 100 and dx = 1, dy = .05. Also,at x = 100,

y = 10, dy is merely the (approximate) increase in y when x changes from

100 to 101, Hence the answer is 10.05.

If ¥ =sinx, dy = cosxdx. Let x = 60° and dx =—1°=-0.01745rad. Then

dy = %, (-0.01745) = —.0087. At x = 60° sinx =+3/2 = 0.866. Hence y +dy

= ,8673.

Since V =% mr3, dV = 4mr®dr. When r = 3 and dr = 0.2, dV = 7,27,

The width x = 50 cot A where A is the angle of elevation. Then

dx =-~50csc? A dA. When A = 45° and dA = 20’ = 0.00582rad,

dx = ~50-2{0.00582) = 0.582, which is about °%,..

T = (29/V32)(1/2VL)dL. We are given that df/{ = 0.01.

(a} The approximate error in the period is (7/V32 )V }{d£/¢) and since
d£/2 = 0.01, dT = /' {/32 (.01) = 2%V /32 (.005) = .005T. Hence dT/T
= ,005.

(b} dT/T ig the error in T, and T is the number of seconds in a period.
Hence dT/T is also the error per second.

(¢} The error in one day is 60 60.24(,005) = 432 seconds.

. When r =scos A, dr = —ssinA dA and when r =hcot A, dr = —hcsc? A dA,

Since sin A is small when A is small, whereas csc A is very large, the
first value of dr would be smaller.
When s =hesc A, ds =~hcesc Acot AdA and when s =r gec A,
ds =rsec Atan A, When A is small, sec Atan A is much smaller than
csc Acot A, Hence the latter formula, s = r sec A, is better,
Since T = 24Y0/g and g is the independent variable, dT = 27V€ (—1/2g%/%) dg
= (-~T/2g)dg. In one day T = 86,400 sec. Then, since dT = 20,
dg =—(2d7T/T)g = g/2160,
The arithmetic in this problem is easier if we recognize first that we want
the error per second; this is dT/T., Hence we calculate this and find
dT/T=(1/20)a¢ . 8ince ¢ = 3 and 4L = ¥, (in feet), dT/T = ¥, - 96. This is
the error per second. Multiply by 3600 24 to get the error in seconds for
oneday or by 60- 24 to get the error in minutes.
Ans. 2%, minutes,
(a) I g is the independent variable, dT = {(—T/2g)dg. See Exercise 9.
Then dT/T =~dg/2g. If dg/g = 0.002, then 47T/T = 0.001,
(b) We start with T = 27¥¢/g. Then g = 4r2¢/T%. Since T is constant,
dg = (422/T?)dl = g(dL/0), Now df/¢ = 0.005., Then dg/g = 0.005.
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{¢} From (b) we have g =472¢/T%, Now T is the independent variable.
Then dg = —8#2¢T3dT=—2(4924/T?)(1/T) AT = - 2g{dT/T). We are
given that dT/T = 0.001. Then dg/g =—0.002,

12, vV = ar?h. Then h = V/ar2, Hence dh = (-2V/7r®)dr. We have that r =5
and h = 10 and so V = 2507, Also dr = 0.05. Hence dh = 0.2 in.

13. dy = (sec®’x/tanx)dx. When x = 60° and dx = 1’ = (.000291 rad,
dy = (4/V3)(0.000291) = 0,0007.

14. dR = (- V?sin2A/g%)dg =~ (VZsin2A/g)(dg/g) = —Rdg/g. Hence

dR/R = —dg/g.

15. dy/dx means PI’% Ay/Ax or 1'(x) or y! It also means the quotient of dy

by dx where dy = {'(x)dx.

CHAPTER 13,8SECTION 2

1. We have f{b) —f(a) = t'(X)(b — a) where a < X < b, Since {'{x) >~ 0,
f(b) > f(a).

2. We wish to find the ¥ for which 4% — 12 = 2X(4 — 1). Then X = 2Y,.

3. Here we have 4° — 1° = 3%%(4 — 1). Hence X = V7. The value —+7 does not
lie in the interval (1, 4).

4. By applying the mean value theorem we have (1/1) - (1/-1) = (- 1/%2) -

(1 - (1)) or X2 =-1. Hence there is no X between —~1 and +1. The theo-
rem fails because the function is not continuous in the interval (-1, 1).

5. By the mean value theorem, sinx — sin0 = cosX(x — 0). Now cosX < 1 for
x > 0 and < 7/2, Hence x > sinx for 0 < x< 7/2. For x= 7/2, X is
necessarily >sinx because sinx = 1.

6. If v =logx,y'=1/x. Then log(l+h)—1logl=[1/(1+h){(1 +h—1). Since
1 +h lies between 1 and 1 +h, h < h. Hence log (1 +h) > h/(1 +h). Like-
wise 1/(1 +h) < 1, Hence log (1 + h) < h.

7. e¥—e°=e¥(x —0). Now X > 0; hence e* > 1. Then e*—e” > x and
e* > 1 +x.

B. ab® +bb+¢ — (@a?+ba +c) = (2aX + b)(b — a). Then a(b?—a?) +blp —a)
= (2aX + b)(b — a). Divide through by (b —a). Then ab + a* + b = 2ax + b.
Hence X = (b + a)/2.

9. The average velocity.

CHAPTER 13, SECTION 3,FIRST SET

1. (a) Apply (22) directly.
(b) Apply (22) directly.
(¢) Differentiating the numerator gives (1/x/n}(1/n) = 1/x. Differentiating
the denominator gives —1, Hence f/(x)/g’(X) =—1/x and as x ap-
proaches n the limit is ~1/n.
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(d) Apply (22) directly. Ans. 0,

(e) Applying (22) once gives another 0/0 form. Hence apply 22) again to
the new form. Ans. Y,.

(f) Apply @2) directly. Ans. 1.

(g) Applying (22) gives {sec?x —~ 1)/(1 — cosx}. This is indeterminate at
x = 0. Apply {22) again, This gives 2secx secxtanx/sinx. Now
tanx = sinx/cosx. Hence the expression becomes 2sec?x/cosx and
as x— (0 this approaches 2.

(h) The given expression is the derivative of sinx at x = a. Hence the
answer is cosa.

(i) Apply @2) directly.

(G} Apply @2) directly. _

2. The original function is not an indeterminate form. Hence L’Hospital’s rule
does not apply.

3. L’Hospital’srule calls for the existence of lim [i’{x)/g'{x)]. If this limit
does not exist, and it doesn’t in the problem in question, we cannot conclude
anything by the rule. We may however find the limit of the original function
by some other means and we can.

4. As k approaches 0 in the expression for v we approach a 0/0 form.
Differentiate numerator and denominator with respect to k. This gives
(32te™)/1, As k approaches 0 the expression approaches 32t.

5. Differentiate numerator and denominator with respect to k. This gives
32(t —te™)/2k. As k approaches 0 the expression is indeterminate.
Hence apply (22)again.and we obtain as the limit 16¢,

6. Apply (22} by differentiating with respect to k. This gives 100t/(1 + 100kt).
As k approaches 0 we get 100t which is the correct formula for distance
traveled in a vacuum.

7. Write the given expression as (32 — 32¢™ + Ve ™k)/k. Then as k ap-
proaches 0 the expression approaches a 0/0 form. Apply (22). This gives
+32te™ + Ve ™ — kit Ve™, As k approaches 0 the expression approaches
32t + V.,

CHAPTER 13, SECTION3 , SECOND SET

1. (a) Write the expression as tan2x/tanx and apply (22).
(b} Apply (33). This gives lim 5x*/e* and is still indeterminate. But we

can see that repeated application of (33) will give 5!/¢* and the limit
is 0.

(c) This is a 0/0 form. Apply 22). Ans. ¥,.

(d) Compare (b). Apply (33} n times. Ans. 0.

(e) Applying (33) gives sec xtanx/sec?x = tanx/secx = sinx. Hence the
limit is 1.

(f) Applying (33) gives cosx/sinx/seczx/tanx= 1/sec?x. As x approaches
0 the limit 1s 1.
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{g) Differenttating numerator and denominator gives —2/(1 ~ Zx)/?r sec? X,
Write this as —2cos® 7x/7(1 — 2x). For x approaching Y%, this is a
0/0 form. Hence apply (22).

(h) We must apply (33) n times. Then only a,/b, will remain.

(i) I we apply (33) m times, the numerator will be a constant and the
denominator will still contain positive integral powers of x. Hence the
limit will be O,

2. Since the original function and its reciprocal have the same limit, £=1/f.
Hence f£= #1. Bince the original function is positive, £ = 1.

CHAPTER 13 ,8ECTION 3, THIRD SET

1. {(a) Write the given expression as logx/ l/w/SE', differentiate numerator and
denominator and simplify.

(b) Write as t/e'”*. The numeraior approaches 0 and the denominator be-
comes infinite, Hence the limit is 0.

{c) Write the given expression as (x* — sin®x)/x% sin?x. This is a 0/0 form.
Apply (22} four times. The differentiation is straightforward though one
can save algebra by merely adding terms at several stages. The answer
is 3.

(d) Write as tan (3/x)/1/x. This is a 0/0 form. Apply (22) once. This
yields 3sec?{3/x) which has the limit 3 as x approaches =,

{e) Writeas (tlogt -t +1)/(t - 1)logt., This is a 0/0 form. Apply (22
twice and we obtain the limit .

(f) This form is not indeterminate. e*/* approaches 1 and the factor t
becomes infinite.

(g) This is a 0.« form. Write it as log tanx/l/x. Apply (22). This gives
—x(x/tanx)sec?x. Now x/tanx approaches 1 [It is cosx{x/sinx).]
Hence the entire expression approaches 0.

(h) This is an =~ form, Write if as
(sin 3xcosx — cos 3x sinx)/cos xcos 3x. Now it is a2 0/0 form. But
gin 3x cos x — cos 3xsinx = gin (3x — x). Hence we have
sin 2x/cos x cos 3%, But sin2x = 2sinxecosx. Hence we have
2 sinx/cos 3x and as x approaches 7/2 the expression becomes in-
finite,

(i) Write logy = xlogsinx. Now write xlogsinx as log sinx/ 1/x. Apply
{22). This gives cot x/—- 1/%* =—-x*/tanx, Apply (22) again and the limit
is 0. Since logy approaches 0, y approaches 1,

(§) Let y =xY* Then logy = (1/x)logx. Now 1/% becomes infinite and
log x becomes infinite. Hence logy and so y becomes infinite.

(k) Thisisa 1 form. Write logy = cotxlog (3sinx + cosx). The right
side is @+ 0 form. Write it ag log {3 sinx + cosx)/tanx, This is a 0/0
form. Apply (22), This limit is 3. Hence y = 3,
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() This is a 1” form. Write logy = (1/x)log (e* + 2x). The right side is an
«©.{ form. Write it as log (¢* + 2x)/x. Now it is a 0/0 form. Apply
(22). The limit is 3. Hence y = &2.

(m} This is an ©° form. Write logy = cosxlogsecx. The right side is a
0 - form. Write it as log sec x/secx. Now it is an =/~ form. Apply
(33). Then the limit is 0 and y = 1.

(n} This is a 17 form. Write logy =[1/(1 —x)]logx. Now it is an <0
form. Write the right side as logx/(1 —x) and we have a 0/0 form.
Apply (22). Then the limit is —1 and y = e™.

(0) This is an % form. It is not indeterminate because if the base and
exponent both grow larger the entire power grows larger. The
answer is «, _ ‘

(p) Write logy = [1/(x — 1)]log (x — 1). Both factors becomes infinite as
X — 1. Hence logy and y become infinite.

(@) This is an = —< form, Write it as log{(1 + x)/x] = log[(1/x) + 1], As
X becomes infinite the number 1/x + 1 approaches 1 and the logarithm
approaches 0. _

{r) This is a 0- < form. Write it as log 2x/cscx. This is an ©/© form.
Apply (33) and this gives 1/x/~cscxcotx. Write this as —sinxtanx/x.
This is a 0/0 form. Apply (22). This gives ~sinxsec?x — cosxtanx.
The limit is 0.

(s) This is an % — = form. Write it as (x — sinx)/x sinx. Now itis a 0/0
form, Apply (22)twice. The limit is 0.

(t) This is an «° form. Write logy = (1/x)log (1 + x). The right side is a
0-% form. Write it as log (1 + x)/x. This is an ©/= form. Apply (33).
The limit is 0. Hence y = 1.

(u) This isa 0~ form. Write it as x/tanx. We know this approaches 1.

(v) This is an © — « form. Write it as (1 — sinx)/cosx and now it is a
0/0 form. Apply (22) and-the limit is 0,

(w) This.is a 0° form. Then logy = (a/logx)logx =a. Then y = e=

. Yes. I the base is getting larger and larger and so is the exponent, the entire

power becomes infinite,

Yes. We have a form [{(x)[¥® where f(x) approaches 0 and g(x) becomes

infinite as, say, x approaches a. Then logy = g(x)log (f(x). Now logf(x)

becomes infinite and g(x) is also becoming infinite. Then logy becomes
infinite and so does y. Hence a 0 form yields « always. See Exercises

1) and 1(p).

Following the suggestion we add and obtain v = (—32 + 32¢™ + 1000ke ™) /k.

This is now a 0/0 form. Apply {(22) with k as the variable. This gives

~32te™ + 1000e™™ — 1000kte™. As k approaches 0, v approaches

— 32t + 1000,

As the expression stands it is a combination of indeterminacies. If we add

the fractions we get y = (~32kt + 32 — 32¢™ + 1000k — 1000ke™)/k?®. For

k =0, this is a 0/0 form. Hence apply (22) twice. The limit as k approaches

0 is —16t% + 1000t
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. Using the similar triangles BNP and BAM we have AB/MA = NB/NP. In-
troduce the angle 8 = angle NOP, Then AB=r + OB, MA =rf, NB = NO + OB

=rcos 8+ 0B, NP =rsinf. If we substifute these values in the equation

and solve for OB we have OB = (frcos 8 — rsin 8)/(sin 8 ~ 8), This is a

0/0 form. We apply (22). Simplify. Then apply (22 again. Then

lim OB = 2r.
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Solutions to Chapter 1

CHAPTER 14, SECTION 2

1.

(a)

(o)

(c)

(d)

(h)

Let u =x, vV= cosx. Then =1, v = sinx. Hence

fxcosxdx =xsinx — f sinxdx = xsinx + cosx + C.

Let u = logx, v'=x. Then u'= 1/x, v = x%2. Hence

fxlogxdx = (x*/2)logx — f (x%/2)(1/x)dx = (x%/2)logx — (x¥/4) + C.
Let u =x, V=¢e% Then v =1, v = e*. Hence

f xe"dx=xe"-fe"dx= xe* —e*+ C.

Let u =x% v'=e* Then u=2x and v = ¢*. Hence

fxzex dx = x%e* — f e* 2xdx. This latter integral must again be

evaluated by integration by parts. The result of this is twice the an-
swer in (¢). Hence the complete answer is x%™ — 2xe* + 2e* + C.
Let u = e* v'= sinx. Then

f e* sinxdx = -cos xe* +f cosxe* dx. To evaluate the latter ini.:egral let
u=¢e v=cosx. Then [cosxe*dx =e*sinx ~ | sinxe* dx. Substitute
this result in the first one and transpose f sin xe* dx to the left side.
Divide by 2.

Let u = logx, v = 1. Then

f logxdx = xlogx — fx(l/x)dx =xlogx—x+ C.

Let u =%, vV=e® Then u'=1, v =(1/a)e™. Hence

f.xe“ dx = (x/a)e®™ — f (1/a)e™ dx = (xe®*/a) — {e¥/a?) + C.

Let u = e™, v'= sinnx. Then u'= ae®, v = (-1/n)cosnx. Hence

f e*™ sinnxdx =—(1/n)e*cosnx + f (a/n) cos (nx)e™ dx. To do the latter
integration let u = ™ v'=cosnx. Then f cos (nx)e™ dx

= e™(1/n) sinnx - [ (a/n)sin (nx)e™ dx. If we substitute this latter re-
sult in the first one and transpose the integral we get on the left side
[(n? + a?)/n?] f e*sinxdx. Divide through by (n® + a?}/n? and we get

f e*sinnxdx = [e*/(a? + n?)| (asinnx —ncosnx) + C.
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(i) Let u=x%, v'= sin2x and apply the formula.
j) Let u=x, vV =sec?2x. Then

fxse(:2 2xdx = (xtan2x)/2 — Y, f tan 2x dx. But [ tan2xdx
= | (sin2x/cos 2x) dx = -, log | cos 2x|. Hence the answer is

[(xtan 2x)/2] + Y, log | cos 2x| + C.
(k) Let u=1x, v'= sin®(x/2), Then u'=1 and v = Y, (x — sinx). Then

[ xsin®(x/2)dx = x¥2 - (x - sinx)/2 — [ [(x/2) — (sinx)/2]dx

= x%4 - [(xsinx)/2] — (cosx)/2 + C.
(1) Let u=sinx, v'/= cos 3x. Then

[ sinx cos 3xdx = sinxsin3x/3 - [[(sin3x cosx)/3]dx. Now evaluate the
latter integral by parts. Let u = cosx and v’= gin 3x. Then
[ [(sin3x cos x)/3]dx = —(~cosx cos 3x)/9 — [ [(cos 3x sinx)/9] dx. I we

substitute this result inthe firstintegration and transposethe integral we
get [(3sinx sin 3x)/8] + [(cosx cos 3x)/8] + C.
(m) Let u =arcsinx, v=1. Then u'=1//T —x2, v=x. Then

farc sinxdx = xarc sinx — f (x/V1 — x?)dx = xarcsinx + V1 —x2 + C.

(n) Let u =arctanx, v'=1 and proceed as in {m). The answer is
xarctanx — Y, log (1 +x%) + C.
(0) Let u=xe* v=1/(1 +x)%. u'=e*+ xe*, v=-1/(1 +x). Then

J1xe)/(1 +x)]dx = - (xe")/(1 +x) + [ [(e*—xe?)/(1 + x)]dx
=—(xe¥)/(1 +x) +f [’ +x)1/(1 +xX)dx =~ (xe*}/(1 +x) +e*+C

=[e*/(1 +x)] + C.
(p) Follow the procedure of (k).

(q) Let u =x2, v'=cosx. Then fxz cosxdx = x?ginx — f 2x sinxdx. To

integrate the latter integral let u = 2x, v'= sinx. This gives the text’s
answer.

The constant of integration has been omitted, The right side of the integra-
tion by parts should read 1+ [ dx/x + C.

{a) Same reason as in Exercise 2.

(b) Write u = logx. Then the given integrand is in the form (1/u)du/dx.
Hence the text answer.

From secx = coshu we have by implicit differentiation with respect to u,

sec Xtanx(dx/du) = sinhu. Then in differential form secxdx

= (sinhu)du/tanx. We must convert tanx to an expression in u. But
tan®x = sec?x — 1 = cosh®u — 1 = sinh?u., Hence tanx = sinhu. Then
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secxdx = du and f secxdx = fdu =u + C = coshl(secx) + C. Since

sinh*u = cosh®u — 1 = sec®x — 1 = tan?x, sinhu = tanx and u = ginh™*(tan x).
Hence this is also a form of the integral u + C,

Follow the method of Exercise 4 with appropriate changes since here we
have cscx in place of secx.

Let y = log(secx + tanx) = log(sec x + Vsec®x — 1), Then e¥ = secx
+vVsec’x — 1 or (e¥— secx)? = sec?x — 1. Then secx = (e?V + 1)/2eY

= (e¥+ e7¥)/2 = coshy. Hence coshy = secx and y = cosh™ (secx).

CHAPTER 14, SECTION 3

1.

Let u = cos™x and v/= sin™xcosx. Then u’=—{(n- 1)cos™2x sinx,
sin™!'x cos"1x
m+1

v = (sin™*'x)/m + 1. Then f sin™x cos™xdx =

fsinm“"x(n —1)cos™2®x
+
m + 1

break up the last integral into a difference of two integrals and transpose
the second of these.
(a) Let u =cos™'x, v'=cosx. Then straightforward integration by parts

gives the result. R
(b) Replace sin®x in the right-hand integral in (a} by 1~ cos®x and trans-

. Now replace sin™*2x by sin™x(l — cos®x} and

pose the term; —(n-—1) f cos”xdx, which results from the substitution.

Repeat (a) and (b) of Exercise 2. Thus to do (a) let u = sin"'x, v'= sinx
and integrate by parts. Then replace cos?x by 1 — sin®x in the right hand
integral and transpose the integral containing sin"x.

{a) Use the statement in Exercise 3 to reduce f sin®x dx fo an expression
involving f sin*xdx and then apply the statement again to replace
f sin®*xdx by one involving f sin®x dx. One can repeat the process
once more and replace sin®x by 1 or evaluate f sin*xdx by using

sin®x = (1 — cos 2x)/2.

(b) Use the result in Exercise 2(b) and as in 4(a) apply the formula re-
peatedly. The answer is Y, cos®xsinx + %,,cos®xsinx + %, cosxsinx
+8%ex +C.

(¢c) Use (13) to reduce to f sin*xdx and then apply the result of Exercise

3. Or replace cos?x by 1 — sin?x and evaluate both resulting integrals
by using Exercise 3.

(d) Use (13) twice or replace cos*x by (1 — sin?x)® and use Exercise 3.
Ans. —Y sin"xcosx + ¥, sin®xcosx — ¥, sin®xcosx — ¥,,. sinxcosx
+ Y1sx + C.
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(e) Use (16) to reduce to an integral involving sin*x and then use Exercise

3.

(f) Here (16) seems to be applicable but fails because p + 1 = 0. Replace
sin®x by 1 — cos®’x and multiply out. Then replace cos®x by
cos x{1 — sin®x). Ans. log(secx + tanx) ~ sinx — ¥, sin®x + C.

{g) Use the result of Exercise 3 in reverse. That is, express

[ sin"?xdx in terms of | sin"xdx and then apply this new formula to

f sin"*xdx. Ans. (~cosx/3sin*x) - (2cosx/3sinx) + C.

CHAPTER 14, SECTION 4, FIRST SET

1. {a) To obtain the partial fractions set [A/(x + 2)] + [B/(x — 3)]
=1/(x + 2){(x — 3). Clearing of fractions gives A(x — 3) + B(x + 2) = 1.
When x =3, 5B=1; B=1%,. When x=-2, -5A =1, A =-%,. Hence
Jax/x = 3)(x +2) == [ dx/(x + 2) + ¥, [dx/(x— 3)
=~ log (x +2) + Y log (x — 3) + C.

(b) Set 1/x(x—3)(x+2)=A/x+B/(x~3)+C/x+2). Clear of fractions.
Then A(x —3)(x +2) + Bx{x + 2) + Cx{x — 3) = 1. Let x=0. Then
~6A =1 and A=-% . Let x=3, then 15B=1 and B =Y. Let
X =—2; then 10C =1 or C =Y, Hence
[ dx/x(x + 3)(x — 2) ==Y, [dx/x + Y, [ax/(x - 3) + Y, fdx/(x +2)
=Y. logx + ¥, log(x — 3) + ¥, log(x + 2) + C.

(c) Write the given integral as f dx/(x - 3)(x — 2) and follow the method
in (a).

(d) Let x+2)/(x—3)(x—-4)=A/(x—3)+B/(x—4). Then x + 2
=A(x-4)+B(x—-3). Let x=3; then —A=5. Let x =4; then B = 6.

Hence the given integral equals —5 fdx/(x ~-3)+6 f dx/(x — 4)
=—-5log{x — 3) + 6log(x — 4) + C.

(¢) Let & +x+1)/(x—1Dx+2)(x-3)=A/(x—1) +B/(x +2) + C/(x - 3).
Clear of fractions and then let x =1, —2, and 3 successively. This
gives A, B and C and then integrate each term.

(f) & +x)/&3+7x%+6x) = x(x + 1)/x(x + 1)(x + 6) = 1/(x + 6). Hence
S 1/(x + 6)dx = log(x + 6) + C.

(g) Try 1/cosx(l+cosx)=A/cosx + B/(1 + cosx). Hence 1 = A(l + cosx)
+Bcosx. Let x =7/2, Then A=1. Let x=0. Then 1 =2A + B. Since



101

A=1, B=-1. Then fdx/cosx(l + cosx) =f 1/(cos x) dx
- [ 1/(1 + cosx)dx = [ secxdx ~ [ [{1 — cosx)/sin?x]dx
= f secxdx ——f 1/sin®x +f cosx/sin?x. In the second integral replace

1/sin®x by csc?x. In the third, let u = sinx. Then integrating gives
log(secx + tanx) + cotx - 1/sinx + C. The last two terms equal
(cosx — 1)/sinx, which is —tan(x/2) because tan{x/2)
=1 —cosx)/2 /¥ + cosx)/2 =({1 — cosx)/(1 + cosx). Multiply
numerator and denominator by 1 — cosx.
2. Write dt/dP = 1/kP(L — P). Let 1/kP(L — P)=A/P + B/(L — P). Clear of
fractions. Then 1 = kA{L. — P) +kBP. Let P = L. Then B = 1/kL. Let

P =0. Then A=1/kL. Hence t = (1/kL) [dP/P + (1/kL) [ dP/(L~ P) or

t+C = (1/kL)log P ~ (1/KL)log(L — P) = (1/kL)log[P/(L — P)]. Then
P/(L — P) =De"™*. Let P =P, when t =0. Then D= P,/(L — P,) and
P/(L~ P) =[P,/(L — P,}je’**. Solve for P. This gives the text answer.

3. Write dt/dx = 1/k(a—x)}{b—x)=A/(a —x) + B/(b — x). Then
1 =kA(b - x}+kB{a~x). Let x=b. Then B=1/k{a - b). Let x =a. Then

A =1/k(pb—a). Then t=1/k(b-a) [dx/(a—-x)+ 1/k@@—b) [dx/(b—x)

= [~ 1)/k({b —~ a)]log (a — x) + [1/k(d — a)]log(b — x)

= [1/k(b — a)]log|(b — x}/{a ~ x)] + C. When t=0, x =0. Then
C =-1/k(b ~ a)log(b/a). Hence t =[1/k(b - a)] log[(b - x)/(a - x)]
~ [1/k(b — a)]log(b/a} or k(b —a)t = log{(a/b)[(b - x)/(a - x)]} or
e*o=a = (3 /o) (b — x)/(a — x)]. Solve for x. This gives the text answer.

4, To find the inflection point we may as well start with dP/dt = kP(L — P)
=kLP — kP? To find d*°P/di?, treat P as a function of t. Then d*P/dt®
=KkLP — 2kPP. This is 0 when P = L/2,

5. The original assumption leads, when fractions are cleared,to x* +1
= A{x +1) + B(x — 1). This is impossible because one side is quadratic and
the other linear. If we divide x? — 1 into x2 +1 we get 1 +2/(x2 - 1), We
may now apply partial fractions to 2/(x* — 1).

6, (a] The method of partial fractions applied to 1/{a?-x?) leads to
1 1 1

a’-x2  2af{a-x) * 2a(a+><)
Hence if dy/dx = 1/(a*-x%), y = (1/2a)log((a+x) (a~x)]. If we
have y as a function of u and u as a function of x then by the
chain rule we get (1}: y = (l/2a))log[(a+u}/(a u}l. To apply
this result to dt/dv = 1/(32-kv?}, let u = vk v and write
dt/i;fl = {1/VK}VKk/(32-u?). We may now integrate by using (1)
S0 at

£ = 1 1o YI24+vK v
2¥32k 32-vk v

+ C.
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Since v = 0 when t = 0, C = 0. If we now sclve for v we get the
formula in the text,

(b) To obtain the result of 6(b) from that of 6(a} multiply the
nuﬁerator and denominator of the result in &(a) by

32 t and apply the definition of tanh x.
Let x represent the amount of substance undissolwved after + hours.
At this time the concentration in the water will be (30-x)/100.
Hence dx/dt = kx[{50/100)-(30-x)/100] = kx[{x+20)/100). Then
dt/dx = (1/k) [(1/x)106/(x+20}1. By using partial fractions we find
that 100/x({x+20) = (5/x)-5/(x+20). Hence we can integrate and ob-
tain log functions. Further when £t = 0, x = 30 and when t = 2,
x = 20, so that k = (5/2)1log(5/6). Then when t =5, % =
{(5/2)log(5/6} ~ 12. Hence 18 grams of the original 30 were
dissolved.

(a) The given information tells us that N'(t) = kN(t) [M=N(t)]. As in
other such problems we can work with dt/dN and use the method of
partial fractions. However, for variety, we introduce the trick
of letting N = 1/w, so that in kt = de/N(M-N) we make the change
of variable N = 1/w, AN = (-1/w?)dy and we have -kt = dm/(Mw 1&
or -kt =(1/Mjlog(Mw~1) or w = (l+De MKt)/M, Then N = M/ (l+De Mkt)

{b) To find when N'(t) is a maximum we can use the usual max. and min.
methed., However, the work is extensive. In the present case we
use N'(t) to obtain N"(t) = -kNN'+kMN'-kNN' = kMN'-2kNN' =
kN'(M-2N). Hence N" = 0 when N = M/2 or half the population.

. The given information amounts to dP/dt = .05P-.02p2 Change to

dt/dP and use the method of partial fractions. ThlS vialds

P = .05e-05t/(c+. 026 05ty

From the given dx/dt we have 1l/x(N-x) = k(dt/dx). Use of partial

fractions gives (1/Nx)+1/N(N-x} = kdt/dx. ﬁﬁggration gives
(1/N) log [N/ (N-x)}] = kt+C or x = DNeNKt/(1+DeMXEy where D = &NC,

Since x = xa at £t = 0 _then x, = DN/(I+D) or D = x o/ (N-% } Then

x = x,NeNkt / (N-x  +x eNkt) As t becomes infinite only the exponential
terms increase and the limit is x¢N/x4 or N.

CHAPTER 14, SECTION 4, SECOND SET

1.

(a) Let x/[(x—3)x+1)?]=A/(x—3)+B/(x +1) +C/[(x + 1)?]. By clearing
fractions x = AR +1PF+Bx-3)E+1)+Cx—-3). Let x=-1, 3, and {
in turn. Then C =Y, A=3%, and B =-%,. Then the given mtegral

becomes ¥ fdx/(x— 3) — Y fdx/(x_+ 1} +Y, fdx/ x + 1)?]. Each in-

tegral is immediately integrable and the result is in the text.

(b) Let (3x + 2)/x*x +1) = A/x + B/x% + C/(x + 1). Clear of fractions. Then
3x+2=Ax{x+ 1)+ Bx + 1)+ Cx% Let x=0, -1, and 1 in turn. Then
B=2,C=-1, A=1. Then the given integral equals

fdx/x+2fdx/x2—fdx/(x+ 1} =logx — 2/x — log (x + 1)
=log[x/(x + 1)]-2/x + C.
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Let (x +1)/[xx—-1)*]=A/x+B/(x—-1)+C/x~ 11 +D/jx - 1)l
Clear of fractions. Then x+ 1 = A(x—1)* + Bx(x — 1?2 + Cx(x — 1) + Dx.
Let x=0,1,—1, and 2 in turn. Then A=-1, and D=2, For x=—-1 we
get 0 =—8A—-4B+2C -D andfor x=2 weget 3=A+ 2B+ 2C + 2D,
Knowing A and D we can solve the last two equations for B and C.
Then B=1 and C =—1. Then the given integral equals

—[ax/x + [dx/(x—1) - [dx/[(x— 1)?] + 2 [ dx/[(x — 1)*]. Each of these

is immediately integrable and we get the text’s answer.

Let (x +1)/[(x —2)*x—3)* ] =A/(x-2) + B/[(x -~ 2)*)] + C/{(x — 3)
+D/[(x — 3)%]. Clear of fractions. Then x + 1 = A(x — 2)(x — 3)?
+Bx—-3)2+Cx-2)°%x—~3)+D(x—2)% Let x=2. Then B=3. Let
x=3. Then D=4, Let x=0, Then 1=-18A + 9B - 12C + 4D. Let
X =1, Then 2=-4A + 4B - 2C + D. Knowing B and D, solve these
last iwo equations for A and C. Then A =-7 and C =~7. Then the

given integral becomes 7 [ dx/(x — 2) + 3 [ dx/[{x - 2)?]— 7 [ dx/(x -~ 3)

+ 4 fdx/[ (x — 3)?]. Each of these immediately integrable. The result is
Tlog[(x — 2)/(x - 3)] - [8/(x — 2}] - [4/(x = 3)] + C.

CHAPTER 4, SECTION 4, THIRD SET

1. (a)

(b)

Let 1/x(x2+4)=A/x + (Bx + C)/(x® +4). Then 1= A(x*>+ 4) + Bx? + Cx.
Let x=0, Then A=%,. Lei x=1. Then 1=5A+B+C. Let x =—1.
Then 1 = 5A + B— C. Since we know A we can solve the last two
equations for B and C. Then B =-Y and C =0, The given integral

becomes fdx/x - f [x/(x*+ 4)]ldx = ¥, logx —~ Y, log (x* + 4) + C.

This can be written Y, logx — ¥, log (x* + 4)*/2 + C, which gives the
text’s answer.

Let x/(x+1)x2+1)=A/(x +1)+ (Bx +C)/(x®+ 1). Then x = Ax* + A
+Bx?+Bx+Cx+C, Let x =~1, Then A=-%,. Let x=0. Then
0=A+C. Let x=1. Then 1 =2A + 2B + 2C. Then C =%, and B =1,
The given integral becomes

Y [ax/x+1)+Y [[&+1)/x2+ 1)]dx =Y, log (x + 1)'
+ 1 f [x/(x* +1)]dx + Y, f dx/(x* + 1) =~ log (x + 1) + ¥/, log (x* + 1)

+ Y,arctanx + C,
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Let x +1))(x®+x)})=A/x+ (Bx+ C)/(x* + 1), Clear of fractions and
let x =0, 1and —1 to determine A, B and C. The integrations are im-
mediate and give the text’s answer.

Let x%/(x* + 5x% + 4) = (Ax + B)/(x®* + 1) + (Cx + D)/(x* + 4). Clear of
fractions and let x =0, 1, —1 and 2 to determine A, B, C and D. This
gives four equations in the four unknowns. We find that A =0, B =-7,,
C =0, D =%, The given integral becomes

Yy [dx/(x2+ 1) +¥, [dx/&® + 4) = -Y,arctanx + Y, [ dx/[(x%/4) + 1]
=—Y,arctanx + 2/ f Y dx/1(x*4) + 1] = —Y,arctanx + ¥, arc tanx/2 + C,
Let 1/(x—-1)x*+4x+5)=A/(x—-1)+ (Bx + C)/(x% + 4x + 5). Then
1=A%+4x+5)+(Bx+C)x—1). Let x =1, Then A=Y, Let

x=0. Then 1=5A—-C and C =-%,. Let x=—1. Then 1=2A + 2B
— 2C. Then B =-Y,. Hence the given integral becomes

1/mf dx/(x — 1) + f [Yox — )/ (x® + 4x + 5)]dx. To handle the second
integral complete the square in the denominator or

J{EY%ex - Y)/[(x + 2P + 1]} dx. Let u =x+ 2 and so x =u — 2. Then
the integral becomes (since dx = du)

f (You + % — %)/ @ + 1)]du = -, f [u/@* + 1)]du — %, f du/(u? + 1)

=—1/.log (u* + 1) — ¥/ ,arctanu + C. Replace u by x + 2 and add back
the integral neglected above. This gives the text’s answer.

Let 1/x—-1PRx2+4x+5)=A/x—-1)+B/(x— 12+ (Cx +D)/(x% + 4x + 5)
or 1=AX~1)x%+4x +5)+B(x®+4x +5)+ (Cx + D}(x — 1)2. Let
x=1. Then B =Y, Let x =0, —1 and 2 in turn which gives three
equations in A, B, C and D, Since we know B, we can find A, C and
D. The integral of (Cx + D)/(x? + 4x + 5) is handled by the method of
the text or of (e) just above. The result is

—Yolog(x—1) - ¥, [1/x— 1)] + ¥4, log (x% + 4x + 5) + % arctan (x + 2)
+ C.

Let 1/x*+1)=A/x+1)+ Bx+C)/(x2~x+1). Then 1 =Ax®-x+1)
+(Bx+C)x+1). Let x=—1. Then A=1,. Let x=0. Then
1=A+C. Then C =2}, Let x=1., Then 1= A+ 2B + 2C. Then

= —1,. Thus the given integral becomes Y, [ dx/(x + 1)
+ [[(~%x +?%,)/(x® — x + 1)]dx. Complete the square in the second in-
tegral. This integral becomes —Y, [{(x —2)/[(x — ¥, )* + %]} dx. Let
u=x-—1%, sothat x =u + %, Then the integral becomes
Y, [+, - 2/ + %] du ==Y, [ [u/@? + %)]du + Y, [ du/(u® + 1)
=y, f [2u/(® + ¥)]du + (L)(/372) [ [@AF)dul/@u? + 1)

=1 log (u? + %) + (1/¥/3)arctan 2u/¥/3). Replace u by its value and
bring in the neglected integral and we get the text’s answer.
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CHAPTER 14, SECTION 4, FOURTH SET

1.

{a) We can apply at once the reduction formula at the top of the page and

()

write down the text’s answer.

Let 2x/(1 +x){1 +xP = A/(1 +x) + (Bx + C}/(1 +x%) + (Dx + E)/(1 + x%)?,
Then 2x = A(1 +x¥P + (Bx + C}{1 +x)(1 + x%) + (Dx + E){1 + x). Let
x=-1. Then ~2=4A and A=-%,. Let x=0. Then A+ C+E=0.
Let x =1, Then 2 =4A + 4B + 4C + 2D + 2E. Let x = 2. Then

4 = 25A + 30B + 15C + 6D + 3E. Let x =—2. Then 25A + 10B — 5C

+2D — E =—4, If we solve for B, C, D and E and we get A =~1,
B=Y,C=-%, D=1, E=1, The integrations are all straightforward

except for f dx/(x*> + 1)*. This is integrated by letting x =tanu. The
entire result is Y, log[(x* + 1)/&x + 1]+ (x~1)/2(x* + 1) + C.

CHAPTER 14, SECTION §

1.

(a)

(b)

(c}

This integrand is a rational function of cos §. Hence let 8= Zarctanu.
Then, by (43}, cos 6 = (1 — u?)/{1 +u?) and, by (45), 48/du = 2/{1 + u?).
Then

dé  2du 1 _ 2du
5+4cosd  1+u? b+ 4f(1~ud)/(1+u)] 9 +u?
Y, 49 Y, du |
=& —-—_--§—-——+-- —————— & P Senhi N =2
T (/3 Then f5 Tdcos s~ PJ T+ ujap Hearctan(w/3) + C.

Since u = tan (8,/2) we have the text’s result.
Let x = 2arctanu, Then using (43}, (44) and (45) we have

fdx/(l + sinx + cosx) = fdu/{l +u) =log {1l +u) + C. Now u = tan (x/2).

Hence the result log|[1 + tan {x/2)] + C. ‘
Using the change of variable (42), (44) for sinx, and (44) and (43) for

tanx we have fdx/(sinx + tanx) = f [{1/2u — u/2}]du = Y, logu — u¥4

+ C. Substituting the value of u gives the text’s result.

CHAPTER 14, SECTION 6

1,

(a}
(b}
(c)
{d)

Use formula #23 followed by the second form in formula #21.
Use formula #64. Ans. {2/V3)arctan[{2x+ 1)//3]+ C.

Use formula #22 followed by the first form in formula #21,
Let x = +/108in 8; then {dx/du)du = +v10 cos 8d0.
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J WI0 = x2/x%)dx = Y,, [ (cos® 6/sin? 6)d6 = ¥, [ {(1 — sin® 9)/sin* §]d0
= Yo f (1/sin* 8) A9 - ¥, f (1/sin% #) d8. Now f 1/sin* # can be

evaluated by applying formula #72 in reverse. That is, solve for the
integral on the right side and then apply it once. Thus

[ sin*?udu = [n/(n — 1)]  sin"udu + [1/(n - 1)]sin"?ucosu. In our case
n—2=-4 sothat n =-2. Then Y, [ sin™*#dg = —Y,,(cos 6/3 sin®6)

— %/,(cos 6/3 sin 0). As for the second, integral, ~, f (1/sin% 8)d@
=—Y, [csc? 8 =+Ycot . Now take the sum of these last two results
and change back to x. Simplification of the sum of terms in x gives

[~ (10 — x2)*/2/30x%] + C.

(e) Use form #23 followed by the upper form in #21.
(f) Use form #52. Ans., Y log[(vx2+ 9 ~ 3)/x]+ C.
(g) Factor out 3 from the radical and apply #51.
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Solutions to Chapter 15

CHAPTER 15, SECTION 2

1L
2.
3.

4.

