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PREFACE

Notational Conventions

As a rule, we have adopted notations consistent with those
that appear in the text. However, the word processor used to
produce the solution manual did not possess all the fonts used
in typesetting the text. In particular, we wish to pomt out
that the notation for the specified natural boundary condition
used herein is “h” in contrast to the script notation used in the
text. (The roman font was employed to distinguish from the

mesh parameter, denoted by h.)
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CHAPTER 1

1.4 Exercise 1, p. 7

Symmetry:
1
a(w, u) = /.'w’x'u,,Z dz
0
1
= [ v do = alu, w
o
Linearity:

1

a(ciwy + cuwy, u) = /(clwl,m + cowsy g )u g de
8

1

1
= -/wl’xu,z d$+62fWQ,$u,I dx
0

0
= cra{w , u) + cpalwse , u)

Linearity in the second argument is immediate from symmetry and linearity of the first
argument, hence a(-, -) is bilinear. Symmetry and bilincarity of the inner product (-, -)

may be proved analogously.

1.7 Exercise 1, p. 20

This problem is straightforward and only requires repeating the calculations given in the

text while filling in the missing details.

1.8 Exercise 1, p. 22

The weak form of the model problem is

1 1

/w,xu,x dzr = /w fdz +w(®)h

0 0
Thc integrals may be written as sums over element domains,
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z F4
A+ n A+l

AE/ et de = ) / w f dz + w(0)h

| A=l T

so that while §,V C C°, w, and v, will be C' on element interiors. Intcgrate by parts:

n Xasl n ran
Z{— / WU gy T + WU , ? }z Z / w fde + w(0)h
A=1 2 oA A=1 7,
Collecting terms:
i TA+1
0= Z / wlu zo + f)dz + w(0)h
A=1 7,

—{w(:.':z_)ujr(xz_) - w(tf)u,r(:ni'_)

+w(ey Juz(ey) —wled ualer)

+ w(zyju (z5) — u:r(ar:;')u'x(:v‘.f)

(e (o) — (e (o))

Then noting that w(z, ) = w(z]), w(zF) = w(0) and w(z, ) = w(1) = &

a0
- A+1

0= Z / wlt o + flde  + w(0){h +U,x(0+)}

A=1 £a

i
+ Z t;)(ff;,q){u,x(:nj) — u}x(x:{)}
A=2
The associated Euler-Lagrange equations may be directly observed from this final expres-
s101.

1.10 Exercise 1, p. 31

a) Using a central difference approximation for u 4, in the strong form of our model problem,

2



with uniform nodal spacing k= x4 — z 4.1, leads to the finite difference equation

dac1 —2da+ datr
h2

+fa=0 (1)

for each internal node A, i.e. 1 < A < n+1, where n + 1 equals the total number of nodes

throughout the domain. The corresponding finite element equation is

A+1

> a(Na, Np)dp = (N4, f) (2)

B=A-1

Assume f = Ej;ll falN 4 and use the change of variable § = (& —x4)/(Z 441 — 24-)) tO

evaluate the integrals:

1
a(Na, Ngy1)=a(Na, Naja1) = %
. 2
a(Nay, Np) = T
. h
(Na, f) = ”é‘(fA—J +4fa+ fasr)

Now (2) simplifies to

—da_1 +2ds —dag
h

= %(wal +4fa+ fat1)

or
da_y —2ds+dap
h?

+ é(faq +4fa+ fay1) =0 (3)

Comparison of (1) and (3) shows that the FD method will replicate the superconvergence

of the FE solution if

fa= é(fA—]. +4fa+ fag1)

or, equivalently,
1
fa= ‘2'(fA-1 + fat1) (4)

We have assumed f is piecewise linear, but (4) requires f to be linear throughout the

entire domain £.



b) We employ text equations (1.6.11) and (1.6.12) to evaluate the coefficicnts of the FE matrix

equation associated with node 1:

1 , 1
Ku=  Kp=-f,

F =Ny, £+ Ni(Oh — a(Ny, Npta)g
h h
:fl/Nfd$+f2/N1Ar2dx—+—h
0 0

I
= 2(2fi+ f2) +h

Rearranging leads to the equation

~di+dy  2fi+f; h ]
L (5)

The corresponding FD approximation might use (1) evaluated at 4 = 1,

do — 2d; 4+ d .
: hgl 2+fl:0 (6)

where do is a “phantom point” outside of the domain, and enforce the boundary condition

by employing the finite difference approximation

dy — dp
2h
Combining these equations leads to

~u (0} =—h (7)

htdh S b (8)
h? 2 h

Comparing (5) and (8) reveals that the differences between the FD and FE approximations

(in this example) arise from the treatment of the forcing function f. Note also that the

FE methodology provides a precise recipe for the treatment of the Neumann boundary

condition, whereas additional ad hoc assumptions (i.c., (6) and (7)) arc required in a FD

treatment.



1.11 Exercise 1, p. 36

a) Discretizing the domain Q =]0, 1[ with four equal-length linear elements leads to the matrix

equation
4 -4 0 0| {fd 1
|4 8 -4 0 e 6
Kd=| 9 4 § -4 ds =F=5 |12
0 0 -4 8 dy 18

which can be solved to find

64

_ 4 |63
d= 384 | 56
37

Note that the nodal values ugart agree with the exact solution, i.e.,
h . e 3
U’part(xA) - upari.(-TA) - E( - :BA)

b) Using the definition

implics

uh(z) = Z Naz(z)da+ Ns .(z)g

A=1
Thus, for example,
1 1 1
u,hx(g) = Nl,z(g)dl + Nz,r(g)dz
48 63¢.  _q
“_4(6)+ (64)* 96

Similar caleulations lead to the following table.
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T ut (z) u,z(x) rey = §|t.¢"‘z($) —u g {x)
s ~ 554 ~ T84 T
s 554 — 1384 153
5 554 125 157
g —5cd ~1asd 10
¢) One can also find that h = 1 = re, = 15 and h = 1 = re, = ;. These results are

plotted below.

d) We assume the error re , is proportional to some power of the mesh paramcter h, viz.
re, = Ch™
where C' and m are constants. Taking the natural logarithm of this cquation yiclds
Inre,=minh+InC
{Recall the standard form of the cquation of a straight line y = mz + b.) Thus m is the

slope of the lnre ; versus Inh plot, and b = ln C' is the y-intercept.

(i) The slope of the Inre , versus Inh graph is 2.0, which reflects second-order conver-

gence of the relative error of the derivative at the midpoints.

(11} The y-intercept is the logarithin of €', which is the error in the case of a one-element

mesh (A =1).

1.15 Exercise 1, p. 46

Proof of nodal exactness in Sec. 1.10 relies in part upon Lemma 1, p. 26, which was derived

by using a weighting function w” € V* C V in the weak form

(W) a(w®, u) = (w* | £) 4+ w™(O)h
and subtracting the Galerkin equation
(G) a(w" ) u?) = (wh | £) + w™(O)h
to find
a(w® u—uh)=0

§



01

Inre

‘001 1 1 i I ! 1 1 1

Inh

t.e., the error is a-orthogonal to the weighting function. However, if f is approximated in

(G), this result will not follow unless

(w", )= (", )
This condition can be met by enforcing equality at the element level:
(wh, f)¢ = (w", f*)°
Remember that we have assumed f to be quadratic and that two-point Gauss quadrature

can exactly integrate third-order polynomials. Thus f* can be chosen linear on each

element interior if it has the same values as f at the Gauss points of the two-point rule

(6 =+1/V3):

" (% [(:CA +za41)E \/i:)—)(x/i-i-l - $A)]) = f (% [(CBA +Tap %(Q’A‘H - :1:@})

However, in general this will lead to f* being discontinuous (see sketch bclow). Note:

algebraic proof of this result is straightforward (but mildly tedious), and reveals that if

7



the function is expressed w.r.t. a local variable £ as

fE)=po+pil+p€®, -1<€<1

then the lincar approximation which coincides with f at the Gauss points is

FHE) = po+ pr&+ %Pz

1.15 Exercise 2, p. 46

(1) Galerkin approximation:

bR Hf, )= (h )+ whO)h - afw? g*) =", Ag")

alw

(i1) Stiffness coefficients:

Kaig = G(NA, NB)+ (NA, /\NB)

kap = a(No, Np)® +](No, AN)°

{111) Stiffness matrix for lincar element:

e [pe L1 —1], Afl2
k_[k“"’}_ﬁ{—l 1}*"’6‘“[1 2



(iv) Symmetry of K = [K4p] follows directly from the symmetry of a(-, -) which was estab-
lished in Sec. 1.4, Exercise 1, p. 7, and the fact that

(Na,ANp) = / NAMNpdz
Q

:/NBANAd(L'
Q

= (Np, AN4)

(v) Positive definiteness of K:

n

CTKC = E CAI{ABCB
A,B=1

n

= > {eaalNa, Np)es +ca(Na, ANp)es |

A,B=1
:a(z calNy4, ZCBNB)+(ZCANA7 /\ZCBNB)
A=1 B=1 A=1 B=1

The N4’s are linearly independent and form a basis for V%, hence for any {c4} we can
identify a corresponding w* € V* by

ZCANA = € A
A=1

and thus
cT'Ke =a(wh, wh) + (w, Awh)

- /(wf’x)2 s+ /\/(wh)2 i)

Q

>0



so K is at least positive semi-definite. Now assume ¢! Ke = 0, which implies

/ (wh )2 d02 = 0 (1)
0

and

)\/(w")2 dQ =10 (2)

Y

Eq. (2) requires that w" = 0in 2. (1} is therefore also satisfied by this choice. Furthermore,

linear independernice of the N,’s means w? = 0 <= ¢4 = 0 for 4 =1,2,...n. Therefore
T _ —
¢ Ke=0) = =0

and so K is positive definite. Note that we did not use the essential boundary condition
w*(1) = 0 in arriving at this conclusion. The presence of the A-term enables us to prove

positive definiteness without using the cssential boundary condition.

(vi) (Note: roview Sec. 1.10, pp. 24-27.) Piecewise linear shape functions cannot replicate the
expouential form of the Green’s function, ¢, even when ¥ = z4. So the nodal Green's

function, ¢ ¢ V* which is an essential ingredient in the proof of nodal exactness.
(vil) Exponcntial shape functions:

Evaluating u"(z) = ¢1€P* 4 cpe ™% at 2y and 2, lcads to a system of simultaneous equations

for ¢; and ¢
1 2

wl(azg) [ [ ePT ePE | | C2

c | 1 e Piz P uh(”’l)
; o ep(z1—22} _ o—plE1—22) | _ePE2 ePT1 'E,[.h(."ﬁ-z)

[u(z1)e7P™2 — uh(z4)e P ]eP? [—ul(z)eP®2 + ub(xy)ePTi e P?

ey
U (i) - ePlzr—z2} _ p—plr1—z2)} ep(T1—172) _ p~p(e1—32)

10



or, equivalently,

w"(z) = Ni(z)uMa1) + No(o)uh(z,)

where

BP(l—zz) — o PlT—T2)

Nl(T) =

ep(z1—12) _ o—p(z1—22)

—ePlz—z1) | p—plr—21)
Ny(z) =

eP(E1—%2) _ p—pls1—22)

With this choice of shape functions the nodal Green’s function g € V%, therefore the

FE solution will attain nodal exactness by the same proof as for the model problem (see

pp. 24-27).