V= J7 (@5 = x®yax = 94n/3,
. V=2 a8 - (x¥2)]dx = 1287/3.

o = o

. : . b .
The formula for volume of revolution is V = fa 7y?dx. Hence

V= ﬁf’ (mx%/9) dx = 1257/27.

v = [ 716xdx = 1287.

B 2
'S R D

The y=values when x =.2 are -4 and 4. The volume in question is
the difference between the volume generated by a rectangle and the
L e . Ta _ -k 225 _-I-" wZdy =
volume generated by an arc of y2 = 8x. V = [ #(2)*dy-[ wx*dy.

N -L

f*nta-y*/64) = 128/5m.

V=2 [*?n(16 = 2x?) = 128/77/3.

. The line y =3 intersects the hyperbola at X = 4\/'2_ -and the hyperbola cuts

the x-axis at x = 4. The required volume 1s the difference of the Volume of
the cylinder of height 4v3 and radius 3 a.nd the volume generated by re—- h
volwng the byperbola from x =4 to x = 4/%, Thus V = 7324/2

- L n[(9x% — 144)/16]dx. V = ___24_1;(2\/_7- 1).

CHAPTER 15, SECTION 8

1.

The volume generated by revolving about the x-axis is V':-j;a {9~ x%)%dx
=4867/5. The volume generated by revolving around the--y-—axis can be done
by the shell method. Here the formula is V = 1. *2nxy dx. In our case

v =j;)3 2mx(9 = x?)dx = 817/2. The second volume can be done by considering
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the volume generated by the curve x =9 —y from y=0 to y=9 ina
revolution around the y-axis. Hence we merely rewrite the usual formula

toread V = fcd'nxzdy.

The area lies above the arc of vy = (12 —x*)/8 and below the line y = 2. The
line cuts the arc at x =—V4. Hence the y-values in the area are given by
2 -[(12 - x%)/8] or Y, +x%8. Using the cylindrical shell method we have

V= f_;,z 2rx(Y, + x¥/8)dx. The result is —37¥2/5. The negative sign appears

in the answer because we are working with a negative x, a positive dx and
positive y-values. The sign can be ighored.

The cylindrical shell method can be used. We take the axis of revolution to
be the y-axis and the equation of the circle to be (x — b)? + y* = a® Then

V= J;abj: 27xva® — (x —b)?dx. Let u=x—b or x =u+b. Then
V= f::az’ﬂ(u + b)Ya® —u?du = f_:gZﬂuw/az —u?du + _f_:a2#b032 —u®du. The first

integral is immediately integrable. For the second use formula #26 in the
Table. Then V = 27%a%b.

Use the cylindrical shell method. Then V = fﬂﬁ 2rx sinx dx, One can integrate

by parts or use formula #82 of the Table with n = 1. The result is 27°,
By elementary geometry the radius of the cylindrical hole is vb2 — 9. The

remaining volume is a figure of revolution. Taking axes in the usual way
with origin at the center of the sphere the upper half of the volume is
generated by an arc of x? +y? = b? extending from x =+vb2 -9 to x =Dh.

Then V/2 = fogZﬂxydx = f‘z-g-_; 27xvb2 — x2dx = 187, The answer is re-

markable because the result is independent of the radius b of the sphere.
As long as b > 3, the sphere can have a hole 8 inches deep drilled in it,

If b is very large the radius of the cylindrical hole is also very large so
that the remaining volume is constant,

The spherical shell method is best because the density varies with the
radius. The mass of the i-th shell is 2apriAr. Then the integral (cf. p. )

is fOR 4mpr2dr, where R is the radius of the earth.
Use the spherical shell method and the idea of Exercise 6 except that p is
now r2, Hence mass M = fUR 4nridr = 47RY/5.
Use the cylindrical shell method. Hére y = va? — (x — b)2. Then

=2 [*""2mx/a? — (x - bfPdx. To integrate let u=x —b or x =u + b. Then
V =4n f uva? — u?du + 47 f bva? - u®du. The first integral is immediately

integrable and the second is done by formula #26 in the Table. The result
is (4m/3)(a? — b%)*/2 + 27b[(7a?/2) + bva? — b? + a%sin™ (b/a)].
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CHAPTER 15, SECTION 4

1. (a) We use (24). Then s = [ 1+ (9x/4)dx.
(b) It is easier to write y = coshx. Then y'= sinhx. s = f_}!l + ginh® x dx

. Since sinhx = (e¥—¢e™)/2 we get e—e™.

1
-1

= f_icoshxdx = sinhxl

(c) This problem can be done by using (24). The integral to which it leads
can be evaluated by a trigonometric change of variable. However we
can also use (29). In this case x = y*2? and we have a problem of the
type done in (a) but with 0 and 4 as the end values for the y-interval.
We obtain the same definite integral as in (a) but with X and y inter-
changed. '

(d) y'==x%2 —1/2x*. Hence s = flsw/l + (x%/2 — 1/2x?)?dx. Squaring and

simplifying the radicand gives a perfect square so that the integral re-
duces to jls (x%/2 + 1/2x%)dx. Ans. /.
' / m/
(e) Since y'= tanx, hence g = foﬂ "1+ tan?xdx = fo *sec xdx
= log (sec x + tanx) l:m = log (2 +3).

(£) y' = x°-(1/4x%); /14y 2 = x*+(1/4x%). s = [*(x*+1/4x%)ax
= (x*/4)-(1/8x%1|% = 201/9, '

(@) v = (27373 xY/2; 'yr = (v xt/?; JTEy o= (x/a)+1.
8 =

[*/TZ7a7 7T ax = (2a/3) { (+x/a) >/ ?-1},

0

2. Since y™=x/8 we are led at once to an integral of the form given in the
Exercise. The result follows at once.

3. By letting x = rsind and dx =r cos 9 df we obtain from (33)

2
g = fom (r?cos 8/rcos 8)déd =rd |z_/z —
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CHAPTER 15, SECTION 5

o

o0 -J

For a stralght line the inclination of the tangent is a constant angle Hence

d¢ /ds =

The central angle & of the cwcle and the angle of inclination ¢ of the

tangent are related by ¢ = ¢ + 7/2 in the first quadrant (and by minor

variations of this in other quadrants). Moreover s = R# so that 8 = s/R.

Hence ¢ =s/R + n/2. Then d¢/ds = 1 /R,

The line can be represented by y = mx + b. Then y'=0 and so (42) will

yield 0.

Let the upper half of the circle by y = vR? — x2, Then y'=-—x(R? — x2)71/2

and v = —R%(R? — x2)*/2, If we substitute in (42) we obtain 1/R.

Since y"= 0 at a point of inflection, X = 0.

In this Exercise we want 1/K where y = 0 on the curve. Hence, by (42),

K=y"and R=1/K=1/".

(a) Since y"=2/a, R =a/2.

(b) Same work and result as (a).

{c) We calculate y' and y".Since y=0 at x =0, y=1/a at x =0 and
R =a.

(d) Here y'=0 when x = 0. At x =0, y'= b/a%. Hence R = a%bh.

() We work with the lower half of the ellipse. y'=0 at x =0, y’= b/a?
at x =0 and so R = a%b.

If a=b, R=a as it should be.

. If we take the ellipse in the standard position with the foci at (¢, 0) and

(c, 0) we encounter the difficulty that at (a, 0) y'= «©. However if we cal-
culate the curvature, using (42), at any point (x, y) of the ellipse it turns
out that at (a, 0) the infinity caused by y being 0 at (a, 0) is offset and the
result for the curvature is —a/b% Alternatively we can compute the curva-
ture for the ellipse (x%b?) + (y¥/a?) = 1 whose foci are (0,c) and (0,~c). In
either case R =b%a and this is half the latus rectum.

CHAPTER 15, SECTION 6

1.

2.

‘Here y = Ya2 — x2. Then, by (48), 8 = 27 fcdadx = 27ma(d —c).

(a) By (48), S =47 [ vx T 1dx = 2087/3.

(b) By (48), 8= (n/6) [ VI ¥ 4x?dx = (n/9)AWIT — 1).

{¢) One can work with the exponential expression or let y = coshx. Then
S =27 f_i coshxyT * sinhx dx = 27 f_i cosh?xdx. Now replace coshx by

its value. The result is in the text.
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(d) S=27 fOTr sinxy1 + cos2x dx. Let u = cosx. To make the substitution (as
opposed to change of variable) we must have (du/dx)dx in the integrand.
Now du/dx = —sinx. But we have 8§=-2r f; V1 + cos2x {-sinx}dx
= —2r [7YT +uE (du/dx)dx = ~27 [~ VI ¥ u2du
= 27((u/2)vuz + 1+, log fu+vuz + 1|} '_1 . The result is given in the text.

. 1
3. This just calls for replacing x by y and y by x in (48). Then

S =27 dem dy where x is a function of y.
4. (a) We use the formula given in Exercise 3. Since x'= 3y® we have
S =2r [*y*/T+Dyidy. Let u=1+9y" and the integration is immediate
since we have the du/dx except for a constant factor.
(b) Using the formula in Exercise 3 we get 8 = (27/3) foa yl@\nyM'—Jery.
To integrate let y'/® = 2/ tan . This change of variable transforms the
integral (apart from a constant factor) to f tan® 6 sec® 6 df. Write this
(using tan® @ = sec?20 — 1) as fsec“ f sec 8 tan 6 d6 — fseca g sec @ tan ¢ d

and let u = sec d in each case. Since the end values for y are 0 and 8
the end values for 9 are 0 and tan™ 3. '

(c) Using the formula in Exercise 3 we get S = 47 f: vy + 1dy. Then
S = (87/3)(5%/2 - 1). '

CHAPTER 15, SECTION 7

1. We may use the criterion in the text. If the difference in the approxi-
mating elements, apart from the factor Ax, approaches 0 as Ax does, then
the difference will not contribute to the definite integral. In the present case
the difference is Ay;Ax/2 and, apart from the factor Ax, the guantity
Ay;/2 approaches 0 as Ax does. Hence this difference does not contribute
to the integral.

2. If we used the cylinder the surface area is 27y;Ax. In the text on p. it
is shown that we can take 277v1+¥Y.)2 Ax as the approximating element,
where ¥, and ¥ are taken at the same value of x;. Let us drop the bars
for the sake of this Exercise. Now we consider 27y,/1+y,'2AX — 27y;AX
= 2my;Ax(vV1+y' 2 - 1). Thisdifference, apart from the facior Ax,does not
approach 0 as” Ax does because y; is the slope of the curve and this does
not approach 0.
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The lateral surface of a (right circular) cone of radius r and altitude h is

7rVr? + hZ. Hence the answer obtained by the process is not correct. The

reason is precisely the point of Exercise 2. Cylinders as approximating

elements to obtain a surface of revolution are not good enough., One must

use truncated cones as the text proper does.

(a) Each approximation, like the one in the figure, gives b +h and so
limS, =b+h '

(b} The result b + h is incorrect as the Pythagorean Theorem tells us.

(c) The approximating elements, e.g., CC, + C,D, as an approximation fo
CD,, are not good enough. _

(d) 1t is true that the points of the approximating elements do approach the
points of CB. But the segments and their lengths are two different
entities.

. We may replace y/ by y; because (2y; —y/) — 2y, —w) =¥ —y/ and as Ax;

approaches 0 y, —y/ must approach 0, for, y, and y/ are y-values in the

same subinterval Ax; and as Ax; approaches 0 there y-values must ap-

proach each other. Then S, = y,Ax; + y,AX, + -+ + y,AX, and I11'1*rr°108n
= [ydx = [ 3x*dx = 63.
(a) PR is the slope of the tangent to the R

curve at P. Then y'= RS/PS or
since PS = Ax, RS = yAx. Then

PR = y1+y'ZAx. Since dx is just
another symbol for Ax, PR is ds.
Arc PQ is the actual change in arc
length from P to Q so that As

= arc PQ. Chord PQ=v(Ax)* + (Ay)?

Ay

P AX S

(b) ds = PR and v(Ax)® + (Ay)® = PQ. Now PR — PQ < RQ because the
difference of two sides of a triangle is less than the third side. Now
as AX approaches 0, RQ approaches 0. Hence so does PR — PQ.
Then PR may replace PQ in a summation leading to a definite integral.
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Solutions to Chapter 16

CHAPTER 16, SECTION 2

1.

We apply (5) except for the numbers involved. In our case
W = 4300[(GM + 1000)/r%}dr. By the fundamental theorem W(r) =-1000GM /r

4000
4300

and W =— 1000 GM/r
: 4000

GM =~ 32(4000 - 5280)* we get 4,73 10%° ft.-pdl.
To lift the 1000 pound object from 300 miles to 600 miles should require
less work than in Exercise 1 because the force of gravity is weaker at

higher altitudes. We have this time W = —-1000 GM/r l

. Converting to feet and using the value of

4600 .
wsoor COnverting to feet
and using the value of GM gives 4.06.10' ft.-pdl.

Since F is just 32m, the work depends only on the difference in the y-values
of the two points and not on the particular hill along which the object is
pushed. The same amount of work would be involved in merely lifting the
agbject from a height y, to a height y,.

Yes. Even if F- varies along the curve the argument holds. The value of

F is not involved. Of course in evaluating the final integral the result does
depend on the value of ¥ but the work will not depend on the path,

The argument which leads to (5) still holds even though m is also a function

of r. Hence W :f‘lm [GM (2000R%/r®)/r?] dr ZIQBOO(2OOOGMR3/r5)dr.

4000 4000
Of course in the calculation all distances must be in feet.

h
The element of volume #-32. Ah weighs A
(62.5)974h lbs. This must be brought down e —— -
by gravity a distance h; feet to the bottom. - 3 N
Then the element of work is (62,5)97h;Ah. - S
The sum of all such elements whose Ah’s
- fill out the interval from h =0 to h =12 il
is the n-th approximation to the work and |
the work is W = /' (62.5)97h dh 12
= 40,5007 ft-1b. ' e h;
N ™
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7. Any element of volume of circular cross-section A(r;) and thickness Ah
weighs 80 A(r;})Ah lb. and must be lifted 12 — h, feet to the top of the reser-
voir. Theworkdone in lifting this element of volume 1o the top is, then,

80 A(r;)Ah(12 — h;). At any h,, by similar triangles, r; = h,/3. The typical

element of work is therefore 80w(h;/3)2(12 — h;)Ah. The n-th approximation
to the work is the sum of all such elements from h =0 to h =8 and the

work is W = [ (807/9)h*(12 ~ h) dh = 81,920 7/9 ft. -Ib.

CHAPTER 16, SECTION 3

1. The total revenue is R = [°100 dt/(1+t)2.

2. One cannot obtain the tOtfgl income as a sum of the incomes at
each instant just as one cannot obtain the area under a curve
as a sum of the infinite number of lengths of the line segments
which fill out the area.

3. H = [1°°°080-,05(x-1)}dx = 5050 hours.
]

4. B = ["°°°100 ax/x1/? = 20-0xl/2]i”° = 200/1I000 hours.
) |



115

CHAPTER 16, SECTION 4

1. If the width is 2% ag in Pig. 16-5, then x = £ and if S is measured
from the vertex, then when x = %, s is say So- Substitute these

values in (19). Then the one unknown is c¢ and in theory it is
determined. We can then calculate the sag & from (24),
2. Pollowing the suggestion_we have
T? = w202[1+(e2x c—2+e_2x/c)/4] = wzcz[(ex/c+e—X/C)/2]2 = w?ly? by {21).
3. According to Exercise 2, the tension at B due to the weight of the
cable is w times the y-value of B. Since the portion BC extends to

the directrix (which is the x-axis), BC has just the weight to off-
set exactly the tension at B due to the cable.

4. For any catenary the leygth L? is given by (19) wherein we may set
x = a. Hence LB = c{e? v-e” c)/2. If the cable is not to slip at

B the value of h must be equal to the y-value of the curve at B,
in view of the result of Exercise 3. Then at x = a, h must equal,

by (31), c{ea/c+e-a/c)/2. Then we wish to minimize

2 (LB+h) = 2ce®/C. Now the independent variable is ¢ because the
height of the catenary above Phe directrix is still open. If we call
2 (LB+h), z, then dz/dc = 2ce?/€(-a/c?)+2e?/C, dz/dc = 0 when ¢ = a.

Then y = 2ae.
5. Use (21) for y and (19) for s and the result is immediate.

6. The equation of the tangent at (x,,y,) is y-y, = m(x-%,) where m is
the slope of the catenary at (x,,y,). Since y = c¢ cosh(x/c),
y' = sinh(x/c) = sinh(x,/c) at (x,,y,). Then yv—-¢ cosh(x,/c) =
sinh(xo/¢) {x-%x,) . Since the tangent must pass through the origin,
y = 0 when x = 0. Then -cosh(xy/c) = -x,sinh(x,/c) which gives the
text's result. :



116

7. Since weight is 32 times the mass, the given information is that
Aw = w(s)As = KAX; w(s) is the weight per unit foot so that w(s)As is the
weight of a length As of cable. Then w(s)ds = kdx and we may replace
w(s)ds in (36) by kdx. This replacement is actually a change of variable.
Then two integrations with respect to x yield a parabola.

8. Wewant A = j;dydx where y represents the catenary. The result is

(c%/2)(e"/° ~ e"¥¢), The length of arc is given by (19) in which we replace x
by d. Hence the area is that of the rectangle described. We can of course
write sinh (d/c) for the exponential expression. '

9. The slope, in view of (21), is, y'= (/¢ ~ e™/¢)/2, Using (19) we see that the
slope is the arc length divided by c. -

18, The curvature is given by {42) of the preceding chapter. Hence one merely
substitutes in that and then takes the reciprocal.

11, We may use (1J) in which s =25 when x = 15, This gives an equation for c.
But ¢ =T,/w and we are given w. '

12, We may use y'= (€*/° — e¥/°)/2 in which x = 50 and y'=¥, to obtain a
quadratic equation in €™ Then 50/c = log2 = 0.693 and ¢ = 71. Now using
(2), y = T1(e’ + ¢759%) /2 = 71[2 + (1)} /2 = 89. Hence the sag, which is
y — ¢, = 18 ft. approx.

CHAPTER 16, SECTION 5

1. Introduce an r-axis as in Fig. 16-10, so that the rod extends from r = 0 to
r = ¢ and the mass m is located at r = ¢ + h, Here the mass per unit length
is M/ ¢ and so thegravitational force ofthe i-th subinterval on the mass m is
G{(M(g)ar-m)/[(h + ¢}~ 1’} (cf.(40)). This, in place of (27), we have
Iy :
F = fo {GMm/e[(h + 2}—r]?}dr. Using the substitution u=(h + ¢)—r we

obtain F + GMm/h(h + £).

2. See Fig. 1. By symmetry only a vertical force As
acts on m. The vertical force exerted by the i-th
subinterval of the semicircle is G(M/ma) As - a
sin 0;/a. For the circle As =aAf. Thus F
T
= [ (GMm/722) 5in 8 d§ = 2GMm//7aZ. 2
Fig.1

3. The force of attraction of two particles of masses m and M separated by a
distance avu/2 is GMm/a%(7/2) = 2GMm/7a?, This is the result of Exer-
cise 2.

4, See Fig.2. Only a vertical force acts on m. The force exerted by the i-th
subinterval of the circle is G(M/27a)m A scos 6, /r?. Using As = aAg,
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r=vyhZ ¥ a® and cos 6, =h/r we find that ¥
: m
= (GMm/27)(h/1?%) foa d¢, which gives the text’s

answer.

Fig. 2

(a) Measure x from Q along QA. Thenthe horizontal force exerted by the
i-th subinterval of AB is GM-1Axsiné,/r?, where r; is the distance
from P to x; and 8, is the angle between PQ and the line from P to
x;. The vertical force is GMAx-1cos 8;/r2. By Fig. 16-12 and our
definitions of x;, r, and #, we have r;=p/cosf;, x; =r; sint;
=ptand;. Hence Ax; =dx; =psec’§ A6. Hence the horizontal force is

. [ . R o .
Fy = (GM/p) [, sin6do. The vertical force is Fy = (GM/p) f; cos éds.

After integrating use the identity for sinA — sinB and for cos A — cos B
to convert to the answer in the text. ,
(b) To get the magnitude of the resultant take vFZ+ F%. This gives (2GM/p)
sinf(a ~ B)/2). (@ — g)/2 is hailf the angle APB.
According to Exercise 4, the force of a circular wire is GMmbh/(a? + h2)#'2,
For us each wire has mass (m/f)dh. Moreover we must treat h as variable.
There are two shells acting on the unit mass {m = 1). There is the shell
from 0 to b pulling upward and the shell from 0 to £ — b pulling downward.

i
Hence the net force is (GM/4) fobh dh/(a® + h2)¥2 - (GM/ £)J; ® hdh/(a® + W22,

Let u =3a® + h?, Then the text result follows at once.

. When the particle is displaced x units along the axis of the shell it is at-

tracted by a shell of length £ ~ x in one direction and by a shell of length

¢ +x in the other direction. If we use the result of Exercise6 , then we let
b=¢—x and ¢ — b ={ + X, Hence the net force exerted on the unit mass is
(GM/2)[1/VaZ ¥ (L < X2 ~1/vaZ ¥ (§ + x)?]. By Newton’s second law the nega-
tive of this quantity is equal to X. Assuming that x is small and therefore

x* is negligible, we have % = —GM/2¢[1/VaZ + £ — 24x — 1/Va? + "+ 20x].
We follow the suggestion replacing [az + 9% — 2£x]"! 2 by (a2 + ﬂ,zJ 2

+[a2 + 2] ¥ %ex and [a? + 0% + 20x)7% by [a? + £2]7V2 - [a? + 02]2 ¢x, thus
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obtaining ¥ = —GM][a? + £2]~3sz. In our study of oscillating motion in Chapter

10 (see (78) and (79) there), we found that if ¥ = —kx, thensgle period of the

motions is 27/vK. Using this result with k = GM/[aZ + ?)*'*, we obtain the
result of the text.

. See Fig.3. Regard the rod as consisting of particles of mass (m/2¢)dh at

the distance h from the center of the wire. The attraction of the circular
wire of mass M and radius a on this '
particle is by Exercise 4, GM(m/2¢)hdh/
(a® + h?)3/2, The attraction of the wire on ‘
the portion of the rod lying below is

(GM/20) ff_x hdh /(a2 + h2)*2. The at-
traction of the wire on the portion of the X

fex
rod lying above is (GMm/2¢) fo

hdh/(a? + h2)3/2. The net attraction is I=x
the difference of these two integrals. To
integrate let a? + h® =u. This gives the
result in the text. Fig. 3

. The force acting on the rod at any position x is given by Exercise 8, This is

precisely the force dealt with in Exercise 7. See the work above. Hence the
rest of the argument is precisely that in Exercise 7.

CHAPTER 16, SECTION 6

1.

The mass of the disc is Mt(za?). The force between two points masses m,
and m, separated by a distance r is G_mlmz/ r* . Hence we would have
gotten GMutwa®/h?. This does not agree with (41).

. Use (41,. Here m =2, h =5, a = 10, When one speaks of the mass per unit

area of a thin disc, one usually is referring to the quantity Mt, Here Mt = 3.
Computation of (41) gives the text’s answer.

. In (39) replace cos 6 by h/¥xZ ¥ hZ and sec?d by (x® + h?)/h? (see Fig. 16-15),

We may now integrate by letting u = x* + h®,

. In (37) let PS = r. Replace cos ei by h/r. Then (37) becomes

F = (kx,h/r’)Ax where k = CMmt2n. ~But r’ = x3+h?® so that 2rdr =
indxi.l Then F = (kh/r*)Ar. We may now integrate with respect
to r. The limits of integration are h and va?+hZ. The result
is again (41).

. As a approaches «, F approaches 2nGMmt. This is physically

reasonable because if h is small most of the disc is pulling m
at an unfavorable angle but if h is large, the opposite is true.
Hence a result independent of h is reasonable.
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The reasoning used in deriving (39) applies here, save that now we integrate
from x =3 to x =5, Hence using the method of integration of the text we

find F = 27GMmt f:f sin 0 d8 = 2aGMmt(cos o, — cos a,). Here o, is the

value of 6 corresponding to x =3 and o, the value corresponding to x =5
(see Fig. 16-15). Thus cos«; = h/V3¥ T 1%, cosa, = h/VB% + %, Since h = 10,
we find F = 207GMmt(1/¥125 ~ 1/Y/109).

If the mass m is at great distance from the disc, the disc may be thought of
as a point mass. Thus by Exercise 1, the result should reduce to 7GmMtaZ/hZ,
Now to confirm this by using (41}, note that if we divide numerator and
denominator in h/¥aZ + h%f by h we have 1/¥1 + (a¥h?) = (1 + a¥h?)"*/2, By

binomial theorem, this last equals 1 — ¥,(a?h?) approximately. If we substi-

‘tute this in (41) we confirm our physical argument. Of course if h becomes

infinite the force becomes 0.
Following the suggestion of the text, we see that the force F, on the i-th
disc is obtained from (40) by replacing t by dh. Hence F = 27GmM(l — cos @) -

foh dh and so we get the text’s answer. _

Following the suggestion of the text and replacing t in (41) by dh, we obtain
F = 20GMm. f * (1 — h/VaZ ¥ h¥)dh. By integration F = 27GMm -
{g*x/(;;-kc).2 +aZ +vVe? + aZf.

In the derivation of (39) replace Mt by Ax to obtain: F =='(2?TG)\h/h2) _f:

(x2 cos §/sec? 6)dx. Using the technique of the text, we obtain F = 2#Grh foa

(sin? 8/cos 6)d9. Use sin?6 =1 — cos? 8 to obtain F = ZNGih[— sina + log
|seca + tanw | ], using integral formula #9. The values sina=a/VaZ + h?,
seca =vaZ + h?/h, and tano =a/h yield the result given in the text.

CHAPTER 16, SECTION 7, FIRST SET

Following the suggestion, F = D_[:2+32(GmM-t?Ta/D2) [1+(D? — a?)/r?]dr
=(GmMtra/D?){[VD? ¥ 22— (D ~ a)] — (D? — a?®)[1/¥DF ¥ a2 — 1/(D - a)]}.

This can be simplified to (2a%/VD? + a2) + 2a.

We refer to Fig. 16-25, All the elements of a zone are at the same distance
from 0, where m is located. The volume of the zone (see p. . }is t27a%sing-
do where @ is the angle formed at 0 by 0Q and the horizontal from 0 to

the right. The force of attraction which this zone exerts on m is 2GMmm7a?t -
sin @ cos 6 d6/a2, the cos 9 entering because only the horizontal (in Fig. 16-25)
component of the force acts. Now 6 runs from 0 to m/2. Hence F = 2GMmt -

rl2
j; sin & cos 6d6 = GMmut,
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3. Replace t by dr in the result of Exercise 2. Then F = f, 7GMm dr = 7GMmR.

Since M = 47R®M/3, this result may be also written as 3Gmﬁ/ 2R%.
4. The force between m and a particle of mass M at distance h = RV6/3
would be Gml\fl‘/h2 = 3GmM/2R?, which agrees with the result of Exercise 3.
5. We need only to subtract the force due to a sphere of radius b from that

due to a sphere of radius a. Thus in (54} we would integrate from b to a
instead of from 0 to R, _'
6. By (53), the force due to a thin shell is GMm4aridr/D?. Now M = mass per

R
unit volume = p(r); hence F = (GM/D?) fo p(r)4nridr, The integral is the

total mass, M say, of the sphere, Hence F = GMm/DZ. That is, the sphere
acts as though all its mass were D units from m. _

We have that GM/R? = 32 and M = 47R%5/3. Hence calculate 7.

Use the suggestion. Since, by the text, the attraction which the first sphere
exerts on any small element of the second sphere is exactly the same as if
the first sphere was concentrated at its center, we may replace the first
sphere by a particie. But, then, using the text result again the atiraction
between a point and a sphere may be calculated by concentrating the mass
of the sphere at its center. Hence the desired conclusion follows.

R

CHAPTER 16, SECTION 7, SECOND SET

1, By (58), F = GMm47h/3. Hence the work in moving the particle dh is
GMm47hdh/3. Thus W = GMm(47/3)fx,hdh = GMm(47/3)(R?/2 — RZ/2).
5. From the text we know that only the part of the sphere “below” the particle
of the preceding section b
acts on the mass. By Exercise 6,/ve deduce that F = (G/h2) fo 47 p(r)r*dr

because m = 1 and the effective sphere has radius h.
3. Use the result of Exercise 2 with p =R ~ r. Then the attraction at h units

from the center is (G/h?) j;h 4m(Rr2 — r¥)dr = 47G(Rh/3 — h¥/4). As a function

of h, this attraction is easily seen to be maximum at h = 2/R from which
the described result follows at once.
4. (a) Set up the usual division into sub-intervals. The heat in the i-th sub-
interval is cAm T(x;). Now Am = p(x;} AV where AV is an element of

volume and AV = sAx. Thus H = cs foa T{x)p(x) dx.
() H=s [ cT(x)] T(x)p(x)dx.
(¢) AH =cT{(r) Am = cT(r}- 4nr’p(r)dr; H = 47ec fOR r2T(r) p(r)dr.
5. Since the force on a point mass is mrw?, AF =Amre?, Now Am = pAV
= psAr; hence F = foﬂwzrs p(r) dr., We are given © =10 rev./sec = 207
rad/sec. Hence F =400 7 foﬁr p(r)dr.
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Solutions to Chapter 17

CHAPTER 17, SECTION 2

1.
2.
3.
4,
5.

The half-line from 0 towards P in Fig. 17-4,

e 8ing =3.

psingd =-3,

6=30°"+n-180°, n=21,+2, ..,.

(a) Circle, radius 5, center (5, 0°),

(b) Circle, radius 5, center (5, 90°).

(c) Circle, radius 5, center (—5, 0°),

(d} Circle, radius 5, center (—5, 90°).

(e} Straight line perpendicular to polar axis and 4 units to right of pole.
(f) Two circles, each of radius Y, centers (Y, 90°), (=Y, 90°).

(g) Straight line perpendicular to polar axis and 4 units to left of pole.
(k) Straight line parallel to polar axis and 1 unit above.

CHAPTER 17, SECTION 3

ek

10,

11,

. pcosﬂﬁ-p.

(a) an ellipse; (b) a parabola opening to the right;

{c) an ellipse; (d) a hyperbola.

{a). When the directrix is perpendicular to and to the left of the pole formula
(6) holds. Here e =%, p=86; p=12/(3 — 2cos ).

(b) Use formula (8); p = 12/(3 + 2 cos 9).

Take a point P on the curve and draw OP = p and the perpendicular from

P to the directrix. Then p/(p — psiné) = e. Solve for p.

Ans. 8.

Same results as in Exercises 5 and 6.

From Exercise 5 we know that part of the major axis extends 6 units to the

right of the pole and another part extends 2 units to the left. Hence the center

is at (2, 0). '

The latus rectum is the width of the ellipse at the focus. The point on the

ellipse above the focus is given by 0 = 'rr/ 2. Hence half the latus rectum

is ep. :

Asg in Exercise 9, the point above the focus is given by 6 = 7/2. Hence p =p

and the full latus rectum is 2p.

Use Fig. 17-11 as a guide. Part of the major axis is the p-~value when 6 =0,

This p-value is ep/(1 +e). The rest of the major axis is the p-value when

¢ = 7. This p value is ep/(1 — e). The major axis is then [ep/(1 + e)]

+lep/(1 — e)] = 2ep/(1 — ?). Half of this is ep/(1 — e?). I we subtract this

from ep/{1 ~ e) we get e?p/(1 — e2). The ¢-value of the center is 7 or —7.



122

12. As in Exercise 11 we find p when 6 =0 and when & = 7, The sum of these
two p-values is the major axis. Then take half, |

13. We are given that 2ep = 2b%/a and that a =ep/{1 — ¢%). Hence find b in
terms of e and p.

14. The equation of any point on the curve, if the line to the directrix were the
polar axis would be p =ep/(1 + ecos 8). With the polar axis as in Fig, 17-15
all ¢ values of points on the curve are reduced by «, which means that 0
+ o represents the same point that ¢ did.

15. If one chooses akes as in Fig. 17-16 then the focus-directrix definition of
the ellipse calls for PF/PD =e or V& + y¢/(x + p) = e and this gives
x3(1 — e?) + 2pxe + y? — p?e = 0. We can show this is an ellipse by using the
B% — 4AC test (See {40) of the Appendix to Chapter 7)., Here B =0,
A=(1~-¢%, C=1, Hence B* ~4AC = —4(1 —¢?). I e <1, as it is foran
ellipse, B?=4AC is negative. '

16, Let the focus be the pole. Then the two parts of the chord are given by

1, =ep/(1 —cos @) and r, =ep{l - cos(y + §)]. Then /v, +1/1, = 2/ep.

CHAPTER 17, SECTION 4

1. All of the parts in this Exercise are done by using the relations (14). The
answers not in the text are: (b) x = 5; (@) %2 +y*+4x=0;

() x? +y?=25; (g) First express sin3# as sin(29 + 8) and expand.
x4+ 2%%yE 4yt~ 16x%y + ¥ =0 (i) (x ~2)2/16 +y*/12 = 1.

2. All of the parts in this Exercise are done by using (13). The answers not
in the text are: (b} pcosé =5; (d) p =8sind; {f) p® =a®cos28;
(h} p*sin®@ =4pcosd +4.

3. pPeos?@/a? + p?sin® 8/b% = 1, This is not in the standard form of section 3
because the rectangular form presupposes that the center of the ellipse is
the origin and this center is the pole of the polar coordinate system when
one uses (13}, "

CHAPTER 17, SECTION 5, FIRST SET

1, Straightforward differentiation gives the answer.

2. {a) Find p’and set it equal to 0. From Exercise 1 we have —e?psind = 0.
Then 8 = 0 and 7. Now find p"and one sees that for ¢ =0, p"is negative;
hence ¢ =0 furnishes & maximum. Similarly 0 =7 furnishes a minirum,
The maximum and minimum values extend from the pole to the ends of
the major axis.

3. p'is given by Exercise 1. It is negative for 0 < 9 < i, Hence p decreases

in this &-interval.
4, Add the two p-values obtained in Exercise 2.
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o' = —psin 6‘/(1 — cos 8)%, Hence p'=0 at ¢ = 7. g is positive at ¢ = 7,
Hence a minimum. At 6 =7, p =p/2.

. p'is negative for 0 < ¢ < 7, Hence p is decreasing.

dp/d6 = 1/(d0/dp). The relationship is established by analytical means and
s0 holds here too. '

CHAPTER 17, SECTION 5, SECOND SET

l.
2.

3‘

10.

11.

. At B = w/3, tan 8

In each case find §y where tan ¢ = p/p'. The answers not

in the text are {b) =n/6; (d) 7w/2.

tan § = p/p' = -cot 6. At 6 = 30°, tan Yy = -¥3. Since ¢ = B8+,
use (25). Then tan ¢ = -/3/3.

For p = l+cos 8, p' = -sin 6. Hence tan ¥ = ~(l+cos 8)/sin 9.

At 8 = /3, tan ¢ = -/3 and tan 8 = ¥3. ©Now use {(25). The

answer is 0.

il

vI. Tan ¢ = p/p' = (a/8)/(-a/8*) = -6.

([

At 6 = /3, tan ¥
tany = p/p'= 1/a and this is constant.

. We start with tany = const. = 1/a, say. Then p/p'=1/a or o'=5g. Then

dé/dp =1/ap and 6 = (1/a)logp + C. Hence p = ce?® where ¢ = e=,
The curve is a cardioid, Tan$ =p/p'= (1 — cos 0)/sin 6. At 6 =7/2, tany = 1.
Hence ¢ =45% Since ¢ =6 + ¢, ¢ = 135°

. Denote the angle between OP and the tangent by o and the angle between

PD and the tangent by 8. Then we are to show « =pg. The angle ¢ given by
¢ = p/p' is m — a since this formula yields the counterclockwise angle from
OP to the tangent. Thus fana =tan{z — ¥} = —tany = — p/p'.If we extend the
polar axis and the tangent, they meet at the angle g. Then ¢ = o + g. Hence
tang =tan(@ — a) = {tan® — tana)/(1 + tanbtana) = (tand + p/p'}/

[1 - (p/Ntan 8]. We must show that tan g = tan o. If we substitute the value
of p/pt in the expressions for tanp. and tan o we find that they are equal.
Expe;t » to be /2. If we calculate tan¥y at § =0 we get tany == or
y=u/2.

At a maximum or minimum p'= 0. Since tany = o/p. tang = at a maximum
or minimum. Hence ¥ = 7/2,

Use the left-hand figure in 17-20. Denote the length of the perpendicular
from 0 to the tangent by d. Then tan = d/vpF — d2. But tand = p/,o' .Hence

dANFE - B = ,O/p‘ Solve for d.

CHAPTER 17, SECTION 6

1.
2,
3.

A=Y, fo‘”az(l — sin 6)*dp = 3ma¥/2.
L T4 _
A=Y, [ acos26d6 =2,
m
A=Y, [, %[64/(1 - cos )*]d6. To integrate replace (1 — cos 6)* by

-1/3. Now use (25). Tan ¢ = (3/3-7m)/(3+ V3m).
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4 sin®(0/2) and this by ¥, csc*(6/2). To integrate csc(8/2) write it as
[cot?(6/2) + 1]esc?(8/2) = cot2(8/2) esc2(8/2) + csc?(6/2). Both of these terms
are integrable because the derivative of cotx = —cse?x,

4, This is the same problem as Exercise 3 but using the Figure as in 17-11.
The end values are 0 and 7/2 instead of 7/2 and .

5. (a) A=Y [ a202d6 = 4n%a?/3.

4T
(b) If we calculate A =Y j; a26%d¢ we get 327°a¥ 3. However the radius

vector sweeps out the area between ¢ =0 and 8 = 27 twice in two
revolutions. Thus the answer is 287%a%/3,

6. (2) A=Y, [ c%0dg = (c¥/4)(e*" — 1).

(b) As in Exercise 5(b) if we integrate from 0 to 47 we cover the area
from 0 to 27 twice. Hence we must subtract the result of integrating
from 0 to 27. Ans. (c?/4)(e®™ — e®).

7. The circles intersect at 2cos 8 =1 or 6 =+(#/6). The required area is
symmetric with respect-to the polar axis. Hence we may consider the upper
half. From ¢ =0 to ¢ =7/6 it is bounded by p =a. From 6 =7/6 to 6 = 7/2
it is bounded by p = 2acos 6, Hence

/ /
A= ["a? a0 + [7 4% cos? 2046 = (a¥/2)(57/3 ~ VD).

8. This false argument shows the danger of regarding an area as a sum of the
infinite number of lines which the area might be supposed to consist of. The
argument presupposes that each area is a sum of an infinite number of lines
and just because each line of one is twice the corresponding line of the other,
it concludes one area is twice the other. The argument is similar to
Cavalieri’s principle (as used in solid geometry) which is likewise not
rigorous and so can lead to error. '

CHAPTER 17, SECTION 7

1. (a) s= j:“ade = 27a.

3t
(b) s = [ v4a®?sin? 6 + 422 cos? 8do = 27a.

(c) 8= j:;s\/pz/(l — cos.6) + p? sin® 6/(1 — cos 6)1df = pv2 .j:,zs (1 — cos8)"*2ds.
To integrate let 1 — cos @ =u. Then du = sin6dé or du/sind = du/YuZ — 2u.
This change of variable leads to pv2 fli /375 Gu/u?yu — 1. Now use in-
tegral formula #27. Ans. ¥3/(2vZ — V6) +(\/'§/4)'10g| (V3 -2/(¥3+2)|.



125

2q ZT
(d) s= f{, V%0 + ae?® (g = ﬂ) V1 + aZ e®® df. This gives the text’s answer,

() = [ VT T A0 =2 J, VP T40d6 =[(1 + 4)2 —~ 8]/3.

2T b0 27
. s=ﬁ) Va%(l — cos 8)® + a®sin*6 do =a~/§_ﬁ; V1 — cosﬁdlé?=2'a.ﬁJ gin{6/2) do

= Ba.

. 8 B
. s = [ Jc2e?® + atcPe®@dl = cVI T 2% [ e*®do =cyT +a? (e™® — e*%/a. But

o(B) —pla) = cle®® — e*¥).

. We have that ds/d¢ =+vp% + p'2,In Section 5, Second Set, Ex. 9, we proved

that d = p?/Vp% + pz. Hence ds/dé = p%/d.
The complete curve is generated as ¢ goes from 0 to 3w. Then

8= ﬁ,sw Va2 sin® (8/3) + a2 sin®(6/3) cos2(6/3)dé = f;ﬁ a sin? 9 d8 = 37a/2.

CHAPTER 17, SECTION 8

1.