1.16 Exercise 1, p. 48

a) Assume u is a solution of (S). Then, in particular, it satisfles the essential boundary

conditions u(1} = 0, v (1) = 0, hence u € §. Thus for any w € V one can write

W(EIU 000 — f)dz =10

D\H

Integrating by parts:

1 1

1
—/w,xEIu,rm dx + wEIu 544 w/wfd.x =10
0

0 0
1
:/wfdm
0

1
+ wEIu zp0
0

1
/w,mEIu,M de —w Elu g
0

Noting the essential boundary conditions on w € V,

1 1

/w,mEIu‘M dry = fuf dz — w (0} EIu ¢5(0) + w(0)Elu ¢2:(0)

0 0
and the boundary conditions on u:

11



1 1
/w,MEIu,m dz = /wf dz — w (0)M + w(0)Q (1)
0 0

We have shown u 1s a member of & and that it satisfies (1) for all w € V. Therefore u is a

solution of {(W).

Now assume u is a solution of (W). Then v € & and hence u(1) = 0 and » (1) = 0. From
(W),
1

.
/UJ‘”EIU'M doe = /wf dz — w {0)M + w(0)Q

0 0
for all w € V. Integrating by parts,

1
1

= /wf dz —w (0)M + w(0)Q

1
- /w,xEIu,mxdn:+w'fou,m
0

0
1 . 1 1
/wEIu,m” de — wEIu ;.. +w Elu,,| = /wf dz —w (0)M + w(0)Q
0 0
0 ‘ 0

Regroup and usc the essential boundary conditions w(1) = 0, w ,(1) = 0:

1

/ W(ETt yres — £)dz = w o (0){Blt 1(0) — M} + w(0){ ELt 1us(0) — Q) =0 (2)

0

To prove that u satisfies (S) we must show:

Elu yp0: = f in Q =]0,1[
Elu .. (0) =M

First assume w = ¢(u z304 — f), Where ¢(0) = ¢(1) =0, ¢ ,(0) = ¢ (1) =0 and ¢ > 0 on

Q. Hence w € V. For example, we could choose ¢ = 1 — cos 2rz. Substituting into (2):

1
/gﬁ(Efu,mM—f)zda:—O-M+(]‘Qz(]
0

12



Having specified ¢ > 0 on € and knowing (EJu ;... — f)* 2 0, it follows that (ETu 4., —
f)? =0, implying EIu 4y, = f on .

Now (2) is reduced to
—w (O EIu ;,(0) — M} + w(0){ETu 2,.(0) = Q} =0 (3)

for all w € V. There are no essential boundary conditions at * = 0. So select, in turn,
a w such that w(0) = 1 and w (0) = 0, and then another w such that w(0) = 0 and
w(0) = 1. It follows that Elu .,{0) = M and Elu ;,.(0) = Q. Therefore, the u which
satisfies (W) is also a solution of (.5).

b) Choosing V" to be the space of piecewise-cubic Hermite polynomials, assume w” has the
g P b poly

form

wh =) 4 ez 4 eaz’ ez, 2 <z <y

Denoting wh(z1) = &1, wh{zy) = &, w,hx(:rl) = §, and TJJFI(CL‘Q) = f3, a system of four

equations may be obtained for determining the ¢;’s:

|_1 ol :t:f z3 o1 &

1 2 z§ o3 cy )

0 1 2z, 3z%| | ©s t
Cy4

0 1 2zy 3z 62

Upon forward reduction

1 =z, o z3
by—6
0 1 $1+$2 :Bf+331$.2+$§ c— &
- & ba—6
0 0 1 2z + 22 —3 T e
_{] 0 0 1 ] \91;;92 B 2(5;;;51))

and thus

13



2 "/\

—2zqy23 + hx2 22z, + hal — x5 —xi e

63?](52 —6:171:1?2 2$1I2+$% 2,% +2.’E1.’1'.'2

W oo

—3(z1+z2) 3w ta2) —(x1+2z) —(2z1+ z2)

2 2 1 1 \J

h

H

:J-FE:.
L]

Substituting into the expression for w
wh(z) = Ny(z)w"(21) + Nay(2)w" (z2) + Na()wly (1) + Ny(a)wly(o2)
we conclude
Ni(z) = ;%{-—2:{:]1:% + hz? + (6z122)x — 3(x1 + z9)z? 4 2%}

(=22 {=h + 2z, ~ 2))
h3

and similarly,

(2 — 1) {h + 2(z2 — 1)}
P

Ni(z) =

1
No(z) = Ez-{—m:c% + (22,20 + 23)2 — (31 + 239)2* + 2°}

_{z— )@ - z2)
B h?

r — I 2 r -
Ny(z) = ( )hz( 2)

These shape functions are plotted below.

¢) The error in curvature is €z, = u.,hm — U . Let

_ hf{+zatzaqs
N 2

z(£)
where 24 = 2(—1) and 2 441 = 2(1). By the chain rule

o 80 20

dz ~ 0z 0f  hot
14



3

T A-1 TA T A+1

& 20 (20 _(2)222__
Bxt ~ ROEN\RDE)  \R/ B2

€ze = (%)ze,es = (%)2 [“fﬁse - u,ee] (1)

The shape functions in terms of £ are

Thercefore

Ni(a(€)) = Na(g) = 36 - DHE+2)

No(a(8)) = Male) = (€ +1)(€ 17

15



Ny(a(£)) = Ns(€) = 76 + D2~ )

Ni(a(€) = Nu(€) = (6 + 176~ 1)

This enables us to derive

H?EE(E) Ny ge(€)u(—1) + Nage(é £ut(1)
+ N2,EE(§)€,::“,5(“1) + N4,55(£)£,zuf‘5(1)

3
= 2eut(-1) - Seu()

| et

(36 — Duls(~1) + 536 + Duk(1) )

Express the ezact values, u{—1), u(+1), u ¢(~1) and u ¢(+1) in finite Taylor expansions

about some arbitrary point @ € } —1,+1]:
u(=1) = ula) — (1 + @) g(a) + 5(1 + @ ueele)
- %(1 +a) ugee(a) + 511(1 + o) u geee(a) — 120(1 +afugecee(C1)  (3)
u(1) = u(e) + (1~ a)u (@) + 51~ @) u,ee(e)

L1 wtugece(o) + (1 — @) ugceee(Ca)  (4)

1 3
+ g(l — o) u eeg{a) + o T30

we(=1) = wgle) = (1+ eue(e) + 51 + @Pugee(a)

- %(1 + o) ugeee(a) + "2"11(1 +a)tu geeee(Cs) (5)
wel+1) = wela) + (1~ a)u (@) + 51 — @Vueeelcr)

F 2 (L= o gege(@) + 5501 — @) ugeeee(Ci) (6)

We presume nodal exactness of the FE solution and its derivative, i.e., u*(1) = u(1),

ufff(l) = u ¢(1), etc., which will be confirmed in part {g). Therefore, the left-hand sides

16



of eqs. (3)-(6) may be replaced with u"(+1) and %, (£1) and substituted into (2). This
permits the curvature error (1) to be evaluated in terms of the exact solution. After some

tedious algebra:
ece(a) = (=3a + 3a)u gla) + (30 — 3a? + )u ¢e(a)

1 1
+[=5Ba” + Da + 5(3a” + Laju gee(a)

1 1 1
+[5(e” + Da® — 5(a® +8)a” + 2(3a” + D]u,eeeel)

4

+ 3 pila)u ceeee(Ci) ~ ugela)

i=1

where each p;(«) is a polynomial in «. Simplifying further:

4
1
egela) = g(—30ﬂ2 + Duggee(@) + ), pil@)u,geeee(C1)

=1
or in the global coordinate system:

4

(3) eetate) = 5(2) (=807 + Duseaa(e@) + (3) i@t rreela(C)
i=1
= e ;. (z(a)) = %(—3@2 + 1)at pppe(x(a)) + O(k*) (7)

The curvature is in general second-order accurate, but superconvergence occurs at the two

Barlow points « = :I:&; €]-1,+1].
d) We have third-order convergence in curvature at the Barlow points.

e) If f=FEIuzz., = 0 throughout the element, then the curvature is exact throughout the

clement by part {c).

f) Evaluating the global coefficients from the definition

I{AB = (I(NA, NB) — /NA,IIEINB,QJI dz

T3

17



with z;1 = 0 and z; = 1:

1
Ki; = fEI(l?:c —6)*dx
]

ETI Nk

= — — = 12E71
33 (12z — 6) .
1

I{gg = /EI(E’I‘ — 4)2 dz

U
Er oL

=— — =4F
13 (6z — 4) . I

1
0
1
= 6EI(42® — 72* + 4a) , = 6EI

With f(z) = ¢,

1
Fa= /NACdJ: — NA,_@(U)M-{- NA((])Q
]

therefore,

1

F1:/(3:—1)2[1+2$)Cti:}:m0-ﬁ1+1-Q

0

1
:§C+Q

1
sz/:c[:z:—l)gcdx—l-114+0-Q
0
:EC_M
18



g)

Thus the Galerkin FEM leads to the matrix problem

c+ @
=c— M

Ll 1

a2 1)(1)-

Solving this 2 x 2 system:

ut(2) = Ni(2)u"(0) + Na(z)ul(0)

where
1 /1 1 1
ey o+ (2.1 -
u(0) = EI(86+2M+3Q)
Ry = 2 (1 1
u’x(o)__EI(GC+M+2Q)

'This result 1s compared with the exact solution, namely,

ol 14 1 9
u(a:)—EI i +6Q.’£ +§M$ ~(

1
6

1 1 1 1
c+§Q+M)$+—8-c+§Q+§M
on the following page (with ¢ = 48E1, Q = —12EI, and M = 0).

To prove nodal exactness of the displacement requires the Green’s function solution for a

concentrated force (i.e., a delta function) at position z = y.

Elgirse = 6(z —y)
9(1) =0, g.(1) =0
EI@,::::(U) = 0, EIQ,xmx({}) =0

Integrating:

Elg e = H(z —y)+ ¢

Efg,xx = (.L‘ _y) +eoart o

1 1
Elg. = 5(33 — )+ 561:1:2 + coz + 3
1 s 1 1
Elg=glo—y)’ +zas’ + s’ oot o

Applying the boundary conditions
19
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0= Elg 12:(0) = &

0=FElg::(0)={(0—y)+c; =e2

i
0=FElg.(1)==(1- y)2 +c3 = 5(1 ——y)2 + c3

[

1 1 1 1
0= Elg(1) = 21~ y)® —~ (- Y2+ ea = 51— vy — 501~ v)? + 4

leads to the solution

1
Elg=o(z —y)’

1

S0y = 21—+ 5(1 - y)?