We use the formula for the curvature K given immediately above in the text.
By straightforward calculation we find the answers to (a), (b) and (c), namely,
(@) 1/a, (b) 2/a, (c) 1/cV1+ a? e®®,
(d) In this part the calculation is rather extensive. We find that p = p/
(1 — cos @), p'= (—psing)/(1 — cos6)?, p"=(—pcos¢ + psin*6 + p)/
(1 — cos §)°. We substitute these values in the expression for K and
after considerable simplification obtain K = (1 - cos 6)*/ 2/98/2p,
(e) Straightforward calculation gives K = (62 + 2)/av6Z% +1.
(f) Straightforward calculations gives K = 3p/4.
Using the value of K in 1(d) we have that dK/dg =3(1 — cos 9)V2 gin 8/252p,
Then dK/dé =0 for 6 =0 and 6 =7. At 0 =0, p is infinite. Hence this value
of § does not belong to a point on the curve. At 6 =7, dK/ dé changes from
+to —. Hence dK/dé is a maximum at 6 = 7 and as Fig, 17-10 shows ¢ =7
is the location of the vertex.
R =c e*®yT 7 a% and since p =c e*®, R=+VI1 +a’p.
Use of the formula for K and straightferward substitution leads to the text
result. Near the end of the calculation replace v1 —cos¢ by V2 sin (6/2).
The calculation of the curvature is lengthy but straightforward. We obtain
p =ep/(1 — ecosd), p'=—e?psin 6/(1 — ecos 8)?,
"= e2p(e — cos § + esin? 6)/ (1 — cos 0)5, K = (1 — ecos 8)Yep(l —2ecosd +e?)372,
Now find dK/d@. This has the factor sin¢ which ig Ofor 8 = 0.and 0 = w. The
test that these furnish maxima is lengthy and perhaps not worth while carrying out.



126

Solutions to Chapter 18

CHAPTER 18, SECTION 2

1. The direct equations for the parts not in the text are:
) ¥y =4x; (d) y=x-5vx; (f) & +y =4

(h) v = x for-Ik x <1; (i) v = x for x > 0.
2. (a) Using the arguments which led to (1) and (2) of the text we have x = 50t,
y = 16t=. _

(b) Let t =3. Then x = 150, y = 144,
(c) When the object hits the ground y = 300. Hence t = 5v3/2,
(d) Caleculate x when t=5v3/2. _

3. The horizontal motion is changed but not the vertical motion. Hence (c) re-
mains the same. _

4, Both the bullet and the apple have the same vertical motion, given by y = 16t%.
Hence when the bullet is x, it from 0, its distance below OP will be that of
the apple and the bullet will hit the apple. Note that the conclusion holds
for any V.

5, If we add we get x +y =2, This is what the graph of the parametric equa-
tions must yield.

6. Both objects have the same vertical motion, y = 16t%. Hence they must reach
the ground in the same time.

7. {a) Substitute t =x/V in the equation for y.

(b) The object will travel along the parabolic path until y =0. Then t = vh/4.
In this time x = VVh/4. '

(c) The range depends on V and vh. The range will increase more when V
is increased than when h is,

g. We must first figure out how far from the target (horizontally)thebomb
must be released. The bomb must fall 10,000 ft. and the vertical motion
is given by y = 16t>. Hence t =25 when y = 10,000, In this time the
bomb will travel 352-25 ft. Hence at the point at which the bomb is re-
leased, the target is 352'25 ft, away horizontally and 10,000 ft down.

Then tan ¢ = 352-25/10,000 and 6 = 41°21’. '

CHAPTER 18, SECTION 3

1. Let t be the distance from the origin of émy point on the ]..ine.
Then x = (cos 45°)t, v = (sin 45°)t. Hence the answer in the text.

2. Let the distance of any point on the line from the origin be t. Then x = tcosf
and y = tsing.

. Yes. The meotion would be faster.
. X =Rcos 6, v = R sin 0,

L= 8]
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For (x,y) in the second quadrant, x = —Rcos (90 — ¢), v = Rsin {90 — ).
Hence x = —Rsiné, y =Rcosd. If we consider (X,y) in other quadrants the
resulis are the same.

. In the second complete arc, the curve is exactly the same as in the first one,

However, while the y-values remain the same, the x-values are larger by
27R. If we let § increase from 27 on when the second arch is generated we
see that x in (5) does increase by 27R because of the R@ term, while the
terms in sin @ and cos @ repeat their former values.

. Replace 8 in {5) by 27t.

Let Q be the foot of the perpendicular DP on the x-axis. It is obvious from

triangle OQD that x =acos¢. Since y equals the perpendicular CR from

C onto the x-axis, we have from triangle ORC that y =bsind. Then

X =acosf, y=bsingd are the parametric equations of P. But x/a = cos 0

and y/b =sing. Hence (x/a)® + (y/b)? =1 and so (x,y) lies on the ellipse

with semimajor axis a and semiminor axis b.

Let Q be the point where the radius drawn in Fig, 18-10 touches the circle.

Note that since the string is taut ZOQP is a right angle and PQ = ad. Let

B be the foot of the perpendicular from P to the x-axis and let R be the

point in which the continuation of QP cuts the x-axis. Then x = OB, y = PB.

We derive expressions for these lengths by using the two right triangles

OQR and PBR and noting that /QOR = /BPR =60, Thus x = OB = OR — BR.

From AOQR we have OR =asecé and from APBR, BR = PRsing. Thus

X =asec® — PRsing. Finally from AOQR, tané = (QP + PR)/a = (ad + PR)/a.

Solving this last relation for PR, we now obtain a value for BR. Then from

X =0OR — BR we find x =afcos § + #sinf). From APBR we have

y = PRcos ¢ and again using the relation for PR, we find y = a(sin8 ~ 6 cos §).

(a) Let Q be the foot of the perpendicular from P upon the x-axis. Draw the
perpendicular from B to PQ and label its foot R. Then ZPBR = ¢ and
cos 6 = BR/BP =x/b. Thus x =bcos 8. From APAQ, we see that
sin® =y/a. Thus y = asin.

(b) Elimination of ¢ from x =bcos#f, y =asing, as in Exercise 4, leads
to the ellipse (x2/b?) + (y¥/a?) = 1.

Let ¢ be the angle between PB and the x-~axis (in the positive direction).

Then x =OB + PBcos ¢, y = PBsing. The triangle ABP is equilateral,

s0 that PB =a. Clearly OB = ABcos ¢ ='a cos 6. Finally since ZABP = 60°,

we have ¢ =180° — 60° — 8 =120° — g, Thus x =acosd +acos(120° — 4),

y = asin{120° — g},

(a} Note that ZNQO = ZQOM =9 and that NQ = MP =y, Thus from ANOQ,
tanf =a/y. Thus y =acotd, Now x = OM = MP cotf = ycotd. Thus
X =acot? 4.
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(o) Eliminating 6 from x =acot?d, y = cotd, we find the parabola x = ayZ,

y

o —90°

Using the results of Exercises 6 and 7 of Chapter 7, Section 4 we may label
x +2p and —x in the Figure. Then tan(180 — o) = y/2p and y = —2ptana.
Further tan{a — 90) = y/2x. Hence, using the value of y, x = ptan® a.
From the first equation we have e**=g/c ++/(s/c® + 1. From the second
we have y%/¢? =s¥c? +1 and s/c = vy%? ~ 1. Hence e*/ = Vy¥e? — 1
+y/c. Transpose the last term, square both sides and solve for y. This
gives v = {c/2) (ex/c+e—x/c) .

CHAPTER 18, SECTION 4

-

. Set y =0 in (10) and solve for x. This gives (12).
- It is shown on p.  that the maximum range is V%/32. V in this Exercise

is 1800 ft/sec.

From (12) we have dx,/dA = (V%/16)cos 2A and dx,/dA? = — (V3/8) sin 2A.
From dx,/dA =0 we have A =45° and we see that the second derivative is
negative at A = 45°. Hence A = 45° furnishes a maximum.

By (14) the maximum height when A =45°is V2/128. This is Y of the
maximum range which is V%/32.

Since t, in {11} is 5, VsinA = 80. From (12) where x, is now 450 we have
VZsin2A =32+450. Now sinA = 80/V and cos A = yV? = 6400/V. We sub-
stitute these values in V2sin2A = 32.450 where sin2A = 2sinA cosA. Then
180VV? - 6400 = 32-450 and V = 120 ft/sec. approx.

This is just a modification of Exercise 5. Here we find A instead of V.
From (11) we have VsinA = 16T and from (12) we have V2 sin2A = 32X,
From the first equation V = 16T /sin A. Substitute this in the second and use
sin 2A = 2 sin A cos A. This gives the text’s result for A.

From (14) it is clear that the shell attains maximum height when sinA =1
or A =90°
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. {a) The expression for range, given by (12), is x, = (V¥/32)sin2A. Given a
value of x, (which must be less than the maximum range of V2/ 32) we
have sin2A = 32x,/V2, Then there are two values of 2A between 0 and
180° If one value is 2A|, the other must be 180 — 2A,. Then the two
angles of fire are A, and 90 — A,.

(b) By (11) we see that the smaller of A, and 90 — A gives the shorter
time of flight.

Exercise 4 of Section A3 of Chapter 7 gives tne relevant information for

y=ax® +bx +c, Inour case a = — 16/V2cos®A, b =tanA, and ¢ =0, We

have but to substitute these values of a, b and ¢ into the results of that
earlier Exercise to obtain the answers desired here. One could, of course,
translate axes and put the equation of the projectile path into the form

= (1/4p)x? and so obtain the results independently.

We wish 10 eliminate A between equations (14) and (15), From (14) we have

sin A =y64y/V?, Hence cos A =+1 — 64y/V2. Substitute these values in (15),

since sin2A = 2sinAcos A, Simplifying and then completing the square

gives x¥/(VZ/64)2 + (2y — V¥/64)2/(V¥/64)* = 1.

Since the initial horizontal velocity is now VcosA + 88, equation (6 ; of the

text must be replaced by v, = VcosA + 88. Thus in place of ( 7) we obtain

x = (Vcos A + 88)t. By the principle of independence of motions, equation

( 9) is unchanged and so (11) is still correct. If we substitute the value of t

from (11) into our new expression for x we obtain the text answer,

The time when the object strikes the ground is given by (11). If we substitute

this value of t in (6 ) and (8 ) [Of course, (6 ) is independent of t] we obtain

the components of the velocity when the shell strikes the ground. These are
=VcogA and v, =—VsinA. The magnitude of this velocity is V, the
0r1gmal magnitude. However the direction of resultant velocity, if taken to
be the inclination of the tangent of the path at the point where the shell
strikesthe groundis 180 — A. Alternatively the direction between the velocity

vector and the positive x-axis is A.

(a}) From {6) and (8 ) we have that vvZ + v; gives the text’s answer.

(b} From the text’s answer to (a) we obtam VvV — 64Vtsin A + (32t
Now eliminate VtsinA by using its value in (9 ). Then we get the
text’s answer,
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Use the result of 13(a) to find dv/dt, where v is the magnitude. Set dv/dt
=0 and we find that t =V sinA/32. But by (13) this value of t is the time at
which the projectile is at the maximum height,

TanB = y/x. Use the values of y and x given by ( 9 ' to affirm tanB

= (— 16t% + Vtsin A)/Vtcos A. Now solve for V.

By the principle of independence of motions, the horizontal motion is un-
changed from the derivation of the text. Thus by ( 7 ) we have x =VtcosA.

' If we measure y from the ground then in the equation leading to (9 ), we

evaluate C by the conditions y =h at t =0, Thus in place of ( 9 ; we have
y = 1612 + Vigin A + h. Using this new value of y we find t when y = 0.
The positive value of t is (VsinA +VVZsin? A + 64R)/32. If we substitute
this in (6 ) and merely use sin2A = 2sinA cos A we get the text’s answer.
The range is given by the result of Exercise 16, We are t0 maximize r
with respect to A. Hence neglecting the constant factor V2/ 64, and using
K for 256h/V? we find dr/dA and set it equal to 0. This gives 4cos2A -
vsin? 2A + Kcos? A =Ksin2A — 4s5in 2A cos 2A. Squaring and cancelling

16 sin® 2A cos? 2A, allows division by 4K cos? A, This gives 4cos®2A

= Ksin® A — 8sin® A cos 2A. Replace cos2A by 2cos?A — 1 and sin® A by
1 - cos? A and simplifying gives 4 =K — Kcos?A + 8 — 8 cos® A, Solving
for cos? A gives the text result. We could calculate d?’r/dA? and show it is
negative at the value of A just found,

Suppose that the angle A of Figure 18-15, which gives maximum range,
were = 45°, Trace the corresponding parabola backward to the ground level
and suppose it cuts the ground at some point P. It is geometrically obvious
that the angle of “fire” at P, angle B say, is greater than 45°. Consider
the trajectory starting at P and making an angle of 45° with the ground at
P. This trajectory has greater range than the one belonging to angle B.
However this 45° trajectory will cut the line segment h at some point M,
say, which is below the point, L say, at which the ball is hit. Thus we have
a trajectory launched at M which has a greater range than the one launched
at L, despite the fact that M is below L., This is contrary to intuition.
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Since L is above M we should be able to find a trajectory emanating from
L which has a greater range than the one from M. Hence A must be less
than 45°,

This argument shows something additional. The trajectory launched at

L with maximum range should when traced backward to P, say, make an

angle of 45° with the ground. For if this Iatter angle were more than 45° we

could take the trajectory with a 45° angle at P and use the argument of the
preceding paragraph to arrive at a “contradiction”. If the angle at P were
less than 45° we could take that trajectory through L which does make a 45°

angle with the ground and hits it at some point 8, necessarily to the right of P.

This latter trajectory would have greatest range of all through S and since

S is to the right of P, more range from L than the one starting at P.
When h=0, K=0 and A =cos™! vV1/2, Hence A = 45°,

From Exercise 17 we have cos A =+{K + 4)/(K + 8). Hence sinA =v4/{K + 8)

and since sin2A = 2sinA cos A we have the necessary value to calculate the

maximum range r by substituting these values of sinA and cos A in the
result of Exercise 16, The maximum range is given in the text.

As noted in the suggestion, when the projectile strikes the line OQ the values

x =rcos B, y =rsginB satisfy the equation (10) of the projectile’s path.

Inserting these values into (10) and rejecting the root r = 0 (the origin), we

find that r = (V2/16) cos A sin{A — B)/cos? B. The answer in the text can

readily be reduced to the one just given by expanding sin{2A — B) and re-
placing cos? A by 2c¢o0s®*A — 1. The text answer is better for the next

Exercise. _ '

We use the result of Exercise 19 to maximize r with respect to A. Since B

is constant we find from dr/dA =0 that cos(2A — B) =0 or 2A — B =980°,

Let A =(90 + B)/2 be inserted in the expression for r. We get r = (V2/32})-

{1 — sinB)/cos?B. Since cos?B =1 — sin’ B we factor and get the text

answer.

Write r = V2/32(1 + sinB) in the notation p = (V%/32)(1 + sing) and note

formula (9) of Chapter 17. Since e =1 in our case the locus is a parabola.

(a) Firing the gun at angle A — B to the vertical means firing at an angle
90° — A + B to the horizontal. The range for any firing angle A is
given by the result of Exercise 19. Replacing A by 90° — A + B in that
formula leaves it unchanged. This is just the desired conclusion.

(b) The bisector in question makes an angle of 45° + B/2 with the horizon-
tal. It follows that both the angles A and 90° — A + B make an angle of
45° + B/2 — A with this bisector.

The result of Exercise 20 with the values V =600 ft/sec and B determined

by tanB =1, leads to the answer 3550 yds (approx.).

As a consequence of (12) it was shown that the maximum range is V%/32.

Thus the horizontal area endangered is a circle with this radius. The area

is 7(V%/32)2,
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We are given the maximum height that the stone can attain, namely 10 ft,
However the maximum range may not occur for a path with maximum
height of 10. We shall rather take the value of sinA from (14), with V = 80,
namely sinA =+y,/100 and substitute it in (12), which gives the range for
any A. Then, since sin2A =2sinA V1 — sinfA, x, = 200- 2y, /100 -

V1 —y,/100 = 4V100y, — y2. We now maximize x, with respect to y,. We
can as well maximize g = 100y, — y2, Now dq/dy, = 100 — 2y,. This is
positive for y, < 50 so that g is an increasing function. Hence g and

therefore x; attains its maximum when y, = 10. Substituting this value of

¥z in our expression for x; we obtain x, =120,

To find the time of flight we use (11). However we need sinA. But this
is vy,/100 = vI/10. Hence t, =%, v0.1 =5+0.1 =+10/2.

We could save work if we concluded at once on the basis of intuition
that 10 feet is the height of the path which gives maximum range.

From (10) with V = 160 and x = 480, we find the height y is given in terms

of the firing angle A by y = —144sec?A + 480 tan A, Setting dy/dA = 0 and

noting that sec* A = 0, we obtain the condition tanA =%,. Thus A = 59°

(approx.). _

Use formula (12) with A =30°, V = 120 to obtain the range which is 225+v% ft.

We use (10) in which x and y are now fixed to find A. Since sec?A =1

+tan? A we obtain a quadratic in tan'A and we find that tan A = V%/32

£V (V%/32)% — 2(V?/32)y — x*. The roots are complex, real and distinct, or

real and equal according as the discriminant is negative, positive or 0. If

the roots are complex, there is no value of A for which the point (x, y) can
be reached, If the roots are real and distinct there are two value of A. If

the roots are equal there is one value of A.

(b) The condition that the roots be equal, namely, (V¥g)?2 —2(V¥g)y — x% =0,
ig itself the equation of a parabola. This is all that students can be ex-
pected to state at this point. The teacher might care to point out that
this parabola is the envelope of the family of parabolas which one gets
by keeping V fixed and varying A in equation (10), that is, the family
of projectile paths for different A-values, The theory of envelopes is
treated in Chapter 22, section 2 and in fact the problem of finding the
envelope of this family of projectile paths is Exercise 9 of that section.
The envelope is also the parabola of surety mentioned in Exercige 21
above,

Use the result of Exercise 16 in which we put h = 700, A = 45°, and V =100,

The arithmetic yields 31,900 ft, approx.

From (7) and ( 9) we have x = Vtcos A, y = —16t%2 + VtsinA. For fixed

V and t these are the parametric equations of the locus of the particles at

that insfant. Thus if we eliminate A between these equations, we shall have

the direct equation of the (x,y) values for fixed V and t. We find

x* + (y + 16t%)% = V2t*, For fixed V and t this is a circle with center (0, — 16t?)

and radius Vt.
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In Exercise 9(a) we found the directrix of the parabolas given by
equation (10). The directrix is independent of A so that all the parab-
olas have the same directrix. Ans. y =V2/64.

From (14) we obtain the height when A = 90°. This is V2/64 and this is
the height of the directrix. '

From Exercise 9(c) the focus of any one parabola has the coordinates

x = V2 (sin 2A)/64, y = — V2 (cos 2A)/64. These two equcions are the para-
metric equations of the locus of the foci, with A as the parameter, If
we eliminate A (by solving for sin2A and cos 2A respectively) we
obtain (64x%/V?2)? + (64y%/V?)? = 1, This locus is a circle with center at
the origin, which is where the gun is,

The level of the focus is given by its y-value, namely, y = —V3{cos 2A)/64.
When A = 45°, y =0, When A > 45°, y is positive and when A < 45%

y is negative. The gun is at y =0 (and x =0).

The coordinates of the vertex of any one parabola are given in Exercise
9(b). These are x =V?(sin2A)/64 and y = V2 (sin? A)/64. These two
equations are the parametric equations of the locus of the vertices,

with A as the parameter. To get the direct equation we must eliminate
A. From the second equation we have sinA = V84y/VZ, If we substitute
this in x = V*2sinAVI - sin? A/64 and simplify we obtain (32)*x®

+ (64)%y® — 64V2y = 0. We can, by completing the square, rewrite this as
X2/ (V¥/64)% + (y — V¥/128)%(V¥/128)2 = 1. This is the equation of an
ellipse with center at (0, V2/128). This center is halfway between the
gun at (0,0) and the directrix at V?/64.

Taking the position of the gunner as the origin, the trajectory of the
pomb is X =%, y = — 16t + h. The trajectory of the gunner’s shell is
x=VtcosA, y=y =~16t +VtsinA. Since these trajectories are to
intersect, we have x, = VtcosA, h = VtginA. Thus tanA = h/x,.
However, h/}cIL 1s just the tangent of the angle of sight from the gunner’s
position to the point where the bomb begins to fall. Thus the desired
conclusion holds.

The argument in (a) is to the effect that by aiming at the point where

the bomb begins to fall the guoner will hit the bomb. No special value

of the velocity had to be specified. Hence the gunner will hit the bomb
no matter what the velocity (unless it is so small that the bomb reaches
the ground before being hit). The place at which the bomb is hit, that is,
the distance it falls before being hit, will vary with the velocity of the
shell fired by the gunner. But the bomb will be hit.

This problem is really the same as Exercise 24. The various angles at
which the soldier can throw the grenade are the same as the angle at which
the fragments of shrapnel disperse. Hence the answer is the same,.
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CHAPTER 18, SECTION 3, FIRST SET

10.

i1.

12,

We use (18) to obtain dy/dx and (24) to obtain d?y/dx>.

(b) dy/dx = 2/3t, d?y/dx® = —1/9t8,

The slope at any instant is y/x =(—32t + VsinA /V cos A When the shell
strikes the ground, y =0 and t =V sinA/16. Substitute this value of t in
¥/% and we get —tanA.

Since dy/dx = §/%, dy/dx =0 when ¥ =0. Using the value of y we have

y =0 when t = VsinA/32. We can now use (24) to see that d?y/dx? is nega-
tive at this value of t. To obtain the maximum y-value we substitute this
value of t in the expression for y and we get the text’s answer,

Since dy/dx = ¥/%, dy/dx = —bcot6/a. Also d?y/dx? = —bcsc®s/a2.

dy/dx =0 at 8 =7/2 and 8 = 3n/2. d®y/dx? is negative at 6 = 1/2 and
positive at ¢ = 3?7/2. Since y =bsinf, we have y =b at the maximum and
y = —b at the minimum. '

Using 7/% we get dy/dx = sin6/(1 — cos8) =v1 — cos?6/(1 — cos )

=v{1 ¥ cos9)/(1 = cos 0) = (cos 8/2)/(sin6/2).

Since dy/dx = cot(8/2), dy/dx = 0 when @ = 7. d*y/dx® = —csc?(6/2)/2 and
this is negative when 6 =7, When 6 =4, y = 2R.

The normal to a curve y = £(x) through a point (X,,y,) on the curve is given
by ¥ — Vo =1— l/f’(xo)]/(x — X,). From Exercise 5, f'(x,) = cot (6/2) where
¢ is the value of the parameter corresponding to X =X,, ¥ = ¥,. Thus using
(5), the normal is ¥y — R(1 — cos8) = —tan (/2)[x — R(6 — sin8)]. In the dis-
cussion leading to (5) it was pointed out that T has the coordinates x = RS,
y = 0. Thus we need only verify that this point lies on the normal. That is,
we must verify that the equation —R(1 ~ cos §) = —tan (8/2)(R sin.8) holds.
This condition simplifies to tan{8/2) = (1 — cos 8)/sin#, which holds since
it is one of the half angle formulas for*trigonometry. (See Exercise 5).
Proceed as in Exercise 7, using the equation y — y, = £'(x,)(x — %x,) of the
tangent and the fact that the point diametrically opposite T has coordinates
x=R8, y=2R.

From the second equation in (5), cosd =1 —(y/R) so that ¢ = cos"{(R — y)/R]
and siné = +V1 — cos® 8 =+Vy(2R — y}/R. Substituting these values in the
parametric equation for x we get the text’s answer.

Use (5) and (24). The calculation is straightforward. The curve is always
concave downward.

From x = pcos@ where p is a function of 8, X = —psind + cos 6 dp/da.
Likewise § = pcos6 + sin@ dp/d9. Hence by (18) the text result holds.
From the result in Exercise 9 we may calculate dx/ dy and then use the
fact that dy/dx = 1/(dx/dy). dx/dy =[1 + (R — y)]/¥2ZRy — y-.
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CHAPTER 18, SECTION 5, SECOND SET

1. The integration is straightforward.

2. By (29) we have A = fowb sing (—asing)dd = —wab. The geometrical area
is mab, o
3. (a) Since cosh?u - sinh?u = 1, we see that xz/azn—_ y2/b? = 1. This is the
equation of a hyperbola. Since coshu is positive the original equations
represent only the right hand branch of the hy}:oer.}:mla° .
(b) In the Figure P has the coordinates (acosh uo,b.smh uy); thus Q is
(acoshug, 0). The desired area (shown shaded) is the area of the

triangle OPQ minus the area under the arc of the hyperbola from A
to P. Thus A = Y, acoshu," b sinhu, — fouob sinhu*asinhudu. Formula

109 of the integral tables and the relation sinh 2u = 2 sinhucoshu en-
able us to obtain the result A =abu,/2.

2
4, The entire curve is described as § goes from 0 to 24. A = fo ﬂy(@)z’c(@)d@

m T
= j: 28in®8 - 8 cos? g(—sing)dg = f: —12sin* 8 cos? 9 d6. We can save some
/: .
work here. The area is 4 f:z—lz sin* ¢ cos®dd. Now use formula 118 of the
Integral Table with m =4 and n = 2.

‘CHAPTER 18, SECTION 5, THIRD SET

o w
1. By (34), s = f; vaZsin?d + a?cos?0 df = a f: de = 2ma.

2. In this Exercise we use formula (34) wherein t; isnow t and t, =0,
(b) s =3t; (d} s = 25t2, e

5 5
3. As in Exercise 2, we have s = fo YEIF + 22 dt = 2 fo Vi + 1/ Using formula
40.of the integral tables, we find s = 5v26 + log (5 + vI6).
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4, Following the suggestion we have x = (cos 8 + 6sing), v = (sinf — 8 cos 8).

6
Thus s = fo Wy’(— sinf + sinfd + 6 cos 92 + (cos§ — cos® + 0 sind)?ds. This
68T
simplifies to s = f, 6 d8. Hence s =Y (672 = 177.7 in (approx.)

If we attempt to use (38) except for the change to the end values 7 and 3w
instead of 0 and 27 we obtain 0. The incorrect answer results from the
fact that the quantity sin(6/2) in (38), which is the essential part of ds/de,
is negative when 6 runs from 27 to 37, though it is positive when 4 runs
from # to 2#. Hence one must evaluate (38) first from 7 to 27 and then
from 27 to 3w, The latter gives —4R and the sign must be ignored if we
are interested in the actual arc length.

2
(a) By (34, s = f tvO® + 4 dt. To integrate let u = 9t* + 4, We find

s = (40372 — 43/2) /a7,
(b) Since x is negative for t < 0, we must write (cf. see the footnote in the

text) s =— [ tvI@ T4 dt + ["tVI® T4 dt. Making the substitution

2
t =—¢ in the first integral, we find s =2 [ tv3T ¥4 dt =%,
(40572 — 43/2),

CHAPTER 18, SECTION 5, FOURTH SET

All of the Exercises in this list call for no more than straightforward cal-

culations using (40). The answers not in the text are:

2.
4.
5.

(b) 5/5/2;  (d) 15v5;  (e) —1/¥2VI = cos 20t
1/4R.
The vertex is given by u =0,

CHAPTER 18, SECTION 6

1.

B
-

In Chapter 10, we found that the solution of ¥ = —kx is x = Acosvk x

+ Bsinvk x. Here k = 32/4R = 8/R., Hence s = Acos V8/R t + BsinvB/R t.
At t =0, we have 5 =8, & =0, Thus we find s = 5,c08v8 /R t.

From (49) the period is TYR/2 no matter what the initial amplitude is.
Since the particle slides under gravity, it moves just like the bob of the
cycloidal pendulum,

By virtue of the fact that the slide from D to B is merely the reverse in
the acceleration and velocity involved, the time from A to D is (see (4Y)
7vR/32. But the period is independent of the amplitude and so this is aiso
the time to go from (0, 2R) to D.
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5, At D, where # =7, we have that x = #R, y = 0. Then the line
joining ©, 2R) and (#R, 0) has the slope 2R/—- 7R = —2/7. This is tan o
and so sina = 2/V4 + 7%, Now we treat the motion down the line as the
motion along an inclined plane with inclination « (or 180 — ). The accel-
eration down the plane is 32sino. Hence § = 32sinq, 8 = 32tging + C.
Since § =0 when t =0, then C =0. Then s = 16t®*sin o, because the con-
stant of integration is 0 if we measure s from (0, 2R). Now we wish to
calculate the time to travel the distance s from (0, 2R) to (7R, 0). This
distance is VvT#RZ + 4R? = RV4 + 2. Substitute this value of ¢ and the value
of sinw in s = 16t¥ sin ¢ and solve for t. This gives t =vR(4 + 7 2.
This time is clearly more than 7vR/32 which holds for the cycloidal path.

CHAPTER 18, SECTION 7, FIRST SET

1. (@) 3i+ad; ) 203y (o) -20-33; @ I IeE)3;
te) (VI/ni+(1/23: (£) /B Is2//m T (@ (2l +aira]) = 61477
(h)+Th§ slope of v = x®> at x = 2 is 4. A vector having this slope
igs i+47j. However, to make it a unit vector divide each component
by v17.

2. The magnitude of ai+bj is vaZ+b?.

3. If the initial point of the vector v is at the origin then x = cos §
and y = sin 0 so that x°+ = 1,

4. Same method as 1(h). §+6] with the components divided by V37 to make
a unit vector. We could alsc include the oppositely sensed vector by
dividing by -v37.

CHAPTER 18, SECTION 7, SECOND SET

1. The velocity 1s given by dr/dt and the acceleration by a2 /dtz.

2. v = -wR gin wt1+mR cos mtj, a = -w’r cos wtl-w r sin wtj. The
magnitudes are the sguare root of the sum of the square of the
components. o N

3. ¥(t) = r cosh wti+r sinh wt3. Find dr/dt and d?r/dt?.

4. {a) The parametrlc equations of the cycloid (see (5) and Fig. 18-7)

are x = R(8-sin 8), y = R{1- cos 8) or the vector eguation is

£{8) = R(B-sin 8)1+R(l -CoS 6)3 Let 8 = wt. We can now calculate
the vector velocity d¥/dt and the vector acceleration d2¥/dt?.

Then we obtain for the magnitude of the velocity 2Rwsin{wt/2) .
We see that the magnitude of the velocity is zero for wt/2 =0

or 7w, that ig for t =0 or 27/w. At these times the particle is at its

lowest point.
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(b) | v| is maximum for sin{wt/2) =1, that is, for wt/2 =7/2
or for t = 7/w. Since ¢ =wt, at t =v/w, 8 = 7. If we examine Fig.
18-7 we see that when ¢ =7, P is at the top of its path. At that point
the point P moves along the cycloid with two velocities. P moves on
the circle with a linear velocity of Rw, since w is the angular velocity
of the circle. Also, the center C of the circle is constantly moving to
the right. Its velocity is the distance it covers in a full revolution
divided by the time it takes to make a full revolution or 27R/(27/w)
= Rw. Though both the rotational motion of P and the translational
motion of C contribute to the motion of P along the cycloid these two
motions are generally not in the same direction and do not add except
when P is at the highest point and then the directions are the same.
Hence then the linear velocity of P is Rw + Rw. If we examine |¥|
we see that when t = 7/w, | V| is 2Rw.

-
5. The information needed to make the sketch is given by dF/dt and a*¥/dt?,
% and ¥ are the components of the velocity vector and % and ¥

are the components of the acceleration vector..

6. We have that ds/dt = 2Rw sin{wt/2}. Then s = 2Rw f sin (wt/2)dt.
This gives the text answer.

7. For a complete are, ¢ = 27 or wt goes from 0 to 27. Hence t = 27 /w.
Then the result of Exercise 6 gives 8R.

8. The direction of the velocity vector is y/% or sin wt/{(l-cos wt) or
sin 8/(l-cos 8). This direction is also the direction of the tangent
as pointed out in (55)., Then this exercise is exactly the same as
the one in Exercise 8 of Section 5.

9. The magnitude and direction of the acceleration came from dz?/dtz,
which is already calcuylated in Exercise 5. The magnltude is
VEZHGZ +* and the direction is y/X. We find that |a|— 400. To see
that the direction of the acceleration is toward the center we shall
prove that it is true for any cycloid in Exercise 10,

10, The direction of the acceleration is ¥/% and we find that ¥/% =
cot wt = cot 8. To see that this is the direction of PC of Fig. 18-36,
ncte that P hag the coordinates (R8-R sin 8, R-R cos 8). Point C has
the coordinates (R6,R). Then the slope of PC, given by
ly,-v,)/(x,-%x,), = cot 6. Hence the acceleration vector has the
direction of PC.. '

11, At the top of its path P has the y-value of 2R. Then wt or 6 = 7,

But |¥| = 2Rw. As pointed out in Exercise 4(b) the center C of the
generating circle has a linear velocity to the right of Rw.
12 ds/dt? = (x% + y¥)//VX* T v2. We must show that this is less than

V& + ¥ or we must show that XX + yy < vXZ + y2 V&€ + §2. If the left side
is.negative there is no problem. Suppose it is positive and square both
sides. Then we must prove that 2%y X ¥ < X2 ¥2 + X2 y2 or 29 — 2%y %y

+ X2y? > 0. But the left side is (Xy — Xy)2 and so is > 0. If equality holds

Xy — Xy = 0. But then d(¥/%X)/dt = 0 (see (24)) or d#y/dx2 =0 and y =ax + b.



139

13, The point moves on a cycloid for which R = 2
and w = 2027 rad. per min. Then we can write
the equations of the path by using ( 5) or we
can use Exercise 4{a) to get | V| and
|a*], To caleculate |¥| we need the value of

wt or § when the point is 1 ft. below the cen-

ter of the wheel. As we see from the figure
cos@ =% and 6 =7/3. Hence wt=17/3.

Then |v! =2-2°20-27sin(7/6)

= 80 @ ft/min. ]a] = 2(40m)?

—_— i 2

320(2; ft/nl;n .

14. (@)If ¥ = K4, then Fy = =KX and F, = -K¥
If we let k = K/m and use Newtgn 8
second law, which is a vectorlal law, then
= x/dt2 = =-kx and a, = d y/dt = -ky.
Hence by solving the two differential equa-
tions we find that x = a,cosvk t+assinvk t
and y = bicosvk t+b,sinvk t. At £t = 0, v = 0.
Hence b; = 0. Aliso at t = 0, dx/dt = 0 so that a; = 0. Then x =
ajcosvk t, y = bysinvk t. These e%uations are the parametric egua-
tions of the ellipse (x?/a%)+(y®/bj)= 1.
{b)The period of the motion depends only on vk. It is 2m/vk.

CHAPTER 18, SECTION 8, FIRST SET

1. The parametric equations of the motion are x = Rcoswt, y = Rsinwt,
where wt =6, In the case of the circle, the lineax
velocity v is § =R§ = Rw and by ( 70), agp= 0. Now by (73 ), ay =v¥/R.
But v2 = R%p® and the radius of curvature R of the circle is R. Hence
sz
2. For the circle we may again start with v = § = R§ = Rw. Since by ( 73),
ap =% and w is a function of t, a.=R dw/dt. By ( 73), a; = v¥/R
= R2w¥R = Rw?.
3. (a) To obtain a, =8 we need 8. By (56), § =+ Xty =
VRZ2wE(1 — co8 wt)® + R2e? sin? wt = v2R2w? (1 — cos wt) = 2Rw sin (wt/2).
Then ap = § = Rw? cos (wt/2).
(b} vZ/R = v2K, Now v =§ and K 'is given by (41). We find that
;J‘I (X§y — y%)/4%. Since v2 = &2 a, = &y - y%)/§ = — Ru? sin (wt/2).
(c) Since ag and a, are perpendicular, |a| =+vaf + am2 = Ru2.
4. If v =8 is constant then a;, =8 = 0. Now c i§ in the perpendicular direction
to the tangent and the velocity is in the direction of the tangent. Since aN is
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here the total acceleration the acceleration is perpendicular to the velocity.

{a)
()

(c)
(d)

The parametric equations are x = Vt, y = 1612,
To calculate a,=§, we need 8. By (56) § =v&® + y? =V? + (32t)%

Then § = 322t/VVZ + (32t an=v¥/R = Kv? = (ky — ¥y%)/$ = 32V /VVZ + (321)%.

It should be 32 because the only acceleration acting is that due to
gravity. If we calculate |a| =+vaZ + aZ we get 32.

At t =0 the x-axis is tangential to the path and the y-axis is normal.
Then ay, = 0 because there is no horizontal acceleration acting and
ay = 32 because gravity acts downward. If we substitute t =0 in (b)
we get ap=0 and ay= 32.

. From (T3)we find that ay = 47%r/T?. On the equator R = 40005280 ft and

T =1 day = 86,400 seconds. Hence ay = 0.11 ft/sec?. The tangential accel-
eration is 0 because an object on the earth’s surface moving with the earth
rotates at the constant velocity of the earth. Specifically s = R8, where s
is arc traversed along the equator and § is an angle at the center of the
earth which increases as the earth rotates. Then v =& = R4. But § is con-
stant for the earth’s rotation. Hence ap =8 = 0.

(a)

()
(a)

(b)
(c)
(d)
{e)
(£}

According to the text , the satellite must orbit at a velocity v such
that the centripetal acceleration required to keep it from falling (or
departing from its path), that is, the v&/r, must equal GM/r?. Now
GM = 32(4000- 5280)2 and r = 50005280, Then v¥/r =20 ft /sec? approx.
The earth’s gravity exerts just the acceleration required to keep the
satellite on its path.
The equations are x = Vtcog A, y = —16t2 + VtsinA. The tangential
velocity v =8 =V T 32 = VV? — 64t sin A + 1024¢2,
All of the velocity is in the direction of the tangent. Hence vy = 0.
ap = 4. Use the result in (a) to calculate §. Answer in text.

= y2/R = Kv? = (X} — Xy)/8 = (- 32V cos A)/VVE — B4tsin A + 102412,
At the maximum height, ¥ =0. Then § =% and ag =¥ = — 32.
Yes. At the maximum height the normal direction is the vertical direc-
tion and we know that the only vertical acceleration acting is due to
gravity and that is — 32,

. The example of the text is x = cos t + t sin t, ¥y = sin t - t sin t.

Now ay = Kv?. v is the magnitude of the velocity vector and is found
in the text to be t. To calculate K we use (40). This gives K =
Then ay = t which agrees with (76).

1/t.
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CHAPTER 18, SECTION 8, SECOND SET

1. (a) Yes because the velocity will increase and decrease in a manner
dependent only on the heights invelwved.
(b} No. The velocity depends only on the vertical distance from A to D
and D to B. )
{c) We have no proof that the period does not depend on the shape of
the curve ADB.

2. The result (78) generalizes the result of Chap. 3, Sec. 4, exercise
5{c}. There the motion was along an inclined straight line. For
(78) the motion is along any curve but in both cases the velocity
depends only on the vertical distance involved.
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. Since we have v, and v, the angle @« which the velocity vector makes with

the radial direction is given by tana = Ve/ v,. But the velocity vector is
along the tangent and o equals the angle ¥ between the radius vector and
the tangent. Hence by (22) of Chapter 17, (1/p)dp/d8 = v,/v,

=(~1 + sin6)/cos . Then logp = | [(—1 + sin8)/cos8]ds + C. This integral
can be evaluated in various ways. Multiply numerator and denominator by

1+ siné. Then logp = f[(~cos€)/1 + sin6)]dg + C = —log(l + sing) + C,
From Fig. 19- 7 we see that when ¢ =0, p =a. Then C =loga. Finally

p =a/(1 + sin@). The path is a parabola (see (9} of Chapter 17).

We want 6 and §. We have that vo = vcos8. Then & = vy /p = veosd/p.
The equation of the line is pcosf =a or p= a/cos 6. Hence ¢ = vcos? S/a.
Then & = 2vcos{—sinf)8/a = —2v2sin g cos® /a2

We have that v, =gt cos8, Then § =v,/p = gt cos8/p. From the figure we
have p =a/cos¢ so that § =gt cos®6/a. To get @ in terms of ¢ we note
that tang = AP/OA =gt¥/2a, Then cos g = 2a/V4a% + 2%, t¥, Substituting this
in the expression for ¢ gives the text’s expression for 4. Differentiating

6 with respect to t gives the text’s expression for ¥,

The text gives the parametric equations. Hence apply (13) and (14). The

answers are a, = —v?(cos 9)/a and a, = —v?(sind)/a.

We are given that 6 = w = constant, Now a, and a, call for 4 and p. But

dp/dt = (dp/ds)(d8/dt) = wdp/ds. Then p =dp/dt = (dp/d6)(ds /dt)

= wid2p/de?. Now substitute in (13)and (14) to get the text’s answers.

(a) The radial force produces a radial acceleration of a,= ~kp where p
is OP. Since it is given that 6 = w, where w is constant, we have from

(13) that —kp =p — pw? or 5= —pk ~ w?). This is the equation for
simple harmonic motion. See (78) of Chapter 10. Then the period is
21/VK — &E.