2

Note that g 1s smooth except at y, where g ;;, is discontinuous. Nevertheless, if y = 4,
then ¢ € V* This can be seen as follows: V" consists of piecewise cubics that satisfy
certain homogeneous boundary conditions, are at least globally continuous and possess
globally continuous first derivatives. The function g satisfies these conditions for y = z 4.

Our space of weighting functions has the property V* C V, so from the weak form of
problem
a(w”, u) = (w*, f) - w(0)M + w"(0)Q
and the Galerkin approximation
a(w", ut) = (wh, f) - wl(0)M + w"(0)Q
we find
a(wh, u) — a(w®, u*) = a(wh, u —ut) =0

that is, the error is a-orthogonal to all weighting functions in V*. The logic of Lemma 2

of Sece. 1.10, p. 27, can be reproduced to obtain

w(y) — uh(y) = (u — uP, 8y) = alu — ut ¢)
Recalling from above that y = z 4 implies g € V*, then

u(za)— uh(at,;) = alu — uh g)=0
so the nodal values of 4" are exact.

To prove nodal exactness of the rotations requires the Green’s function solution for a

concentrated moment (i.e., a dipole which is the generalized derivative of the Dirac delta

21



function) at position r = y.
BIg pree =8(2 —y)
9(1)=0,¢:(1)=0
Elg::(0) =0, EIg::2(0) =0
Integrating:
Elgpen = 6(z —y) +

Elgee=H(r—y)+tcz+c

1
Elg,={z—u)+ §C1$2 + caxr + €3

1 1
Elg= %(m — ) + 6—01:}:3 + 562:{?2 4+ 32 + €4
Applying the boundary conditions

0= EIg,xxx(O) =1

0= Elg.:(0)=cy

0=Elg {1)=(1—-yd+ecz=(1—y)+tes

0= Elg(1) = (1—?1)2—(1~y)+f:4=%(1ﬁy)2—(1—y)+c4

[N

leads to the solution
1 1 .
Elg =3 —y)* = (1 - y)e—5(1 —y) +(1-y)

Note that g is smooth except at y, where ¢ .5 is discontinuous. Nevertheless, if y = x4,

then g(z) € V*.

The weak form of this Green’s function problem is

alw, g} = A w(z)d (2 —y)dy

for all w € V. Proceeding as before:
1
alu — u” g)= ] (1 — uh)ﬁ‘x(z‘ —y)dy
0

= —(uz(y) — v (y)
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For y = x4, ¢ € V" and thereforce

a(u—ut, g)=0
implying the result,

u(24) = uly(za)

h) Given Elu 4., = f(z) = ¢, a constant, then % gz = 0, so by the result immediatcly

preceding (7), the crror in the curvature is zero at the previously identified Barlow points.

i) V* needs to be contained in H?(Q). If V* was simply continuous, as for the piecewise
linear finite element space discussed in Sec. 1.8, then V* ¢ H(Q), but not H?*(Q), as
Dirac delta functions would exist in the generalized second derivatives. Functions need to
be at least C?! in order that the generalized second derivatives have no worse than step

discontinuities.
J) Writing the stiffness coefficients in the local coordinate system:

1

K, = a(Ny, Ny) = / Moo (60 BTN (€465

8EI [
=73 /_1Np,stq,sed5

For example,
. 8EI /1.3 .2
i = [ Go'de

12E1

Similar caleulations lead to the clement stiffness matrix

12 6h =12 6h

ke — £l 4h* —6h 2R%
I E 12 —6h
Symm. 4h*
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k) Given the weak form of beam problem
1 ]
]EIw,mu,m dx = /wf dr —w ()M + w(0)Q

o 0

write the intcgrals as sums over element domains,

n LAt n Tap:
> / ETw poti pzdz = ) / wf dz — w(0)M + w(0)Q
A=1 Za A=} %4
Integrate by parts:
" LAt n Lat+l
3 {_ [ Elw gt cor de + Elw g ge| } =3 / wf de —w (0)M + w(0)Q
A=] : “a A=1
T4 LA

Integrate by parts again:

T ZAtl
T A+l T a4l
E { / Elwu gpye dz + Elw ;u o, — Ehou 4, }
TA LA
A=1 Fa

TAti

= Z / wfdr — w,x(O)M + w(0)Q
A=1 *a

Collecting terms:

T A4l

0=%" f W(BTt yape - f)dz + wo(0)M — ©(0)Q
A=1 2

— Ef{w(xg_)u,xm(ﬂfg_) — w(xi}_)u,rmx(xik)

+ w2y o pea(ey ) — w(eg ) ara(2])
(e zea(ry) — wled ) eea(2])
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0y o ral40) = (T p (@) |
+ EI{w,e (23 ,50(27) — 0,07 e}

+w (23 )une(ey) — w (23 Y (o)

tw (2 (7)) — (2] )u pa(a)

+ w,x(xr:-i-l )U,xm($1:+l) - w;(xi')uu(xj; }

Then noting w(z; ) = w(z), w.o(a7) = w2(z7), w(z!) = w(0), w(a}) = w.(0),

w(r ) =w(l)=0,and we(z, ) =1w,(1) =0

T
n A+1

0= Z / w(Efu,mx; — fidz

A=1 7

+ w(O){EItL,$$$(0+) — @}
~—w (0){ETu ,,(07) — M}

+ i w(mA)EI{u,tm(:Ej) — U,mx(ﬁ:;{)}

A=2

_ Z w,,,(xA)Ef{u,”(wi) - u,zr(mi)}

The associated Euler-Lagrange eqnations may be inferred from this final expression.



CHAPTER 2

2.3 Exercise 1, p. 63

From the definition of a(-,-)

a{w,u) = /w,miju}j dQ2
Q
and the symmetry of the conductivities (x;; = &j:),

a(w,u) = /w,mﬁu”? ds}
1

= f?i,jﬁjiw,idg

14
= a{u, w)
Therefore, af-,-) is symmetric.
To prove bilinearity, one must show

a(ciu + cav, w) = cpalu, w) + caalv,w)

Substituting into the definition of a(-,):

a(cru + covyw) = [(Clu + v} ik jw, ; dS2
0

= /(clu,i + £2v )R, w, ; dS)
19}

= ]u‘i.‘c,;jw]j dd + ¢ /v,mijw‘j dfd
0 Q

= cra{u, w) + caa(v, w)

The symmetry of (,-) and (-, )p is analogous.
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2.3 Exercise 2, p. 64

For the two-dimensional case (rngq = 2)

Vw kVu = (w1 wg)

K11 + Kizth g
= (w1 wg)
Kot 1 + Kozt 2

=w K181+ Wk121 2 + WK U1 T WKt 2

= W K455
Identical steps may be taken for the ngg = 3 case.

2.4 Exercise 1, p. 68

Write the weak form as a sum of element integrals

0=/w_iq§dﬂ+/wfdﬂ+/whdf‘

Q Y Th
Tia}

= E f(w,iqi + wf)d€d + f whdl
¢=1 Ge Cx
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Now integrate by parts on each Q¢

el

0 '—"Z /(—wq,;,i +wf)d+ /wqmsdl“ +/whd1’

e=1 L ge Ie T

Reorganizing,

0= [ wiai-Haa- [ - [t +gnd)ar

e=1 e Fh rtnt

Notc that the last integrand equals —w{gfn] + ¢;n7), so that

Ttel
0=Y [wiai- - [ule+nar+ [ wlaugar
e=1 195 Fr Uynt
2.5 Exercise 1, p. 71
By the Fourier law
i = —HRijib,
or In vector form
qg=—&Vu
S0
h _ \v4 R
q"(e) = —r(z)Vu'(2)

For all 2 € Q¢

uM(@) =) Na(2)d;
a=1
where d° = u"(z,). It follows that

Vul(z) =Y VN (x)d;

Ten

=Y Bu(x)d;

= Bla)d
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Then noting D(2) = r{x)

¢"(2) = ~D(z)B(x)d° for all z € Q°

2.5 Exercise 2, p. 71
(S") : Given f,g,h as in (S) in the text, p. 61,
gi=Ff in Q (1)
U=y on [y
Au—qgin; =h on I'p
with A(z) > 0 on T,

Let w € V. From (1)

0= [ g~ f)an

it
:—fw,iqidQ+/wqg?1,'d1"—/wfdﬂ
Q 2

Th

=—/w),g,dﬁ-{-]w(ku—h)d[‘w]wfdﬂ
2 2

Fh
which suggests that the corresponding weak form 1s
(W'): Given f,g,h as before, find ¥ € § such that forall w €V

—/w‘ggid9+/w/\udl‘=fwhdl"%—fwfdﬂ
Th 2

Q 13
To construct the stiffness, use the Galekin approximation

wh(ac)z Z NA(:B)CA

Aen—mny
uh(m) = vh(m) + gh(a:)

= Y Na@)dat Y Na(®)ga

ACy—n, Aeq,
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where we take the N ,’s to be linearly independent.

The stiffness matrix will then take the form

Kpg = /VN;{(x)n(:E)VNB(a:)dQ + /NA(a:))\(a:)NB(m) dl’
) Th

go the added contribution to ko is

/ No(®)A(@)Ny(2) dT'
s

To prove positive definiteness, it suffices to show that the new term is positive semidefinite.

Let
AKpg = / NAANp dT
T,

Then, mimicking the steps on the bottom of p. 67 in the text,

Neg
CTAKC: Z CPAI'L’pQCQ
PQ=1

= Z caAK apep
A,BEny—ung4

:/ Y eaNaM=z)Npipdl

Ty A,BEn—ny

We can define a wh € V* as

wh'(a:) = Z ealNa(a)
AEn—mn,
cTAKe = /)\(m){wh(m)]QdI‘

Ty

>0
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2.6 Exercise 1, p. 75

ID Array:
Global node numbers (A)

1 2 3 4 5 7 9 10 11 12
1 T 2 1 3 4 0 0 5 |6 7 8
IEN Array:

Element numbers (¢)
Local node . ~
numbers 1 2 3 4 5
1 4 6 5 7 9
2 3 5 7 3 10
3 1 3 9 10 12
4 2 4 3 9 11
LM Array:
Element nuumbers (e)
Local node ~ .
numbers 1 2 3 4 5
1 4 0 0 0 5
2 3 0 0 () §
3 1 3 5 [§ 2
4 2 4 3 5 7

2.7 Exercise 1, p. 81

The proof of symmetry and bilinearity for (-,) and (-,+)r is trivial.

To prove the symmetry of

all that is needed is to recall

Cijkl = Cklij

a(w,u) =

31
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L.e., the major symmetry given by equation (2.7.3), viz.

a('w,u) = f?B(i’j)ngk{U(k,[) dQ
Q

= / Wi §)Chiij(k 1) A8
0

= /u(k,ncuf:jw(i,j) df2
Y]

= a{w, w)

Bilinearity is proved in the same manner as is done in Exercise 1 of Sec. 2.3.

2.7 Exercise 2, p. 82

De(u)

<

D =[Dy;,] D1y = iju

Diiuig + Disug g + Dis(ug 2 + ugn)
Dyrug 1+ Dagua o + Daa(uy,2 + uz,1)

D3yuy g + Dagug g + Das(uy 2 + uz 1)

( cri11%1,1 F Crizatiz 2 + cinaz(u1,2 + uz,1)

€2211%1,1 + Ca222%0,2 + C2212(%1,2 + Uz 1)

L G121t + ¢1223ug 2 + C1212(%1,2 + Uz,1)

T
e(w)” De(u) = wyc111111,1 + wi1€112083,2 + w1 161112812 + Wi, 1€1121%2,1

+ W2, 2C2211U1,1 + W2 2C2222U2,2 + Wy 2C2212U1,2 + W2,2C2921U21

+ wy 2c121181,1 + Wy 2€1222U2 2 + W1,2C1212%1 2 + Wi 2€1221 U2 1

+ Wa,1€211141,1 + W2, 10212242 2 + W2 1€2112U1,2 + We 1621212 1

= W jCikilk,!

= Wi, 5)Cig kIt (k1)
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where the symmetries of ¢;;;z; have been employed.

2.7 Exercise 3, p. 82

From the definition of € given in the problem statement, one may directly infer the analog

of Table 2.7.1.

1/J i/ k i/l
1 1 1
2 2 2
3 3 3
4 2 3
4 3 2
5 1 3
5 3 1
6 1 2
6 2 1
2.7 Exercise 4, p. 82
o = De(u)
€1111 €112 €1112 Uy
= Cz222 C2212 Uz 2
Symm. Ciz12 U1,2 + Uz

Evaluating the matrix-vector product
o011 = €1111%1,1 + Cr122t2,2 + crn2(ur 2 + ug1)

1
= C1111U1,1 + €1122U22 + 5(61112 + 3121 )(u1,2 + uz1)

= c1111€11 + C1122€22 + (€1112 + €1121 )12

= C1111€11 T C1122822 + €1112€12 + Cr11z1€2
therefore
T11 = C11kl€RI

and so forth for the other components of the stress tensor.
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2.7 Exercise 6, p. 84

Define the jump in “traction” at an internal boundary:

N I
[0'-,'-”] faad g!j‘nj — UU?’LJ
—gtnt 4L on-

The given weak form is:

Mg
w(i,j)0i; di2 — /wifi dQ—Z /w,-h,: dr

Q =1 Fh‘

0=

SRS

L LYY
=3 /w(f,j]aij ) — /w,;f,; 2y -y /wih,; dr
= Q'Z Y

e=1 (e i—=1 11}1‘

Note that w; jyo; = w; jo;; and integrate by parts:

et Magd
0="3" /wi(_aij,j —fi)dsz+/wig,;jnj dry — /w,-h,— dT
e=1 e e i=1 l:h'
Reorganizing,
el Mg
0=>) /wi(aﬁ,j + f)d -y / wi(ogn; —hy)dl
e=1 ¢ =1 Th,
P
_ / w,(aijnj +o5n; ydr
l—‘vnt
Note that the last integrand equals —w,;(a;?nj' + o;;n; ), so that

0= Z /’wi(O’ij,j + fz)dQ' - Z / wi(gin - hs)dr + / 11)5[0‘;‘3{1] dT’

=1 f2e t:lrhl Line
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The extension to ngg = 3 is analogous.

2.7 Exercise 5, p. 83

Cijit = p(0irb1 + 00651 ) + Abijonr; Lkl =1,. . ngy

For ngy = 2:

[ c1111 c1122 €ui12
D= Cp22z  C2212
] Symun. £1212
A+20 A 0
= A4 2u 0
Symm. H

Similarly for 1.4 = 3:

1111 c1122 crass 1

Cz227  C2233

3333

D=
€2323
Symmetric €1313
L €1212 |
(A 4+20 A A ]
A2 A
A+ 2p
h =
Syminetric i

i
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2.8 Exercise 1, p. 87
Recall for ngg = 2
U1
e(u) = u2,2

uy,2 +uz1

Naj

e(Nase1)=< 0O L

e(Naex)=1{ Naga p

Nag )
Thus
Naa 0
e(Nase;)=| 0 Naa|e; = Bae,
Niz Na,

The nyqy = 3 case follows analogously.

2.9 Exercise 1, p. 91

From the finite element approximation

uf(e) =Y No(@)dia i=12,...,nu
a=1
it follows that
an N (a,:)d + N (x)dg, o
h i, a a, 1
@) =) ! 5 = ij=1,2...

a=1
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We wish to write the strain-displacement relation in the vector form
Ran

e(uh) = Z B,d,
a=1

where for ngy = 3 it can be verified that

Uiq

e(uh) = ¢ o d, = ( Y2 B, =
Uzq . i

¥

h h
ul,z "E" 11.2}] Nﬂ.,? N{l,l

\ y

Use the constitutive relationship verified in Sec. 2.7, Exercise 4,

en

o(z) = D(x) Y _ B,(2)d;

Na,S

Na.,Z

Na,]

or collect displacements into an element vector instead of nodal vectors, i.e.,

o(e) = D(z)B(z)d*
where
B={B, B,... B,_]

The case nyq = 2 proceeds analogously.

2.10 Exercise 1, p. 98

ID Array:
Global node numbers (A)
Global degrees p ~ .
of freedom 1 2 3 4 5 6 7 8
1 1 3 0 ] 7 9 0 12
2 2 4 0 ) 8 10 11 13
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IEN Array:

Element numbers (e)

Local node o~

numbers 1 2 3 4
1 1 1 3 5
2 2 3 5 7
3 8 4 6 8
4 7 2 4 6
LM Array:
Element numbers (e)
Local equation ~ .
numbers 1 2 3 4
1 1 1 0 7
2 2 2 0 8
3 3 0 7 0
4 4 0 8 11
5 12 5 9 12
6 13 6 10 13
7 0 3 5 9
8 11 4 6 10

2.12 FExercise 1, p. 103
The first four rows of the extended-table in the text, p. 102 are identical to Table 2.7.1, so

from Exercise 5, Scc. 2.7
A4 2u A 0
D35 = A+2u 0

Symm. i

The remaining entries of the axisymmetric constitutive matrix can be cvaluated from Eq.

(2.7.31):

Dyy=cepaa=p(l+1)+A=2p+2A

€1133 A
Dy = ¢ o233 3 =< )
€1233 0
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2.12 Exercise 2, p. 103

From the partitioned form of the constitutive equation

TF20 Djs D3 €20

033 DI Dy £33

it follows that

o33 = DY eap + Dusesa
The plane stress condition ¢33 = 0 implies

£33 = —D@ngsgp
so then

oyp = (Dys — D3D;;1DE)EZD

Evaluating the second term

1 1 0
1T A2
DD D, = 1 1 0
35744 M43 X+ 2 r
6 0 0
Therefore, under the plane stress assumption
Ahptdpt 2Ap
A2 A2Zp
Oapn = 2An Adp-ap? &ap
A+2n B oA
0 0

which 1s consistent with Remark 9 of Sec. 2.7.

2.12 Exercise 3, p. 103

The solution to this problem is given in the text.
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2.12 Exercise 4, p. 104

The matrix B, takes the form:

|'Na,1

Na,?

Na,Z

We must define the components of I7 such that

Wy

W3 2

wy jdiikite =
w2+ We

Expand the tensor product:

wi jdijpik = wy 1dianuy ) + wyidyieur g +winduaiug + wy,1d1122U2 2
+ wi 2diz11u1,1 + wyadi212u1,2 + Wi 2d 22112 1 + w1 2d122202 2
+ wy 1dar11u1,1 + wa1dzii2U1,2 + We,1do121U2,1 + w2 1d2122tz 2

+ w adaar1uy 1 + waadooiat 2 + W adagsiuer + w2 2da2a2us 2

40

Na2

]

Na,l

Wy — Wz )

J
Uit )
2,2
Uy g+ Uz

| Uy2 — UL J



Expand the matrix product accounting for the symmetry of D:

1 1 v’ 1 ]
wa 2 22
y D o
{ w2 + We g Uy 2 + Uz 1
Wy — Wae g } L Uyp,2 — Uz )

= w11 Dnur g +wiDigug g +wi 1 Dig(uy s +ug 1) + wy 1 Dyauy g —ug i)
+ wo 2 Diguyg 1 + wy g Dasus p +wa 2 Dog(uy 5 + 1g,1) + wa 9 Doa{uy 2 — ug 1)
+ (w12 + w2 1) Disur g + (w12 + we 1) Dasusp
+ (w12 + we,1)Dys(urz + uo,1) + (wi2 + we,1)Dsa (w12 — ug1)
+ (w12 — wa 1) Dygur 1 + (w12 — w2,1)Daauzp
+ (

wy g — wy 1 ) Dy 2 +uz,) F (wr 2 — wa1)Das(ur,2 — vz 1)

= wi1D11u11 + w1 (Dis + Diajug 2 + wy (D13 — Diadug s + wi,1D12u2,2
+ wy 2(Dhs + Digury + wy2(Das + 2034 + Dyg)uy s + wq 2(Dsz — Dy ua
+ wy 9(Daz + Das)ug o + wo 1(Dyz — Dyg)uy 1 + we 1(Dsgg — Dyyhuq o

+ wy 1( D33 — 2D34 + Dygjuzy + wa 1(Das — Daa)us 2 +we 2 Dious

+ wy 2( Doz + Daguro + wo2( Doy — Das)usy + wa 2 Dagusg o

Equating coefficients, by inspection

Dll = dl]ll D‘ZQ = d2222 -D12 = dl]22

The other coeflicients of D lcad to coupled equations, e.g.,

wy,1d111201,2 = w1 1(Dia + Diglug 2
w1,1d1121u2,1 = wl,l(DB - D14)u2,1
which implies
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1
Dz = §(d1”2 + dy121)

1
Dy = §(d1112 — di121)

Similarly,
1
Dy, = §(d2212 + da291)
1
Dy = §(d2212 ~ d9221)

The final three coefficients are found from the relations:

wy 2di212u1 2 = wy2(Dss + 2D34 + Dyq)u 2
wl,zdmmuz,:l = ?01,2(1)33 - DM)Uz,l
wZ,IdZHZTH,Q = Tf»‘::,l(Das - DM)’Ul,z
wQ,IdQIZIUZ,] = w?,l(D33 —2D34 + D44)?-£2,1

This system is not over-determined because dig21 = ¢1221 = 2112 = dy112, therefore

i

D33 = Z(dlzm + 2d1221 + dai21)
1

Dyy = z(dlzxz — 2dy221 + d2121)

1
Dy = 1(151212 - d2121)

Employing d;;r = cijrr + 51-;50‘?;, we arrive at the final result:

[v] ki

ol 0 3 *

e crizz ciiiz 0 . 0 0

212 1z

D_ cyp22  C2212 0O 4 T3 2 2
Ci212 0 00”+0“209 0'22'“0'0]3

Symm. 0 4 "i"

o iT.
Symum. —”4—22J
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2.12 Exercise 5, p. 105

On the boundary w can be decomposed as

W= WpM + W, 8
where
Wy = W;N;

Wy = W;S;
Build all essential boundary conditions into the function spaces:

S={uluc H'(Q);u=9g on Ty, u, =g, on Iy, u, =g, on Iy}

V={w|wecH(Q);w=0o0nTy, w,=00nT3, w,=0o0nTy}

It follows from the strong form that [ w;(o;;; + f;}dQ = 0, so integrating by parts
3)

0= — /Wg)jcijdg+/wifidﬂ'}’/wigijnjdr
Q Q2 r

Noting

F:FIUI‘QUF3UF4

and the boundary conditions on w;

/w(f.j)cs'jk:u(k,n dft = /’wz‘fa‘ d9+/wsﬁa‘jn;‘ dl’
£ £ ",

—|—/t{;saijnj35df+/wncr.;jnjn,; dl’
Is Ty

Thus the weak form is

/w(i,j)c;'jkfu(k’l) ds) = /w,;fi det -+ /wih@ dal’ + /wshs dl' + /wnhn dr
Q Q T, Iy Ty

(No summation is implied on n or s.)
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2.12 Exercise 6, p. 105

The solution to this problem is given in the text.