{b) Thispart of the problem calls for the equation in p and 6. From part
(a) we have that p = AsinvK — a® t + BcosvE — aZ t. Let us suppose
that p =0 when t =0 (though we could have ,P= py and still derive
the result). Then B = 0. Since, by part (a), 6 = w, 8 = wt + C. Again
we can suppose that 6 =0 when t =0 gince this says only that the par-
ticle is on the polar axis at t = 0. Then ¢ = wt. If we substitute this
value of t in the expression for p and let w? =k/2 we obtain
P =Asing. This is the polar equation of a circle.

We have that ¢ = w. Then 6 = wt (whether we add a constant of integration

does not matter. Hence p = a{l — cos wt). We can now apply (10), (13) and

(14) and obtain the text’s answers directly.
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Solutions to Chapter 19

CHAPTER 19, SECTION 1

o

[+ ]
v

1. Solve 9 = wt + @ for t and substitute in the expression for p.
2.
3

Since t = 8/w, p =vé/w.

We are given that 8 = w = constant, Thus ¢ = wt + constant. Writing the
integration constant in the convenient form wt, and using the given equation
for p, we find 0 = w(t — t,), p =all — cosw(t — t;)].

Since # =2 and 8 =0 when t =0, we have # = 2t and then p = 2,

Since p =3, we have p =3t + g, and 6% = 3t + p, where p, is an integration
constant.

CHAPTER 19, SECTION 2

1.

2.

We are told that p=v, 8 =7/6. Thus by (10), (13), and (14) we find

vV, =v, vy =0, a, =¥, a, =0. .

(a) Here the equations of motion are p =R, # = w, where R and w are
constant. As in Exercise 2, we find v, =0, v, =Rw, ap, = ~Ruw?, ag =0.

(b} They agree because for motion on a circle the radial direction and
normal direction coincide (except for sign) and the transverse direction
is the tangential direction.

We know that p =R and ¢ = w, but w is now a function of t. If we use (10),

(L3}, and (14) we obtain the text’s answers,

. Prom (8) we have that ]dg/dt| = /p2B24p? = Yo2bl+(dp/dB) B2 =

Vp2+{dp/de)? §. Now use (33) of Chapter 17. The radical is
dg/d6. Hence the entire expression is 48 /dt.

. Ordinarily ¢ is constant for a particular point P on the line determined by

p and . (These are 5 and 7/6 in Fig, 19-1.) However as ¢ changes with
time P moves. We have the parametric equations p = p/cos ct and 8 = ¢

+ ¢ct. Hence apply (10}, (13) ,and (14). Then v, = pc sin ¢/cos? ¢, ve = pc/cos ¢
a, = pc?(1 + cos ¢ + sin® ¢)/cos? ¢, and ae = 2pc?sing/cost ¢, where ¢ = ct.

, We are given that 0 =v and ¢ = w, where v and w are constant, Then

a, = —pw® and ae = 2Zvw,

, This calls for straightforward application of {10), (13} and (14). Then

Vo = _kp, Vo T Wa, ap =(k2 _wz)p, g = _2wkp3 |V| :p\'wz +k25
|a| = p(w? +k2).

. We must resolve the river’s velocity v into its radial and transverse com-

ponents. If the boat is at P, draw a perpendicular to AP (Fig. 19-7 ). Then
the components are vsing and vcos#. The total radial velocity v, of the
boat is then —v + vsiné and the transverse velocity vy is vcosd.
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16. One can take either p =ep/(1 — cosé) or p =ep/(1 + ecos ) as the equation

17,

18,

of the ellipse. [See (6) and (8) of Chapter.17.] The results differ in some
signs for one choice as opposed to the other. Since we are given that § = w
we have 6§ = wt (we can take the constant of integration to be 0 since that
just means the particle is on the polar axis at t = 0), Then, taking say the
first equation, p = ep/ (1 — ecos wt), we now have but to take the text formula
for v,, v4, a, and a, and calculate what they call for. The resulis are as
in the text.

The polar coordinate formula for area [(29) of Chapter 17] is A = f(p2/2) dg

or dA/dg = #/2, so that dA/dt = (dA/d0)(ds/dt) = ¥, p?0. Sweeping out equal
areas in equal times means dA/dt = const. Then we see from (14) that
a, = 0 and this means that the acceleration is totally radial.

Since the motions of the three are the same at Ant
any instant the three are equally distant from the

pole and the angle formed at the pole by the radii

vectors to any two is 27/3. Since each ant moves

in the direction of the nearest one with a uniform

velocity of 1, the radial component of that velocity

is—1-cosB, where S5 is shown in the Figure.

Now 28 + (21/3) = # so that g = 7/6. Moreover

the radial velocity is p. Hence p = —cos (7/6) 0
= ~sin(7/3), Then p = gin(r/3}t + C. At t =0,
p=1, Then p=[=sin(r/3)}t + 1. When p =0 we p

Ant

find the time to reach the pole, which is where they must meet. The time

is 2/V3.

CHAPTER 19, SECTION 3, FIRST SET

1.

2.

If h = 0 we see from (19) that § = 0. Then & = const. and the motion
is radial.

Tf the force is £(p)4_ then ag is necessarily 0 and so (1/p)d{p?0)/at =
0. Then Kepler's secgnd law follows. See (18) and the steps following
it.

. If A = (ht/2)+4D then da/dt = k/2. But da/dt = (1/2)p’f so that

h = p28. Then dh/dt = d(p?8)/dt = 0 because h is a constant. By (14)

ag = 0 and so the force is radial, that is, directed to a fixed center.

. From #he given equation for p we have 1/p = (l/ep)+(cos 6/p). Now

5 = do/dt = (dp/dsyd = (dp/de) (h/p) = -hd(1l/p)/d6 = h sin 6/p. Then
p o= (dé/de)é = (h cos 8/p) (h/p?). But cos 68/p = (1/p)-(1l/ep). Hence
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5=[ (1/p) - (1/ep)1h?/p%. Now pé2? = p(h®/p*) = h®/p®. Then j-pé? =
~(h?/pe) {1/p?). But p-pd? = a,. Hence the radial acceleration is
proporticnal to 1/92.

5. Replace M by the mass of the earth.

CHAPTER 19, SECTION 3, SECOND SET

1. In this case equation 39) [or 41)] applies with p, = 12, v, =6 and, in view
of (13), GMm = 120, Since m =2, GM = 60. Then (39, gives the text result
at once,

2. As in Exercise 1, p, =12, and GM = 60, Then ¢ = {pnvﬁ/GM) -1
or 1 — p,v3/GM depending on the value of e which must be positive. With
the given values e =v2/5 — 1 or 1 — v3/5.

(a) For e =Y, v, =+v45/6 or vi5/2.
(b) For e =0, v, =vV5.

{¢) For e =1, v, =+10.

(d) For e =2, v, =+1b.

3. For a circle e = 0. Then, by (39), p,v:i/GM = 1. Also, for circular
motion, v,=0, Then 5=0. (If v, were O the earth
would be pulled directly into the sun.)

4 . We do have the result that the initial conditions are p,v3/GM = 1. Then for
the mass M’ half as large as M we would have had 0,v3/GM’ = 2. By (39 )
this means that the path would have been parabolic. -

5. From (24) by multiplying by 2 we have 25p =h?25/p® — 2GMp/p?. We can
integrate with respect to t because the left side is the derivative of Jix
and in each of the other terms we have a function of p multiplied by dp/ dt.
Hence ® = —h¥/p? + 2GM/p + C. Since the particle is projected perpen-
dicular to the polar axis, B, the value of j at § =0, is 0,

Also, by (38) h = pov,. Then when p = p,, our equation gives
0=—pivd/@ + 2GM/p, + C or C =v3 — 2GM/p,. With this value of C and
with h = p,v, we get the text result.

6. As is evident from Fig. 19-15 the major axis is the sum of the p-values for
9 =0 and § = 7. This sum is p, + & vZ/(2GM — p,v3). Then a =Y of this
sum. If we add and take Y, we get the text result. The same result holds
for (41).
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. From (10ywe have that v? = §° + ?62, From (33) we find that

p=esin(d + a)dp/[1 +e cos (9 +a)]. Then

v =[[{92 sin? (6 + @)/[1 + e cos (7 + )P+ 1] 6207, Now by (19) & = h/p?. Hence

v2 =11+ 2e cos (6 + &) +e?]/[1 + e cos (0 + o)} (b¥?). By (33) v

= (GEMZ/h?)[1 + 2e cos (8 + &) + €2]. This is the first form of v% in the text.

Now if we write the bracket as 2 + 2e cos {9 + o) + €2 — 1 and write

v2 = (GPME/h?)[2 + 2e cos (8 + a)] + (GEMZ/h2)(e? — 1) and use (33) we obtain

the second expression for v2.

. To determine the points on the conic where v is a maximum or minimum

it is easier to use the first result in Exercise 7, v2=(G?M2/h?).

|1+ 2e cos (6 + @) + €?]. We wish to locate the ¢-values at which maxima

or minima occur. Hence 2v(dv/d9)= (GEM¥h?)(—2e sin (9 + o)), Now dv/d8

=0 when 2e sin(6 + @) =0, sothat 6 + @ =0 or 6 + @ =7, The result in

Exercise 7 presupposes the equation (33) and this means geometrically the

situation portrayed in Fig. 19-13, Hence the possible minima and maxima

occur on the radii vectors 6 = —@ and § =7 — @. One could consider this
answer sufficient.

To decide whether either of these 6-values does indeed furnish a
maximum or a minimum calls for a separate discussion of ellipse, parabola
and hyperbola. Thus in the case of the ellipse, the two values of § are the
locations of the vertices at the ends of the major axis. We know from
Kepler’s second law that the radius vector to the points of the ellipse must
sweep out equal areas in equal times., This physical fact tells us that
6 = —a must be a point of maximum velocity and § =7 — o must be a point
of minimum velocity. To check this mathematically we can test whether
dv/ds changes from positive to negative or the reverse. We can take v to
be positive (because this is ds/dt). Take « to be, for example, 30°, Then
as ¢ passes through the value —30° say from —35° to —25° dv/ds changes
from +to — ., Hence 6 = — @ is a maximum,

The discussion for the parabola and hyperbola are similar except that
6 =7 — @ is not a point on the parabola because, see (33) or 35), e is 1
for the parabola and so ¢ is infinite. For the hyperbola only one branch,
that enclosing the pole, is actually involved in the motion and in this case,
too, § = — o furnishes a maximum, The value 6 =7 — o locates the vertex
of the other branch and this value furnishes a minimum,

(a) The Exercise calls, first of all, for rederiving ¢3) to obtain the equa-
tion of a conic. The only change, however, is that in (24} we must write
+GM/¢? in place of — GM/p?. The reason is that the force is repulsive
and is in the direction of increasing p. Consequently we obtain in place
of (28), d?u/d$? +u =—GM/h? and, in place of 30), u=C cos{f + a)
~GM/h?. Then (33) becomes p = —(h2/GM)/[1 — e cos (8 + @)]. We must
now determine e. We repeat steps (38} to (3%). Because the signs in
our equation differ from those in (33) we obtain e > 1. The conic

is a hyperbola and the particle will move on one branch.
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To show that the branch is the one which does not contain the center
of force one must make a distinction which we have ignored in the text.
The equation of the hyperbola, whether it be of the form (33) of the text
or of the above form represents both branches. One branch is given by
values of ¢ for which p is positive and the other by values of ¢ for
which p is negative, In the present example we want the branch for
which p is positive because we took the acceleration to be positive or
in the direction of increasing p. This is a repulsive acceleration when
p is positive but an attractive acceleration when p is negative (because
it reduces the numerical value of p). We may, for the purpose of seeing
what branch of our hyperbola has positive p-values take o tobe 0 in
our equation. It will be found by graphing an equation of the form
p=—~ep/(l ~e cosd), with e > 1 that thé branch with positive p-values
is the one which does not contain the pole or center of force.
(b) We see from the expression for e above that when v = VGM/p, then e = 2,
. To take advantage of the earlier result we write ds/dt = (ds/de)(dg/dt)
= (#/d)8. By (19 § =h/p?. Hence the result.
. Equations (17) and (19) still hold. In fact, except for the fact that — GM/p?
is replaced by —kp we may use the theory right through except that (28)
now becomes (d?u/d6?) + u = k/h*®, We use the old device of multiplying
through by 2 du/dé. Then every term is, integrable and we obtain (du/d)?
+u? = —-k/hzu + 2C. (we use 2C for later convenience.) Then du/d9)2
=(-g/w?)—u?+ 2C = (—g — u* + 2Cu?)/u®> where g =k/h?. Then
dg/du =u/N =g —(u¥ = 2Cu?) =u/v—g * C? —(u? — C?P. Let w=1u? — C2,
Then dw/du = 2u. Hence our integrand can be handled by formula 13 in the
Table of Integrals. We get § + D =1/ sin™! {w/VC? — g) or
=+/C? ~ g sin(26 + 2D). Now u? = C? +C? — g sin (20 + 2D) and since
u = 1/p we get the text result. We can change to cosine by changing 2D to
another constant. As far as student solution is concerned, it would be
satisfactory to have the student show that u = 1/p = VA + B cos (26 + o)
satisfies d®u/de? +u = k/hu® for proper choice of A and B. It turns out
that A2 — B must equal k/h?.
If we compare the second expression in Exercise 7 with the desired result
then we see that we need show only that (GM/h?)(e® — 1) = —1/a. We have
from Exercise6 that 1/a = (2GM — v2p,)}/GMp, = 2/p, — Vg/GM
We have h = p,v,; and from (39) we have e“-1
= pov3(pgv: — 2GM)/G2 M2, If we substitute the values of h and e — 1 in
((:‘rl\/I/hz)(e2 — 1) we find that in the light of Exercise 6, the quantity
(GM/1m®)(e? — 1) = —1/a.
. At the point closest to the sun dp/do =0 and since dp/de = (dp/dt)/(ds/dt),
then p = 0. Then the velocity is entirely transverse. This is
the case for which (39) holds and (39) is the desired answer.
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CHAPTER 19, SECTION 4

1.If the orbit is circular then it is given by p = p,. Then { = 0.
Also by (19) h = 028 = const. Since p is a constant, so is 9.
2. This follows at once from (46} where a is now pg.

3.We again use {46), that is, T? = 4n?a®/iM where T is now 24 hours
and a is the desireéd distance. For GM we can use 32R? where R is
the radius of the earth. If distances are in feet, T must be in
seconds., Straightforward calculation gives the answer in the text.

4., Use (46), namely T2 = 472a%/GM. We can measure T. We know a and G
is a universal constant which is known. Hence we can find M.

5 T =27p32YGM. p, = 4300-5280 and GM = 32-(4000-5280)?, Calculate T.

6. In this case v, < vGM/p,. This is discussed in (41). The point corresponding
to 9 =0 is farthest from the center of force which in the present case is
the center of the earth.

7. The satellite is closest to the center when 8 = 7, Hence use (41, with 8 = 7.
This gives the result immediately.

8. We must fix v, so that the point on the path nearest the earth is greater
than R. That is, from Exercise 7, @&v2/(2GM — p,v2) > R. Now the trajec-
tory is an ellipse so that, by (40a), 2GM > pgvZ > p,va. Then we may mul-
tiply both sides of the original inequality by 2GM — p,vi and by simple
steps establish the desired inequality.

9. p, = 5000-5280; v, = 2000, Then p,v? < GM, Then 1) applies and we may
substitute the values in it. The arithmetic gives the result in the text.

10. With the given condition on v, the path is elliptical and (39} applies, The
point corresponding to & = 7 gives the point farthest from the earth. Let
6 = 7 in (39) and we obtain the text’s result.

11, The centripetal acceleration of the projectile is PQ = GM/R2. The vertical
component is PS = PQcos 6. However cosf = r/PO = r/R where r is the
corresponding position of the object in the tunnel. Hence the vertical com-

ponent of the centripetal acceleration is
(GM/R?){(r/R) = GMr/R%. If we check (73) of
Chapter10we see that the acceleration acting
on the object in the tunnel is GMr/R®. This
means that though the projectile moves in a
circular path with a radial or centripetal ac-
celeration of GM/R?, its motion is equivalent
to that of an object which moves only ver-
tically with an acceleration of GMr/R®, Since
the object in the tunnel has the latter accel-
eration its motion takes the same time as the
projectile motion. Note that if the projectile
ig fired from the North Pole, say, its ver-
tical velocity at that point is 0, which is the case for the object placed in
the tunnel and just released. Hence the initial velocities are the same.

_—-—-"'/
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Solutions to Chapter 20

CHAPTER 20, SECTION 2

1-

2,

Let sinx = ¢, + ¢,;x. Then for x =0, we obtain ¢, = 0. Differentiate. Then
cosx =¢;. At x =0, ¢, =x. Hence sinx = x approximately for x near 0.
We use (7) as a guide with a = 7/4 and n = 4. Then the approximating poly-
nomial g(x) is given by letting f(x) be sinx. The answer is in the text.

Set e*=cy,+c,x +...+¢x" Let x =0, Then ¢, = 1. Differentiate both

sides. This gives e*=c¢, + 2¢,x + ..., + nc,x™% Let x =0, Then ¢, = 1.
Differentiate again. Then e* =2c¢, + 2-3c,x + ... +n{n — 1)x"2, Let x =0.
Then c, =Y,. Repeat this. We see that ¢, =1/i! for i =0,1,2,...,n. Note
that by definition 0! = 1,

Start with sinx =c¢, +¢,x + ... + ¢ x" and carry out the process of Ex-
ercise 3.

CHAPTER 20, SECTION 3

1.

(a) Use (20) with f(x) =cosx, a = 7/4 and n = 2. Answer in text.

(b) Use (22) as a guide with f(x) = cosx. However every odd derivative
will be 0. Hence if we want three non-zeroc terms we must let n = 4
and we get cosx = 1 — (x%/2!) + (x*%/41) — sin ¢ (x%/5!). Note that sinx
=0 at x =0 and so if we carry the expansion to one more term, the
x5/5! term drops out and we have as the last term —cos w(x5/61).

(c) Use (20) with f(x) = cosx, a =7/4 and n = 2. The answer is in the text.

(d) Use (22) with f(x) = sinx. However every even derivative will be 0.
Hence let n = 5. Then sinx = x — (x%/3!) + (x%/5!) — sin u(x%6!). As in
(b) we could use the fact that sinx =0 at x =0 and go one more term
in the expansion. Then the x%6! term drops out and the last term be-
comes —cos X%/},

(e} Use (20) with f(x) =tanx, a = 7/4, and n = 2. Answer in the text.

() Use (20) with {(x) =e*, a=1,and n=2. Then e*=e +e(x - 1)
+e(x— 1)%¥/2! + e#(x — 1)%/31

For n =0, we have by (20), that f(x) = £(0) + £'{i)x. Thus x* = 4u*x and

at x =1, 4 =1/¥4. Similarly for n = 1, we obtain x* = 12%(x%/2} and at

x=1, p=1//6. For n=2, x* = 24u(x%86) and at x =1, u =%,. For

n =3, x* = 24x%/24. The values of p are decreasing. For the case of n =3,

since the fourth derivative is constant any value of ¢ would do.
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{c) By comparison with the p-series, the series converges.

(d) Since 1/yn¥ = 1/n%?, the series converges by comparison with the
p-series.

(e} This is the p-series with p = Y,; hence it diverges.

(f) Note that 1/n{n + 1} < 1/n® and use the p-series; hence the series

converges.
(g} Note that 2n/{n + 1)}(n + 2) > 1/(n + 2) and use the harmonic series
v.+Y, +3Y, + ... for comparison. Neglect of the first two terms in

the harmonic series does not affect divergence.

(h) If we factor !, out of all the terms we have Y of the harmonic series.
But the harmonic series diverges or iis “sum?” becomes infinite. Hence
the given series diverges.

(i} The “sum” of the given series is the “sum” of the harmonic series
minus the quantity 1 + Y, +, + /. Since the harmonic series diverges,
so does the given series. ‘

(j} ¥3 > 1 but approaches 1 as n becomes infinite. Hence the n-th term
of the given series does not approach 0 and the series diverges.

(k) 1/(n?+ 1) < 1/n% The latter is the n-th term of the p-series with
p = 2 and so converges. Hence by the comparison test the given series
converges.

(1) The sum is Y, the “sum?” of the harmonic series. Since the latter
diverges so does the given series.

(m) The terms of this series are larger term for term than the terms in
(1), The latter diverges; hence so does the former.

{n} Since logn < n, the terms of the given series are greater than the
terms of the harmonic series. Hence the given series diverges.

(0) The terms are %, of the corresponding terms of the harmonic series,
The latter diverges. Hence so does the former.

The first comparison is fallacious since the next terms in the given series

are Y, +%Y,,+ Y, + ... while the next terms in the geometric series are

Yie ¥ Y5 + Y, +... and the terms of the first are not less than the terms

of the second series. To avoid being fooled by the coincidence that the first

few terms of a given series are less than or greater than the first few
terms of a comparison series, one should always, if possible, consider the
general term. In the present case the first comparison claims that

1/(§n ~ 1) < 1/2" which is obviously false for large n and the second com-

parison claims 1/(3n~ 1) > 1/3" which is correct for all n,

Again the comparison is 'fallacious because i/n(n+ 1) > 1/2° for n large.

In the present case the given series actually does converge (see 1(f)), but

the argument given does not establish this fact.

The argument is correct and does show that the harmonic series diverges

prov@ed ‘Fhat the grouping of terms is correct. We did find cases where

grouping is not correct (Section 6, Exercises 7 and 8). However for a series
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CHAPTER 20, SECTION 4

1. In Exercise 1(b) of the preceding section we found that cosx =1 — x%/2!
+ x%4! - cos u(x%/6!1). Hence let x = 0.1 in the first three terms. The error
is given by the remainder, cos u{x%6!). Since |cos | < 1, the remainder
is less than (.1)¢/6! and this last is 1.4°10°°,

2. The error is given by cos p(x7/7!). Since |ecosu| < 1, x¥/7! for x = 0.2 is
2y

3. Using the procedure of the preceding set of Exercises we get e* =1 +x
+ x%/2 + x3/6 + e#(x%/24). Then from the first four terms we get
e'/2=1.65+R where R = e#(1/16-24), Since u is between 0 and 1,
et < e'2, Now e < 3; hence e'2 < 3 and R < v3/16-24 < 0.005.

4, For fx)=log(1l +x), £'&x) = 1/(1 +x), f"(x) =—1/(1 + x)?, etc. Evaluate
these derivatives at x = 0. Then log (1 + x) expanded around x =0 is
log (1 +x) =logl + 1x — x¥2! + x¥3! — x¥/4! + [24/(1 + p)°](x%/5!). Now let
x =%/, and calculate the sum of the first four terms (log1 = 0). This sum is
0.401. Now R =|24(1 + u)°](1/25-5!), Since u > 0 we may say that
r < Yo

5. This is just an extension of Exercise 1. Carry two more terms in the ex-
pansion.

CHAPTER 20, SECTION 5

1. Apply (29) in each case.
(a) sinx =x—x%3! + x5/l - xV/T1 +....
(b) cosx=1-—-x¥21 +x¥4! —x561 +,.. .
(c) log(l+tx)=x—x%2 +x%3—-x¥4+....
(@) e*=1+x+x%21 +x%31+....
() e*=1—-x+x¥2 —-x%31+..,.
(f} tanx =x+x%3 + 2x%15 + 17x7/315 + 62x%2835 + , .. .
2. (a) Use (28) with a = #/4 and f(x) = sinx. Then sinx
=(1/V2)[1+ (x—7/4) — & — 7/4)%/2! — (x - 1/4)¥/3! + (x — 7/4)V/41) +...]
b) e*=e+elx—1)+ex—1%2 +e{x— 10331 +....
{c) log(l+x)=1log3+(x—-2)/(3-1)—(x—2)%(3* 21) + (x —2)%/3%-31)—....



152

CHAPTER 20, SECTION 6

1.

a) Geometric series with
b) Geomeiric series with
¢) Geometric series with r = .1 < 1; hence convergent.
d) Geometric series with Y/ < 1; hence convergent,
(e) Geometric series with r = .3 < 1; hence convergeni.
(f) 8,=n(n+ 1)/2 which diverges.

(g) S,=.01[n(n + 1)/2] which diverges.

r = Y, < 1; hence convergent.

r =2 > 1; hence by (33) S, = 2" which diverges.
r
r

(
(
(
(

Il

(a) For r =1, the geometric series has the form a+a+a-+a+... which
clearly diverges.
{b) For r =—1, the geometric series has the form a—a+a—-a+a~—...

which, the reasoning used in examining (39) shows, diverges.
If r > 1, we can write r as 1 +h. Then r?= (1 + h)*= 1 + nh + positive
terms As n becomes infinite so does r® Then, since S, = (ar®—a)/(r — 1),
S, becomes infinite.
It diverges because, supposing the first term to be positive, the odd partial
sums become larger and larger and the even partial sums become smaller
and smaller. Hence all the partial sums do not approach one number.
(a) |r| =1 < 1; hence it converges. () |r|=2%%.< 1; hence it con-
verges. (¢) [r|=3%,> 1; hence it diverges.
The argument assumes that the series has a sum 8. If this were the case
then 3 would indeed be —1. One can make a sensible argument by saying,
“Suppose S=1+2+4+.... Then by the steps in the text S =—1, Since
a sum of positive terms cannot be negative, the assumption that the series
has a sum is incorrect.”
The grouping of the terms in the form S=(1-1)+{1—-1)+... gives only
the even-numbered partial sums of the original series. But if the original
gseries is to converge all the partial sums must approach the same number.
This example show us that grouping of terms may lead to the wrong con-
clusion.
Here the grouping of the terms gives us only the odd-numbered partial sums.
If the original series is to converge all the partial sums must approach the
same number,
The argument assumes that the series has a sum. If it did the sum would
be . But we have no argument to show that the original series has a sum.
In fact we know from the text that if does not.

CHAPTER 20, SECTION 7

1.

(a) Since (2°* + 1}/2" > 1/ and the series Y, + Y, + 1, + ... diverges, the
given series diverges,

(b) Since 1/2™! < 1/27 the given series converges by comparison with
the geometric series with a=1, r =1, < 1,
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of positive terms the grouping does not alter the convergence or divergence,
The grouping does give only the even-numbered partial sums. However the
odd-numbered partial sums lie between the even-numbered ones. That is,
S, <8, <8, <8, < 8;.... If the even-numbered ones approach a fixed
number $o do the odd-numbered ones and if the even-numbered ones be-
come infinite, so do the odd-numbered ones.

CHAPTER 20, SECTION 8

1. (a)

(b)

(c)
(d)
(e)

(£)

2. (a)
(b)

The series of absolute values is the p-series with p = 3. Hence the
series converges absolutely.

The series of positive and negative terms satisfies the conditions of the
first theorem of the section. Hence it converges. However the series
of absolute values ig greater term for term than the series whose n-th
term is 1/3n and the latter is %, of the harmonic series and so di-
verges. Hence the original series is conditionally convergent.

The n-th term does not approach 0. Hence the series is divergent,
Divergent for the same reason as in {c).

The series of absolute values is lesg, term for term, than the p-series
with p = 2, Hence the series converges absolutely.

The series of positive and negative terms converges because it meets
the conditions of the first theorem in the section. However the series
of absolute values is twice the harmonic series and so diverges. The
original series is conditionally convergent.

No. See the first theorem in Section 7.

Yes, for example, 1-1+Y, -+ - Y + 1 -1 +... .

CHAPTER 20, SECTION 2

1. (a)

(b)
(c)
(d)

(e)

Lim | [0 +1)/3%*]/(n/3") | = lim (n+ 1)/3n =1, < 1; hence the series

is convergent. To see the limit more clearly divide numerator and
denominator by n.
Lim [[27*/(n + 1)]/(2%n) | = im 2n/(n + 1) = 2> 1; the series is

divergent.
Lim | [2™Y/(n + 1)2]/(2%/n?) | = lim 2n%/(n® + 2n + 1) = 2 > 1; the series

is divergent.
Lim |[(n + 1)/10"]/(n/107%) | = Lim (n+ 1)/10n = ¥, < 1; the series is

convergent.
Lim [+ 1)2/3)"* 1] /m(2/3)"| = Lim (2n + 2)/3n =24 < 1; the series is

convergent.



(f)

(2)

(h)

&
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Lim [(n + 1)1/10] /(1 /107 | = lim (n +1)/10 =« > 1; the series is

divergent,

Lim [/ ya + 1)/(22/n)| = lim 2vn/vn +1 =2 > 1; the series is

divergent.
Lim Ho+1)!/3-5-7...@n+ 3)}/[n!/3-5-7...(2n + 1)]] = lim

(n +1)/(2n + 3) =Y, < 1; the series is convergent.
2n +1 _

o 1.3.5...@n+1)/1.4.7... (Bo+ 1)) _ . 3
Lim | s an /1 47 . (@Gno2y| M gy “3< 1 the

series is convergent.
In{g;l [{1/(2n + 1}{2n + 2)]/[1/(2n — 1)2n] | = }li_{g n(2n ~1)/(n +1)(2n + 1)

= 1; hence no test.

CHAPTER 20, SECTION 10

1.

(a)

(b)
{c)

(@)

{f)
(&)

la/2,] = [1/(n+ 1)2]/(1/n%) = n¥(n + 1)2. Hence the limit is 1 and

the series certainly converges for —1 < x < 1. For x =—1 we have

the negative of the p-series for p = 2 and this converges. ¥For x=1

we have the conditions for an alternating series to converge, Hence the
interval is —1 =x =1,

la,../a,| = [1/@n)1]/[1/(2n — 2)I]= 1/(2n — 1){Zn). Hence the limit is 0
and the series converges for —e < x < o,

la,./a,] ={1/(0+ 1)]/(1/n) =n/(n + 1). Hence the limit is 1 and the
series certainly converges for —1 < x < 1. For x =1 the series is an
alternating series and meets the conditions for convergence. For

x = —1, the series is the negative of the harmonic series and so di-
verges, Hence the interval is —1 < x = 1.

Since this is not a power series it is best to apply the ratio test directly.
We have x*1%/x® = x#*1  The limit as n becomes < must be < 1 for
the series to converge. But this will hold for |x| < 1. For x =1 the
series certainly diverges and for x = -1, the seriesis 1 —-1+1...

and diverges. Hence the interval is ~1 < x < 1.

{a,,,/a,| =vn+1/¥yn. The limit is 1. Hence so far we have convergence
for —1 < x< 1. For x =1 we have a p-series with p =%,. Hence
divergence. For x =~1 we have a convergent alternating series. Hence
the interval is —1 = x < 1.

la,../a,! = (n=1)1/nl =1/n. The limit is zero. Hence the series con-
verges for all values of x.

la,,,/a,] = (2n —2)}1/2n! = 1/2n(2n — 1). The limit is zero. Hence the
series converges for all values of x.



(h)

)

()

(k)

)

(m)

(n)

(a)

(b)

(c)

(c)
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la,.;/a,| = (n+ 1)/n. The limit is 1. Hence so far the interval of con-
vergence is -1 < x < 1, For x=1 and for x =—1 the n-th term does
not approach 0. Hence the interval ig —1 < x < 1,

la,../a,] =n%(n—1)2. The limit is 1. Hence so far -1 < x < 1, For
x =1 we have the p-series with p =2 and so convergence. For x = -1
we can rely upon the absolute convergence when x = 1. Hence the in-
tervalis -1 =x= 1.

[a,,./2,] = [+ 1)/n!l])/[n/t0h— 1)1] = (n + 1}/n® The limit is 0. Hence
the series converges for all x.

L2, /2. = [22Y/(n + 1)% + 1]/[27/(0* + 1)] = 20 + 1)/[(n + 1)2 + 1]. The
limit is 2. Hence so far the interval is =%, < x < %,. For x= Y, we
have terms which are less than those of the p-series for p = 2. Hence
convergence, For x = -~/ we can rely upon the absolute convergence
when x = Y. Hence —%, =x = Y.

la /2.l = [1/2%n + 1)]/(1/2%1tn) =n/2(n + 1). The limit is %,. Hence
so far the intervalis —2 < x< 2. For x =2 we have the harmonic
series. For x =—2 we have a convergent alternating series. Hence

-2 =x< 2.

la,,,/a.) = [(n+1)/2°3™1]/(n/2713%) = (0 + 1)/6n. The limit is Y.
Hence so far —6 < x < 6. For x = 6 the seriesis % + AR A
+...+n/3+.... This certainly diverges because the n-th term does
not approach 0. For x =—86, the same is true. Hence —6 < x < 6.

|2, /a.l = [1/2° + 2))/[1/2"  + 1)] = (n + 1)/2(n + 2). The limit is Y.
Hence so far the interval is —2 < x < 2. For x = 2, the n-th term is
9/(n + 1). This is twice the harmonic series. For x =—2, the series

is alternating and meets the convergence conditions. Hence —2 =x < 2.
Replace x ~ 1 by t temporarily. Then lim la,, /a,] =1. For t=1 or

-1, the n-th term does not approach 0. Hence the interval is
—1<t<1or 0<<x<2
Replace x — 2 by t temporarily. Then lim la,,,/a.1 = 0. Hence the

series converges for all t. This can be stated ag — < t < . Hence
the series converges for —© < x < =,
Replace x + 4 by t temporarily. Then %1330 lanﬂ/ani = 0. Hence, as in

(b), the series converges for all values of X.
Replace x + 3 by t. Then 1111__11}c |an+1/an| = 1. Hence the series con-

verges for —1 < t < 1 and since X = t — 3, the series converges for
-4 < x< 1.

A power series may converge for say, —a < x < a. To be absolutely con-
vergent it would have to converge for x = a also. If one excludes the end
values of the interval of convergence then in the (open) interval it is ab-
solutely convergent. See the theorem on p.
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CHAPTER 20, SECTION 11, FIRST SET

1. {a) The Maclaurin series is given by (29) or (80) where n is allowed to be-
come infinite. The series is given in the text. Use of the ratio test
shows that it converges for all x,
(b) The method is as in (a), cosx =1 — x¥/2! + x*/4! — x%6! + ... . Again
by the ratio test the series converges for all x.
{c) By applying (29) or (80) where n is infinite we get the series in the text.
By applying the ratio test we get that the series converges for,
—1< x< 1. For x =1 we get a convergent alternating series. For
X =—1 we get the negative of the harmonic series which is divergent.
2. (a) R,=sinux"/n! {or cosu). Now |sinpu | = 1. Hence we have to be con-
cerned only with x°/n! Now use the argument on p. 141. That is, given
any value of x choose an m such that m > 2 [x|. Then for any n > m,
| x%/nt| = x™/m!)[x/(m + 1)]---x/n. But for n > m, n > 2x or x/n < Y.
Hence |x,/n!| < x™/m!)(1/2>™), Now m is fixed and so x™/m! is
fixed but as n becomes infinite, 1/2°™ approaches 0. Hence |x"/n!|
approaches 0. Then R, approaches 0 for any given Xx.
(b) The argument is exactly the same.
3. A series may represent a function in only a part of the domain for which the
function is defined.
4. Using (87) we find that (1 +2[,)*® =1 + 2}, — (?%,,)? = 1.0244 approx. Then
Y29 = 3(1.0244) approx.
5. (a) ¥30 =¥3+27 =27Y3(1 + ¥,.)'/? and apply (87).
(b) VI8 =92 +16 = 2(1 + 1,)'4. Apply (87). Ans. 2.060.
(c) ¥34 Y2 +32 =2(1 + ¥Y,)"°. Apply (87).
(d) V8 =¥16 -8 =2(1 —,)*. Apply (87). Ans. 1.7.
(e) ¥75 =¥8T—=16 =3(1 —2,,)*"*. Apply (87).
() ¥25 =272 = 3(1 — 2,,)*/3. Apply (87). Ans. 2.924.

CHAPTER 20, SECTION 11, SECOND SET

1 log(l+x)=[ldt/(1+t)= [A-t+2—t3+.. )dt=x—x¥2+xY3— ...,

2. sinx® =x% —x%3! + x!%5! — . ... Then j:sintz dt Zfox(tz—tﬁ/BI +t19/50 — || ) dt
=x%3 - x%/73! + x*¥/11-5! — . ...
= x 2y = * 231 = X — 2 4 _ =
3. (a) arc tanx fodt/(1+t) f0(1+t) dt fo(l t2+tt—,..)dt = result
in text.

(b) 1og(1—x)=—f0"dt/(1—t)z—fo"(1—t)-1dt:—f0"(1+t+t2+...)dt
=—x—x¥2-x33—...,
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(¢) log cosx = —_f(;xtant dt. Now use the given series for tanx to integrate

term by term.
4, Let x=1 in the answer to 3(a).

CHAPTER 20, SECTION 12

1. (a) Since sinx =x —x¥3! +x%5! — ... we can express sinx/x as a series
and integrate term by term to get the text’s answer.
(b) Since sinx? =x2 — x%3! + x'%51 — ..., to evaluate fsinx2 dx we in-
tegrate term by term. Ans., x¥3 — x7/7-31 +x'V/11:5! —,,. + C,
{(c) Using the series for sinx (see (a)) we have VX sinx = x5/2 — x7/%/3!
+x1/2/50 — ... . Hence [vX sinx dx = 2x*/%/5 — 2x°/%/9-31 + 2x'3/%/13-5!
... +*C.
2. (a) We know that e*=1+x +x%21+.... Then v ~ (32/k) — (32/k) "

(1 — kt + K22/2!) + .. .or v ~ 32t — 18Kki=?,
(b) Yes, because in a vacuum v = 32t for the motion described in (a).
3. (a) Use from (2a), e™ =1~ kt + K?¥2! + k3%%/3! —... . Then substitute in
the given expression for y and we get y ~ 16t* — 16kt%/3.
(b) Yes because as k approaches 0 we get y = 16t%, which is the distance
fallen in a vacuum.
4. (a) Use from (2a), e™ =1 —kt + k2%%2! — ... and substitute this in the
given expression for v. This gives the text’s answer.
(b) Yes because in the vacuum case for the motion described in (a),
v = v, — 32t.
5. (a) Use the series for e™™ and substitute in the given expression for y.
This gives the text’s result.
(b) Yes because in the vacuum case, y = —16t* + 1000¢t,
6. (a) We know that log(1 +x) =x—x%2+x%3-.... Hence
log (1 + 1000k/32) = 1000k/32 — (1000k/32)%/2 + ... . Multiply by 1/k.
This gives the text’s approximate value for t,.
(b) Yes, the value for the vacuum case is '*°%,.
7. (a) We know from Exercise 6(a) that log {1l + 1000k/32) = 1000k/32

— (1000k/32)%/2 + (1000k/32)%/3 — ... . Use this approx. valuq_ to sub-
stitute in the expression for y,. This gives the text’s approximate
answer.

(b) Yes. The value of y, for the vacuum case is (1000)%/64.

8. The series for arc tan x (see Ex. 3(a) of the previous list) is
x-x2/34x5/5-... . Hence tan”!Vk/32 1000 = vk/32 (1000) |
- (k/32)3/2(1000)3/2/3 + (k/32)5/2(1000)5/2/5 ~ ... . Now substitute
in the expression for t,. This gives the text's approximate ex-
pression for t,.
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When k approaches 0 we get t, = %%, which is the value for the
vacuum case.

(a) The series for log (1 +x) is given in Exercise 6(a). Let x = 1000%k/32
and then substitute in the expression for y,. This gives the text’s
answer.

(b) Yes because y, in the vacuum case is (1000)%/64).

To three term e* =1+ x +%x%2, Then y = (¢/2)(1 + x/¢c +x%2c? +1 —x/c

+ x2/2¢%) = ¢ + x¥/2¢, which is the equation of a parabola.

We found in Exercise 10 the approximate value of v in terms x, namely,

y =c¢ +x¥2¢c. Let y=c +d and x =£. Then ¢ = £%/2d.

Use the value W'=-(k/R?)(1 — 2h/R). We have W = (-k/R?) - (h — h*/R) + C,

If we agree that W = 0 when h =h,, say, we have that C = (k/R?)(h, — h?/R).

Then W =-({k/R?*): (h —h*R —h, + h?/R). Now let h, = 500-5280 and h = 0.

Since k = GMm, k = 32(4000- 5280)2- (100). Then W = 8,342 10° ft.pdis.

which is almost equal to the value 7,509 -10° ft.pdls. obtained in Chap. 6,

Section g, Exercise 2.

If we use two terms of the log (1 + x) series we have t, = (1/k)[(kV sin A/32)}

— (k®V® sin? A/2 - 32%)]. Since T, =V sinA/32 we see that t, < T,. Strictly

one should add that if we assume that kV sin A/32, which replaced x in the

log (1 + x) series, is less than 1, then the terms decrease in size and then
the error in neglecting all the remaining terms of the series is less than
the value of the first term neglected. But the first term neglected is

k3V® sin® A/(3 - 32%) and this is less than the term we subtract from T, to

get T,. Hence for kV sinA/32 < 1, t, is rigorously shown to be less than

Ty

In this case if we carry three terms of the log {1 + x) series, we have, as

in Exercise 13, that y, < Y,. Again we can make a rigorous argument if

kV sinA/32 < 1.