2.12 Exercise 7, p. 106

This is the one-dimensional boundary value problem of Chapter 1, with
f=-p(p-1)a??
g=1
h=090
i) Integrating,

~1
Ue=prf7 40
u=z+eyz+ e

and employing the boundary conditions,

c1 =
¢y =10
leads to the exact solution
u(z) =z

(Sce figure on page 47.)
it) Given f, g, and h as above, and the function spaces

S={uluecH  ul) =1}
V={w|weH, w(l) = 0}

find % € & such that for all w e V

1 1
/w,xu,x dr = [mf dz
0 0

1
—p(p — 1)‘/‘w$f"2 dx
o

I
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) VEC VY, uh = v 4 g* P eV gh(1) =1
Given f and h as in (i), and the finite-dimensional spaces
St = {u|ut = v* + g" vt e VF gM1) = 1}
Vhcy
find u" € §* such that for all w € V*

1

1 1
hoh h Bh
fw,x'u’x de = [ w"fdzx —~ fTIJ,Ig,I dz

0 0

0

iv) Find d such that
Kd

It
"

where

d={dg} B =12..,n

K = [I\FAB:[ A,B = 1,2,...,?’!,
1
Ksp=a(Ny, Ng)= /NA,xNB,x dx
a

F:{FA} A=12..,n

Fa=(Nag, f) —a(Na, Nny1)

1
:/NAfd$ — G(NA, Nn+1)
[t}

(a) one element:
Kndy, = Fy

Hi1=1
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Fiy=(Ny, f) — a(Vy, N)
1
= —p(p—l)](l—:v)mPﬂZer' + 1

Forp =5 F = —-141 = 0, therefore d; = 0.

I{I i I( 12 d 1 . F 1
Ky Koy ds R 2

Using the results from Example 2 of Sec. 1.7,

1 -1
x|t

(b} two elements:

0

=2(p - V(P — 5

1

Fy =2 :nfdx+2/(1—z:)fda:+2
3

O\.MH

= ~2(p 1)) 2+ 2p — 1)+ 2p(5)



u (1) ]

uf‘x(l), 2 el. mesh

u” (1), 1 el. mesh ]

JURS SRS TS PV SN (T R N T N

(vi) Exact solution

(1) = 5t =5
e
Onc-element approximation:

wh (1) = Ny o(1)dy + No (1) =1

,
Two-elements approximation:

u (1) = Ny o(1)d2 + N3 o(1)

= o)+ 2(1) =

The finite clement solution is exact at the nodes and linear between nodes. ’u"‘,(l) is thus
& secant approximation of the exact value, Therefore, u" (1) will not be accurate if the

mesh is crude and the exact solution has a steep slope, as in the situation herc (see the

figure}.
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2.12 Exercise 8, p. 107

N.B. We use h to denote the unknown heat flux on I'; and, as in all of this manual, h

denotes the given natural boundary condition on I'.

i) Considering the left-hand side of the revised weak form, integrate by parts

fv—w,,vql- 40 = /wq,-‘,-dﬂ w/wq;nidI‘
r

Q 2

Then substituting into the weak form

w(gin; + h)dT' ~ / w(gsns + B)dL = 0
L r,

Qf wlgi — f) d —

The standard localization argument leads to the Euler-Lagrange equations

¢ii= [ in Q
gin; = —=h on ')

gin; = —h on Fg

i1) Define the function spaces

VPGV = {wlwe HY(Q)}
VEC Vo ={w|we H(Q),w=0o0nT,}
Th T = {h|h e Ly(T,)}

We can then define the Galerkin problem: {G): Given f, ¢ and h as in Sec. 2.2, find
u® = v 4 g* where v* € V& and h* € T, such that for all w* € V*

a{w® v™) — b(w" h?) = (wh, f) + (w*, h)p, — alw®, ¢*) (1)
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where

a(w”, v™) =/wf:»n;jvg- ds?
Q

bw", k") = / w” B* dT

Iy

(w5 = [whfan
o

(wh,h)n=/ w*h dT
Ty

If w” is selected in the subspace V& C V%, then (1) becomes:
a(w",v") = (w*, £) + (", hjr, ~ a(w", ") (2)

This is the usual equation for »*. (Note that wh € VY implies b(w”, h*) = 0, since w =0
oun I';.) I, on the other hand, we select w* € V* — V¥, the complement of V', then (1)

becomes

b(w", 1) = a(w",v") + a(w®, g*) — (w0, f) = (w", b)p, (3)
Assume the finite element approximations

wh'_: ZIVA(:A = Z Naca+ Z Nicy

Agn ACn—ny Aemny

vt = Z Npdp EV&I
BEﬂ—ng

M= " Nghg eV'-V}
Bgn,
Note that w" consists of two parts: onc in V¥, and one in V* — V. Due to these assump-
tions, the integrals in (3) only involve elements such that I'§ = T’y # 0. Since the
ca’s defining cach part arc independent, two matrix problems result:

(i) Kd=F (usual problem)

-~

(ii) Kh=F (“post-processing”)
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where K, d and F are as defined in Sce. 2.4,

Defining the remaining terms requires the auxiliary identification arvay

R ifAden,

ID(A):{O if A€y—n,

then

IA( = [I;’Rq] h = {hs} 1% = {FR} 1 S R,S S Nheq

where ny,.q is the number of boundary equations, i.e., the number of nodes in 5,, and

Kps=bNaNg) R=ID4) §=IDB)

Fr= > a(Na,Np)dp+ Y a(Na,Np)gh —(Na, f) — (Na,h)r,
Bga—y, Bey,

Note: dp is the solution to (i), which is the standard heat conduction matrix problem

presenfed in Sec. 2.4,

iii) Specialize to the one-dimensional case cxamined in Exercise 7.

VECV = {wlwe HY(0,1)}
Vo € Vo = {w|w € HY(0,1),w(0) =0}

(@): Given f as in Exercise 7, find u? = v* 4 ¢* and k" such that for all wh € V*

a(w® o?) — wh(1)RY = (w*, ) = a(w", ¢")
(M): Find d and k" such that

(a) Kd=F (This is the usual problem for d, as in Excrcise 7.}

n

() B* =" a(Nns1,NB)dn + a(Nag1, Nag1) 1 = (Nags, f)
B=1
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iv)

For one element n = 1, Ny{z) = 1 — 2 and Ny(z) = 2. Furthermore, from Exercisc 7,

d; = 0, implying:
1 1
hh = / (1)2dz + p(p - 1)] zzP~de
Jo 0

1
=1+(p—-1)2%

=P

Note that this equals the exact solution for A.

For elasticity definc the function spaces

S={u|ue H(Q),u; =¢g; on I'y}
V= {wlwe B(9)
T ={h|h; € Ly(T', )}

(W): Given f, g and h, whose components are defined as in Scc. 2.7, find u € 8§ and

h € T such that for all w € V
a(w,u) - b{w, h) = (w, f) + (w,h)r, (4)

where a{w,u), (w, f) and (w, h)r, are as defined in Sec. 2.7 and

Fed

bmm:ZAwmﬂ
=] s

Integration by parts yields the expected Euler-Lagrange equations. Defining
Vo={wlweV,w,=0 onT,}
enables us to state the two problems emanating from (4):

For all w € Vg, a{w,u) = (w, f)+ (w,h)p,
For all w € ¥V — Vy, Hw,h) = alw,u) — (w, f) — (w,h)r,
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v) From part (iii)

a(wh u?y — wh(HRP = (v, f) (5)
a(w®, 1) —wh(1)h = (w”, f) (6)

where u and h are the exact solutions. Subtracting (6} from (5),

a(wh e) = wh(1){h* — k)
where

€=U —1u

Since the equations governing u* remain unchanged in the new formulation, the proof of

nodal exactness for u® given in Sec. 1.10 remains valid. We are free to choose w*(z) = C,

h

() = 0. (Recall, there are no boundary conditions built into

a positive constant, so w
V* now, thus w"(z) = C is a legitimate choice.) Then a(w”,e) = 0 and w”(1) # 0 implies
h* — h = 0. So this method is exact for the one-dimensional model problem, confirming

the observation of part (iii).



CHAPTER 3

3.2 Exercise 1, p. 114

1

No(&m) = (1 +&ENL +nan) (1)

where

4
2(&n) = Y Na(&n)eg (2)
a=]1
and

z(€,m) = ag+ a1+ an +asly (3)
3"2 = x(ga: "'?a) = ag + 1€y + g + @3€ana (4)

Equation (3.2.12) is obtained using the above and Table 3.2.1, i.e.,

1 -1 -1 1 ap 1
1 1 -1 =1%o B z§
1 1 1 1] o2 - z§ (5)
1 -1 1 -1 3 ¢

General idea: Solve for a;’s, and substitute into (3). Then collect coefficients of z¢’s such

that
z(€,n) = [l mel+ foléom)xy + fa(én)es + fa(€,n)zg (6)
By (2) and (6)
Na(f:’?) = fa(garf) (7)

Solving (5) by Gauss elimination

1 -1 =1 1] (@ 41

0 1 0 -1{)a{ ® (2§ — 21)/2 ®)
o o 1 1 a2 N (x5 —25)/2

0 0o o0 1| as

(25 — 25 + 2§ — 25)/4
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1 [3 e e e
¥n = i(:},i + 35 + x% + Ti) [43] e Z($2 —_ xl _+_ mg _ 3’4)

(9)
ay = gl-af 2§+ af+af) az = glef -5 +o§ — )
(39) 1 . 1 1 Yt
2(&n) =1 =&+ +7(L+E—n—¢En)
1 . 1 .
+ Z(l + &+ 7+ €n)x; +Z(1 — £+ —Enag (10)
\ 4
2 Y N e
a=1
3.4 Exercise 1, p. 123
From {3.3.3):
. €T, Ty
J = dCt [y'i y];:l = (:E:Ey;rf - y}E:L.sT!) (1)

From (3.4.1):
3
T '
= i) = T @

where

Li+£66(1—n) a=1,2
Mo = (3)
1+ o =3

a Na,£ Na,w?
1| —(1-n)/4 | -(1-£)/4
2 (1-n)/4 —(14+¢)/4
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ve B 2= nt 4 301~ s + (05
, 1 (4)
= “Z(l —n)z§ + 1(1 — )T}
(2,3) 1 e 1 e, 1 .
) = _1(1 - &z} — Z(1+§)3’2+§$3 (3)
e ‘= —%(1 — i + %(1 - 7)y; (6)
v B -6 - 0+ O+ s (7)
. (1,4-7) 1 e e 1 ¢ e e
7= B (U =m)(at = 2 H=2(0 = Ot + (1 + &)ys — 2u5)]]
(8)
=30 - M — g H (1~ )75 + (1 + £)a5 — 205))]
FOI'f:T]:O} :ﬂ%:ﬁ:&:yf:y;:[}’ y§=1a
G ) 1 o4 . 1.
J = 1_6331 - [_Exll = gﬁ'ﬁ (9)
3.6 Exercise 1, p. 128
€+~ DE-1)
Nl — 53 — 3 3 — 3 _
(‘f) 1 (_..?2_)(..74)(_2) 16( 95 +9£ +E 1)
3 (E+1)(E—$E-1) 1 3 2
N, - 32 = —(276% 082 27649
) B e 0 e
3 E+DEFHE=Y) =1
N, = £ = . = (278 9 — 27— 9
© OO ig 7O 2D
3 (€+ DE+5)E—3) 103 1 a2
N = f = T2 = =0 9 —¢-1
© 23 g ey



3.6 Exercise 2, p. 130

49 ® P 9 3
g8e® 16 @ ® 15 9 10

12 @ 13 @ ® 14 ® 5
¢ . . ®

1 s S 2

Nol&m) = £ €m)

where indices are related by

a b C a b C
1 1 1 9 3 1
2 4 1 10 4 3
3 4 4 11 2 4
4 1 4 12 1 2
5 2 1 13 2 2
6 4 2 14 3 2
7 3 4 15 3 3
8 1 3 16 2 3

and the Lagrange polynomials arc given in Exercise 1 of this section. The shape functions

are
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Ni(§,n) = G(&) G(n) =
Na(&,n) = £4(6) G (n) =
Na(&,m) = £5(8) 4(n) =
Ny(€.m) = £1(§) £4(n) =
Ns(&,m) = £5(6) &(n) =
No(&,m) = €5(6) &(n) =

Na(€,m) = 63(6) &4(n) =
Ng(&,n) = £}(£) £3(n) =
No(€,m) = 55(6) G(n) =
Nio(€,m) = &(&) 3(n) =
Nu(é,n) = 6(8) &) =
Nia(€,m) = 61(§) 6(n) =
Nu(€,n) = 6(8) 6(n) =
Nul€,m) = 6(6) &(n) =
Nis(€,m) = £5(6) &(n) =

Nlﬁ(fa??) - 33(5)33( )

255( 96% +96% + £~ 1)(=9° + 97" + 0 — 1)

2;6(9£3+9£2 £ —1)(=9" + 97" +9— 1)
3 2

%(GE +96% € =197 + 97" —n—1)

+92 4+~ 19" + 9> —n—1)
1
%(27(53 ~ 92 ~ 276+ 9)(—97° + 92+ — 1)

.2_5_6,(95"s + 967 — €= 1)(27T° — 9n* — 2T + 9)

556(27£J + 962~ 276 — )9 + 97— — 1)

256( —98% + 962 + ¢ — 1)(27n° + 9n® — 27y — 9)

(275d + 962 276 — (9> + P + 71— 1)

2r6(9§ +98% — ¢ — D(279° + 9n* — 2Ty - 9)
1
S (276" — 967 — 276+ 9)(95” + 9y* — 5 — 1)

2"6( 068 4+ 982 4+ £~ )21y — 9% — 275 + 9)

2r6(2753 0£% . 276 + 9)(277° — 90 — 27T 4+ 9)

-1
256(275 1982 276 — 9)(2T5® — 92 — 2Ty + 9)

556(2753 +9¢% — 276 — 9)(2Tn® + 9n? — 27Ty — 9)

5 6(27§ — 27+ 9)(2T° + 97 — 27 — 9)
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3.6 Exercise 3, p. 130

Using the node numbering in Figure 3.7.6

No(&,n,¢) = G € E(Q)

where indices are related by

a b c d a b c d a b ¢ d
1 1 1 1 10 3 2 1 19 3 3 2
2 3 1 1 11 2 3 1 20 1 3 2
3 3 3 1 12 1 2 1 21 2 2 1
4 1 3 1 13 2 1 3 22 2 2 3
5 1 1 3 14 3 2 3 23 2 1 2
6 3 1 3 15 2 3 3 24 2 3 2
7 3 3 3 16 1 2 3 25 1 2 2
8 1 3 3 17 1 1 2 26 3 2 2
9 2 1 1 18 3 1 2 27 2 2 2
Typical results:
Corner node
1
NiEn ) = 3eacE=Din-DE-1)
Mid-edge node
. 1 2
Ny(&,9,0) = ZWCU — &) n—1)(¢C—-1)
Mid-face node
N 1 :
NZl(fa?}'aQ) = §C(1F£Z)(1_nz)(c_1)

Center node

N')-?'(g:ﬂ} C)

= (1= -9*)(1~")
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3.6 Exercise 4, p. 130

Nu(&m) = G
a b c
1 1 1
2 3 1
3 3 2
4 1 2
5 2 1
6 2 2

e.g.,

Ni(en) = 26€-1D1-n)

Na(en) = (1-€)1-1)
3.7 Exercise 1, p. 135
Nen) = S-E)1-m)  Ne&m) = (-4
Negn) = U-€)14m) NG = (1K1 6)
Mign) = =81~ 3{1 - &+ Ent 1o g+ én’)

= 0-O0 - n)(-1-E—)
N(m) = (LHE( ) (-1+E—m)

Nsem) = S1+O0+m(-1+E+n)

i

Naeon) = (-6 -1-E+)
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3.7 Exercise 2, p. 135

N, = N, a=1,2,56,8

1
Né N3+N4+N7 = *2-7}(1'+'??)

3.7 Exercise 3, p. 135

Replace “Stop” with the following:

If the clement is to be
degenerated to a triangle,
then

N3 «— N3 + Ny + Ny

Ny, 0

Ne — 0

3.7 Exercise 4, p. 136

With reference to the node numbering of Figure 3.7.6:

1. Vertex nodes:

Define &4, 1a, (o (a = 1,2,---,8) as in Table 3.5.1, p. 124,

Ng = -;;(1 + €)1 + pam)(1 + (o)

a—1,2...,8

2. Center Node:
Ny = 0
60



If node 27 is present, then

Npr = (1=-)(1 -9~
. Mid-face nodes:
N21 = N22 = ... = Ngﬁ - 0
If node 21 is present, then
1 5 5 1
Ny = 5(1 =N =7 )1 -¢) - ENZT
If node 22 is present, then
1 5 5 1
Naz = (=&)L =97)1+C) = 5Nor
If node 23 is present, then
1 " g 9 1
Nag = S(L=&) (1 -1 - )= 5N
If node 24 is present, then
Nog = (=&)L +m =) = SNer
If node 25 1s present, then
1 2 gy 1
Nas = (11 —n")(1 = (%) = 5Ner
If node 26 1s present, then
1 5 gy 1
Nz = S+ —n")1 - (") = oNer
. Mid-edge nodes:
Ng = Nyg = Nip = = Nyg = 0
If node 9 is present, then
1 2 1 1
Ny = (=)L -0 ~¢) = 5(Na1 + Nog) — 2 Nov
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If node 10 1s present,

N]IJ

If node 11 is present,

Nll

If node 12 is present,

NIZ

If node 13 1s present,

NJS

If node 14 is present,

N1

If node 15 is present,

NIS

If node 16 is present,

Nlﬁ

If node 17 18 present,

Nl?

If node 18 is present,

Nisg

then

1 , 1 1
= Z(l +6)(1—7n*)(1—-¢) — §(N21 + Nag) — ZNZT

then

= %(1 1+l -¢) - %(NQI + Nag) — i‘Nz?

then

2 i(l —H(1-nH(1 -¢) - %(Nzl + Nas) — iNz'f

then

= 20—+ O = §(Nar + Nag) — 2Ny

then

B %(1 +OI=-n*) 1+ - %(sz + Nag) — %Nz?

then

= %(1 -1 +m1+¢) - %(Nm + Nag) — j,l;Nz?

then

: 1
- %(1 — (1 -1 +¢) - %(sz + Nas) — ZNQ?

then

= %(]‘ - '5)(1 - T.")(]- - C2) - %(-Nr‘23 + I1\?—‘},.’5) - —i‘A’T-ZT

then

= OO0 ¢ - 5(Nag o+ Nog) = 1N
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If node 19 is present, then

1

Nig = Z(l + O(l + ??)(-1 - CZ) - ‘;'(szi +. Nzﬁ) - %Nw

If node 20 is present, then
. 1 2 1 . 1
Ny = Z(l—f)(1+??)(1—c )_§(N24+A25)_ZN27

5. Adjust vertex nodes:

1 1 1
Ny« Ny — §(N9 + N1z + Ny7) — Z(N2l + Nz + Nas) — -éNz’r
1 1 1
Ny « N3 — §(N9 + Nig + Nig) — Z(NZI + Nag + Nag) — gNz*r

1 1 1

Ny — N3 — “2*(N10 + N1+ Niyg) — Z(NQI + Noy + Nog) — “S*Nfz?
1 1 1

Ny — Ny — §(N11 + Nyg + Npg) — Z(Nm + Nog + Nog) — §N27

1 1 1
Ns «— Ng — §(N13 + Nyig + Nyp) — Z(sz + Nog + Nog) — 'S*Nz'r

1 1 1
Ng «— N¢ — §(N13 + Nyg + Nig) — Z(sz + Nog + Nyg) — §N27

N

=T

1 1 . 1
— N7 — §(N14 + Nis + Nig) — Z(sz + Nag + Nog) — §N27

1 1 . 1
Ny — Ng — §(N15 + Nig + Nog) — Z(sz + Nayy + Nog) — gNz?