If weuse e*=1 +x +x%2, then ™ =1 — kt + k*?/2, We substitute this

value of e™ in the expression for y, set y =0 and solve for t. This gives

t, = 2V sin A/(32 + kV sin A). This is a useful result and does show that

when k =0 we get the time in a vacuum, namely, V sinA/16. However if

one wants to get the answer in terms of a series in k to the first power at
least, one can expand by binomial theorem. Thus

t, = {2V sin A/32)}{1 + (kV sin A/32)]™" ~ (V sin A/16)[1 — (kV sin A/32}]. In

this form too we see that when k = 0, we get the result for a vacuum.

To get an answer to the first power in k we replace e™* by 1 —kt in the

expression for x. Then replace t by the result in Exercise 15 and this gives

the answer to this Exercise. Note that the range is less than in =

4 vacuum.

The precblem is solved in the text.



159

Solutions to Chapter 21

CHAPTER 21, SECTION 2, FIRST SET

2. The perpendicular to the y-axis, for example, has the coordinates (0, y, 0).
Hence the three distances are vVy? + 22, VX2 + 22, and Vx* + y2.
(@) 3,4,5); (b)) (3,-4,5); (c) (3,4,-5).
(a}) yz-plane; (b) xz-plane; {(c) xy-plane.
(a) z-axis; (b) y-axis; () x-axis.
(a) A plane parallel to and 7 units above the xy-plane.
(b) A plane parallel to and 5 units to the left of the xz-plane.
7. {(a) A cylinder whose axis is the z-axis and whose radius is 4 units.
(b) A plane perpendicular to the xy-plane which intersects the xy-plane
along the line x=1y.

P o

CHAPTER 21, SECTION 2, SECOND SET

1. Use distance formula. BAns. 3/2.

2, 5
3. V45

CHAPTER 21, SECTION 2, THIRD SET

2. (a) The z-axis; (b} The y-axis

3. (a) Perpendicular to the z-axis; (b) perpendicular to the x-axis.
4. By equation (6) with o« =8 =y, we have 3 cos? o = 1. Thus we find o = 54° 44’
approximately.

5. By equation (6) with « = 45°, 8 = 60°, we have Y, + Y +cos®y = 1. Thus we
have y = 60° or y = 180°—60° = 120° as the two possible angles.
6. By equation (6) the sum of the squares-of the direction cosines must equal
unity. Applying this test we find that only {(c) can be a set of direction cosines.
7. =%, =Y, —V2/2.
8. Use (7) with AB given by (1). Then (b) 2/V38, 3/V38, 5/438; (@ ~1/V3,
~1/43,-1/43;,  (e) —2/V38,—3/V38, —5/V38.
9. The direction angles are 90°, 0°, 90° and the direction cosines are 0,1,0.
10. By using (10) we get the direction cosines from the direction numbers.
Hence (c) o = 80°18’, g = 59°32', y = 147°42",
11. We use (10) to get the direction cosines from the direction numbers. Hence
(¢) o =143, g="15°57,7 =0
(d) a=122°19, g =143°18, y = 74°30;
(e) a = 45° B =124°27, y = 64°54",
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12, Yes, although the direction cosines are restricted by equation (6).

13. For any line we take a parallel line {or segment} from the origin to some
point P with the direction from O to P that of the given directed line. Then
the angle which the directed line OP makes with the positive x-axis is called
the direction angle ¢ andthe angle which OP makes with the positive y-axis
is called the direction angle 8. As in the derivation of (5) we have cos® o
+ cos?8 = 1. The reagon that we do not use two direction angles in plane
analytic geometry is that one angle (the usual angle of inclination) suffices
to fix the direction of a line, just as two angles really suffice in three-di-
mensions (except that in 3-dimensions we distinguish AB from BA).

CHAPTER 21, SECTION 2, FOURTH SET (p. )

1. (a) By using (10) to obtain cos o, cos 8 and cosy and then cos ¢', cos ' and
cosy’ we find that cos a/cos o’ = cos 8/cos §/ = cos y/cosy’. Let r be the
common ratio. Then cos @ = rcos ), cosg =rcosp’, cosy = rcosy’.
Square and add these last three equations. Since the sum of the squares
of the direction cosines is 1, we have r =1 {or —1) and cos & = cos &,
cos B = cos B, cosy = cosy’. Then the lineg are parallel because they
are parallel to the same line OP which defines their direction cosines.

(b) Divide aa’ + bb' + ce’ =0 by vaZ+ b + ¢? Va’2 + b’2 + ¢’%2 This gives, by
(10), cos @ cos ¢’ + cos B cos ' + cosy cosy’ = 0. By (15) the two lines
are perpendicular.

Use the result of Exercise 1(b).

3. Leta, b, ¢ be the direction numbers of the desired line. By the result of
Exercige 1(b), 2a —3b + 4c =0 and —a + 2b + 3¢ = 0. We have two equations
in the three unknowns a, b and ¢. Solve for a2 and b in terms of ¢. Then
a=—17¢c and b = —10¢c., Take any value for ¢ and we have three numbers
which fix the desired a, b and ¢. For ¢ = —1 we have the text answer.

bo

CHAPTER 21, SECTION 3, FIRST SET

1. A:(3,0,0); B: (0,3,0); C: (0,0,—6).

2. (b) A:(2,0,0); B: (0,—3,0); C: (0,0,12).
(@) A:(0,0,0); B: (0,0,0); C: (0,0,0).
(e} A:(5,0,0); B: (0,5,0); C: None.

3. We use Theorem 2. This tells us what the direction numbers of the normal
are. Then use (10). Hence (b) 2/46,—1/6,—1/46; (4} 2/V10, 0, -1 /VI0;
(e) 0, 1/v2, 1/V2.

4, Use Theorem 3, Then (b) 5/V6; (e) 5/V5; (@ 7/V10; (e) 5/V2.

(a) The direction numbers of the normal to the plane are 1, 1,0. Hence the

direction cosines of the normal are 1/v2, 1/v2, 0. The normal is per-
pendicular to the z-axis. Hence the plane itself is perpendicular to the
xy-plane and so parallel to the z-axis.

wn
.
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(b) See (a). The plane is perpendicular to the yz-plane and so parallel to
the x-axis.

{c) See (a). The plane is perpendicular to the xz-plane and so parallel to
the y-axis.

(d) The direction numbers of the normal are 1,0, 0 and these are also the
direction cosines. Hence the normal is parallel to the x-axis. Hence
the plane is perpendicular to the x-axis and so parallel to the yz-plane.

{e) See (d). The plane is perpendicular to the y-axis and so parallel to the
xz-plane,

(f) See (d). The plane is perpendicular to the z-axis and so parallel to the
Xy-plane.

By Theorem 2, the direction numbers of the normals to the given planes

are proportional. Hence (Exercise 1(a) of the preceding set), the normals

are parallel and so the planes are parallel.

By Theorem 2 and Exerciseé 1(b) of the preceding set, the normals to the

given planes are perpendicular and so the planes are.

{a) The line from (0,0, 0) to (4, 5, 3) has direction numbers 4,5,3. Then

the plane has the equation 4x + 5y + 3z + D = 0. Since the plane passes

through (1,3,2), 41 +5+3+3-2+D =0 and so D = —25. Hence the text
answer.

(b) Use the method in {(a}. Ans. 2x— 4y +3z ~ 7=0.

(a) The perpendicular distance from the origintox +y +2z =35 is, by
Theorem 3, 5/¥3. The perpendicular distance from the origin to
2x + 2y + 2z +7=0 is 7/¥vi2 = 7/2V3. The difference of the distances
is V3/2.

{(b) Use the method in (a). Ans. v3/2.

(c) Use the method in (a). However the two planes are on opposite sides
of the origin (see the footnote to Theorem 3) and so the two distances
are added.

(a) Solve the three equations for the simultaneous solution.

(b) Same method as (a). Ans. (%, %, —3).

The desired equation can be written in the form (A/D)x + (B/D)y + (C/D)z

= 1. This equation must be satisfied by the x,y and z of each of the given

points. Hence we have 3 equations in the three unknowns, A/D, B/D and

C/D. (The threé points cannot lie on one line. If they do, there will not be

a unigue solution.)

This problem presupposes a knowledge of determinants. We note that by

considering the determinant as expanded by minors of the first row, the

given equation has the form of a plane Ax + By + Cz + D =0, It remains to
show that this plane contains the given points. Substituting X =X, ¥y =v,,

z = z, into the determinent we see that it vanishes because two rows are

identical. Thus (x,, y,, ,) lies on the plane. Similarly (x,, y,, 2,) and

(X3, Vs, Zs) lie on the plane.



162

CHAPTER 21, SECTION 3, SECOND SET

1. Use (24) in each case. The answers to (b) and (d) are:
(b) T78°45' or 101°15%/; {(d) 72°32 or 117°28'.

CHAPTER 21, SECTION 4, FIRST SET

1. To find the direction numbers use (31). To find the trace set z = 0 in the
two equations of the planes and solve for x and y.

(b) a=-21, b=0, ¢ =21; trace: (-19,-9, 0).
(d} a=—-5,b=1, ¢c=—1; no trace.
(f) a=3,b=~5,¢c=~-3; trace: (2, —2,0).
() a=3,b=4,c=4;trace: (¥, —Y, 0).

2. In general there are three sets of projecting planes, each congisting of any
two of the three planes given below. Each equation is obtained by eliminat-
ing one letter from the two given eguations.

(a) Ty +4z +3=0, Tx +29z2 — 36 =0, 4x — 29y — 33 =0.
{(b) y+9 =0, 3x+ 3z + 10 = 0; the line lies in the plane y = —9 and so two
of the projecting planes coincide.

{c) 46y — 49z +50 =0, 46x — 41z — 22 =0, 49x — 41y — 56 = 0,
(d y+z=4,x—-3z2=8, x+3y =20,

(e) 8y =19, 4x = 23; see (b).

(f) 3x+z=6,5x+y=8, 3y — 52z = —6,

{(g) 4x—3y=2,4x—-32=1, 3y — 3z = 1.

CHAPTER 21, SECTION 4, SECOND SET

1. Bydefinition the direction numbers are proportional to the direction cosines..
Then by (?6) the equations of the line may be written as (x —x,)/a = (y —y,)/b
=(z — z,)/¢c.

2. Yes, po;itive and negative values of d in (38) each yield half lines in oppo-
site directions emanating from (x,, y,, 2;)} with fixed direction angles «, 8, 7.

3. Yes. To obtain this result, we note that any direction numbers may be writ-
ten as a =kcosa, b =kcos 3, ¢ = kcosy, where k is a constant of propor-
tionality. Thus in place of (38) we obtain x =x, + (d/k)a, etc. Then replacing
d by kt we obtain the desired result.

4. (a) By (38), (x — 3)/(*}) = (y — 4)/(1/¥2) = (z — 5)/(=¥%,) or by (38), x =3 + ¥4,

y=4+(1/42)d, =5 — Yd.

(o) (x —3)/(v3/2) = (y —4)/(%) = (z + /AT or x =3 + (V3/2)d, y = 4
+Yd, z = —4 + (1/42)d.

(c) A set of direction numbers is given by 1, -5, —3. By Exercise 1,
(x —3)/1=(y+2)/-5=(z —1)/-3 or by Exercise 3, x =3 +1,
y=—-2~5t z=1— 3t
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(d) By (38}, x =3, y=—-2 —2t, z =1 + 4t, Note that the representation
given by (36) fails since it involves division by zero,

(e) By (38) and Exercise 3, x =3 +2t, y =2 +1t, z =1 + 3t. Solving each
equation for t and equating the results, we obtain the alternate repre-
sentation (x — 3)/2 =(y — 2)/1 = (z — 1)/3.

(f) ByExercise3,x=t,y=-3-38t,z2=2—tor x/1=(y+3)/-3
=(z — 2)/-1.

Parallel lines have the same direction numbers; hence a set of direction

numbers of the desired line is 1, —3, —1, Thus by Exercise 3, the answer

isx=t,y=—-3—-3t,z=2 —t.

Since parallel lines have the same direction numbers, a set of direction

numbers of the desired line is 4, —3, — 1. (See Exercise 1.) Then by Exer-

cise 3 the answer isx=~—-2+4t, y=4 —-3t, z = —t.

Each value of d yields a point on the line,

Fach value of t gives a point on the line. Calculate the coordinates of two

points and draw the line joining them.

By Exercise 1, a set of direction numbers of the line is ¥, %, %. By Theo-

rem 2 of Section 3, a set of direction numbers of the normal to the plane is

2, 3, —3. By Exercise 1{(b) of Section 2, Third Set, we conclude that the line

and normal are perpendicular from which the desired result follows.

Use the reasoning of Exercise 9 and Exercise 1(a) of Section 2, Third Set.

Verify that two points of the line-lie;in the plane. Thus if- we let z =3, then

y = —2 and x = 2. Thus one point on the line is (2, —2, 3). If we substitute

these values in the equation of the plane they satisfy the equation.

(a) A set of direction numbers of the normal to the plane and hence of the
line is 3, —1, 2, Thus the lineis x=2+3,y=~-3 —t,z2=4 +2t,

(b) Use the method of {a). Hence x=-1+t, y=3, z=2 — 3t.

(¢) Let the direction numbers of the line be a, b, ¢. The normals to the
planes have respectively the direction numbers1,0, —2 and 0, 1, —3.
By Exercise 1(b) of Section 2, Third Set, we thus have a — 2c =0 and
b — 3c = 0. Hence a set of direction numbers of the line is 2,3,1 and
the answer is x =2t, y =2 + 3t, z =4 +{. Or use (31) to find the direc-
tion numbers of the line determined by the two planes.

Use equation (14) with the values cos o = 3/V14, cos g = 2/¥14, cosy = 1/¥14

(the direction cosines of the line) and cos ¢’ = 3/V13, cos g’ = —1/VIZ, cosy’

= 2/xf171' (the direction cosines of the normal to the plane) to obtain cos ¢

=9,. Thus ¢ = 50°46’,
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CHAPTER 21, SECTION 5, FIRST SET

1.

2.

3.

Use completing the squares as in the text to put the equation in the form (42).

(b) (2,3,0), yI3;  (d) (0,8,—3), 5v2; (e) —5,, —4), ¥5/2.

The point (3, 4, 5}, No other sets of (x,y, z) Satisfy the equation because a

sum of positive numbers cannot be 0.

Use equation (42).

(b) x2 +y2 +z2-2y~4z-%-‘0

{¢) X*+y?+z2—-6x+4z +12=0

{d) x® +y® +zz+2x—6y—4z+11"0

(a) Upper portion of sphere of radius 5 and center (2, 3, 0).

(b) Upper portion of sphere of radius 5 and center (2, 3, 3).

The radius of the sphere is the distance of (2, —2, 1) to the yz-plane. Hence

the radius of the sphere is 2 and the equation is given by x* + y* + z% — 4x

+4y —22+5=0

Let (x, y, z) be a point on the unknown surface.

(a) The condition sat1sfled by (x,y,2) is [(x— 7)2 + (y— 1)2 + (z + 3)2)/2
=2[(x + % + (y + 2)2 *’/ 2]+/2, Squaring, simplification and use of
Theorem 2 leads to the desired result.

(b} The condition satisfied by (x,y,2) is [(x— 4)% + (y + 5)2 + (z — 1)?]

+ [x2 + (y — 2)2 + (z — 4)?] = 64. Simplification and the use of Theorem
2 gives the result,

Complete squares in the expression for the given sphere to find the com-

mon center, {3, 0,—2) of the two spheres. Thus the unknown sphere is given

by (x— 3 +y2 + (z + 2)® = 1, Use the values x=2, y=5, z=—1T to deter-

mine that r? = 51.

It is geometrically obvious that the center of the sphere must lie on the per-

pendicular to the plane at the given point of tangency. Denoting the center by

(X4,Y0» Zo) and the given point by (x,, y,, Z;) we thus have that a set of direc-

tion numbers of the normal to the plane is. given by a =x;, - X,, b =¥, — ¥o,

¢ =z, — Z,. Thus the plane is given by ax + by + ¢z +d = 0. Since (X4, V15 Zq)

lies on the plane, d = —ax, — by, — ¢z, and the plane is given by a(x— x;}

+bly —y,) + ¢c(z —z,) = 0. Use this method just described or the result.

{a) 3x—-2y+z—14=0; (b) 2x—-6y+3z+49 =0

(¢) 2x+y+3z+18=0,

Completing squares in (46) we obtain [x + (G/2)FF + [y + (H/2)]? + [z + (1/2)]2

= -K + [(G® + H? + )/4]. To have a real sphere the right side must be > 0.

Then if K is positive, K < (G? + H2 + I?)/4. If K is negative the right side

is positive but then K still satisfies the condition just stated.
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CHAPTER 21, SECTION 5, SECOND SET

1. The surfaces are all paraboloids.

(a)
(b)
(c)
(d)

(e)

(b)
3. (a)

(b)
4, (a)

(b)

Axis is z-axis; cross sections are circles for z > 0.

Axis is y-axis; cross sections are circles for y > 0.

Axis is x-axis; cross sections are circles for x > 0.

Axis is z-axis; cross sections are ellipses for z > 0 w:th x-axis as
major axis.

AXxis is x-axis; cross sections are ellipses for x > 0 with y-axis as
major axis.

Axis is z-axis; cross sections are circles for z > 5. The surface lies
above the plane. z = 5.

Axis is x-axis; cross sections are circles for x > — 4. The surface
lies above x = 4,

Axis is z-axis; cross section are ellipses for z > 7. Compare (d).
Axis is z-axis; cross sections are ellipses for z > 0, The semi-axes
of the ellipses for z =k are avck and byvck.

In the yz-plane x =0, Hence z = 4y% and x =0 are the equations of
the curve.

z=%x y=0; (c) x*+4y*=5,z=5  (d z=x+100, y=5.
Since the paraboloid is a figure of revolution the parabola cut out by the
xz~plane, in which y =0, is a generating parabola. In the plane y =0
the equation of the generating parabola is z = (1/4p)x®. Thus the focus
is (0, 0, p).

Put z = p;then the circular section is x2 + y% = 4p?, z = p and the
diameter is thus 4p.

We must defermine p. At z = ¢, we have 4pc =x? + y°. The radius of
this circle is 2vpc and this should be a. Hence 4pc = a® and 4p = a¥ec.
Then the equation of the paraboloid is z = (c/a?)(x* -+ y?).

In exercise 3(a) we found that the coordinates of the focus of z = (1/4p)
(x2 + y2) are (0,0, p). Hence, in view of (a), the answer is (0, 0, a%/4c).

CHAPTER 21, SECTION 5, THIRD SET

1. The surfaces are all ellipsoids with centers at (0, 0, 0).

(a)

a=+v2, b=2, ¢ =6,

(b) a=6, b=3, ¢ =2;

(c)
(d)
{e)

=10, b =5, ¢ =;
a =10, b = ¢ =5 (prolate spheroid);
a=b=3 ¢ =6 (prolate spheroid).

2. The intersections are all ellipses.

(a)

x> +4y? =36, z=0; x2+922=236, y=0; 4y® +922 =36, x =0,

(b) x*+4y* =386, z=0; x* +422 =36, y=0; y*+22 =9, x=0,
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X%+ 4y* =27, z = 1.

Yes; the sphere corresponds to a =b = ¢ in equation (50).

The sections are given by 4y? + 922 = 36 — k. They are ellipses for |k| <8,
points for |k|= 6, and non-existent for |k| > 6.

Ellipsoid with center (2, 3, 4) and with semi-axes 4,5, 6.

CHAPTER 21, SECTION 5, FOURTH SET

1.

R4l

The surfaces are all hyperboloids of one sheet.

{(a) Axis is z-axis, cross section are ellipses with y-axis as major axis.
{(b) Axis is z-axis, cross sections are ellipses with x-axis as major axis.
{(¢) Axis is z-axis, cross sections are ellipses with y-axis as major axis.
(d) Axis is y-axis, cross sections are ellipses with z-axis as major axis.
(e) Axis is y-axis, cross sections are ellipses with z-axis as major axis.

. 4y®—2® =36, x =0 (hyperbola); 9x2 — z? = 36, y = 0 (hyperbola); 9x* + 4y?

=36, z = 0 (ellipse).

The curves are given by 4x%— 2% =36 — 9k?, y =k. For |k| <2, they are
hyperbolas with the z-axis as the major axis; for |k{ =2, they are inter-
secting lines; for |k| > 2, they are hyperbolas with the x-axis asg the major
axis.

Hyperboloid of revolution about the z-axis.

X2 +2y* =41, z =3,

CHAPTER 21, SECTION 5, FIFTH SET

1,

2.

3.

4.

y¥/b? + 2%/c? =k¥a? — 1, x =k, These sections are non-existent for k? < a2,
points for k? = a?, and the ellipses for k2 > a2,

The surfaces are all hyperboloids of two sheets,

(a) Lies along the x-axis;

(b) Lies along the x-axis;

(c) Lies along the x-axis;

(d} Lies along the x-axis;

(e) Lies along the y-axis;

(f) Lies along the z-axis.

4x? — 2272 = 24 + 8k®, y =k. These sections are hyperbolas with the x-axis
as the major axis.

4x% — 9y% = 145, z = 4.
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CHAPTER 21, SECTION 5, SIXTH SET

1. z =x%a?, y =0. This is a parabola opening upward.
Parabola opening downward with vertex (0, 0, 0).

(b) Parabola opening upward with vertex (0, 5,— 25/b?).

(c) Parabola opening downward with vertex (k, 0, k%/a?).

(d) Parabola opening upward with vertex (0, k, —k%b?).
3. The surfaces are all hyperbolic paraboloids with saddles at the origin.
Above the saddle the x-axis is the major axis of the cross section;
Above the saddle the y-axis is the major axis of the cross section;
This hyperbolic paraboloid “opens up” along the z-axis; that is the
z-axis play the role of the x-axis in Fig. 21-23.
This hyperbolic paraboloid “opens up” along the y-axis; that is the
y-axis plays the role of the x-axis in Fig. 21-23.
Hyperbolic paraboloid of the type described in 3(d).
Hyperbolic paraboloid of the type described in 3(c).

2. (a)

(a)
(o}
(c)

(d)

4, (a)
(b)

CHAPTER 21, SECTION 5, SEVENTH SET

1. The surfaces are all cones with vertices at (0, 0, 0).
Axis is z-axis; cross sections perpendicular fo the z-axis are circles.
Axis is z-axis; cross sections perpendicular to the z-axis are ellipses.
AXis is x-axis; cross sections perpendicular to the x-axis are ellipses.
Axis is y-axis, cross sections perpendicular to the y-axis are ellipses.
2. The surface is generated by the lines emanating from the origin and inter-
gecting the given circle. Lines emanating from the origin may be expressed
as x=at, y=D0bt, z =ct, where t is a parameter. Suppose at t =1 the
lines intersect the circle;then a2 + b? =4, ¢ =1 and the line is given by
x =at, y=+v4—at, z = t. Eliminating a and t, we find that all points
(%, y, z) on the line satisfy the equation x* + y? — 422 = 0,

(a)
(b}
(c)
(d)

CHAPTER 21, SECTION 5, EIGHTH SET

1. The surfaces are all cylinders.

(a)
(b)
(c)
(d}
(e)
(f)
(g)

(h)

Parallel to z-axis;
Parallel to z-axis;
Parallel to y-axis;
Parallel to x-axis;
Parallel to y-axis;
Parallel to z-axis;
Parallel to z-axis;
x=+y, Zz=Kk.
Parallel to z-axis;
x=y=0, z=Kk,

Cross
Cross
Cross
Cross
Cross
Cross
Cross

Cross

sections are ellipses with centers (0, 0, z).
sections are parabolas with foci (1, 0, z).
sections are circles with centers (0, y, 0).
sections are circles with centers (x, 0, 0).
sections are parabolas with foci (1, y, 0).
sections are circles with centers (-2, 0, z).
sections are hyperbolas with asymptotes

gsections are hyperbolas with asymptotes
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Solutions to Chapter 22

CHAPTER 22, SECTION 1, FIRST SET

1.

S oe e

(b) 27; (d) —8; (fH —1.

We have z = (x — y}* which is always positive or 0.
(b) 0O; (d) 1,

(b) O; {d) O.

) 1 (@) 29,

X2 +y2= 1.

(b) 6G/25.

CHAPTER 22, SECTION 1, SECOND SET

1.

G b

The function z = sin(x — 3t) is inclined more to the x-axis. For example,
when x — 3t = 7/2 the points on the surface lie on a line which is the crest
of the wave. But the line x — 3t =#/2 has a greater slope in the tx-plane.

. The first function has an amplitude of 3.

The wave is inclined to the left whereas sin {x — ct) is inclined to the right.
Or one says that the wave z = sin(x + ct) is moving to the left because when
t increases x must decrease to keep x + ¢t constant.

The points lie in a trough of the wave surface.

CHAPTER 22, SECTION 1, THIRD SET

1.
2.

4,

As it stands, the function is undefined at (0, 0) and so is not continuous there,
The function is not defined along x =y and thus is not continuous there. If
X, = ¥o and (X, y) approaches (x,, ¥,) through values such that x > y then the
function approaches positive infinity. If the approach is made through values
such that x < y then the function approaches negative infinity.

The surface consists of two half-planes both starting along the x-axis. One
half-plane is inclined 45°to the positive y-axis and the other 135° to the
positive y-axis. The function is differentiable except on the x-axis.

(a) Along the line y =2 in the xy-plane.

(b) Along the line x =2 for y <2 and along the line y =2 for x < 2,
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CHAPTER 22, SECTION 2

1. {b) @V/dr = 2rrh means that the rate of change of volume with respect to
the radius while the height is kept fixed, is the lateral surface area;
3V/8h = #r?® means that the rate of change of volume with respect to
the height, while the radius is kept fixed is the cross-sectional area.

(c) 22V/ardh = 3(mr2)/or = 27r; 32V/dhor = 3(27rh)/oh = 27r.

2. (a) z,=—2a%%%/(x* +y*)F.

{b) z,=xcosxy.
(c) z, = 2e**siny; z, =e?*cosYy.

(d) 2, =1/VxF Ty,

Cuy =y R

3
4. S, = r(2r® + h?)/NT® ¥ 1?; 8= rrh/Vr¥ + b2,

6. z, =x/x® +¥?), 2, = y/(2 + ¥%), 2, = (— %% + y2)/(x® + y?)2,
z,=(-y%+ x2)/(x2 + y?)*. Hence z, + zy"[= 0.

6 z = x—1 _ (x+1) 7 = y _ y

TR x -1y (xF1PAY Y x— 124y (x+ 102+ y2’
o mx—1P 4y —xA12 4R

= [e-1F+yF  [&+ 17 7 9F,
G- 1P -y (xeip -y

A (VR N (R I o

Hence z,, + 1z, =0,
7. () z,=2(x+ct), z, =2ex +ct), 2,,=2, z,, =22
(b} z,=e**%, z, = ce**, z

Z

Z

= ex+ct Zyy = c2 ex+c:t'

(c) See (a). ’
(d) z,=cos(x—ct), 2, =—-ccos(x — ct), z,,=—sin(x — ct),
Zye = —c?8in(x — ct).

() z,=—e*%gin(x — ct) + e~%cos (x — ct),
2, =e**csin(x ~ ct) — ce¥ % cos (x — ct),

Zyo= —2e*"sin(x — ct), z,, = —2c?e* % sin(x — ct).
8, 3z/0x = 2x; at x =2, 0z/9x = 4,
— 2 2
5. (a) z 2% 2y _ —2x%% + 2y* _2x 2y?

xT @ty Ay T T g2 BT x2 FyER 0 Pw T 4 R

(b) z,=2x, z,=-2y, z2,=2, Zyy = — 2.
() z,=6x, z,=—6y, z, =8, Zg, = — 6.
(d) z,=e%cosy, z,=—e*siny, z,=e cosy, z,, = —e*Ccosy.

(€) 2,=—y/( + ¥, 2, =x/( + ), 2= 2xy/(x + y°P,
w = =~ 2xy/( + PP

10. u,=6x, u =0,

11. u, =4xy, u, = 4y.

[



12.
13.
15.
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u, =e™cosycosz, u, = —e” cosysinz,

w, = x/V& + y¥ T 22

u, = —x/(x% +y* +28)%2. u, = (2% - y2 — 2)/(x® + y% + 2¢) ¥¥. By symmetry
we can write down u,, and u,,.

CHAPTER 22, SECTION 3, FIRST SET

1.

2.
3‘

The curve is z =2x® + 16, y =4, Then 9z/8x =4x and at x =3, 2z/8x = 12,
This is the slope of the curve.

The slope is given by 3z/3y. At (2,1,5)}, 9z/3y = 2,

The slope is giveh by 3z/9x. At {1,1,4}, 3z/8x = 3. The slope
is independent of x because the curve is a straight line.

(a) The equations of the curve are x® + 372 =4, y =2, Then 2x + 6z (dz/dx)
=0.and dz/dx = —x/3z. At(1,2,1), dz/dx = —Y,.
(b) The slope is 0 at x = 0. Since the equation of the curve {in the plane
y =2)is x* +32z% =4, z = £V4/3, The implicit equation defines two
functions and so there are two answers (0, 2,vV4/3) and (0, 2,—v4/3).
The surface is a right circular cone and the plane y =0 cuts it in two lines
whose equations are z =x, y=0 and z = —x, y = 0. The slope on each
line is constant.

CHAPTER 22, SECTION 3, SECOND SET

1.

We use the theorem immediately above.

(b) 8x~12y —z-10=0; (d) 3x+2y+4z — 12 = 0;

(f) 8z/0x =B3cos(x — 2y). At x =7, y =7/4, 3z/0x = 0; 92/0y = — 6 cos
(x — 2y). At x =7, y=17/4, 3z/0y = 0. Hence by (19), z —3 =0 is the
equation.

The normal to the sphere has the direction numbers 3z/0x, 3z/3y, —1 at
the point (2, 2,vVI7). Hence since z =25 — x2 — y7, the direction numbers
are 2, 2, v17. To show that the normal lies along the radius we find the
direction numbers of the radius. The radius joins (2, 2, vI7) and (0, 0, 0).
Hence the direction numbers are the same as those of the normal and bot.
emanate from the same point,

The normal at any point on the surface has the direction numbers 3z/8x%,
9z/2y, —1 and these are vy/x/2, vX/5/2, ~1. The direction numbers of
the line joining {x,y, z) to (0,0,0) are x,y,z. The two lines are perpen-
dicular if xVy/x/2 + yvx/y/2 — z(—1) = 0. This is the case because

Z = VXy.
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CHAPTER 22, SECTION 4

1.

By (26), dz/ds =f,cosa +f cosp =2xcosa +2ycosf. Since x =3, y =4,

we have dz/ds =6cosa + 8 cosﬁ We are told that o = 30° and since « is

acute, the line is oriented either as in Fig. 22-12 or as in Fig. 22-13(¢). In
the.e:\;z3~ two cases we readily find 8 = 60° 8 = 120° respectively. Thus dz/ds
= 3v3 + 4,

. {(a) Along y =x + 1 for increasing x, the situation is as in Fig. 22-12

where we may take P as (0,1) and Q as (1, 2). For this line o = 45°
a.nd\fﬁ = 45°, Then cos o =v2/2, cosf =v2/2. By (26) at (3,4), dz/ds
=Tv2.

(b) The situation is as in Fig. 22-13(b). Thus now @ and 8 are supplements
of their values in (a). Then cosa = —v2/2, cosf = —v2/2, and, by (26},
dz/ds = — 2. This result must be the negative of the result in (a).

The situation is as in Fig, 22-12, Taking P as {0,0) and Q as (1, 2), we

find cos @ = 1/¥5, cosB = 2/¥5 and so, by (26), dz/ds = 4V5/5.

. The situation is similar to that in Exercise 1, Here 8 =45°0r B =135° and

since z,=-2xy/(x® +¥y?)? and z,= (x% — y%)/(x% + y2)?, at (1, 2), z, = —%,, and

Zy = ~%,,. For a =45 and B=45° dz/ds = -Ty2/50. For a=45° B= 135"

dz/ds = —v2/50.

(2) According to the result obtained from (25) the direction numbers of the
direction of maximum rate of change are {,, f,, f,. Thus the direction
cosines of this direction are f,/VT& + £+ 2, etc. Thus in two dimen-
sions the angles made with the x- and y-axes respectively are cos o
=f, /N + &, cosp =£,/ViE +12. Here we find cos a = 8/V145, cosp
= 9/@

(b) The normal to any curve is the negative reciprocal of its slope. Using
implicit differentiation, we find 8x + 18yy’ = 0, Thus at the point in
question, y’ = — 79. Thus the slope of the normal at this point is 9/8
and so fana = 9/8. It is easy to see that this agrees with the direction
obtained in (a).

(¢} According to (a), the maximum rate of change of z = 4x® + 9y® at the
point (2, 1) takes place inthe direction cos o = 8/V145 and cos g = 9/¥145.
There this maximum is dz/ds =f_ cosa + fycosp = 16(8/v145)

+ 18(9/4145) = 290/Y145 = y145. I we caleulate (z% + 22)Y2 for the
function z = 4x% + 9y? at the point (2, 1) we obtain the same result.

(a) This is just a special case of (28) and the conclusions deduced from it.
We have but to put £, and cosy = 0.

(b) See (a).



172

7. A set of direction numbers in the desired direction is 7-(~1), 7-1, 7T— 7
or 8,6,0, Thus cosa =8/Y100, cosp =6/VI00, cosy = 0. By use of (27) we
find du/ds = 10 in this direction at the point 1, 1, 7).

8. At the given point (2, 4) we find that z, =3 and z, = 1. To find the « and
8, note that the slope of y =x® at the point (2, 4) is 4. Then tano =4 and so
cos o = 1/ViT. For the direction of increasing x, g is the complement of «
so that cosg = 4/v1T. Then f, cosa +f, cosp = 1/V17.

9. According to the conclusion drawn from (28), the direction numbers of the
maximum directionalderivativeare f,{,and 1,. Inourcase i, =y + 2, {, =x
+z,f,=y+x. At (-1,1,7), £, =8, {, =6, f, =0. This is the required direc-
tion. The value of the maximum directional derivative is vfZ + ff, +1 =10.

10. We use (27), Here f, =x/(x* +y® + 2%), £ =y/(x* +y? +2%) and f,
=z/(x* + ¥ + 2%). At (3,4,8),f, =%, £, =%, and £, =%,. The direction
from (3, 4, 8) to the point (5, 7, 10) has the direction numbers 2,3,2 and the
direction cosines 2/¥I7, 3/¥i7, 2/VIT. Then, by (27), du/ds = 34/89V17.

11. We use (27). Here at (1,-1,-1), f, =2, f, =—4, f =2, The direction from
(1,—1,—1) to (3,—2, 5) has the direction numbers 2,-1, 6 or the direction

cosines 2/¥41, -1/y41, 6//41. Then by {(27), du/ds =—4//41,

CHAPTER 22, SECTION 5

1. By use of {(3g) and (39) we find u = &%t + 5s® + 8st + 5t2. Thus du/ds = 2st?
+ 10s + 8t in agreement with (47),

2. ou/ot =u,0x/8t +u, 0y/ot +u, 02/8t =2x-s + 2y.2 + 2z.1 = 2xs + 4y + 2z.
Replacing X, y, and z by their values in terms of s and t we obtain au/at.
= 28%t + 8g + 10t.

3. (a) This is a special case of (3() where now x and y are functions of t only.

Hence, by (32), dz/dt = z, dx/dt + z, dy/dt.

(b) This is a special case of (a) where x is independent of t. Hence dx/dt
=0 and dz/dt = 3ydy/dt.

{¢) This is a special case of (a). Apply the result of (a) and then since x = t,
dx/dt = 1 and dy/dt = dy/dx.

4. {a) Following the suggestion we write z =f(u), u = x + ct. To find z, we

can apply the ordinary chain rule because t is regarded as a constant.
Then z, = (0f/0u)- 1 or £,
(b} The argument is the same as in (a). Then z, = (31/6u)(3u/3t) = ¢ a1/ou.
(c) Z.=2(f,)/9x. Now f, is a function of u and u is a function of x. Hence
we apply the ordinary chain rule to f,. The result is f,~1 or f ,. Like-
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11.

12,
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wise to find z,, we want 3(z,)/2t. Since z, =c £, and f, is a function of
uand u is a functmn of t we apply the ordmary chain rule to ¢ f,. Then

z,, = ¢ £, (0u/3t) = cf_c=c2f Hence Zyy = CP T,
Letx—y=ua.ndy—~x v Thenz*f(u, whereu—x—yandvcy—x.
Now apply (31) to obtain z, =f, ou/ox +f, du/ax =f,+1 +1f,{~1). Use
(32) to obtain z,. Then z, 'f au/ay +f, 8v/8y~f( 1) +£,-1, Hence
zy +2, =0,

In finding u, we may use the ordinary chain rule because y is regarded as
a constant. Then u, = (du/dr)(3r/9x) = (du/dr)(x/r). Now to find u, we
must differentiate once more with respect to x. u, is a product of two
functions of x. Hence u_ = (x/r)d(du/dr)/ox + {du/dr) 8(x/r)/8x. Since du/dr
is a function of r and r is a function of x we must use the ordinary chain
rule again. Then u_ = (x/r){d?u/dr2)(3r/9x) + (du/dr)[r ~ (31/2x)]/¢?
(x/r)(dzu/drz)(x/r) + (du/dr) [r - (x/71)] r2 = (x2/r2)(d2u/dr2) + (du/dr)
(y¥2/1%). Likewise u (y¥/r®)( d®u/dr?) + du/dr) x%/r%), 1f we add u,, and
u,, We obtain dzu/d}yz + 1/r)(du/dr), because x2 + y2 = %,
We have z =£(x,y) with X =pcos® and y =psind. We use (31). Then z,
=1,(8%/0p) +1,(0y/0p) =f,cos 6 +1, sing, By (32), 2o =1,(8%/00) + £, (3y/26)
=f {—psind) + f,(pcos6). Then z T (1/p%) 2% =22 + il Alternatwely we
can start with z=F (p, 8), p = \/jrﬂ , 6= arc tan (y/x and use (31) and (32).
One can repeat the steps from (44) to (5 o) except that y replaces x and, of
course, we use the proper values for 3p/3y, 88/8y, 22p/8y® and azp/aez.
We start with z =(x,y), X =pcos 8, y =psing, Then, by (32), z¢ = £, (0x/28)
+ fy(ay/ 00) =1,{~psind) + £ {pcosb). Now to differentiate once again with
respect to & we must recognize that each term is a product. To differentiate
f, with respect to 6 we must use (32) again because f, is a function of x
and y and the latter are functions of ¢. Likewise to differentiate f, with
respect to 6. Hence zy, = (3(t,)/20)psiné) +£,(-p cos 0) + (3(f,)/26)-
{(pcosg) +1 (—psing) =]t (ax/ae + 1,,87/80](~p sin8) — f,p cos o+ [£,,{0%/30)
+1, (3y/26] p0059 —f psm9 If we now put in the values of 8x/26 a,nd
ay/ 08 we obtain the text’s answer,
We first repeat the steps of Exercise 9 replacing ¢ by p and of course the
proper values of 8x/dp and 3y/ dp. In the course of this work we also obtain
Zp, Namely, z,={ (ox/3p) + t, (ay/ep). With Zge from Exercise 9 and the
values of z, and Z,p WE form the right side of (52 and this equals the left
side. The calculations yield Z,= f, cos b 1, sind, z, =f, cos?d
+2f sinfcosé +1,, sin®6H.
(a) By (31), u=u V(ax/ap) +u, (3y/0p). Since x =pcos ¢ and y psing,

u, =u,cos6 +u,sind. We now calculate vqy, By (32), vg = (9x/80)
+ v, (ay/ae) =v,(~psind) +v (p cos #). If we now use the fact that
=v, and u, = —v, we see that u,= = (1/p)v,.

(b} The method 1s exactly the same as 1n (a).
This is merely an extension of (33) and (34}, No proof is required.
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13, To make the situation come under a known chain rule we can write x = s,
y =t. Then u ={(x,y,z) where x =g, y =t, z =k(s,t). We may now apply
(40), and since oy/os =0 and 8%/9s =1 we get the text answer.