3.7 Exercise 5, p. 137
To Exercise 4 add the following step:
6. If the element is to be degenerated to a wedge, then
N3 « N3+ Ny + Ny
Nig = Nyg + Nayg + Npy
N7 = N7 4+ Ng + Nis

N4:Ar3 :le_ll :N15:N2[|:N24 =0
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3.7 Exercise 6, p. 137

11 7

4 o —- ’ 3
8L 16 ® ® 15 cr 10
129 13e ® 14 T 8

¢ o o= ' ]
1 5 g 2

1. Vertex nodes:
1
Na = Z(1+£a§)(1+nan)
a — 1,2,3,4

2. Interior nodes (in this implementation, all interior nodes are either present or absent):

No = 0

a « 13,14,15,16

If internal nodes are present, then (see Exercise 2, Sec. 3.6):

Nia(€,n) = 2—;6(2753 — 982 27 + 9)(271° — 9n? — 2Ty + 9)
Nu(€,n) = 2_—%(2753 + 962 — 27¢ — 9)(2Tn® — 99® — 27n + 9)
Nis(6n) = (276 496 = 276 ~ 0)(2T® + 97" — 270~ 9)
Nig(€n) = (276 — 96 — 276+ 9)(2T + 9" — 27 - 9)
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3. Side nodes (in this implementation, side nodes are specified in pairs, e.g., nodes 5 and 9

are either both present or both absent):

If nodes 5 and 9 are present, then

27 L1 ) 1
Ny = (195 =1 —n) = 3Nz = 2N
27 L1 2 1
Ny gl =& g + 8L —n) = gNa - 3N
If nodes 6 and 10 are present, then
27 1 2 1
Ng = §§(1 + (1~ ?’!2)(5 ~n)— 3N — 3N
27 b1 2 1
N = HA+00=n7)5+n)~ 3N - 2N
If nodes 7 and 11 are present, then
2 L1 2 1
N = S(=N3+OA+n) N5 — 3N
27 Ll ) 1
= (1 4n) - SNy — =N
Ny 31— N5 O+ 1) — 3N — 2N
If nodes 8 and 12 are present, then
27 b 2 1
Ny = 50=00-n)g+n)-3Ne—3Ns
27 1 2 1
le = ﬁ(l—£)(1—nz)(ng})—gng—'?—)Np;



4. Adjust vertex nodes:

2
Ny « N, —g(N5 + Nyg) —

1

4
.Z\r
9 15

1 2
g(Ns + Ng) — §N13 — §(N14 + Nyg) —

2 1 4 2 1
Ny « Ny — -(Ng + Ny) — =(Ns + Nig) — Ny — —(Nyz + Nis) — =Nig
3 3 9 9 9
2 1 4 2 1
Nz & Ny — =(N7 4+ Nyp) — =(Ng + Ni1) — —=Nis — =(Nig + Nig) — o Nis
3 3 9 9 9 .
2 1 4 2 1
Ny — Ny — §(N8 + Ni1) — §(N7 + Nig) — §N16 - §(N13 + Nis) — §N14
3.7 Exercise 7, p. 137
4 3
1 6 2
5
{fi(ﬁ)fi(n) a=12.5,6
G(&) L) a=34
a b C
1 1 1
2 4 1
3 2 2
4 1 2
5 2 1
6 3 1
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Moo= 5198 -1)1-n) Ny = E(9—1)(e+1)(1-7)
Ny = 1+ +n) Ny = L1—6)(147)
Ns = (& =127 -9)(1~n) Ng = 5(1—€2)(276+9)(1—n)

3.8 Exercise 1, p. 142

This exercise is straightforward, so the solution is omitted.

3.8 Exercise 2, p. 143

Gauss quadrature, n;,, = 3

Assume

G=-6 &L=0 W =W
Consider a general fifth-order polynomial
9(€) = a0 + € + f” + €’ + 048" + a5’

The cxact integral of g(£) is

1

2
/(ag Far b4’ tagf tasti sty de = 2a0+§a2+gaf4 {odd functions drop out)

-1

This is to be equal to
Wi(g(&1) + g(&)) + Wag(0) = W1(2a0 + 20267 + 20467) -+ Waag

Since o, ag and o4 are arbitrary,

W, +W, = 2
- 2

2,68 = 3

. 2

oW e = =
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Solving the last two equations for ff yields

W, _1/5 2 _ 9
W T 1B S
So,
5 3 N
£y = = 5 = —£3
Then W, = %, and Wy, = % .
3.8 Exercise 3, p. 145
1 1 Mint
[ [stemagin = Y smmw
1 5 =1

i 10 1(2} & it Wi
1 1 1 —a —q 25/81
2 3 1 a | —o 25/81
3 3 3 o o 25/81
4 1 3 -0 o 25/81
5 2 1 0 —C 40/81
6 3 2 « 0 40/81
7 2 3 0 ol 40/81
8 1 2 —« 0 10/81
9 2 2 0 0 64/81

where o= \/g

3.8 Exercise 4, p. 145

One-point Gaussian rule:

/I/I/Igd(jdndg‘ ~  8¢(0,0,0)

-1 -1 —1
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Consequently W1 = 8, €, = i = {; = 0.

2 x 2 x 2 Gausstan rule:

j/l/lgdgdndc N ig(éf,ﬁhfs)wf

-1 -1 —1

l 1) 12 1) & h Gt Wy
1 1 1 1 —a —ex —Q 1
2 2 1 1 @ —a —a 1
3 2 2 1 Q o — 1
4 1 2 1 —-a o — 1
5 1 1 2 —a —a o 1
6 2 1 2 oY —o Q 1
7 2 2 2 o o o 1
8 1 2 2 —o @ o 1

where o« = 713

3.8 Exercise 5, p. 146

It is clear that the constants and linear functions will be integrated exactly so, checking

the quadratic terms

1 1

[ [(ast? + asen+amtyigdn = Glao+ )

Z1

The quadrature formula results in 2a%{ap + a3} and thus

2% =

ot
4
&
|
H

The third-order terms will also be integrated exactly by this formula and hence it is fourth-

order accurate.
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3.10 Exercise 1, p. 152

Assume B and D are already given. Let A and M denote the number of addition and
multiplication operations, respectively. For each integration point, the following operations
are performed:

Setup of D: D = jé)«W;xD

D 1s assumed symmetrie; its dimensions are NSTR x NSTR. Let const = j(é;) * Wy for
integration point I. The necessary multiplications are performed by employing a do-loop

structure accounting for symmectry (see subroutine SETUPD in DLEARN):

For J = 1,NSTR

For 7 =1,J
ﬁ[} = COIlb‘t*DIJ
}jJI = ijfj

Note that the inner loop is executed 1 +2 + -++ + NSTR = INSTR * (NSTR + 1) times.

Thus to set up D requires at each integration point:
A=10

M=1+ %NSTR* (NSTR + 1)

D « B product:

The dimension of B is NSTR x NEE. {Recall NSTR < NROWB, the number of rows
in B set aside for storage.) The numbers of operations necessary to perform the matrix

product at each integration point are:

A = NEE * NSTR ##2
M = NEE * NSTR ##%2

(See the calling statement to subroutine MULTAB in QDCK and subroutine MULTAB
itsclf.)
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BT x (D B) product and accumulation in k¢:

For thesc operations, see subroutine BTDB and the calling statement to BTDB in sub-
routine QDCK. The innermost loop of BTDB is called sNEE * (NEE + 1) times. The dot
product executed in function COLDOT requires NSTR additions and NSTR multiplica-

tions per call. The total numbers of operations per integration point are thus

A= %NEE* (NEE + 1) « (NSTR + 1)

1
M = ~2~NEE * (NEE + 1) « NSTR

The extra addition accounts for the accurmnulation into k¢ (i.e., ELSTIF).

Summary:

The operation counts must be multiplied by the number of integration points, NINT,
resulting in:

A = NINT % {NEE * NSTR #%2 + %NEE + (NEE + 1) % (NSTR + 1)}

M = NINT * {1 + -;—NSTR # (NSTR + 1) + NEE  NSTR. #%2 -+ %NEE « (NEE + 1) * NSTR}

3.10 Exercise 2, p. 153

The operation counts for a two-dimensional, isotropic, plane-stress, four-node element are
performed with reference to the arrays defined by (3.10.6) and (3.10.7). For each integration
point, the following operations are performed:

Setup of D: D = J(éf) * Wi D

One multiplication is needed to determine const = j(é;) * W;. Note that in the 1sotropic
case Dy1 = Dyy (see (2.7.34) and (2.7.35) ) and thercfore only three additional multiplica-

tions arc needed to calculate const *x I (see (3.10.7) ). Thus

A=0

M=14



D * B product:

From the formula given in the box on p. 153 it is clear that six multiplications are required

to form D * By, b= 1,2,--+,n,,. Therefore

A=0

M = 6ng,

BT « (DB) product and accumulation in k*:

The formula in the innermost loop in the box on p. 153 requires eight additions and eight
multiplications to calculate BT + (D B;). The innermost loop accounts for symmetry and
is seen to be executed only %nen(nm + 1) times. Therefore

A =dn(ne, + 1)

M = 4nen(ncn -+ ]-)

Summary:

A = 4nen(nen + 1)nint

M = (4 + 6nen + 4”&?1(“61}. + 1))nint

For a four-node element n.,, = 4. Therefore

A = B0nipy

M = 108nint

Comparison with Implementation 1 (Sec results of previous exercise.):
For the element under consideration NEE = 8 and NSTR = 3. Therefore

A = 21 Gnint

M — 187ﬂint

Thus we see that in this case, Implementation 2 is roughly twice as efficient as Implemen-

tation 1.
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3.10 Exercise 3, p. 156

Note first of all that for the plane-stress option A in the box on p. 155 needs to be replaced
by A as defined in (2.7.35). This obscrvation will not effect our operation counts since it
is common to all implementations. The operation counts per integration point are given

as follows:

First nested loop construction:

There is one multiplication to form const = j(é;)W;. The multiplication temp == const -
Nb,j(é;) is executed n.pn.q times. The addition and multiplication kfajb + temp - Na,g(é;)

is executed %ne,,,waed(?zenned + 1) times. Therefore

1
A = Enenned(nenned + 1)

1
M=1+ Nentled + Encnned(nenned + 1)

Second nested loop construction:

The caleulation temp = 372 kf,,, involves ri.q— 1 additions. This calculation is exccuted
-;—neﬂ(nm +1) times, resulting in a total number of additions equal to %nen(nm +1){neq—1).

So

1
== _nen(nen + 1)(ned - 1)

A 2
M=270

The if-then-clse-endif construction is executed %ne,,(nm-}-l)-%?'zed(ncd+1) times. However,
the test “¢ = j” will only be passed -;-nen(nen + 1)neq times. Thus the two multiplications

and onc addition, ¢1kf,;, + catemp, will be executed %nm(nen + 1)n.q times, resulting in

1
A= Enen(ncn + l)ned

M = nen(nen + 1)ned

The test “4 = 57 will be failed the remaining %nen(?ten + 1){%ned(ned + 1) — neg) =
%nm(nen +1)- %ned(ned — 1) times. Now we necd to consider the test “a = 5.7 This will be
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passed ney %ned(ned —1) times, and failed the remaining {%nen(nm + 1)—?1871}-%?';60;(?16{; —

1) = §nen(nen — 1) - 37120d(nea — 1) times. Therefore the single multiplication ¢ kf, ;, will

be executed n,,, - %ned(n,,d — 1) times, whereas the two multiplications and one addition,
c3kfu3‘b + ¢y k;aéb! will be performed %nm(nen —1)- %ned(ned — 1) times. Consequently, for

the if-then-elsc-endif construction, we have

1 1 1
A= —2—nm(nen + 1)neq + Enen(ncn —1)- aned(”ed —1)

1 1
M = ?""en(nen + 1)ne.d. + e "Q“ncd(ned - 1) + §ne.n(nerr. - 1)n-efl(ncd - 1)

Summary:

1 1 1 1
A= {§Henned(nen”cd -+ 1) + 5”&?1(“611 + 1)(2ned - 1) + §neﬂ.(nen - 1) . §ncd(ned - 1)}nint