14, The problem is essentially the same as that worked out in the text where
Z., + 2z, is transformed to polar coordinates. The only difference here is
that instead x =pcos @ and y = psinf we have x =r(e’ +e79)/2,

y = r(e®—e"%)/2. This difference means that the quantities 2p/ox, 36/0x,
ete, are different. ¥ we work from F(r, 8), as the text does, we need r and
¢ as function of x and y. These are more complicated than x and y as
functions of r and ¢, Hence start with z = f(x, y) and compute z, z,, and
Zoe. Then show that z, —(1/12)zq, + (1/1)2, = Zx ™ Zyyo

CHAPTER 22, SECTION 6

21‘., 3zz(a(z/a/y} - Gz(az/a;) +2x =0, Solve for 3z/2y.
+ ¥ +y(9z/0x) — 22(22/9x) = 0. Hence 3z/3x = ~
. y/ {2z )o X+ y(02/23y) +
~ 2z(3z/3y) = 0. Hence 3z/0y = (x + z)/(2z — y). ’ yoe/o) +

3. %z/0x? = (322 — 62)(~2) - (—2x — 2y)[62(32/0x) — 6(d9z/0x)]
(3z2 — Bz)2 i

Now simplify and replace 9z/9x by its value. The answer is in the text.
4. (a) To find z, differentiate thus: 2y + 2z(92/9y) — 4%(3z/9y) = 0. Then
9z/8y = y/(2x — z)
(b) To fi;ld Z.: 3%% + 322(32/0x) — 4xy(9z/0x) — 4yz = 0. Then %,
Zy(?;x(syfirzii ;%?{4;};332)3%2?0 find z, the process is exactly the same.
(c) To differentiate with respect to x we must think in terms of sinu with
u=x +y+z and z as a function of x and y. Then (cos w(1l + 2z/3x)
;YO.: Ehf.n z, = — 1, Likewise to find z,: (cosu)(1 +3z/3y) = 0 and
(d) To find z,: 32%(3z/8x) + 3x(62/5%) + 32 = 0. Then z. = —~z/(x + 2?)
Likewise to find z,: 322(3z/8y) + 3x(22/3y) + 4 = 0, xThen z .
= —4/(3x + 3z2), 4
5. 3z%(3z/8x) + 3%(32/9x) + 3z = 0. Then z, = —z/(2® + %), 322(3z/dy)
+ 3x(02z/3y) — 3 =0. Then z, =— /(22 +x). 2z, = 22x/(z2 + x)3:
z,,= —2z/(z% + x)°. Hence the resuit, . ,
6. This exercise involves just a change of letters in {57) and 68):
aX/aY = _Fy/Fx; aX/aZ = "-Fz/Fx'
7. By (61) the normal to the surface F(x,y,2) =0 or to the tangert plane of
the surface at a point (x,, y,, 2,) has the direction numbers F, (%, Yo, Z,),
F (X0, Yo, Zo); ¥, (X, Yo, Zp). Since (xq, ¥, Z,) lies on the tangent plane, the
tangent plane is given by F, - (x — x,) + F . (y ~yo) +F, «(z — z,) =0 where
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F,, Fy, F, are evaluated at x =X,, ¥ = ¥o, 2 = Zg.

(a) Take F(x,y,z) =x%+y%+ 22— 25 =0. To obtain the tangent plane we
have: XX + Vo¥ + %2 = X2 + ¥& + 23 OF XX + Yoy + 202 = 25,

(b) 16(x, — 3)(x — %) + 25(y, — 2)(y — ¥o) *+ 400(z, — 1)(z — 2) = 0.

(¢) 3x,x + 4y,y — bzez = 3x2 + 4y2 — 5zZ = 10.

(@ (¥o +3Mx — Xo) + (%, + Z)(¥ — Vo) + Volz — 2) = 0.

(e) Xox + 2oz =x5 T2 = L.

. To show that the tangent planes at the common point are perpendicular we

can show that the normals to the planes are perpendicular. We use {61).
For the ellipsoid at the given point the direction numbers of the normal are
24v5/5, 82, 32v5/5. For the hyperboloid the direction numbers of the
normal are 8v5/5, 4V2, —16v5/5. To show that the two normals are per-
pendicular we use the condition aa’+ bb’ + cc’ = 0 which was established in
Chapter 21. Here we have (24v5/5)(8v5/5) + (8vZ)(4v2) + (32v5/5)(~ 16v5/5)

and this is 0.

. Direction numbers for the normal to the first surface at (X, ¥o, %) are

3%,, 4¥,, 8z, and for the second surface are X,, 2y,, —42,. The condition
for orthogonality of the normals and hence of the surfaces is 3x%,- X,
+ 4y, 2y, + Bz, (—4z,) = 3x% + 8y2 — 3222 =0, Since (X, Yo, Zy) 18 @ common

point of the surfaces we have 3x% + 4y + 822 = 24 and x3 + 2y2 — 4z; = 4,
Solving these two equations for x2 and y? in terms of zZ gives x3 = 16 — 1623,
y2 = 1023 — 6. If we substitute these values of x2 and y2 in the orthogonality
condition we see that it is safisfied.

The method is precisely the same as in Exercise 8. The direction numbers
of the normal to the ellipsoid at the given point are 24v5/5, 8V2, 32V5/5.

The direction numbers of the normal to the hyperboloid are 32v5/5, —8V2,
-4v5/5. The expression (24v5/5)(32v5/5) — (8vZ)(BVE) + (32v5/5)(—4v5/5) = 0.
The method is precisely the same as in 9. At (X, ¥,, Z,) the normal to the
ellipsoid has direction numbers 6x,, 8y,, 162z, and the normal to the hyper-
boloid has direction numbers 8x,, — 8y, — 2z,. We must show that 6x,-8x,

+ 8y, (—8y,) + 16z, ~22z,) = 0. If {X,, ¥y, Z,) i8 common to the two surfaces it
satisfies both equations. Solve these for xZ and y2 in terms of zZ. The
solutions are x§ =4 — 2, 4y: = 12 — 5zZ. If we substitute these values in the
condition for perpendicularity we see that it is 0.

The surface u = const. is {(x, y,z) = 0, By (61) the normal to this surface at
say (X, Yo, Zo) has the direction of the maximum du/ds.

We know by (60) that dy/dx = — Fx/Fy. Likewise by (6¢) if we regard x as a
function of y, dx/dy =—F,/F,.
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(c) £, =4x+32, £ =4y® —4, {, =12%% { =12y, {, =0. We solve
simultaneously x®* +8 =0, y* — 1 =0, Hence (—2, 1) is a possible min-
imum or maximum point. At (—2,1), £, - f,f, <0 and f, > 0. Hence
(-2,1) is a mipimum point and the minimum is 1.

We wish 1o minimize the distance of a point on the plane from the origin.

Equivalently we minimize u =x* + y* + z2 gsubject to the condition 3x + 4y

— z = 26, Considering z as a function of x and y, we find u, = 2x + 2zz,,

u, =2y + 2zz,. Since z =3x +4y ~ 26, we have z, =3, z, = 4. Thus the

conditions u, =0, u, =0 yield 2x + 6z =0, 2y + 8z = 0 for the minimum.

From these we have x = —32z and y = —4z. If we substitute these values in

the equation of the plane we obtain z = —1 and we find that the minimum

occurs at (3, 4,—1). We could use u, = 2x + 6z, u, =2y + 8z to apply (b) and

(c) or (b) and (¢’) of the theorem,

From (67), z = (12 — xy)/(x + y) and so (66) becomes V = (12xy — x2y2) /(x + ¥).

Equating V, and V, to zero, we obtain the relations x? + 2xy = 12, y® + 2xy

=12 (after excluding the values x =0, y =0). By subtracting the second

equation from the first it then follows that x =2, y =2 and by the relation

for z that z = 2.

If the box has no top then (67) is replaced by the relation xy + 2yz + 2zx = 24.

Using either the method of the text or the method of Exercise 4, we find that

the maximum volume occurs for X =y = 2V2, z =+v2.

Let the angles be denoted by A, B, C. Then we are to maximize P = sinA -

sinBsinC. Since A+ B+ C =17, we have P =sinAsinBsin(# — A— B)

= gin A sin Bsin (A + B). The relations dP/dA =0, dP/dB =0 yieldcos A -

sin{A + B) + sinAcos (A + B) =0, cos Bsin(A + B) + sinBcos(A + B) =0,

Multiplying the first of these by cos B and the second by cos A and sub-

tracting leads to sin{A — B) =0 or A =B. Putting B = A in either of these

relations leads to tanA =tanB =+v3 or A =B =60°, Now C =180°~ 120°

= 60° also and so the triangle is equiangular. By elementary geometry this

implies that the triangle is also equilateral.

We are to minimize § = 2(xy + yz + zx) with the restriction that xyz =V

= given constant. This is equivalent to minimizing 8 = 2xy + 2(x + y)(v/xy)

with respect to x and y. We find in the usual way that x =y = ¥V and so

Z = V/xy =¥V and the box is a cube.

We have V = 4nabc/3., Let ¢ =a+b+c, Then ¢=¢ —a — b, and

V =47ab(g — a — b)/3 = (4mabg — 47a%b — 47ab?)/3. Then V,

= (47b¢ — 87ab — 47b?)/3 and V, = (47af — 47a? — 87ab)/3. Seifing V, =0

and V, =0 we find that a = 2/3 and b = ¢/3; then c = /3. Hence a sphere,

We find z, =y, z, =x. Thus the only candidate for a max. or min. is x =0,

y =0. However 25 — z,2, =1 >0 and so there is no max. or min.
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We are to maximize P = xyz under the condition that x +y + z = 12, Then
z=12 -x —y and P =xy(12 — x — y) = 12xy — x®y — xy?. Now find P, and
P, and set both equal to zero. We have 12y — 2xy — y* =0 and 12x — x*

— 2xy = 0. Divide through by y and x, respectively, and we obtain x =y = 4.

Then z =4,

(a) Instead of minimizing the distance let us minimize the square of the
distance (when one is a minimum the other is). Hence we wish to min-
imize F =x% +y® + 2% with x® — 22 =1, If we use x* =1 + z2 we obtain
F =y%+ 222 + 1. Then F, =2y and F, =4z, Hence y =0 and z =0 and
from x* — 22 =1, x =+1, Thus (1,0,0) and 1, 0, 0) furnish minima.

Note that if we eliminate z from F we obtain F =2x* +y* — 1.
Then F, =0 and F, =0 yield x=0 and y =0 and, from x* — z2 =1,
z =+vy=1, which is no real solution. The difficulty is that x =0 does
not belong to any point on the surface x?* — z2 =1. We can see from F
itself that it does have a minimum at x =0, y = 0 because for any other
Xand y, F >—1,

(b) The direction numbers of the normal to the surface f(x,v,z) = x% — z?
—-1=0 are 2x,0,—2z and at (=1, 0, 0) these direction numbers are
+2,0,0, The direction numbers of the line joining (+1, 0, 0) to the origin
(0,0,0) are (+1,0,0), This line is parallel to the normal and so must
itself be the normal.

We first find conditions on (x, y, z) so that the distance will be least. Thus

we minimize F =(x —a)® + (y — b)* + (z — ¢)* subject to ¢(x,y,2) =0. Con-

sidering z as a function of x, y, we set F, =0, F, =0 and obtain (x — a)

+(z—-¢c)z, =0, (y —b) +(z — ¢)z, = 0. From ¢ =0, we conclude that

Z, = — ¢, / , Z, =—¢,/®, and thus the conditions for a minimum become

(x —a)p, =(z —~c)¢, and (y — b)p, =(z — c)¢y. At any point (x,, Yo, 2Zo)

where these conditions are satisfied we have ¢ (X, o, Z,) = A(X, — a),

@y (X5 Yos Zo) = MI, — 2) and @, (Xy, Yo, %) = A(Z, — €) where A is a constant

of proportionality. Now the normal to ¢ =0 at a point (x,, ¥,, Z,) has direc-

tion numbers ¢, (Xg, Yo, Zo)y Py {(Xo» Yor Z0), ¢y (X0s Vo» Zo)« The equations of the

normal are X =X, + ¢, (Xo, Yo, Zo)d, ¥ = VYo + ¢y (Xg, Yo, Zo)d, 2 = 2,

+ ¢, (X5 Yos Zo)d, where d is the parameter. Using the relations derived

above for ¢,, ¢,, ¢, at the point (x,, ¥, 2,), the equations take the form

X=X+ (Xp—alt, y =¥, + (o~ b)t, 2 =2, + (2,— ¢)t where t =Ad is the

parameter. Since this line passes through (a, b, c}(for t = —1), the derived

conclusion follows.

CHAPTER 22, SECTION 9

1.

Here F(X,y, @) =y — {(x — @)% so that the equations (87) become y = (x — o)®
and (x — )® =0, Thus o =x and so the envelope is given by y = 0. A sketch
shows that in this case the envelope is just the locus of the inflection points
of the family of curves y = (x — «)3.
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Here the condition F, =0 yields x =a and so the envelope is y =+1. Note
that since the family of curves is just the family of circles with centers on
the x-axis and radius 1, the conclusion is geometrically obvious.
(a) The conditions (79) yield 2ay = 2x + «?, a =y. Thus the envelope is
2y? = 2x + y* or y? = 2x,
(b) The conditions (79) yield xcosa +ysina =2, —xsina + ycos a =0,
By solving simultaneously for x and y we find x=2sinwo, y =2cos«
and by squaring and adding the envelope is x® + y? = 4,
(c) If we differentiate the given equation with respect to a
we find that a®=m/x. Substitution of this value of a in the
original equation gives y?=4mx.
Let the legs lie along the posgitive x- and y-axes and let the x and y inter-
cepts be x =a, y=0, and x =0, y =b. Then the hypotenuse lies along the
line y = (~b/a)x + b. Since the area, !, ab, of the triangle is to be constant,
we have ab =k = constant. Using a =k/b the family is given by y
= —(b?x/k) + b where the parameter is b and k is constant. Then differ-
entiation with respect to b gives —(2bx/k) +1=0 and b =k/2x. If we sub-
stitute this value of b in the equation of the family we obtain y = k/4x.
The centers of the circles lie on the x-axis and hence may be denoted by
x =a, vy =0, The diameter of the circle is the length of the chord of the
parabola at x = o and is thus 2Va. Thus the family of circles is (x — a)?
+ 3% = . Differentiation with respect to « yields —2(x —a) =1 or o =x + Y.
If we substitute this value of « in the equation of the family we obtain
vE =X+ Y.
Let us denote a point on the parabola y = x% by (o, ) to avoid confusion
with the x and y of the envelope we seek. Then the center of any cirecle is
(a, 5) and its radius is 8. Thus the equation of the family is (x — a)?
+(y — B =8 or x2 — 2ax+o? +y® — 28y = 0. Since g = ? the family is
X2 — 2ox + o +y%2 - 20%y = 0, If we differentiate with respect to o we -
obtain —x + o — 2ay = 0. If we substitute the value of ¢ in the equation of
the family and clear of fractions we find that we can group the terms thus:
(x2 +y®) {1 — 2yF — 2x2(1 — 2y) + x2(1 — 2y) = 0. If we divide through by
1 — 2y and simplify we get y[x® + y2 — (y/2)] = 0. Hence the envelope con-
sists of vy =0 and x% + y% = y/2. The factor 1 — 2y which was eliminated
earlier is not part of the envelope but was introduced by the clearing of
fractions.
The lines may be represented by y = (—b/a)x + b, (See Exercise 4.) Here
a +b =k and so the family is y =[1 —(k/a)]x + k — a. By differentiating
with respect to a we find a =vkx and y =x — 2Vkx + k. Thus y = (vX — vk)?
from which the result follows with ¢ =+vk. The portion of the curve y
= (yX — vK)? which is the envelope comes from taking vy = —(vx — vk).
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8. Any circle has the form (x — x,)? + (y — y,)? = r?. Since the center (X, y,)
lies on the hyperbola xy =1, we have y, = 1/%,. Since (0, 0) lies on the
circle we leave r? =x2 + 1/x2. Thus letting X, = @, the family of circles is

x -

al +[y — (1/a)f = 2 + 1/0? or ¥ — 2ax +y* — 2y/a = 0. By differ-

entiating with respect to o we obtain o =+Vy/x and by substituting this
value in the equation of the family we obtain (x% + y?)® = 16xy.

9. (a)

()

Taking A as the parameter and by differentiating the equations y — x
tanA + (16/V2) (1 + tan?A) x® = 0 with respect to A we obtain —xsec? A
+ (16/V2)(2tan A sec? A)x® = 0. Since sec A is never zero we have tanA
=V?/32x. By substituting the value obtained for tan A into the given
tamily of trajectories, we obtain the parabola y — (VZ/64) = (— 16/V*)x,
To find the focus consider the parabola y = —(16/V2)x®. This is of the
form y = (~1/4p)x® (see Chap. IV). Hence p = V?/64. The focus of

y = (—1/4p)x® is (0,— p). Hence the focus of y = —(16/V2)x? is

(0, — V2/64), Now the y-values of the envelope are V2/64 larger than
those of the parabola just considered. Hence the focus of the envelope
is (0, 0).

10. In any vertical plane through the nozzle the section of the surface is a
parabola of surety. Thus the full surface arises by rotating this parabola
about its axis and the surface is a paraboloid of revolution. The equation
of the surface is z — (V2/64) = (16/V?)(x* + %} where the z-axis is the
vertical axis,

11. {(a)

(b)

(c)

The slope of the tangent to the ellipse is y/X where the dot means

differentiation with respect to ¢. Hence the slope is ~bcos qb/a sin ¢,
Then the slope of the normal is (a/b)tan ¢ and the equation of the family
of normals is y — bsin¢ = (a/b)(tan ¢)(x — acos ¢). We differ-

entiate with respect to ¢: —bcos ¢ = (a/b)(sec?p}(x — acos ¢) + (a/b) -
tan ¢ (asin ¢). If we solve this equation for x and simplify we obtain

ax = (a? — b?)cos® ¢. If we substitute this value of x in the equation of
the family we obtain by = (b® — a%) sin® ¢. Thus we have the equations of
the envelope in parametric form.

The method is the same as in {a). The equation of the family of normals
is y — btan ¢ = —(a/b){(sin ¢)(x — a sec ¢). Differentiating with respect
to ¢ and solving for x gives ax = (a® + b®) sec® ¢. Substituting this
value of x in the equation of the tamily yields by = — (a? + b?) tan® ¢.
Again we have the envelope in parametric form.

The method is the same as in {(a). The equation of the family of normals
is y —a(l - cos8) = (cotd — csc ) x— a(f — sind)]. Differentiating with
respect to 6 and solving for x yields x = af + asing. Substituting this
value of x in the equation of the family yields y = —a + acos 9.
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Differentiating the original equation with respect to b and
solving for b gives b = x+a/2. Substituting this value of b
in the equation of the family yields y? = a(x+a/4) for the

envelope.
The slope of the reflected rays is tan 20. Hence the equation of the family of

reflected rays is y — siné =tan26(x — cos ). Differentiating with respect to
f gives —cos 0= 2sec?28(x —cosd) +tan20sinf or x ={(—cosh — 2sec?20 -
cos 6 — tan 20 sin0)/2 sec? 26. Use of trigonometric identities gives x = cos 8
—(cos 26 cos 8)/2. This expression can be converted to x =[(3 cos 8)/4)]

— (%) cos 36 and substitution of this value of x in the equation of the family
gives the text’s expression for y. Of course there are other valid expres-
sions for x and y as the parametric equations of the envelope.
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Solutions to Chapter 23

CHAPTER 23, SECTION 2

1.

In each case we denote the given double integral by G and the inher integral
by 1.

1 =1 .3

(a) I =f0 x +vy)dy =xy + (y¥/2) |i:0. Then G :jo (x + Y )dx
= x%/2 + (x/2) !2 = 3.
0
N= i
(b) We have I= ["ydx = YXL::: y?. Thus G :‘ﬁ/zyzdy =
. Bx=x3 3x-x3 3 B 3

(¢c) Wehave I= [ " ldy=y| ~ =4x-2x% Thus G= [ (4x - 2x%)dx = 2.

{d) We have 1= j:mvst —t?ds. Since t is treated as a constant in this in-
tegral, this integral may be put in the form of #1 in the integral tables
with u =ts — {2, du=tds, n =%. Thus I=(1/t) [ vis— Etds

= (1/t)%, (ts — t?)3/®
(e) I= fj;yyzdx = y2x

=2/ vy — y¥/4 - 2/?}?7/2 | =1y

1
0

T =182, Finally G = [°18t2dt = 6b°.

X22Y _ g a3 _ _B/2 — [l 2 3 _ oB/2
e = 27" —y*—y*% Then G L@yt =y -y dy

We observe that since, by {1), z is symmetric in x and y, the integrals
(13) and (14) are identical if we interchange x and y. Thus the evaluation
of (14) is obtained in exactly the same way as that of (13) with the roles of
x and y interchanged.

The required volume lies entirely above the z-plane and is the same in all

four quadrants. Since the given surface cuts the z-plane along the ellipse
b 1- ¥

(x*/a?) + (y¥b?} = 1, we find V = 4 La [fo (1 —x%a? — y¥/b?) dy| dx.

SN -y
Evaluation of the inner integral gives (y — x%y/a? — y%/3b?) ';__‘0 1

= 2b(a® - x2)*/2/3a% Thus V = (8b/3a%) foa (a2 — x?)%/2dx. Use of the integral
formula #31 leads to V = wab/2,
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4, From y =0 to y =9, x varies between 0 and the parabola y = x2, From
y =9 to y =18, x varies between 0 and the parabola y = 18 — x*, Thus

following the suggestion, we have V = _f(;g fo Vg dx dy + fg e fu Bz dx dy.
Since z = xy, we obtain V = fog Yoyidy + f;a Vy(8 —y)dy = %,

5. We have [ [(2xy —x%)dxdy = f: jj (2xy — x?)dx dy. Successive integrations
gives the answer of 12.

8. We have {see Fig. #1), fAf(y — 2x)dx dy

_ 81D _ _
ﬁj{;fw_ﬁ}/s(y 2x)dxdy = 20. y =z

Fig, 1

7. Since the plane, z = 9 — x —y, lies above
all points of the triangle, we have {(see

Fig. #2) V= f [(9 - x—y)dydx
= [P0 - x — y)dydx = 19. -

Fig. 2

8. Since z= 0 for y = 0, the plane lies above
all points of A (see Fig. #3), Thus

V=, foydydx=["[""" 2ydyax = 45.

y = V36 = x?°

Fig. 3 0 3 6
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. We have (see Fig. #4), V = [, [zdxdy

= [} [ vdxdy =6 vy = 2dy. Use of

y
integral formula #56 leads to V = 37/4.
1
~3 0 3
Fig. 4
Since z= 0 for (x,y) in the first quadrant,
we have (see Fig. #5) V = [, [xydxdy
ey
= [ f  xy dxdy = ¥, (L) (2
SRNF)
Xx="y/1l=y2?
1
Fig. 5
S
By the usual reasoning V = f f3 /2( + y)ydxdy = 10,
Following the suggestion, we have y
V =/, [ydxdy. Using Figure #6 and the .
(0,4)

symmetry of the paraboloid, the paraboloid

cuts the xz-plane where y = 0, we have
V=4 fo“fo/“’—‘?’z (2~ x¥/8 — 2%/2) dz dx
=Y, [ (18 — x*)**dx. Use of integral
formula #31 leads to V = 87.

Fig. 6

(—2,0)\

(2.0)

©, -4}

/ x2 4+ 422 =16
X
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13. The plane cuts the xy-plane along 2x + 3y = 6. In the usual way we obtain
V= L0 - x/3 - y/2) axdy = 1.

]
14. We note that z= 0 only for {x| = 2. Thus the volume in the first octant
(i.e., x= 0,y = 0, 2> 0) is given by (see Fig. #7) V=, [zdydx
= [P L 4 x?) dy ax = 16.

Fig. 7

15. (a) The volume in the first octant bounded by the cylinder x® + 2% = aZ, the
coordinate planes y =0 and z =0, and the plane y = x. See Fig. #8.

Fig. 8 X

(b} The volume under the plane x +y + z = 2a and above the quarter circle
x* + y% = a? in the first quadrant of the xy-plane.
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16. In each case the integral is over a given area. Once a geometrical descrip-
tion of the area is obtained, it is possible to read off the limits of integra-
tion for integration in the reverse order.

{(a) The area is that enclosed between the parabola y = x — x%/a and
y = x%a for 0 =x = a/2. Thus we obtain Fig. 9. In particular the
parabolas intersect at (0, 0) and (a/2, a/4). To integrate with respect to
X, we need the value of x in terms of y on the left side of the parabola
¥y = X — (x%2a) and on the right side of the parabola y = x¥%/a. These
values are, respectively, x =a/2 —Va%4 —ay and x = +vay. Noting
that y varies from y =0 to y =a/4, we have the answer in the text.

b

A y =x—x2/a

0 Y 0)
TFig. 9

(b) The area is that enclosed between the top side of the ellipse
x%/a* + y¥b? =1 and the line y =b for ¢ =x = a, Thus we obtain
Fig. 10. To integrate with respect to x, we need the value of X on the
right side of the ellipse. This value is x = avb?2 — y2/b, The point P in
Fig. 10 lies on the ellipse and has x-coordinate ¢. Thus we find that P
is (c, (b/a)va? —¢%). We notice that the left hand x value of integration
is different according as y is above or below the point P. For y above

X
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P, we have ¢ = x =< a, bvaz —cz/a =y = b. For y below P, we have
avbz—y2/b =x =a, a =y = b/az — c2/a. Thus the answer is

vaELC a £
fbb,f"—ag_cz;aj: i(x,y)dxdy + fab ’ fam/b f(x, y)dxdy.
y

@] y=b

(_&m\\\ah__i & J@o
X2 ¥y _
27T

0, ~ b)

Fig. 10

{c) The area is shown in Fig. 11. The left-hand value of x is Va2 — 4y2 and

the right-hand value is va2 —y2 for 0 <=y =a/2. But for a/2 =y =a,
the left-hand value is 0 and the right-hand value is as before. Hence

L fgﬂx, yydxdy + [ wa(x, y) dx dy.
Y
a x2 4 y2 = 32
aj2 X2 + 4y2 = a2
0 2 X

Fig. 11
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(a) Imagine y increased a small amount so that V increases by AV. One
can see geometrically that AV/Ay is an average increase in V which
is a “slice” like PQRS but to the right. As Ay approaches 0, the slice
approaches PQRS.

(b) Since 8V/8y is area PQRS, an increase in x only increases the area
of PQRS and we can go back to our old result that A =y to conclude
that 8(8V/8y)/dx is the “y-value” of the area or in this case is PQ.

(c) The argument is the same as (a) but with x and y reversed.

(d) The argument is the same as (b) but applied to PQMN. The answer
is PQ.

The desired volume lies under the plane z = mx and over the half of the

circle x* + y® = r?for which x is positive because the plane goes through

the v-axis and the wedge lies on the positive x-side. Hence y runs from

# !'r2_;§
—Vr?—x2 to vrz—x2 and X runs from O to r. Then V =fo f_mmxdydx
= 2mr%/3,

Ny
One can set up the integral for the volume as fobjo i vaZ — x% — y¥dy dx

and attempt touse Formula 26 of the Integral Tables. This leads to the
arc sin term, +b? - x2/va?— x2. This cannot be integrated readily (if at all).
However we avoid this difficulty if we first recognize that the desired volume con-
sists of the volume of a cylinder which (above the xy -plane) runs from O to z
= va? — b? and thena gpherical cap. The volume of the cylinder is 7b2/aZ = b?
and the total for the two portions (above and below the xy-plane}is 27b2/a2 — b2,
To find the volume of the spherical cap regard it as lying above the
yz-plane so that the surface is given by x = /a2 = yZ — z%. The domain of in-
tegration in the yz-plane is given by y running from 0 to vaZ — z2 and z
running from ya*-1? to a. Then the volume of this portion of the cap
(which is ¥, the volume of the entire cap above and below the xy-plane) is .

a W 3.2_2 .
given by [ o [ vaz —y2 —zzdydz. Now if weuse Formula 26 of the

Tables the integration is straightforward., The result is

(7/4)[(2a%/3) — a%Vaz —~ b2 + (a® — b?)*/%/3]. Multiply this by 8 and add the
volume of the cylinder.

The desired volume lies under the plane z = x and over the portion of the
circle x* + y* =9 in the (xy)-plane which is cut off by the planes y =0 and
z = X. Since the trace of z = x in the (x, y)-plane is x = 0, this is just the

o2
first quadrant of the circle, thus V = fﬂsfo Y xdxdy = 9.
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21. The desired volume lies under the plane x +z =1 and over the portion of
the parabola y® =x in the (xy)-plane which is cut off by the planes x +z =1

and y = 0. Thus (see Fig. #12) V = folj;lz (1 ~x)dxdy = %,.

y
LY yz=yx
x = 1, trace of
=X + 2 =1 in the
(x, y)-plane
0
‘*-\___~~
Fig. 12
22, By reasoning as in #21 (see Fig. )
#13) we obtain AN y=x
_ripEy g 17
V _f(.) Ya (2 X Y) dXdY /20’ (1' 1)

\(x+y='2

Fig. 13

23. Since the volume (Fig. 14) is symmetric with respect to the (x, y)-plane, it
is twice the volume obtained for z = 0. This latter volume lies below
Z =r2 ~ x2 and above the portion of the circle x2 + y* =r? in the (x,y)-plane
cut off by x* +z* =r2 Since the trace of x* + 2% = r2in the X, y-plane is
X = +r, we actually must integrate over the entire circle. Thus

r ]/1._:5__)(2 r L iy
V=2ﬁrﬁ/MVr2—x2dydx=8L L 2X2x/r2—x2dydx=16r3/3.
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"‘*--..___—-//"X2+Y2=r2

/x2+22=r2

0 \ y
Fig. 14 x

24. See Fig. 15. V= [* [7X(12 + y — x2) dy dx = %,

Fig. 15

25. The area integrated over is shown in
Fig. 18. Thus the answer is y

L[ 10, v) axdy. @ 2)

Fig. 16
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26. Let the usual u of the integration by parts formula be denoted by w so that
no confusion of variables results. Then the formula reads [wdv =wv — [vdw.

Since we are dealing with a definite integral the formula reads foxw dv

=wv |x— fxv dw. Now to integrate fxf(u)(x ~u)du let w =x ~u, dv = f(u)du.

Then dw =-1 and v = [ 'f(u)du which is better written as [’ f(t)dt to avoid

confusion between the variable of 1ntegrat10n and the upper end value, Then
[H ) - w)du = (x —u) ) dt |0 + [*["f(t)dtdu. The first term on the

right side vanishes because when we substitute x for u, the factor x—u is
0 and when we substitute 0 for u the other factor is 0.

CHAPTER 23, SECTION 3

1. In each case a sketch of the curves and calculation of their common points
leads at once to the stated limits of integration.

@ a=["[""axay =Y,

b) A= f_széf?gdxdy =1+ 10sint(3/¥10). Suggestion: use integral
formula #26.

(c) A= f_lfl;;dxdy = 41/,

@ A=['[""dydx =14y,

(e} A= _f f dxdy = 7Y, — 4log 4.

() A= f_zf% dxdy = 13Y.

© A=["[F" ddxﬂﬁl/g
A=2 [*[ "y dx =

2. By (19), M/4 = (k/3) [, (a? — x?)*?dx. Using integral formula #31, we find

M /4 = kwa*/16,
3. Choose the fixed diameter as lying along the x-axis and use D= ky in (18)

to obtain M = [ f/mkyd dx = 4kff“‘ dy dx = 4ka¥/3,
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4. Choose the legs (say of length a) along the x- and y-axes. Then
D = k(x% +y?) and, by (18), M = fAfk(x2 + y?)dx dy. Since the equation of the
hypotenuse is x +y = a, we obtain M =k foaf:_Y (x2 + y2)dx dy = ka¥/6.

5. Choose two sides along the x- and y-axes. Then, as in the previous example,
D=k(x® +y?). Then M =k j; : fo *(x2 + y?) dx dy = 2ka?/3.

6. Choose the legs along the x- and y-axes.Then D = Ky and
M=k [ [ ydxdy =ka¥6.

7. Here D =ky. Then M = kfolfoex ydydx = k[e? — 1]/4.

8. Here D=Kk(4-y). Then M=k [° [} (4—y)dydx =1024k/15.

9. Here D =k(x+y). Then M =k [° [ "7 (x + y)dxdy = 250k/3.

CHAPTER 23, SECTION 5, FIRST SET

In each case the equations p = VX2 T y2, sin § = y/Vx2 T y2, cos 8 = x/vx% + y2,

may be used to express the given figure in rectangular coordinates if this

transformation is needed to identify the figure.

(a) Cylinder; axis is the z-axis; radius is 1,

{b) Plane perpendicular to xy-plane (z =0 or p#f-plane) bisecting 1st and
3rd quadrants of the xy-plane,.

(c) Sphere; center is the origin; radius is 2.

(d) Cone with two nappes; vertex at origin; axis is z-axis.

{e) Plane parallel to and 4 units in front of the yz-plane.

(f) Plane parallel to and 3 units in front of xz-plane,

(g) Cylinder; axis is parallel to the z-axis, radius is 2; center is at

p=2 0=0
(h) Cylinder; axis is parallel to the z-axis, radius is 1; center is at
p =1, 8=90°

(i) Plane parallel {o xy-plane and 5 units above it,

CHAPTER 23, SECTION 5, SECOND SET

1. Denote the given integral by G and the inner integral by I

(a) We have 1= f; “% $in§p dp = sin B(EY2) |p'=a %= (a2 cos? § sin 6)/2.

p=0

Thus G = (a?2) j;" cos® Osin 6do = a¥/3.
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(b) We have 1= f““cosmpzsm 8dp = sin 6a%(1 + cos 8)%/3, Thus

o}

G = (a%/3) fow (1 + cos 68)*sin 849 = 4a%/3,

{c) We have I= f p*dp = a®(1 — cos® 6)/5. Thus

AC0os6

-/ i’
G=@¥5) [ (1-cos®8)do= @¥/5)[(/2)— [ cos®4ds].
Use integral formula #73 twice to obtain G = (a%10)(7 — '%/,).
2. The formula for area is A= fA fp dp df. See Fig. 17 and note that the curves

7/3 ,2a cos@

intersect for 2acos 6 = a, that is, for 6 =+60°. Then A=2 [ [ pdpdo

= a¥ (7/3)+V3/2)].
p=a p=2acosf
0
a 23
Fig. 17

3. See Figure 18. A =2 foe" It pdpds, where 8, = arc cos®,. Then

3/d4cosg

A=2 foﬁo (72 = Y52 8ec® 6)d6 = (6 — % stan 0)f0 = arc cos Y, — % (V7/3).

—4pcosf =3

Fig. 18
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4. See Figure 19. We have A= " [***’pdpd0 = 2. This area may also be

cos B

computed by elementary means.

. p=3cosé
IV

™

_ )
N V

4

e

5. See Figure 20. Since the curves intersect for cos # =1, we have

a=2 (™[ ap ds =(n/2) - (643/18).

/4 cosf

|~

Fig. 19 im

le——4p cos § =3

p=1+cost

Fig, 20

6. See Figure 21 and note that the curves intersect at 8 = +90°. Then

i /:
A=2 fo 2fli(1+coso,,odpd9 =.f0ﬂ2[1 —1/(1 + cos 6)*]d8. To integrate

1/(1 + cos 6)? there are several methods. One is to use the fact that the ex-
pression is a rational function of cos 6 (see Chapter 13, Section 5). Or one
may use the identity cos (8/2) = /(1 + cos 8)/2 to obtain {1 +<tos 6)?
=4cos*(9/2). Then 1/(1 + cos 6)% = Y, sec* (§/2) = Y/, sec? (6/2)[1 + tan? (6/2))].
This expression is immediately integrable, the first, sec? /2, because it is
the derivative of tan §/2 (apart from constant factors) and the second be-

cause if we let u = tan (§/2) then du/d6 = sec? (¢/2). The final result is
7/2 =%,
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Ce

o(1 +cosf) =1

Fig. 21

7. See Figure 22 and note that the curves intersect for 8= +30° + 150°. Thus
/8 p f2gZicos 20
A=4 L.foﬂ 6fa ’ pdpdf = a2(/3 — #/3) = 0.684a°.

p=a

p = 2a’ cos 26

Fig. 22
8. I D is the density then M = [ [ D(p,6)dA = ffAD(p,Q)pd,odG. If we place

the circle so that it goes through the pole and in fact has the equation

g = 2acosf, then we may take the pole to be the fixed point on the circum-
ference and then D = kp2. Then the mass is given by twice the mass of the
upper half, which leads at once to the text’s answer,

9, If a surface is given by z = f{p,6) and lies above an area A in the xy-plane,
then the volume under the surface and above A is V = [/ f(p,0)dA
= ‘ffAf(p,B)p dp d@. Thus in the present case, we find
/2
= —_ = 3
v=[" [vaT—pZpdpds = ma¥s.
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11,

12.
13.

14,

15.

16.
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See Exercise 8. Here we take the boundary circlestobe p =a and p =D,

b > a. We have M= [ [*(k/o)p dpd6 = 2nk(b — a).

See Exercise 9. Here the surface lies above the circle p =2 in the pf-plane.
We have V = foﬂzfoz 1 V36 — 9p2p dpdé = 27,

See Exercises 2 and 8. We have M = f_m f:acose sin® p dpdé = 2a%/3,

As pointed out in Exercise 9, volume in cylindrical coordinates is

[J,zdA = [[ £(p,0)p dp db. In the present case the surface is x? +y? + 22

= 4a? or p%+ 7% = 4a% so that z = v4a2 — p2. The next question is, what does
the cylinder cut out of the volume of the sphere? The cylinder is parallel
to the z-axis and cuts the xy-plane or pf-plane in a circle (x —a?) +y? = a2
The same circle is described in p and 6 / p=2acosh

/3

coordinates as p = 2acosd. This circle 0
lies inside the circle x® + y? = 4a® in which
the sphere cuts the xy-plane or pf-plane
and in fact the two circles are tangent at

p =2a and 8 =10 (Fig. 23). Hence the
volume we want lies above the circle

p = 2acosd. Then

/ acosf
v=2 [ [ yaz = pzpdp do. The in-

tegrations are straightforward and the
answer is (16a%3)(z/2 ~ %,).

Fig. 23

A homogeneous lamina is one with a constant density so that D = k. The

mass M is given by ffADp dpodéf. The cardioid is described as & varies
a{1+sing)

from 0 to 27. Hence M= [~ [ kpdodo. The integration is straight-

forward and M = 3uka??2.
Using the suggestion and the relations cosy = ¢/r, r2 = £ +p3, we have

F = [ ["[(GMtp)/ (€% + p?)*/*]dpd6 = 27GMEL [ [p dp/(¢? + p?)*"?]
= 27GMt(1 — ¢/aF T ).

The idea of regarding a solid as a sum of discs and, knowing the properties
of the discs, deriving a fact about the solid is good and we did do such Ex-
ercises in Chap. 16, Section 6. However here the property of the disc de-
pends on two variables y and z. To write a double integral, y and z must
vary independently in some two-dimensional domain; that is, within the
two-dimensional domain any value of y must occur with any value of z, In

o
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the present case the allowable y and z are related by y® = 4z. Hence y and
z are not independent or, one can say, the domain of allowable y and =z
values is a one-dimensional curve,.

17. The integral can be considered as the volume under the surface z = e

and above the xy-plane. Thus V = f_:o f_:o e v¥daxdy = ffAe'xz‘Vsz. Re-
placing dA by its value in cylindrical coordinates, we obtain

on B o -2 b -
V= [T "ePpdodo=2m [Te P pdo=—me? =

27
18. The double integral is E = k [
7}

0
[ odeae / oM =k [ [ plMgoae
1} 0

2rkp?M/ (2-m) .

CHAPTER 23, SECTION 6

1. In each case we denote the innermost integral by 1, the second inner inte-
gral by H and the given integral by G.
(a) I =f24x‘°*yzzdz = x%y? _f:zdz = 6x%y%, H =f016x2y2dy = 6x2 folyzdy = 2x%,
G=2 ["x*dx = ¥,
) 1= [Taz=2-x H= " @-xa=@-EFE-T

G= /72 - x)VX =¥ dx. We should like to let u = 2x — x7,

Then du/dx =2 — 2x. If we multiply G by 2 and divide by Y,, we have
1 _

G=1Y, fo V2X = %% (4 — 2x)dx = Y, folvzx —x2 (2 — 2x)dx + f01\/2x — xzdx,

The first integrand is of the form u'/2du/dx. The second can be in-
tegrated by using formula #56 in the table. The answer is (4 + 3n)/12.

@ I=x [Tz =x(l-x). H= [} x-x)dx =Y~ (72) + G¥3)
G zfol (1/6 . y4/2 + y6/3) dy — 4/35.
(®I:ﬂwzﬂz%ﬂ—fﬁH:%Lmﬂ—%“me

=Yl = %) =% =% + Yt —xFL G =Y, L]0 -x) - %1 - x)°
(1 = xF]dx = 1Y,
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(e} I= _j: (X% +y2t+28)dz =c(x®+y?) +e¥3. H :fob fe(x? +y?) +¢¥3] dy
= bex® + ¢b¥/3 4+ be¥/3. G = joa (bex® + ¢b?/3 + bed/3)dx = bea®/3 + ach¥/3
+ abe¥/3 = (abe/3)(a% + b2 + ¢?).
(f) I= j:/s [x/(x* + y?)]dy = tan™ Y, H= (tan™* Y,) f; dx = ztan™ Y,
G =3, tan™ Y/,
(8) T=xy [ zdz = Yxy(2~x)2 H=Y%x(@2-x? [ dy = ¥%x(1 - x)(2 - x)2.
G =Y, ["x(1 - %)@ - x)2dx = 19,
_ 5 v25y2  apxZ-y2 1/ [5
By (40), M = [ [ / zdzdxdy =, [ [

3] =0

Y2572 95 — x* — y?) dx dy

=1, [7(25 - y%)*/2dy. With the aid of integral formula #31, we find

M = 6257/16.
By (36) and by the same reasoning that led to (40), we find

~x2 5-x2—=22 VoE w2
M :f(ffom foﬂ Zddedx=f05fo o 225 —xF = zfdz dx
— 1/ 5o 95 2 273/2 Z:‘/m_dx—l 525 218/2dx. As in F :
== afa /5125 — x* — 27] l —/Sfo[ — x*|%2dx. As in Exercise

2=0

2, we obtain M = 6257/186.

(a) See Fig. 24. Since the problem has complete symmetry in x, y, z, we
arbitrarily decide to integrate first with respect to z. The surfaces
determining the boundary with respect to the z-values are the xy-plane
below and the plane x/a +y/b + z/c =1 above. Thus for the z-integra-
tion the lower and upper limits are given by z =0 and

z = ¢(l — x/a — y/b) respectively. Thus V =fAfF(x,deydx where A

c{l~x/fa—y/H

is shown in Fig. 24 and where F(x,y} = fo dz. The xy-domain

A in the xy-plane is bounded by the coordinate axes and the trace of
x/a +y/b+z/c =1 inthe xy-plane which is x/a + y/b =1,z =0, Thus

. a -x/a}  po(l-xXfa=vie
we obtain V=f0f0bu }fou : W)dzd_w,fcbnsz=~a]:;c/6.
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Fig, 24 X

(b} See Fig, 25. Here it is most convenient to integrate first with respect
to x. The boundary surfaces with respect to x are x =0 above and the
paraboloidal surface x = y* + z2 — 1 pelow. The yz-domain A is the
trace of the paraboloid in the yz-plane which is yz +z2=1, x=0. Thus

we obtain v = [} [722 [ axdydz=4 [*[ 122L2+?21dxdydz

Integral formulas #31, 28 and 26 are helpful in obtaining the result

V = a/2.
X

Fig. 25

(c) See Fig. 26, We integrate first with respect to z. The bounding sur-
faces with respect to z are z = 0 below and the two surfaces z =1 — x5
z =1 —y* above. For a given z, 1 — x* =1 — y%, so that the two surfaces
meet where x =y in the first octant. For any given (X, y) in the xy-do-
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main, we must integrate from z =0 to the greater of the two z-values
given by 1 —x3, 1 ~y2 Clearly for [x| < {y| the first of these is the
greater and vice versa for |[x| > |y|. Thus for the area designated
A, in Fig. 26 which is bounded by y =0, x = 1, x =y in the xy-plane,
we must integrate z =0 to z = 1 — X%, Since by symmetry the volume
over A, is obviously the same as over A;, we have

V=2[qlff01_x2dzdydx=2f01foxj;)1—x2dzdydx=l/z.
F4

x24+z2=1

=1 (1,1, 0

Fig. 26 X

(d) See Fig., 27. The bounding surfaces with respect to z are z =0, z = mx.
The xy-domain A is half of the circle x* + y2 = r® Since the same vol-
ume lies over both quarter-circles, we have

v=2 [ 7 ™ drdydx = 2m [ VFE=@xdx = 2mr¥3,
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Fig. 27 y

(e} The volume lies in the portion of the cylinder below the plane y +z = 4
and above the xy-plane. The domain of x and y is the circle

-y a - S 2
xt +y* = 4. Hence V= [° ("7, [*"dzaxdy =2 [} [ (4~ y)dxay

Nrver;
= [2tax—yx)| """ dy = [} (4/T=y5 ~ y/E=§7)dy. The first integral

is handled by integral formula #26 and the second by letting u = 4 — y2.
The answer is 167.

(f) The parabolic cylinder y® = ax cuts the paraboloid y? + z2 = 4ax. The
volume (Fig. 28) in question lies below the paraboloid and “inside” the
cylinder and between x =0 and x = 3a. Hence if we consider what lies
in the first octant and multiply by 4 we have

2 o vVax p/daxey? a 3
V= 4f03 Lk Y 4z dy dx = 4 j: JE)‘/_Ma,x— y2dydx. To integrate
use integral formula #26 with the a® replaced by 4ax. Then

V=2 j:a[y\f‘iax - y2 + daxsin™ (y/v4ax }] ;/ﬁdx

=2 fosa(v’?a._x'\ﬁax + 4ax sin™ Y}dx = 2V/3a fosaxdx + 4L ma ‘_foaaxdx
= 9/3a® + 6wa’.
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y? + 22 = 4ax

y2 = ax

y? = dax
Fig. 28

{g} The area common to y = x% and x = y® is shown in Fig. 29. Since the
surface z = 12 +y — x* lies above this area, we find

V=[N T ddyax =,

Fig. 29

(h) The bounding surfaces with respect to z are z = x® + 3y? below and
z = 8 —x® - y% above. These surfaces intersect in the ellipse x? + 2y?
=4 which is shown shaded in Fig. 30. Then using the symmetry of the

body, we have V =4 [ [ Y7 158 V% 4 40

¥2+3y2
= (8/V2) [{4/T=xF - x2E TR - Y, (4 - x2)*2) dx
= (16/3V2) ["(4 — x*)**dx. Using integral formula #31 we find V = 8773,
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—— ——
a— e

z=x2 4 3y?2

I=8=x" =Yy

Fig. 30 X

(i) Noting that z = 2x* + y® and z =4 — y® (see Fig. 31) intersect along the
circle x2 + y2 = 2, we obtain as in (h),

v:4f0"2_f0/;’§f2‘;fi2dzdydx:4m

z2=2x24y?

x24y2=2

7=4 -y?2

Fig. 31
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5. As in the example of the text, the masses of the two hemispheres are given
252 ,/ & yE VI-3ZyZ
= f zdz dy dx and 4f f f I dz dy dx.
The mass of the shell is the difference of the masses. Evaluating the in-
tegrals as in Exercise 2, we obtain the result that the mass is 1367, Thus
the weight is 136ng.
6. See Fig. 32. The bounding surfaces with respect to z are z =x +y bhelow
and z =1 above. The xy domain is the triangle shown in the z =1 plane.
Since the density is k(1 — z) we find that the mass is

k fo o fo, (1 - z)dzdydx = k/24.

respectively by 4 f f

Z

7"\
N
Il
et
o
|
>
e}
|
—

Fig, 32 X
7. See Fig. 33. In the usual way we obtain fig., w-60

M = 2k fo"‘j;”a"‘zfoh yzdz dy dx = kha¥/3.

-~
w3
&///_Xz +y2=a2

Fig. 33 x
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8. The magnitude of the force of gravitation exerfed by a mass element of den-
sity p on a mass m is {Gmp/d?)dxdydz, where d is the distance between
the mass element and the mass m. If the mass element is located at the
point (X,y,z) and m is at the origin we have d% = x? +y? + 22, To obtain the
x-component of the force, we must multiply by the first direction cosine of
the line segment between the origin and the point (x,y,z). This is x/d; thus
the x-component of the force is

f(-)].fi;lfol [GmkyZ/(X2 + yz + ZZ)J . (X/m)dxdy dz

= Gkm Llfolfol [xyz/(x?* + y* + 22)3/2]dx dy dz. The integrations are readily

executed. For example, to integrate with respect to x, let u =x*+ y* + 22,
Then du/dx = 2%. v and z are constants. The answer is Gkm(2v2 — 1 —3).

9. The bounding surfaces with respect to z are the z = 0 plane below and the
cone z2 =x%+ y® above. The xy-domain is bounded by the x-axis and the
curve ¥y =1 ++1 —x2 as x ranges from 0 to 1. Since the curve is the upper
part of the circle with center (0, 1) and radius 1 in the xy-plane (it can be
put into the form x® + (y — 1) = 1) we conclude that the volume in question
is the one lying above the domain in the xy-plane shown shaded in Fig. 34
and below the cone 22 =x* + y2,

y

Fig. 34

+ A2 p SBryE
10. The mass is given by folfol ' fo "0 (%, v, z)dzdy dx. Here

o =k/Vx% T y2 + z2, Using integral formula #38 for the z-integration (with

A2y 2= A2+y ¢
a®=x>+y%) wetind [7 " pdz =k{log @+ vEETyEF22) |7}

=k log (1 + v2) because terms cancel. Thus the mass is

k log (1 + v2) folfohmdydx =k[log (1 + y2)I(1 + 7/4).
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14,

206

The surface z = xy/a is the hyperbolic
paraboloid shown in Fig. 21-23 but turned
45° go that the figure is symmetric about
the plane x =y instead of the y-axis. The
surface x +y +z = a is of course a plane
which cuts the former surface in the first
octant. The bounding surfaces with respect
to z are z =0 below and the smaller of

z =Xy/a, z =a— x—y above., The latter
two surfaces are at equal heights when
xy/a =a — x —y. Thus in the region marked
H in Fig. 35 we integrate up to z = xy/a, Fig. 35
while in the region marked P we integrate

up to z =a — x —y. Writing the curve dividing the regions H and P in the
form y =.afa —x)/(a + x) we arrive at the formula for the volume:

V= _f;alf;a o/ (a”)lfoma dz dy dx + f:fa_x fa-x_y dz dy dx. After grouping terms

alla—x )}/ (a+x)] Jo

the result of the first two integrations is V =(a/2) _f;a[x(a —x)¥(a + x)*]dx
+ f;[xa(a - x)%(a +x)fldx =1 fua {x(a — x)%(a + x)]dx. The substitution
u=x +a leads to V =a3(17 — 24 log2)/12,

The volume lies between z = 0 and z = ¢v1 — x%/a% — y2/b® above the first
quadrant of the ellipse x%a® + y¥b? = 1. Hence

e b/ 1-x2 42 cvl-x2/aZ —y2/,2
V=hk J

o]

dz dy dx. Use of integral formula #26 in the

second integration leads to V = wabe/6.

The figure is similar to that shown in Fig. 30 for Exercise 4(h). Thus
1 pvB-en® pa-x®-(1/ary?

V= -ft; j;l Jax2 +(1/4)y2

The domain of integration lies above the shaded area in Fig. 36 and under

the cylinder y® + 2% = 4. The equations x +y =2 and x + 2y = 8 represent

planes which rise vertically and cut the cylinder. The figure shows the

6-2y fl/m
v o
The integration is straightforward and the answer is 2%/,

dz dy dx. The answer is 4#y2 = 17.1'7 approx.

traces of these planes in the plane z = 0. Then V = fozfg z dz dxdy.
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"~ - y?+22=4

X+y=2
0 A y

X+ 2y=6

Fig, 36

15. The bounding surfaces with respect to z are the plane z = 4 above and the
paraboloid z =1/, (x® + y?) below. The xy-domain is bounded by the curves
vy =0 and y =16 - x2 as x ranges from 0 to 4. This domain ig thus the
quarter of the circle x*® + y* = 16 lying in the first quadrant. Thus the
volume lies between the plane z =4 and the paraboloid z =1 (x* + y?) and
above this quarter-circle.

CHAPTER 23, SECTION 7

/
1. (a) After two integrations we obtain f;4 (Y, sec? 8 — sec 6 +1,)d6. Recalling
that fsec2 fd# =tan 6 + C and using integral formula #3, we obtain the

result [(7 + 4)/8] — log (V2 + 1).
(b} The integrations are simple and the answer is 2(1 ~ cos 2)/3.
(c} Use integral formula #27 to obtain 2567/5.
2. To take best advantage of the solution in the text we locate the unit mass at



208

the origin and place the cylinder with its axis along the z-axis with its lower
base ¢ units above the xy-plane. Then the theory of the text applies at once
except that the z-end values are ¢ and ¢ +h. Hence the integral for the

gravitational attraction is fa ° fc b fo " GDzp do dz dp/(p? + z2)*”? and straight-

forward evaluation gives the result in the text. We can obtain the same an-
swer by supposing that we have a longer shell of height h + ¢ and a shell of
height c¢. The latter’s attraction opposes the former’s. Both shells have the
unit mass at the center of the lower base. Then we take the text’s result
with h replaced by h + ¢ and subtract the text’s result with h replaced by
c.

. We may represent the cone by z? =%, (x* + y%) or in polar coordinates by

z = %,p. The bounding surfaces with respect to z are the cone below and the

plane z = 3 above. Thus V = f:ﬂ fozf&:fz pdz dp d8 = 4r,

The paraboloid may be written in the form z = *,p% Thus
T 2 ,2

v=["/ fpzmpdz dp dé = 4x.

The bounding surfaces with respectto z are z =0 and z =h. The pf-do-
main may be described by p =a, 0 =8 = 5. Thus the mass is

fohf;foa Dzpsind-p dp A6 dz =Da’h?/3.

. We first note that by symmetry only a vertical force acts and that the angle

P in Fig. 23-27 is given by cos ¢ =z/r =1z/J/p? + 22, Using the suggestion
and proceeding as in the text example we obtain the expression

fomfoaﬁ];/a [GDz/(p? + 22)372] pdz dp dd = 2nGDh{1 — h/yaz + hz},

. Once-again by symmetry only a vertical force acts. The bounding surfaces

are z =2 —p2 and z = p%, Thesge surfaces intersect along 2 — p? = p* or
along (p? + 2){p? — 1) = 0. The real intersection is the circle p = 1. As in
the example in the text the vertical force is GAMz/r3 = GAMz/(p? + 22)%/2,
AM = DAV where D is the density. Then the integral is

2T /2%
jﬂz fnl‘[fﬁ P [GDz/(p? + 2z*)*/%) pdz dp d. The integration is straightforward

and the answer is 7GD/v2.

The cylinder has its center on the x-axis at x =a (or p =a, ¢ =0), The cone
rises from the origin and cuts through the cylinder. To obtain the x-compo-
nent of the force we must multiply the magnitude of the force by the first
direction cosine of the line from the origin (pole) to the point {p, 6, z). This
direction cosine is x//x% + y2 + z2 = pcosf/Vp2 + z2. Thus the x-component
of the force is GDp cos8/(p? + z2)3/2, where D (or k) is the density. The

domain of integration is from z =0 to z = cp and over the circle p = 2acosé,
/ 4 COS ¢ )
Hence the total x-component is _f_“ﬂfzf; ch P1GDp cos8/(p? + 22)%/2] pdzdpdo.

Use integral formula #45 to do the first integration. Ans. 7GDca/V1 + c2,
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9, The cylinder p = a cos 28 is parallel to the z-axis and cuts the xy-plane

10.

11.

12,

13.

(the p#-plane) in a four-leaved rose, The plane z = 4a + p cos 6 (=4a + x)
cuts the entire cylinder above the xy-plane, Hence

"a COs a+p cosQ . . .
V= fo A jo 29 fo 2% 5 dz dp d0. The evaluation of the triple integration

is straightforward but lengthy because terms involving cos?26 and
cos8? 26 cos & occur in the integration with respect to 6. One must convert
these to sin# and cos ¢ by using cos 20 = cos? d — sin? 6. The answer is 2wa’

Ag in the text example, only the vertical component of the gravitational
force acts and this is given by GMzp dp dz d6/(p? + z2)*/2, Here M is the
equivalent of the k in the text. The volume lies over the domain p? = 4a®
in the p@-plane. Hence the integral is

GM j[’f“fozafp;m [pz/(p* + 22)®/2)dz dp d8. The integration is straightforward.

The integration with respect to p requires the use of integral formula #38,
As in the text example, only a vertical force acts and this is GM cos ¥ /12,
where M is the density. Here, however, the unit mass is located at p =0,
8 =0, z =2a. Hence cosy = (2a—z)/r and r =+p2 + (2a — 2)2. z varies
from the paraboloid z = p%'4a to z = 2a. The domain of p and 6 values is
the circle p? = 8a? or p = 2v/2a. Hence the atiraction is given by

T 2/ Ea a
fuz f; : fpzm {GM(2a ~ z)}/[p? + (2a — z)?]*/?} p dz dp df. The integration

with respect to z is accomplished by letting u = p? + (2a — z)?. After sub-
stitution of the z-end values and simplification we obtain

oT A2,/ 24
GM [ [7 " (1 - 4ap/yB4a? + p%)dp d. To achieve the integration let

p? = 8a tan ¢ in the second term. This leads for this term to fsec ¢ do

which is a standard form. The answer is in the text.
The value lies under the paraboloid which opens downward. The corw

. 27,3 ,9-p?

rect integral is f f f p%-pdzdpdf. The answer is in the text.
9 0 0

The cylinder cuts the p6-plane in a circle whose center is on the x-axis

(polar axis) at x = 2. The sphere cuts through the entire cylinder above the

xy-plane (pf-plane). Hence the volume lies between z =0 and z = V16 — p2

and over the pf-domain of the circle p = 4 cos 8. Then

_ /2 pgeosO® av1g-p2 .
V=2 fo fo fo p dz dp df. The integration is straightforward.

V =%%,(3r — 4). Note that if one takes ¢ end values from -n/2 to 7/2 in-
stead of multiplying by 2 one gets ¥, (37) but one gets the correect value if
one also takes 0 and 7 as the end values for 6. The discrepancy comes up

because in going from —-7/2 to 7/2 one encounters a negative “area” can-
celling a positive one.
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CHAPTER 23, SECTION 8, FIRST SET

1. (a) Sphere, center at origin and radius 4. .
(b) Upward facing cone, vertex at origin and semi-vertex angle of 30°, .
(c) Downward facing cone, vertex at origin and semi-vertex angle of 60°,
(d) Plane parallel to and one unit above the xy-plane (¢ = 90° plane).

(e) Half plane perpendicular to xy-plane (¢ = 90°plane) and making an
angle of 30° with the x-axis (6§ = 0 half plane).

{f} Half plane perpendicular to the ¢ = 90°plane and making an angle of
210° with the 6 = 0 half plane. '

(g) Cylinder, axis is z-axis and radius is 2.

(h) Sphere, center at x =y =0,z =2/2 (p =2a/2, ¢ =0, § =0) and radius
a/2.

CHAPTER 23, SECTION 8, SECOND SET

1. (a} The result of the first integration is sec ¢ sin2¢ = 2 sin ¢. The re-
maining integrations are readily performed.

(b) Atter two elementary integrations we obtain 3 cos (n/4)
— 3 cos(arctan2). But cos (arctan2) = 1/¥/5. Then the final result is
(31/2) [(L/VZ )— (1/45)].
(c) The integrations are straightforward.
2. Take the center of the sphere at the origin. Then the equation of the sphere
is p = 6 and that of the cone is ¢ = 30°. Then for fixed ¢ and ¢, 0 goes
from 0 to 6. ¢ varies from 0 to 7/6 and 8 from O to 27. Thus

V=" [*o*sin¢ dp dp dO. The final result is 1447(1 - V3/2).

3. The equation p = 2a CoS ¢ represents in the 9 =0 plane, a semicircle with
center at p =a and ¢ = 0. Rotation of this semicirele around the o =0
axis gives the sphere. The sphere passes through the origin and the cone
¢ = 7/4 has its vertex there. The cone lies inside the sphere until it cuts
through at the top. Hence except for the end values of £ we have the same

situation as in Exercise 2. V = fow A i A et 2 sing dp d¢ d8. The integra-

tions are straightforward.
4. The mass is the integral of the density over the volume of the sphere. Hence
taking the center of the sphere at the origin,

M = [* [" " (k/p?) p* sin ¢ dp do d8 = 4rkR.

5. Because of the symmetry of the cone only the vertical component of the
force of gravity is effective. If we take an element of volume dV in the
cone, the force it exerts on unit mass at the vertex is Gk/p* where k is
the density. The vertical component downward {the cone extends upward
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from the origin) is Gk cos ¢/p%. To describe the volume we note that for
fixed 6 and ¢, p varies from the origin to the base of the cone where
p cos¢ =h. Hence p varies from 0 to h/cos ¢. Then

F= fomfom foh/mm (Gk cos ¢/p?) p*sin¢ dp do db.

The integration is straightforward and

the result is in the text.

The solution follows the text beginning on p. 298
with the following changes. Since the unit mass
is external to the shell now ¢ > R,. In Figure ¢
23-33 this means that Q lies above R. The ver-
tical component of the attractive force (cf. (53))
is still GMAV cos ¥/r%2 where  is shown in
Figure 37. Now cos ¢ = (c — p cos ¢}/r. Hence
the vertical component is GMAV(c — p cos ¢)/T4.
Proceeding as in the text we come, in place of
(58), to

fRRlz f;fozﬁ [GM(c — p cos ¢)/(p? + ¢ — 2pc cos ¢)2/2] p?sin$ df d¢ dp. We in-

tegrate with respect to ¢ first and, as in the text, break up the integral
into two integrals. Because we have ¢ —p cos ¢ in place of p cos¢p —c in

the text, we get in place of (61), [1/p(p? + ¢ ~ 2pc cos ¢ /%] r; Again, the

Fig. 37

radical is positive. When we substitute 7 for ¢ the radical yields p + c.
When we substitute 0 for ¢, this time we must take ¢ — p to keep the radical
positive. Then we get 1/p{(p +c) = 1/p(c —p) =-2/(c? - p?). To evaluate

the second integral we proceed as in the text beginning with (63), except

that we have a minus sign in front of the integral. We come to (64), except
for the minus signs in front of the main terms. Again when we substitute =
and 0 for ¢ we must remember that ¢ > p; in place of (65) we get
—2p%c?(c?® - p?). We must now add this result to the previous one, that is,
—[2/(c® — p*)} — 2p%¥c2(c? — p?) = —2/c%. Then the integral (58) becomes

- R’:z [ (2GMp¥c?) dp df = - (47GM/3¢?)(RS — RS). The volume of the shell
is 47(R; — RY)/3. Hence the result says that we take the mass of the shell
divided by the square of the distance from the center to the unit mass. The
minus sign in the result comes from failing to fix a sign for the direction

of the gravitational force.

. Starting with (59) and letting u® = p? + ¢? — 2pc cos ¢ we have udu/d¢

= pc sin ¢ d¢, Also to convert p cos¢ to u we have from the expression
for u® that p cos ¢ = (p? +¢? —u?)/2c. Take u to be the positive root. Then
when ¢ =n, u=p +c and when ¢ =0, u =p — ¢ (since p > c). In place of

{(59) we now have (1/2pc?) pf‘;c [(0? — ¢2)/u?] (du/d¢)dé
= (1/2pc?) p‘j” [{p? ~ c?)/u®)]du = 0.

c
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(a) By the symmetry of the figure the force acts along the line determined
by ¢ =90° and ¢ = 90°. If we take any element AV of the volume and
if k is the density then the gravitational forceacting onthe unit massis
GkAV/p?. The component in the direction of the line just deseribed is
GKAV cos (90 — ¢) cos (90 — 8}/p®. One way to seethis istotakethe com-~
ponent parallel to the ¢ = 90° plane, which is GkAV cos (80 — ¢), and then
then the component of this along the line ¢ = 90°, 6 = 7/2. Then the total

force is [ [ [* (Gk/p?) sin® ¢ sin 6 p? dp d¢ df. This give Gkar.

(b) The mass of the hemisphere is 27ka®'3. If this mass is concentrated
at p =v2/3a, 8 =7/2, ¢ = u/2, its distance from the origin is v2/3a.
Hence the gravitational attraction it exérts at the origin is
(G27ka®/3)/(2a%/3) = Gkaw.

3T AT p2asing .
vV :jo f; fﬂ p?sin ¢ dp d¢ d8, Since the end values are constants we
may reverse the order of ¢ and . This gives {167a%3) f:sin“ ¢ do,

One can integrate in various ways, in particular by using the reduction

formula #72 in the Table of Integrals. The text’s answer results,

The spheres intersect along cos¢ =3, or ¢ =cos™ %,. A simple sketch

shows that for ¢ < ¢ < cos™ 3/, p ranges between 0 and 3 whereas for

cos? ¥, < ¢ < 7/2, p ranges between 0 and 4 cos ¢. Then the volume is
3T parccos{3/4) 3 . R 4cosm i

5k J pPsing dpdp do+ [T f L7 pPsing dpd¢ dé.

Jarccos(3/4)
Using the relations cos (cos™ %,) =%, and cos* (cos™ %,) = (¢/)!, we obtain
the resuit 637/8.
If we take an element AV of volume the gravitational force it exerts on
unit mass at the origin is GkAV/s?, where k is the density. However by
the symmetry of the figure only the vertical component of the force acts.
This is GkAV cos ¢/p?. The domain of integration must be broken up, as in
Exercise 10, into two domains with the end values precisely the same as in
Exercise 10. The integration is simpler because the p? factors cancel, The
result 1s in the text,
The density D = k/vxZ Fy2 =k/yp?—z2 =k/yp2—p2cos2¢d =k/p sing. The
bounding surfaces with respect to p are p = 1/cos ¢ below and p = 2 above.
Since the plane intersects the sphere along cos¢ =1, that is, ¢ = 60° = 7/3,

. . 2T rf3 p2
the mass is given by fo fo fﬂmsé (k/p sing¢)p?sin¢ dp d¢ df. After the first

Integration we obtain (k/2) fgzﬂfom (4~ sec®¢)d¢ db. Since d (tan ¢b)/de

= s.ec2 ¢, we find the answer (7k/3)(47 — 3/3).

;t is conveilient to take the cone as opening downward so that its equation
Is ¢ = 120", Then the larger solid cut out by the cone lies above or outside
the cone. The gravitational force which any element of the solid éxerts at
th_e.origin is GkAV/p? where k is the density. By the symmetry of the
solid only the vertical component of the force is effective. This component
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is GKAV cos ¢/p2 Then the force is
T /3 e
F= [ " [T (GR/p%) cos ¢ p*sing dp d df. This gives F = Gk3(c — b)/4.

Now k, the density, is M/V, where M is the total mass of the solid in
question and V is the volume. To obtain an answer in terms of M, we leave

/3 ac
this asis. V= [ [7° ["p*sin¢ dp d¢ d6 = 7(c® — b?). Replace k in the

value of F by M/V and we get F = 3GM/4(b? + bc + ¢2).

14. As in previous Exercise, only the vertical component of the gravitational
force is effective and this is GDAV cos ¢/p? where D is the density. We
are given that D = kp. Hence the component is GKAV cos ¢/p. We integrate
over the volume. Then the total force

T o/
F = foz fo 4f02 (Gk cos ¢ /p)p?sin¢ dp d¢ d6. = Gkr. To put the answer in terms
of the mass M of the solid we compute M. This is
[ [™ [*xpp®sing dp dp d6. We find readily that M = 4km(2 — VZ). Take
the value of k from this and substitute it in F = Gk#. Then F = GM(2 + v2)/8.
27 parctan 2 Ve . . . . -
15. Here V =f0 f fn (1/p)pisin dp do df. The integration is straight-

/4
forward. We need only note that cos (arc tan2) = 1/¥/5, The answer is

67((vV2/2)—- (1/¥5)].

CHAPTER 23, SECTION 8

In this section we use the following formulas for the moment of inertia of a
homogeneous body of mass M: 1= (M/V)} fffrz dv, 1= M/A) ‘[q frz dA (thin

disc), I = (M/¥) fr2 dx (thin rod). These formulas summarize the derivations

of the text. The symbols V, A, f respectively stand for the volume, area
and length of the body and r stands for the perpendicular distance from a
typical point in the body to the axis of rotation.

i, (a) We use the formula for thin rods, I = (M/f) frz dx. Here the length ¢
is 2a. Placing the rod along the x-axis with the axis of rotation through
the origin, we see that r = x varies between —a and a. Thus

I=(M/2a) " x*dx = Ma¥3.

(b) The situation is similar to (a}). Placing the rod along the x-axis with the
axis of rotation through the origin, we have

I=(M/2a) [ "x*dx = 4Ma¥/3.
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(a) Use the formula for thin discs, place the axis of rotation through the
origin and use plane polar coordinates to obtain

I= (M/ma?) foz'ﬁf:pz-p dp d8 = 1, Ma?.

(b) Inthe result of (a), M can be replaced by density times volume
= Dna*, where D is the density and t the thickness of the disc. If we
now let M be the mass of the solid cylinder, then D = M/7a%¢ and
D-ma%-t = Mt/¢. Thus by (a) the moment of inertia of a thin slice of
thickness dx is Y, (Ma%?)dx and the moment of inertia of the whole

cylinder is foﬁ (Ma%2f) dx = %, Ma?, where now M is the mass of the
solid eylinder.
Use the formula for thin rods with dx = ds = arclength. Thus

I=(M/27a) faz ds = (M/27a) f:ﬁ a%.a do = Ma?,

Let the origin of a rectangular system be at the center of the disc. Then
I=(M/A) [, [*+y®)dxdy = (M/4ab) f_‘; fa (x% + y¥) dxdy = (M/3)(@2 + b2).

. I=(M/V) fﬂ,f(xz + y?)dxdy dz. Using spherical coordinates and noting that
X+ y?=p?-22=p%—p%cos?¢ =p?sin?$ and using integral formula #72,
we obtain 1= (M/4ra¥/3) [* [ ["p*sin’¢ dp dp d6 = 2/, Ma2.

Place the disc in the xy-plane with center at the origin and sides of length
2a and 2b respectively parallel to the x- and y-axes. Then the axis of rota-

tion is the y-axis and r =x. Thus I=(M/A) [ [x*dxdy

= (M/4ab) f_l;f_i x2dxdy = ¥, Ma?.

(a) See Fig. 38. If the mass of the lamina is M and its area A, then iis
moment of inertia about the x-axis is I, = (M/A) ffyzdxdy and its
moment of inertia about the y-axis is I, = (M/A) [[x?*dxdy. The mo-
ment of inertia about the z-axis is I, = (M/A) [[p?dxdy
= (M/A) [[ & +y?)axdy =1, +1,.
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Fig. 38 g >

(o) In 2(a) we found that the moment of inertia of circular disc about an

axis perpendicular to its center was /,Ma®. Now the moments of inertia
about all diameters are obviously equal; in particular if we choose 2 per-
pendicular diameters we have by (a) that 2I = !, Ma? Thus I =%, Ma?®

Using the equation of the cone in the form p = az/h, we have
20 rh pa/h)e 1 -1 "
D[ [ p*dpdz dé =¥, mDa*h,

We use spherical coordinates and take the y-axis (6 = 1/2, ¢ = 7/2) as the
axis of rotation. Then r? =x? + 2% =p®cos?d sin® ¢ + p*cos?¢. For a
homogeneous body (M/V) =D, thus

/ a
I=D fj”fo” sz p* (cos?0 sin® ¢ + cos®¢ sind)dp d¢ df. To integrate replace

sin®¢ by (1 — cos? ¢)sin¢. The rest is straightforward and leads to the

text’s answer.

We use cylindrical coordinates. Let the z-axis be the axis of rotation. Then

r? = x% + y* = p?. The equations of the bounding surfaces of the shell are

p? + 2z =16, p? + z* = 25, Thus the bounding surfaces with respect to p are
2

p =16 —2%,p =vy25 —z2, Hence [ =D .f:ﬂflsf 1212 p?-p dp dz de

=D [ /* {369 - 182} dz d6 = 2917D.

The area in question is bounded by p = 4a cos 8 and p = 2a and by the do-
main of #-values determined by the intersection of these two circles. Setting
2a = 4a cos 6, we see that the end-values for 9 are —7/3 and 7/3. Then

I=(M/A) f " fz :a Cosepgp do df. The integration is straightforward except

-/3

that to handle the cos®*® which results from the first integration one can use
the integral formula #73 or replace cos*f by (1 — sin®8) cos?8 and then use
simple trigonometric identities. The value of I proves to be
I=(M/A)a%/3)(207 + 21¥3). We compute the area A which is given by

/ cos
f:js :l 6,0 dp d6. This proves to be (27 + 3V/3){a?/3). Then I has the
text value,
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We shall use I = (M/V) fffrz dV and cylindrical coordinates. The distance

of any element of volume from the axis of rotation is p so that r% =p2 Now
in the upper half of the figure for any fixed p and 8, z varies from

vb2 —p2 to Va2 —p2 p varies, for any fixed 4, from ¢ to a and ¢ from 0
to 27. Hence since M/V =d, and for the entire figure,

—

Va2 a2
I=2d fozﬂ f:f\,bi:z p?p dz dp dg. The evaluation is straightforward. After one
integration we get the terms +az - p2 p3 and Vb2 —~p2 p3. Evaluate each
separately. To do the first one, let p = a sin¢. This leads to an integral of
a’sin® ¢ cos®¢. Replace sin®¢ by 1 — cos?¢ and the rest is direct evalua-
tion. The terms +b% —p2 p3 gives the same result except that b replaces a.
Hence only one somewhat lengthy integration must really be done. The text
gives the answer. y

By using the relations sin 8 =y/p, cos @
= x/p, we find perhaps more readily,
that the disc is the circle of radius v2
shown in Fig. 39. Noting that the area of
the circle is 27, we have

3nfa  ,2(sin B+cos @)
I=M/20) [ - [ p2+p do do 0

?;:4 (sin @ + cos 6)*d6. This

(1. 1

= (@M /7) |

latter integral can be evaluated by use
of the binomial theorem and the integral ]
formulas #72, #73, and #78. The follow- Fig. 39

ing device may be used instead to shorten the work. We note that cos /4
= sin 7/4 = 1/¥2. Thus sin @ + cos 8 =2 [sin 8 cos (7/4) + cos 8 sin (7/4)]

=2 sin[6 + (1/4)]. Hence I = (8M/7) ﬁjf sin*[6 + (1/4)]d6. The substitu-

tion ¥ = 6 + 7/4 leads to 1= (8M/x) j;sin‘1 $ dy. Now integral formula #72

leads to T = 3M.
Since the equation of the cone in cylindrical coordinates is p = az/h, we

T az/h
obtain I = (M/V) f; j;h jo / p® dp dz df. Elementary integrations and use of

the formula V = !/ 7a®h leads to I = 3%,,MaZ.
Take the line to be the y-axis. Then r? = x% + z% =p%cos?6 + z%, Using this
factor in place of p? in the integrand of Exercise 14 and using the formula

for V, we obtain I= (M/V) fj"’fohf;’fh(pa cos? § +pz®)dp dz do
= (3M/5){%, a% + h?}.
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Here r® = x2 + y% = p%cos?0 sin? ¢ +p2sin?g sin®¢ = p?gin® ¢. Thus
ek /
1=M/V) [ [ [*p*sin®p dp dp d9 where V= [ [T [b?sin¢ dp d¢ db.
Using integral formula #72 to integrate the sin®¢ term in the integral for
I or replacing sin®¢ by 1-— cos®?¢, we obtain I =1 (5 - 2/3)M.
2T rd 4 . .
Here r2 =p®% Hence 1= (M/V) ‘fo _f; fpzmpz p dz do d@. This gives

= (M/V)256 - 27/3. We calculate V from the same integral but without the
p? factor. V = 327. Hence I = 16M/3.
The distance of any element of the volume to the y-axis (the 6 = 7/2 ray) is

Vz? +p? cos? f. Hence I = (M/V) f;ﬂf;fpzm (z2 +p? cos? ¢)p dz dp df. The

integration is straightforward though lengthy. Then 1= (M/V)512- 27/3,
The volume V has been computed in Exercise 17 and is 327, Then
I=32M/3.

The equation z = p? in cylindrical coordinates is z = x® + y® in rectangular
coordinates and so represenis a paraboloid.

T2
I=(M/V) j: jo 2fpz p?p dz dp df = 4aM/3V. Here V is the same integral

without p? and proves to be 27, Hence I =2M/3.
(a) Here r =y =p sin 8 and A = 7R%2. Thus
1= (M/A) f“:fz fDR p® sin? 8 dp d6 = M7RY8A = MR¥A4.

(b) Here r=x=p cos @ and A = 7R%2. Thus

= (M/A) [T [ 0° cos? 8 dp d6 = MRY4.
b 1-}(2?2- a rh/f1-x2 &2 .
(¢) I=(4M/A) fo fo y2dy dx where A =4 fo fo ! dydx. Using

integral formulas #31 and #26 for the respective integrals we obtain
I = Mb%/4.

(d) Reversing the roles of x and y in {c) we obtain at once I = Ma%4.
Otherwise one may set up the corresponding integrals

I—(4M/A)ffd Aoyind x? dx dy, A=4f"fa‘l"'2”’ dxdy.

4
(e) Here r =y. Thus I = (M/A) fo fo y2dydx and A = f f dy dx. We
obtain I = 16M /5.
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=
{f) Here r =x. Thus I = (M/A) f:fo ‘mxzdydx. A, found in (e), is 32/,

Thus we find I = 48M /7.
Following the reasoning of the text we have work done = 32Mx sin «
= Kinetic energy =, Mv? + %, Iw® Thus using w = v/R and the given mo-
ment of inertia of a cylinder (I = MR?%2), we have 32Mx sina = Mv%2
+ Mv%4 = 3Mv¥/4 or v? =% 32x sina. At the bottom (see Fig. 23-36) the
cylinder has fallen a vertical distance given by h =X sina. Thus the veloc-
ity at the bottom is v =+(4/3) 32h. From the formula for v? we obtain, as
in the text, 2v({dv/dt) =4, 32v sina. Thus a = dv/dt = %, 32 sina. This
acceleration is constant all along the path.
Let y measure the vertical distance downward from the point of release of
the yo-yo. Then work done = 32My and the kinetic energy = Mv%/2 + Iw?/2
= 3Mv%/4. As in Exercise 21 v =%, 32y and 2v(dv/dt) =%, 32v. Thus
a = dv/dt = %/, ft/sec?.
The situation is the same as in Exercise 22 except that now I = MR2, Thus
the work done = 32My and the kinetic energy = Mv¥/2 + Iw%/2 = Mv¥/2
+ MR?*(v?/2R?) = Mv2. Hence 32My = Mv® and v? = 32y. Then 2v dv/dt = 32v
and dv/dt = 16 ft/sec?.
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Solutions to Chapter 24

CHAPTER 24, SECTION 2, FIRST SET

1.

io.

Use the differential form [dy/y® = [x%’dx. Hence y */-2 = x’/3+C,

which can of course be rewritten in many simple forms.

Using the differential form gives [y®dy = [x%dx or y*/4 = x3/3+C.
Write dy/dx = e*e™Y and now use the differential form feydy = fexdx
so that e¥ = e*4C.

The problem is already in differential form. To integrate use %26 in
the table of integrals for the right side and #40 in the table of
integrals for the left side.

The differential form is y dy = (log x/x)dx. S8ince the derivative

of log X is 1/x we have,by integrating, v?/2 = (log x)?/2+C,

The differential form is y dy/y?+3) x dx/(1+x?). 1Integration gives
log(y2+3) /2 = log{x?+1)/2+4C or y*+3 = C(x?+1).

Separation of variables leads to sec?x dx = -csc?y dy. Both sides are
immediately integrable and one obtains tan x = +cot y+C. Since when
x=7/4, v = n/4, C = Q.

Written as xdx/v1+x2 = ydy/v/1+y2 both sides are immediately integrakle
by letting u = 1+xZ on the left and u = l+y2 on the right. Then
Y1¥xz = /1i3y2z +C.

Writing y' as dy/dx suggests separation of variables. We get

dy/ v = (8x+3)dx. Hence log y = 4x +3x+C or y =

4x2+3%+C ¢ 4x2+3x 4x*¥3x
e e e De

SO

Letting v = x+y and treating x still as the independent variable
gives dv/dx = l+dy/dx. Hence the original differential eguation
becomes dv/dx -1 = v? or dv/dx 1+v?. Now use separation of
variables and obtain arc tan v x+C or arc tan(x+y) = x+C.

CHAPTER 24, SECTION 2, SECOND SET

l.

(a) Wwith (12) as the standard form P(x) = 1l/x and Q{x) = 1. Hence
. . Ip log x
the integrating factor e (x) dx becomes e d = X and we
multiply the original equation by x and cbtain x{dy/dx)+y = X
or d(xy}/dx = x. TIntegration gives xy = x°>/2+C.

(b} Following the method as just presented in exercise {a), the

log x3
f3ax/x _ 3 log x _ 109 x*. Hence

x* or

integrating factor is e =
the original differential equation becomes x’y'+3x’y
A{x?y)/dx = x*. Integration yields x°’y = x°/5+C.

(c) As in the method of exercise (a), the integrating factor is
f2dat 2t 2t 2t 2t
e = e , Hence e dr/dt+lre = 10 or d{e r)/dt =1

0.
Integrating gives re?t - 10t+Cc. Since r = 0 when t = 0, ¢ = 0.
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(d) Here the integrating factor is eflde/(2x+5) = e5 log{2x+5)
= {2x+5)% . Hence multiplying both sides of the original dif-
ferential equation by (2x+5)® gives d[(2x+5)5 yldx = 10(2xt+5)° .
Integration yields (2x+5)%y = 5(2x+5)% /6+C.

(e) We can write at once d(xy)dx = sin x. Then xy = -cos xX+C.
2. The given amounts to dy/dx - 3y = 2x. The integrating factor is
o/ 73ax _ 73X uultiplying through by this we obtain d(ye“3x}/dx =
3x

2xe °®. To integrate we must use integration by parts on the right
side or a table of integrals. The result is

ye‘3X = (-2xe‘3x/9)—(2e“3x/9)+c.

CHAPTER 24, SECTION 2, THIRD SET

1. Since the differential equation is dv/dt+kv = 32, the integrating
factor is efkdt or ekt. Then by multiplying through by ekt, the
original equation becomes d(vekt)/dt = 32ekt. Integration yields

vekt = (32/k)ekt+c.

2. The equation to be sclved is di/dt+5i = 10 cos 5t. The integrating
factor is edet or-e5t
5t

. Multiplying through by e5t and integrating
5ti = lOJ e”"cos 5t. The right side is integrated by inte-

yield e
gration by parts or by using a table. This gives e5ti =

eSt{cos 5t + sin 5t)+C. In practice i = 0 when t = 0 so that C = -1l.
3. The differential eguation is 2di/dt+401i = 20. The method of linear
equations used throughout this section yields i =

(1/2) (1~ 20%y

4. The first part of the problem calls for solving -1di/dt+10i =10
or di/dt+100i = 100. The method of linear equations yields

L= 1ecel00t  Lever, i = 0 when t = 0 so that i = l-e 100%

This certainly helds for 0 < t < 5. The second part of the
problem calls for solving -~Idi/dt+l0i = 0 or di/dt+100i = 0. Here
straightforward calculus using dt/di = - 1/100i yields i =

pe” 190t Lhere D is the constant of integration. However, from the
first part of the problem when t = 5, 1 = l~e“500. Hence to de-

. ~500 _ ~-500 _ 500 .
termine D we set l-e = De or bh = e ~1. Hence 1 =
(e200.1)e7 00 £or ¢ 55,

CHAPTER 24, SECTION 3

1. (a) By substituting e™ in y"-y = 0 we see that the characteristic
equation is m%1 = 0. Then m = %1 and by (20) the general
soluticn is the answer in the text.



{(b)

(c)

(d)

{e)

(£)

221

By substituting ™ in the given differential equation we ob-
tain m%-3m~10 = 0. The roots of this guadratic equation are
5 and -2. By (20} the general soclution is the answer in the
text.

As in (a) and {b) we obtain the characteristic equation and
the roots {-1 + ¥5)/2. Since the roots are real and distinct
we still use (20) and the general solution is y =
Ae{—l+¢§)x/2+Bé—1—J§1x/z.

As in (a) and (b) we obtain the characteristic equation m?+m+l = Q.
The roots are {~1xv-3)/2. 8Since the roots are complex we can

use (22) and write the general solution as y = Ae(—l+ —3)x/2+

Be(—l—/:§)x/2

. However, the text shows that we can also use

(35) so that v = Ae ¥ %cos/3 x/p+Be * ?sinv3 x/2.
As in (a) and (b) the characteristic eguation turns out to be
m?+4m+4 = 0 and the roots are -2,-2. Since the roots are egual

we use (21) and the general sclution is v = e_zx(A+Bx).
This probklem like (e) Lleads to the equal roocts -3,-3. Hence the

general solution is y = e-3x(A+Bx).

2. This exercise is to prove that (21) is correct. We know that one

3.

solution is e

X we try y = u(x}emx as the possible form of the

general solution. By substituting in the given differential equa-
tion and rearranging terms we get u” (x)+u'(x) (2m+2a)+u{x) (m?+2am+3)

= 0.

However, m satisfies the characteristic equation so that the

coefficient of u(x) = 0. Moreover, since m is a double root, the
discriminant of the gquadratic formula must be 0 and so m = -g.
Hence the coefficient of u'(x) is 0. Then u"(x) = 0 and u = Ax+B.

Then the general solution is y = (A+Bx)em

(a)

(b)

X
where m = ~a.

There is- no radial force acting on the bead. Hence the radial
acceleration is 0; that 1s, p-p2% = 0. Then since 6 = w 15 a
constant, f-pw? = 0. The characteristic eguation is m2-w2 =

or m = . Then the general solution is p = ae®Cipe ™ E,

Since 6 = w, 8 = wt+C and because § = t when t = 0 we can write
the pelar coordinate eguation p = Aee+Be—e.
Since p = 0 when ¢ = ¢, B = -A. Then p = AeB-Ae“e. For 8 > @

B - \ , . .
e’ > 7% ang the inequality becomes larger as 6 increases.

Hence the bead starts at the origin and moves ocut continuously.
One can find p' and see that it is never zerco. Hence this is
a check that the bead doesg not reach a maximum position.

Physicists would probably prefer to solve this problem
differently. The wire is a rotating system and the bead ex-
periences a centrifugal force of mpw? and a Corolis force
which is offset by the pressure of the wire on the bead. Then
Newton's second law says that mf = mpw?2. The rest of the
work is the same as above.
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CHAPTER 24, SECTION 4

l.

6

2X

To find the particular integral substitute ae in the differential

egquation. Then 13ae2x = 4e2x

in the text.
Since the roots of the characteristic egquation are egual and both

are -2 the compiementary function is (A+Bx)e_2x. To find the par=-

ticular integral assume Yp = @ sin 3x+b cos 3x. Substitution in

50 that a = 4/13. Hence the answer

the eguation leads to
(=5g-12b)sin 3x + (l2a-5b)ces 3x = 6 sin 3x.

Then
-5a-12b = ¢
l2a-5b =0
- _ 30 - _ 12 , . .
Hence a = Igg and b €9 g0 that the particular solution ig
_ _ 30 _. _ 72
yp 1¢o sin 3x 165 cos 3x .,
The complementary function is y, = e_ZX(A cosyY5 x + B sinvs x) .

Substituting ax?+bx+c in the differential equation leads to

ax?+{8a+b)x+2atib+c = x2+5x.

Equating coefficients of like powers of x shows that
a=1=11, 8a+bh = 5, s¢ that b = -3, and
2a+db+c = 0 so that ¢ = 10. Hence Yy = x?-3x+10.

Because the roots of the characteristic equation are both -1,

Yo = (A+Bx)e_x. Following the example cof the text leads to
- _ 12 _. _ 16

yp = 5e Sin 2x 5E COs 2X.

The complementary function yc = Ae_2X+Be—x. Assuming yp = ae_2X

will not do because no matter what a is, ae_zx is part of Ye and

will not yield 3¢ %%, If one tries Yp = xae ¥ he finds after sub-
stituting in the differential equation that —ae_zx = 3e_2X so that
a = -3. Hence yp = —3xe—2X.

(a) y"+9y = sin 3x.
The characteristic equation is m?+9 = 0 and the roots are #3i.
Hence y, = A sin 3x + B cos 3x. Now if we try yp = a sin 3x

for the particular integral it will not produce sin 3x because
we see that Yo already contains a sin 3x term and this satisfies

the homogenecus eguation. Hence we try x{a sin 3x + b cos 3x).
By substituting in the original d.e. we find that a = 0 and
b =-1/6. Then the full sclution is

Yy = yc+yp = A s8in 3x + B cos 3x - %x cos 3x.

(b) The complementary function will remain a finite amplitude sin-
ugoidal or cosinuscidal function whatever A and B might be.
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But the particular integral, because of the factor x will give
rise to larger and larger oscillations and for large x will
dominate the behavior of y. If the differential equation re-
presented the motion of a mass on a spring subject to the ex-
ternal force sin 3x, the oscillations will bhecome so large
that Hooke's law will no longer apply and in fact the spring
will snap. When the frequency of the external force, 3/2r in
this case, equals the natural frequency, then since there is no
damping, that is rno y' term, the oscillations become infinite.
This is called the resonance case. If there is damping the
transient dies out and the oscillations due to an external
periodic force can become large for the proper range of fre-
guencies but the forced oscillations will not become infinite.
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SOLUTICNS TO CHAPTER 25

CHAPTER 25, SECTION 2

1. For each X in a given domain, y has a unique value.
2. The domain of a function is the set of values for which the function is defined.

The range of a function is the set of values taken on by the function.
3. (a) 05X<°°;y=10r 20, 30,
(b) r can be any value > 0; F can have any positive value from 0 to GM/R2.

o
—_

(a) (b)

b

Ml — — e — e e

]
[
!
N
|
1
(c)

5. The slope is given by y = dF/dr. Thus for 0 < r < R the slope is
y = GMm/Rg, which is a constant, whereas for r >R the slope is
y = —2GMm/ 12,
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dF
dr

GMm
R3

2GMm
R3

6 During the first 6 seconds we have ¥ = -32 and § =400 at t = 0. Thus
v=—32t+400 (0 =t=6). At t =6, v=208. For t > 6 we have §y = —32,
and ¥y = —32t + C. When t =86, y =308, Hence C = 500. Then ¥ = —32t + 500
for 6 =t = 15.

v. The domain consists of the x-values such x* — x > 0, Since x°* — x = x(x% — 1),
this inequality holds for —1 =x = 0 and x = 1. Thus the domain consists
of these two disjoint intervals. For 1 =x < =, y takes all positiyve values
and so the range is 0 =y < =,

N
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8. To graph the functions accurately would call for using all information in-
cluding the value of the derivative. What is significant for our purpose is the
domain and range.

(a)

(b) y

——— 1

(b}
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9, For t<0, v=y=0, For t >0 we have ¥ =—32, y =100 at t =0, Thus

for t > 0, we obtain v = —32t + 100,
Y
100
0 t
10. £
4xMFr———————
2aMp-—————— A ¢
|
|
- r
0 R
11, y
1 ~
\\\
1 ! ' X
0 % 1 % 2 2%
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CHAPTER 25 SECTION 3

1. (a)
(b)
(c)
(d)

(e)

y approaches 0 as x approaches 0.

y approaches 0 as x approaches 0.

There is no limit as x approaches 0. The function oscillates more and
more rapidly between y = —1 and y =+1 as x approaches 0.

Note that the graph of the function is contained within the lines y ==X,
y approaches 0 as x approaches 0.

lim sin 2X/X = lim 2 sin 2x/2x = 2; thus y approaches 2 as x ap-

proaches 0.

Graphically or by the kind of argument in (¢) we see that y approaches
', as x approaches 0.

y approaches 1 as x approaches 1.

No limit., As x approaches 0 through negative values y approaches
0, but as x approaches 0 through positive values, y becomes infinite.
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(i) y approaches 0 as x approaches 0.

{j} No limit. As x approaches 0 through negative values, y becomes in-
finite but as x approaches 0 through positive values y approaches 0,

{k}) y approaches 0 as x approaches 0.

(1) No limit. As x approaches 0 through negative values y approaches
~1, but as x approaches 0 through positive values v approaches +1.

(m} y becomes infinite as X approaches 1.

{n) No limit.

{0) No limit. As x approaches 0 through negative values y approaches
~7/2, but as x approaches 0 through positive values, y approaches 7/2.

{p) No limit, See text answer,

{q) vy approaches 0 as X approaches 0.

(a) The condition [4x — 8] < ¢, is equivalent to 4ix — 2| < € or Ix — 2|
< €/4. Thus choosing & = €/4 we have for all x such that
0 < ix — 2| <& it is true that {4x — 8| <,

(b) Since {3x — 9| < € is equivalent to 3lx — 3/ < € or |x — 3] < ¢/8, we
choose & to be €/3. Then when 0 < lx — 3/ <5, 13x — 9] < e.

{¢) H4x +7) — 15| < € is equivalent to 14x — 8| < € or Ix — 2| < /4.
Choose & to be €/4. Then when 0 < Ix — 2/ < 6, l4x + 7 — 15] < e,

(@) |4 — 4| < € is always valid. Thus it holds for 0 < [x ~ 2| < & where
is completely arbitrary. Any & will do.

(e} We can keep |x ~ 2| < ¢ if we choose & to be €, for then, when
0 < ix - 2/ < 8 it will also be true that [x — 2] < e,

The x-values for which 0 < {x — al < §/2 are contained within the x-values

for which 0 < |x — al < 8. Since for all the latter x’s, ly — bl < ¢, it is

certainly true for the smaller set of x-values.

Yes. The argument is the same as in Exercise 3, except that here the
number less than & replaces the 5/2 in Exercise 3.

. The idea behind the proof is that if f(x} comes arbitrarily close to b as x

approaches a, f(x) cannot come arbitrarily close to another distance number
¢ which is ¢ — b away from b, To make the proof we suppose I(x) does

‘have b and ¢ as a limit. Then given any €, there is a §, such that

[{(x) ~bl <€ for 0<1x —al <6, and for the same ¢, there exists a 6,
say, such that |f(x) ~ ¢} < € for 0 < fx ~al <&, Now [b~c]

=ib —f{x) +fx) — el < b —f(x)| +fx} —c). For {x —al < 8, where 5
is the smaller of &, and 5,, certainly (b — f(x)})] < € and [f(x) —c!| <.
Then |b — ¢} < 2¢, Now this is true for any €. But it cannot be true for

¢ < (b - ¢}/2. Hence a contradiction.
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. (a)

(b)
@
(e)
(£)
(g)
(h)

It is

As x approaches (, the numerator approaches 1 and the denominator
approach 0,

As x approaches 1, the numerator approaches 1 and the denominator
approaches 1. Hence the limit is L

Same as (a).

To find the limit we can divide numerator and denominator by x be-
cause the value at X = 0 does not matter as far as the limit is con-
cerned. Then (x — 1)/1 approaches —1 as x approaches 0.

As in (d), we can divide numerator and denominator by x + 1. This
gives x®2 — x + 1. As x approaches 1, this quantity approaches 1.

As in (d), we may divide numerator and denominator by x — 2. This
gives 1/(x -+ 1). This quantity approaches 1/, as x approaches 2.

If we use the suggestion we obtain 2x/x(V1 + x + V1 — x). As in (d), we
may cancel the x’s. Then the quantity approaches 1 as x approaches 0.
If we divide numerator and denominator by x we have 1/[(|x!/x) +x].
If x approaches 0, through negative values, |x|/x approaches —1 and
the entire fraction approaches —1. If X approaches 0 through positive
values the entire fraction approaches 1. Hence there is no limit.
intuitively clear that 4x® approaches 4. Since, by Exercise 5, there

cannot be two limits, 5 is not the limit,

CHAPTER 25, SECTION 4

1.

(a)

()
(c)
(d)

(e)

Lim

We may take lim (x + 4) and divide it by limx, But lim (x + 4)

=limx + lim 4. Hence the limit of the entire quantity is 3.

Lim (5x) =lim5-limx = 10.

Limx? = limx-limx = 9.

We may take lim (x* — 5x) and divide it by Lim (x* + 4x + 6). Now

lim (%% - 5%) = limx® - lim 5x = limx-limx — lim 5+ limx = — 6,
Breaking up the denominator in a similar way we find lim (x* + 4x + 6)
= 18. Hence the limit of the fraction is —.

The limit of the sum is the sum of the limits. But lim 3x3 = 3x3;

lim 3%, Ax = lim 3%,lim Ax = 0 and lim (Ax)? = lim Axlim Ax = 0. Hence
the text result.

x is of course 0. The function sin(1/x) oscillates rapidly as x ap-

proaches 0 and does not approach a limit. (see Section 3, Exercise 1(c)).
However xsin(l/x) does approach 0 because the values of sin(1/x) are
always between —1 and 1 and when multiplied by x, the product ap-
proaches 0, Theorem 3 does not apply because the separate limits do not

both

exist in the present case.
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3. [(~b = vb¥ —4ac)/2a} (—b T V¥ — 4ac)/(—b ¥ ¥bF — 4ac) = 2¢/(—b F Vvb* = 4dac).

Now if a approaches 0, then when the — radical holds, the limit is —¢/b.
When the + radical holds the limit is infinite.

4, We use theorem 3 to assert that the limit of the product is m/n.

5. No. As x approaches 0 through positive values we must use x* + 1 and its

limit is I. As x approaches 0 through negative values, we must use — (x* + 1)

and its limit is —1.
6. (a) As x approaches 1 we are concerned only with values of x near 1

{but not 1 itself). For these values of x, g(x) = 1/x and 1/x approaches 1.

{b} The argument is the same at x =2 as at x =1. The limit of 1/ as x
approaches 2 is .

(c) Again the exceptional values of x, that is, 0,1,2, ... do not matter as
x approaches 1. Then g{x)/x = 1/x2 and the limit is 1.

(d) Same argument as(c). Hence the limit is /.

CHAPTER 25, SECTION 5, FIRST SET

Yes, the definition of continuity requires a limit for f(x).
Yes, because Lmx? = {(2).

Yes, because the product of two continuous functions is continuous,

No. (sinx)/x is not defined at x = 0. Hence there is no £(0).

No, because the function is not defined at x = 0.

{2} Yes. Congsider f{(x) =0 for x =0 and f(x) = % for x>0 andlet a =0,
Then for € =1 it is not true that |{(x) — £f(0) | < % when x is positive
and so no- & exists. But if we let € =1, then [f(x) — £f{0)! < 1 for all x
and any § will do.

(b) No. Decreasing € to Y, makes matter worse, so to speak. If there is
no § such that when {x —al < &, then f(x) — f(a)| < Y, there cer-
tainly won’t be one for which f(x) — f(a) | < Y.

7. No, because the definition of continuity requires that there exist a 6 such

that |£(x) — t{a)! < € for every (positive) €. The function f(x) might have
a jump at X =a of magnitude 0.001 and so meet the € — & condition for all
€ down to 0.001 but not for smaller e,

8. Yes. Suppose some one picks an €. Then we must show there exists a &
such that when |x —al < 8, |{(x) — f{a) | < €. We can always find a fraction
1/2" such that 1/2" < €, For this 1/2" we know there is a § for which
| £(x) — f(a) | < 1/2®, Then surely [f(x) — f(a)| < € with the same &.

9. (a) Note first that f(3) = 6. Then we consider f(x) ~ £{3). Now [2x — 6|

< € is equivalent to |x ~ 3] < €/2. Let 6 = ¢/2. Then for |x — 3|

<6, 12x —6] <e,

SoPw b
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(b) We consider f(x) — £(2). [4x +6 — 14| = |4x — 8! =4|x — 2|. Then
4lx — 2| < € when |x — 21 < €/4. Let 6 = /4.

(e) #(x) —#(1)=3x—-T7+4=3x—3. Now /3x — 3] < € when |x — 3|
< €/3. Let 6 =¢/3,

(d) f(x) —£(2) =5x+7—17. Now |5x+7—17}=5x — 10| =5|x — 2/.
Then 5/x — 2| < € when |x — 21 < €¢/5. Let § = ¢/5.

Yes. Note that £(0) = 0. As x approaches 0 through positive values x® ap-

proaches 0 and as x approaches 0 through negative values ~x® approaches 0.

(a) No value.
(b) Yes. We know (Section 4, Exercise 2) that Igrfl}xsin(l/x) =0, If we

define f(0) to be 0 we satisfy the definition of continuity.

Review Exercise 6 of Section 4

(@) Yes. At x =1, g(x) is defined to be 1. As x approaches 1, g(x) = 1/x
and 1/x approaches 1.

(b) No. At x =2, g(x) is defined to be 1. But as x approaches 2, g(x)
= 1/x approaches 4. Then lim g (x) = g(2).

(¢) Yes. At x =1, g(x) is defined to be 1 and g(x)/x = 1. As x approaches
1, g(x) = 1/x® approaches 1.

(d) No. At x =2, g(x) is defined to be 1 and g(x)/x =1. But as x ap-
proaches 2, g{x)/x =1/x* approaches %,. Then Lim (g(x)/x) #g(2)/2.

CHAPTER 25, SECTION 5, SECOND SET

1.

We give the answers not in the text. The answers are obtainable readily
from a good sketch or by examiping the functions.

(b) Yes; no. (d) Yes; no. (f} No; no. (h) No; no. (i) No; no,
Yes. Insofar as finding the limit at x =0, the value of the function at x =0
is irrelevant, But for x =0, we may divide numerator and denominator by x.
It is all right to divide by x — 3 insofar as finding the limit as x approaches
3 is concerned., However to find }3_1%1 x + 3 by substituting 3 for x pre-

supposes the continuity of the function x +3 at x = 3. If one has proved this.
continuity or knows it on some ground then the substitution is correct. One
must add that x + 3 is continuous at x =3 to make the reasoning complete.
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CHAPTER 25, SECTION 6

1.

(a) 1, 4, 9, 16, 25,

(C) _13 1/2, _l/;,: 147 _1/5-

@ 0, Yo%, Yoy Ve

We have for € =% that [S—s.| < € for n > 5. Then surely for n > 3,

|S —s,| < €. What holds for € =1/, need not hold for € =,  because the

latter € is smaller. Since 8 is the limit, for € =Y, there is some N such

that for n > N, {8~ s_| < € but N need not be 5.

(a) We may take N = 10 (or larger) because for n > 10, |1/n - 0| < e.

(b) We may take N =4 (or larger) because for n > 4, | (1/2"—-0)| < e.

{c} This the same as (b) because the minus gigns do not affect the absolute
value, ‘

The condition that there exists an N such that for n > N, |8 — snl < € can

be met (if at all) by letting N be 150 or 200 or some other value, depending

upon what € is. If the first 100 ferms do not meet the ¢ condition it does

not matter. The essential point is that given any ¢ there be some N

(definite for that ¢ but no matter how large) such that |S—s_ | < e.

(a) Here |8—s,|=|2—(@n—-2)/n|=|2/nl. Given ¢, |2/n| =2/n< ¢
is equivalent to n > 2/¢. Hence choose N to be the first in-
teger greater than 2/e, Then for n > N, surely n > 2/¢ and
[2/n] < e.

(b) Here |S-s,|=|2- (2™ -1)/2"| =]1/2"|. Given ¢, 1/2"< € is
equivalent to n > log (1/€)/log 2. Hence choose N to be the first in-
teger greater than log (1/€)/log2. Then for n > N we surely have
n > log(I/€)/log2 and therefore |1/27| < e,

(¢) Here |S—s.|=]|0- (1/2%]. This is what {b) calls for.

Letting S be %, we have for [S—s_|, |% — (2"~ 1)/2"| or |% -1+ 1/2"]

or |Y, +1/2°|, If we choose € =Y, say, then |, + 1/2%| will not be less

than € for any n. Hence for at least one € there is no N such that for

n>N,[8-5s,|< e

For the s,,, terms, |0 —1/m| < € for m > 1/e. For the s, , terms,

[0—(1/2m)| < € for m > 1/2¢. If we choose N to be the first integer

greater than 1/¢, then N is also greater than 1/2¢. Here for these n,

|]0-1/m| < € and [0—1/2m] < «.

|1-1/n] > Y, for all n > 2, Hence if we choose € =Y/, there is no N such

that for n> N, |1~ 1/n| < Y. Thus for at least one ¢ there is no N and

the definition is not satisfied.
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CHAPTER 25, SECTION 7

1.

(a) Write n/(n® + 2) as (1/n)/(1 + 2/n%), To use theorem 4 we need the
limit of the denominator. This is evaluated by using theorem 1. Hence
the answer is 0.

(b) Write s, as (1 +1/n)/(1 + 2/n). Now apply theorem 4 and then apply
the sum theorem to the numerator and denominator. The answer is 1.

(c) Write s, as (1 -3/n+ 1/n%)/(2 - 4/n+ 1/n?). Now use theorem 4 and
then apply theorem 1 and 2 to the numerator and denominator.

(d) Write s, as (2 +1/n)/(3 + 1/n). Now use theorem 4 and then theorem
1. The answer is 7. .

If lim a,=a and lim b, = b then for arbitrary ¢, there exists an N, such

that n > N, implies |a—a,| < ¢/2 and there exists an N, such that for

n > N, [b—b,[ < €/2. Thus for N equal to the larger of N, and N, we
have that for n > N, [{a+b)—(a,+b) | =|a-a)y+(b-b)| < |a—a,|

+ b —b*| < €. This is just the desired assertion.

[t,— 0] =|t,} =t,=s,=]s,| =|s,~ 0]. We are given that for any ¢, there
exists an N such that for n > N, |s, - 0| < €. Since |t,— 0] = |s_ — 0] the
same N serves for the sequence {t

We wish to prove that given ¢, there is an N such that for n > N|cs —cs, |
< €. But [cs —cs,| =c{s—s,|. Given €, choose the value €¢/c. Then we
know that there is an N guch that for n > N, | s~ s,| < €/c. Then for the
same 0, ¢|s—s,| < € and |es —cs, | < e

To prove that |a +s—(a+s,)| < € for all n greater than some N is the
same as proving |s—s.| < € for all n greater than some N. But we are
given the latter.

. We know that given ¢, there is an N such that for n > N, |s - s, | < €. Now

the even numbered terms are just those for which n is even. Hence these
automatically satisfy the € ~ N condition, To treat the even-numbered
numbers as a separate sequence we have but to recognize that we replace
s, by a,, s, by a,, etc.

Since lim f(x) = b, we know that given any € there is a 6 such that when

0< |x—al< 8, then [f(x) —b| < €. Now {x,} is a sequence with limit a.
Then there is some N such that for n > N, |x,— a| < & (the 5 here serves
as the € of the sequence definition). But for |x,—a| < 8, |f(x)—b] < e.
Hence, since € was arbitrary to start with, we have shown that given ¢,
there is an N such that for n > N, |f(x)) - b| < € or {f(x,)} has the limit b.
Suppose the sequence {s,} has the limits a and b. Then given ¢, there is
an N, such that for n > N|, |a — s.| < € and for the same €, there ig an
N, such that for n> N,, {b-s,[ < €. Now |[a—-b|={|a~s,+s,—Db]|

< Ja-s,l +]s,—b|. For n greater than N, and N,, |a—s,| +|s, - b]|

<. 2¢. But this is true for any ¢ however small. If a and b are distinct
numbers a — b cannot be less than 2|b—a|/2. Hence the sequence has

only one limit.
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CHAPTER 25, SECTION 8

1. The statement means that a certain family of sequences has a common limit.
The n-th term, S, of any one sequence is formed by selecting a set of
subintervals Ax,, AX,, ..., Ax, filling outf the interval from 0 to 2, choosing
an X; in each submterval and forming S, = 3x3Ax, + 3x3Ax, + ... + 3xiAx,.
As n increases the maximum submterval must approach 0. Each {8.} has
a limit and all have the same limit, This limit is the integral.

(a) The integral on the left is the limit of a sequence whose n-th tern is
S, = l(x,) + glx)]ax, + [f(x,) + gxy)]ax, +... + [f(x,) + g(x,)]ax, where
the Ax’s {ill out the interval (a, b}, x, is any value of x in Ax,, etc,,
and as n becomes infinite the maximum AXx approaches 0. We can, as
a matter of algebra write S, = 8 + 812 where S{ = f(x, )Axl
+(x,)A%, +... + (X, )A%, and S(z’ = g(x,)AX, + g(X,)A%, + ... + g(x, )AX,.

Moreover lim S;’ = f f(x)dx and lim S = f g(x)dx. But lim S,
= lim 8{Y + lim S‘z’ because {S,} is a sum of {S*’} and {S‘z’} and the
limit of a sum of two sequences is the sum of the limits.

(b) The integral on the left is the limit of a sequence whose n-th term
S, = cf(x,)Ax, + cf(x,)A%, +...cf(x, )Ax, with the usual understandings
on the Ax’s and the x;’s. If we factor out the ¢ from each term then

8, = c8i’. Moreover lim sl = Lb f(x)dx. Now lim §, =c %i_g}o‘s‘l’ (see
. . b b
Section 3, Exercise 4). Hence f cfx)jdx = ¢ f f(x) dx.

3. Let f(x) = g(x) = x. Then f f(x)g(x)dx = b¥3 - a%3. But f £(x) dx
=b¥2 — a%2 and f g(x)dx = b%/2 —- a%/2. Then the integral of the product

does not equal the product of the integrals. Since this is the case for at
least one pair of functions, the equality cannot hold generally.
CHAPTER 25, SECTION 9
1. e 2 - 1 4o + 2 2 — 7l )

By definition (see (50) ) L f{x)dx fo x*dx [1 3x*dx = 7Y,
f:dx/«/a? ~ %2 = %i__né f;ne dx/vaz — xz = lim sin™ (x/a) ﬁ_c =sint1l =7/2.
foldx/x2 = lim f;d.z*s:/x2 =lim (1/€ — 1). No value.

) foax dx/JaZ = %% = %HT(} j:-ex dX/ 32 — X2 = 1.}_!1% (-vaz — x2 ) IZ‘G =

(a} f02 dx/x = (1"151![)1 f:dx/x = li_»rg (log 2 — log €}). No value,
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because for 0 < a < 1, x™*! ig a positive power of x.
(f) fol dx/x* = lim x /(1 - a) t No value for a > 1 because for a > 1,
x"*! is a negative power of x and becomes infinite as € approaches 0.
(g) fldx/(x —1)2/3 =1im fl_edx/(x —1)2/3 = lim 3(x — 1)!/3 !l_e =lim —3¥€
0 €m0 “0 €0 0 E=0
+ 3 =3.
2 . 2
(h) fl dx/(x = 1)*/* = lim fLoox/(x— 1) = lim 3(x - 1)/ [?
= 3.
. 1 . 1- . 4 |1-€
(i) fo dx/(1 —x)* = lim fu “dx/(1 - x)* = lim [1/(1 —x)| .u . No value.

1+€ e+

@) flcotxdx = lim [ cotxdx = 1im log | sinx | r. No value.
0 € €=0 £

/ e
(k) fm “secxdx = lim f ‘secxdx = lim log | secx + tanx | |: ¢ No value.
£-=0

€—+0
0 . - . -€
() [ ax/0E —x) =lim [ “dx/(x*-x) = lim [ [1/x)+ 1/(x ~ 1)]ax
= lim [~log|—€|+log|—1|+log|~€ —1|-1log|—2]] =-lim log | €|
—log 2. No value.
3. (@) [ ax/x*=1lim [’ dx/x* + lim [ % dx/x* = Uim {- (1/1) + 1/, } + lim
2™ bt €1+0 €30

€10 v

{1/, + 1/1}. Hence no value.
2 L 1-¢ )
{b) _]; dg/(x — 1)2 = Eh_p% fo dx/(x — 1)? + elzl—zlc} jﬁez dx/(x —1)2

= lim{-(1/e)~1}+ 11m{ (1/{(2 —1)] + 1/e,}. Hence no value.

€1>D
(c) f dx/x?/% = lim f dx/x%/% + lim f 2 dx/x%/% = lim 3x1/3| + lim
. €0 €0 V7 €170 €1 Cy=r0
3x13| *=86.
-1
3a 2=
(d} fo 2x dx/(x® — a2)2/% = lim j(; “ oxdx/(x2 — a2)’s + lim
€30 Ea™0
3a a=
fa+€ 2xdx/(x% — a?)?® = lim 3(x® — a2)2/3 " + lim 3(x% — a?)t/3 | = 3q2/8
2 61" ] 62"" A+ €g '
4
(e) [ dx/(x-3)=lim [*“dx/(x-3)+ lim [* dx/(x—3)=
€+0 1 €g~( "3tz
1 _ 3-€1 . 4
elllf(l) log |x— 3| |1 + €3[21*1'1{:)1 log | (x — 3)| see,e NO value,
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4 . -3-€ . 4 .
) [ dx/(x-3p= Lm [ " dx/(x =3P + lim froy 1/ =37 = lim {1/, - 2}

+ lim {~1- 1/e,}. Hence no value.
€g—™

(a) [ e™dx=lim [*e™dx =lim— e[ =1.

h--oa 0

() [“e™dx=1lim [° e ™dx =lim {-(1/a)e"®+ 1/a} = 1/a.
. ) b-.w

L+

(c) f; dx/x = }]im flb dx/x = %im {logb — log 1}. No value.
(d) f:o dx/x? = {)im flb dx/x% = lim {1 — 1/b} = 1.
) -0 =
o 2 s b A e i} b
(e) fl dx/x* = }31_{{10 fl dx/x?* = {)152 x!73/(1 — a) '1 =1/(a— 1) for a > 1,
@ fom xdx/(1 + x2) = %ir?o _fobxdx/(l +x2) = %,ini Y. log (1 + x?) r; No value.

(2) f: cosx dx = }Jim ‘]:’ cosx dx = lim sinx ’1; Since sinb keeps oscillat-

b+

ing in value between —1 and 1 as b become infinite, there is no limit.
= —_ 2 =1j b —_ 2 — 1j _ — b =
() [ dx/(e=1)*=lm [*dx/(x - 1) = lim ~[1/& - )]} = 1.

. w 1 b s I I b
(i) fl logx dx },‘E{i fl logx dx l]ljl_{l;lo (x logx — x) L L{ﬁ x{logx — 1) .
Hence no value.

h:]_.

. o b
Xe¥dx = lim Xxe™dx = lim{—xe ™ —e™
@ lim, A bﬂ}{ xe™ — e} |

& [ dx/(+x?) = lim fo" dx/(1 +x2) + lim [°dx/(1 +x?) = lim
-t —=ua g—=—o0 Y h—=e
{tan?b — tan™0} + lim {tan*0 ~tan?a} = 7/2 + 7/2 = 7.

a—=-on
1/2-

e o2 1 b 2 . 2 b
W xe e tim foxe dx - e

a

(m) [ dx/ —x) =lim [J{=1/x)+ 1/~ D} dx
= 1lim {~logh + log2 + log (b — 1)} = log 2 + im log (b — 1}/b

[t
=log2 + E‘m log (1 — 1/b) = log 2.
. b .
(n) jow e ¥cosx dx = lim fob e *cosx dx = })LH.}O e *(sinx — o8 x}/2 L}. Since

b0

sinx and cosx oscillate between —1 and 1 whereas e”b approaches 0,

e~P(sinb — cosb) approaches 0. Hence the value is Y. because of the
contribution from x = 0.
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a0 - . b - . -
5. J, 100e™dt =lim [*100e™ dt = lim — (100/k)e™ [ = 100/k,

6. [~ 100dt/(1 + 100kt) = lim [ ®100dt/(1 + 100kt) = lim (1/k) log (1 + 100kt) |‘;

T [, B2/K(A —e™)dt =lim [ (32/K)(1 - e™)dt = Lim (32/k)(t + (1/K)e™) [} = =,

8. (a) Formula (36) of Chapter 16 reads F, = GMmt27x; cos §;Ax/(PS)2, It
gives the force which a small ring of inner radius x; and width Ax
exerts on a mass m, h units above the center of the ring. If we regard
the plane as a “sum” of small rings with radii extending from 0 to «
we get for the total force exerted by the infinite plane

F=[  2nGMmt(x cos §/PS?)dx. Before integrating we can convert all
variables to a function of x. Since cos # = h/y/x2 + h2 and P8%* =x% +h?
we have F = 2rGMmth f: [x/(x% + h?)*/2]dx. The integral is readily

evaluated by letting u = x*> + h%2. The result is 27GMmt. This conclusion
could algso be derived from (41) by letting a become infinite,

{p) The plane is infinite in extent and, loosely speaking, the distance from
m to the plane, that is, the distance h, is negligible. Or, one can say,
from a point on the plane far away the distance h is insignificant com-
pared to the attracting matter.

9. s= [ Vor+pwu2de =/ +azewd + azbzezsd d = [ Va? + a?bl ebt d@

= (vaz ¥ a®Fb)e?® | = _ a7 a®Fb. The minus enters because we go from
0 to —= whereas we took ds/dé positive. To find the length of the tangent
PQ note that @, the angle between the radius vector and the tangent at

8 = 0 is also the inclination of the tangent in the usual rectangular coordi-
nate sense. Now tany =p/p = 1/b. Hence the equation of the tangent is
y—0=(1/b)(x—a) and since at Q, x =0, y at Q =—a/b. Now find the
distance from (a, 0) te (0, -a/b). This proves to be the length of arc just
computed.

CHAPTER 25, SECTION 10

1. {a) In 0=x=7/2, we have 0 = sinx = 1; hence 0 = gin°x =1, Thus
lower and upper bounds are 0(7/2—0) and 1{(z/2~0) or 0 and 7/2.
{b) In 0 =x =7, wehave —1 =sinx =1, hence —1 = gin®x = 1, Thus
bounds are —1(7—0) and 1{m — 0) or ~7 and 7.
(¢) In0=x=1, wehave 0 =x?+9x? =1+ 9 =10. Thus the bounds are
0(1 - 0) and 10(1 — 0).
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(d) In 0< x=1, wehave 1 =¢° =< e <! = ¢, Thus the bounds are
1{1 -~ 0) and e(1-0).

() In 0 =x =1, we have e = e™ < ¢®=1, Thus the bounds are el — 0)
and e°(1 — D).

F(3) = [‘xdx =%,

. Since the integrand is positive, we may think of F(u) as the value of the

area under a curve lying above the x-axis and between x =1 and x =u.
Thus as u increases a greafer area is included and so F(u) increases. An
analytical argument may be based on the fact that by the fundamental theo-
rem, F'{u) = (u sinu + e" sinu)? > 0,

By the fundamental theorem, we obtain F’{u) = u®/2 ginu, Thus F’(u)

= x%/2 ginx,

(a) By the mean value theorem ‘[:m sinx dx = [{# + h) — #]sinc = h sinc
where 7 < ¢ =7+ h. Since |sinc| < 1, we have | jfh sinxdxl < |n].
Thus the required limit is 0.

(b) By the mean value theorem f:;m Vsinx dx = +vsinc (w/2 +h — 7/2).

Since +sinc = 1, then 'f;/:mvsinx dx| = |h|. As h approaches 0 the
integral must.
(¢c) Let t® =u. Then we want (d/dt) fousinx dx = [{d/du} fou sinx dx | (du/dt).

By the fundamental theorem the latter equals sinu du/dt = 2t sint?,

(d) Assuming that sinx is positive for 0 = x =t2, we use the method of (c)
to obtain the answer 2ty/sint?,

(e} Assuming f(t) is continuous for a =t = a -+ h at least for some suf-
ficiently small value of h, we use the mean value theorem to write
j:ﬁhf(t) dt =[(a + h) — a]f(c) = hi(c) where a =¢ = a + h, Thus the re-
guired limit reduces to lim f(c) where a <c¢ = a + h. By the assumed

h=™0
continuity of f, this limitis f(a).

(f} Use the result of (e) with h =x and a =0 to obtain V03 +4 =2,

(g) Use the mean value theorem to write the given limit in the form
lim tan™ ¢ where 1 = ¢ = x, Thus the result is tan™1 = 7/4,

x—=1
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(a)
{b)

(d)
(e)
(f)

(&)

(a)
(b)

F(0)= [“dt/ViFF1 = 0.

F(~Y,) = fo_l/g dt/Vts+1 = —f_jm dt/vt¥ +1. Since the integrand is posi-

tive the integral must be and so we conclude that F(~1) < O.

In order for the integrand to be real, we must have t*+1 > 0 in the
interval 0 to —3 for t. Hence F(~3)} does not exist.

By the fundamental theorem, F’(x}=1/Vx3+ 1.

Differentiating the result of (d), we have F”(x) = (—3/)x¥V({x3 + I)a.
Taylor’s theorem to four terms calls for F(x) = F(0) + F/(0)x

+ F7(0)x%/2! + F"(wx%/3! where 0 = u = x. Using the values of F(0),
F’(0) and F”(0) already obtained we get the text result.

Since F/(x) >> 0 (see (d)) for x > —1, F(x) is, indeed, increasing in
this domain.

By the fundamental theorem, F/{(x) = (x + 1)tan™*[1/(1 + x%)].

Find F’(x) from (a). Then F’{0) =tan™1 = 7/4.

As in Exercise 7, we obtain, F/(x) = e™*. Thus F'(1) = e™.
As pointed out in the suggestion the attraction at a point h units from the

center is (G/h?) foh 47p{r)r? dr. The atiraction that the sphere of radius a

and mean density p exerts at the surface is %, 7Ga®p/a®. Hence
(G/h?) j:‘ 47p(r)r? dr = ¥, mapG. Then f:p(r)rg dr = h2(2p/3). Differentiate

both sides with respect to h. Then p{h)h? = 2h(25/3). Hence p(h) = 2ag/3h
where h is distance from the center of the earth.