1
M = {1 + MenNed + ;nenned(”enncd + 1) + nen(nen + 1)”96{

1 1
4 1ten - 5??’€d(?38d - 1) + é’rﬁen(nen - 1)?3ed(ncd - 1)}”int

Comparison with the previous exercise:
For the element under consideration n., = 4 and neq = 2. Therefore for Iinplementation 3,

A = T2ny4

M =10 ]_niut

Note that the numbers of additions and multiplications for Implementation 3 are only
slightly less than those for Implementation 2. Implementation 3 is superior on this basis
but only slightly so. In three dimensions (see the next exercise) the superiority becomes

considerable,
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3.10 Exercise 4, p. 156

The operation counts for Implementations 1 and 3 are valid for the three-dimensional,
wotropic case. We need to generalize the operation counts for Implementation 2, which

was restricted to the two-dimensional, isotropic, plane-stress case.
Setup of D: D =jé)+WxD
In Excrcise 5 of Sec. 2.7, the matrix D was constructed for the three-dimensional case:

Dy Dy Dy O 0 0
Dao Do 0 0 0

Diys 0 0 0

D =
D44 0 0
Symmetric Dy 0
- DGS—
where

Dh = Dy = Dgz = A+2p
Dy = Dz = Dy = A (1)
Dy = Dss = Dgg = 7

Note, there are only three distinet cocfficients. Thus, the situation is similar to the two-

dimensional case (sce Exercise 2) in that only four multiplications are required to construct

D). Thus

D » B product:

The formula for D * By in the box on page 153 needs to be generalized to the three-

dimensional case. We recall also the definition of the matrix B; in three dimensions given
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by (2.9.4). Let B; = Ny, 1 =1,2,3. Then

Note that, due to the fact,

it follows that

$0 1t 13 only necessary to perform nine of the

D By. Therefore (cf. Exercise 2)

[ DBy,

DssBs
| Des B2

DBy
DBy,
DBy,
DBy,
DBy

D DBs

76

DBlZ
DB,,
DB,
ﬁBu
DBs,
f)BSZ

Dyy B,
Dyy By
D3 B
D Bs

J566-31

DBy
DBg,
DBy,
Dle

D Bg;

DBgy

/

O1en

BBlS
DB,
DB,
ﬁB«is
DBs,
ﬁBea

Dy3By

D33 By
D33 B,
Dya By
D55 B,

(2)

indicated fifteen multiplications to calculate



BT « (DB) product and accumulation in k*:

Now let B; = N,;, i = 1,2,3. The product Bl « (f)Bb) has the following form (cf. the
box on p. 153):

B\DBi, + ByDBs, + B:DBg; B1DByy + B2DBes BiDBys + By DBs,
BQIjBQI + B1 D D¢, Bzf’Bzz + BSJszlZ + By f)Bsz Bzf’st + B3I~)B43
B; DBy + B, DBs, B3DByy + By DBy B3DBss + ByDBys + By D Bss

Accounting for relations (2) above, we conclude that of the twenty-one indicated multi-
plications, only eighteen are independent. There are twelve additions required to form
this produet, plus nine more to accumulate into kf,. Recalling that the innermost loop is

executed 3nen(ney + 1) times, we have

A= 22_1nen(nen + 1)

M = nep(nen + 1)

Summary for Implementation 2:

21
A= (?nen(nen + 1)) Nint

M = (4 + Mnen + gnen(nen + 1)) Tiint,

Comparison of implementations for the eight-node brick:

Implementation 1

NEE = NEN+NED = 83 = 24
NSTR = 6
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Implementation 2
A = 756'”.311‘

M = T24n,:

Implementation 3
A = 564n;,.
M = 733?1111{,

Discussion

Note that Implementation 3 reduces additions considerably compared with Implementa-

tion 2, however, the number of multiplications is slightly greater.

It is interesting to note that if the identities (1) were not employed in Implementation 2,
the number of additions would remain the same but the number of multiplications would

greatly incresse to

21
M = (1{] + 15n., + Enen(nen + 1)) Mint

which for the eight-node brick results in

M = 886m;n,

Often, an elasticity element routine is implemented in this fashion since the form of the

coefficient matrix is applicable to the orthotropic case, as well as isotropy.

3.11 Exercise 1, p. 156

Interelement compatibility (C2) is not maintained between elements 1 and 3, nor between
clements 2 and 4 because 1 and 2 permit quadratic displacements along their edges, while

3 and 4 arc limited to linear edge displaccments.

To fix the mesh, clements 3 and 4 could use quadratic shape functions along the appropriate
edges. Clearly, this adds no additional nodes to the mesh. Element 3, for example, would

have the nodal arrangement shown in the following figure.
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3.11 Exercise 2, p. 157

1
T R AGYEIY
1
3 ) L c - P
e =) Nogzg = (€ =321 —2ey +(E+ )25 = A7/2
a=1
So with f constant,
he f
foo= f; /Na(g)dg
<1

Using exact integration it can be shown that

e [ 1

. = 4
| 1 LEE 1)
fi= [M@ @i -Dacae = [Na©oe-Da = { 1o
-1 B 2601+
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Forz = 2§, € = -1 and
1
fo = 40
0

Forz =2, € =0 and
0
fo = §1
0

c. If 2§ # $(2% + 28), = ¢ is a linear polynomial in £ and

1

g b g

—1 quadratic linear

The integrand is third order so njy; = 2 is required to attain exact integration.

d. z3 = %(i?f + z§) 80 ¢ is a constant.

1 1
o= /(Na,e (2e) ) Nog(ze) e ede = (m,f)_I/NassNb,Edﬁ
w1 =1

The integrand is quadratic so nye = 2 is needed for exact integration.

e. The solution to this part is given in the text.

£.

E
T — 2§

he

= ((i Noa§) - o} ) /h°

= 31" (-;-(52 -6zt + (1 — xS + %(52 + )zt — xf)

1 2
= &+
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Thercfore
(£ = —1+247r

Then ¢, = 1/4/r . Using the chain rule,

uﬁ,(?‘(g)) = u‘:‘lf(g) f,r

= )

1

The singularity is of order 5 and corresponds to Westergaard's elasticity solution for the

crack-tip strain field.

3.11 Exercise 3, p. 159

We only need to modify N; and Nj.

N; = N1—§IV5
For £ <0,
, 1 1 1
N o= 090 -0)-70+00-n) = —301-n¥
For £ > 0,
1 1
Npo= 080 -n)-(1-H(0-n) = 0
Similarly,
, 0, for £ <0
N2= 1
{55(1—??), for £ > 0.
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3.11 Exercise 4, p. 159

We want to obtain

4
roo= ZNa(f,:q)rz
a=1

With only four nodes, the interpolation is of the form

r = apt+oé+ oan+ azén
FOI'Cirlg T(gm??a) = Ta,
ry 1 -1 -1 1 Qg
7 o 1 1 -1 -1 Qg
T3 B 1 1 1 1 a2
T4 1 -1 1 -1 “3

Solution of this system leads to the standard bilinear shape functions (see Sec. 3.2). The

situation is similar for f. Checking conditions (i)-(iv) is a simple cxercise, e.g.,

. 1 1
(i) r(—1,) = rl[z[l - &(1-n)+ Z(l —&14+n)] = r ,ete
Notice that the rectilinear parent domain is mapped onto the curvilinear physical domain.

3.11 Exercise 5, p. 160

4

Tz = Z JVa}E;r:j

a=1

- 'flg(~2752'+ 18 + 1)(—h/2) + 55(8152 —~ 18§ - 27)(—h¢/6)

- %(8152 +18¢ — 27)(h*/6) + 11"6(2752 +18¢ — 1)(h¢/2)

1 81 2 27 e
= lRT -+ O+ -1+ )k

= h¢/2
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es = e, = 2e¢/h°

Using the same strategy as in part {e) of Exercise 2,

If u(£) is cubic then u*(£) = u(£) . Assume u(€) = C¢€* and w"(¢) is nodally exact. Then
€e = “?g(f) - U,s(f)
4
= z Nu,.ﬁuh(ga) - 4053
a==1

_ Lo 1a o,
= 15(=278 + 186+ 1)C + (8167 — 186 — 27)(C/81)

1 4 .
= 75036 — gHC - 4CE

e = 0 requires £ = { or

2 o Llgg i 2 _ 3
W08 = B6-5)0 = & = g

Therctore

3.11 Exercise 6, p. 161
. Weak formulation:

/ wh 1 = / w((kigte ) + f) A2
Q

Q

= w/w’z}czju,j dQ-}-/wmiju,jnidF—#/wfdQ

0 Iy LY

83



Define
§ = {ujue H(Q), u=gVeeT,}
= {w‘wEHl(Q), w=0Ve cT,}

Then, given f,¢, and h, find u € § such that for all w € V,

/w,m,-ju,jdﬂ—l—/.wbiu,,;dﬂ = fwfdQ+/whdI‘

Q Q Q 'y

. Galerkin formulation:

Let §* € S and V* C V be defined in the usual way. Then find u* € S* such that for all
wh € Vh
/wf:"iz)uf; dQ"i‘/whb;ui dQl = fwhfdﬂ+/whhdr

0 0 Q2 I‘fr,

Define w” and u* in terms of shape functions in the usual way. Then

> {/Nﬂ,gmijNB,de'dQ+/NAb,'NB,gdB,dQ} =
Ben—n, g )

fNAfdQ+/NAth— Z {fNAigmijNB,jdQ-I—]NAbiNB,idQ}gB VAEn—n,
L9 T'n 0 4

BE?"IQ

Thus
IfPQ == a(NA,NB)+b(NA,N}3)
Fp = (Naf)+(Nabhr= > [a(Na, Np)+b(Na, Na)lgn
nen,
where

(I(NA, N}}) - /NA,i-‘ﬁ-ijNB,j dQ a.nd E)(NA, NB) = /NAngB,idQ
1 Ly

and P = ID(A), @ = ID(B).
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c. Consider fwhbiuffi dQ) where w" € V* and u" € S*. Integrating by parts,
Q

/ whbt-ufi- dQ =

Q

_/(whllli),,;uhd9+/whbiuhni dl’
2

Th

= - /{wﬁb;uh + whb; ;™) dO + /_whb,-uhn,; dr
Q

If bz_.g = (on Q, and bgng = 0on Fh ,

/ whbiuhdQ =
i
which implies

Kbg = bNa,Ng)- =

Thus this stilfness contribution is skew-symmetric.

3.11 Exercise 7, p. 161

a. For two-dimensional problems,

Cn

*[wfib@uh ds?

—b(NB 3 NA) = -_ Xrg)P

/dg = flfljdfdn

Qe -1-1

where

m:s 'Ts'?
7 = det =
Ye¢ Yq

For the four-node bilinear element,

o1 (1—n)(xs — z1) + (1 4 n)(as — 24)
j = —det

16 (1 —)(y2 —y1) + (14 0)(ys — va)
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ZNa,qya

(1—§&)(zg —21) + (T +E)(z3 — 22)
(1= &)(ya —y1) + (1 +E)ys — y2)



The only quadratic terms in 7 are of the form £7. Terms of this form and linear terms are

integrated exactly by one-point Gaussian quadrature.

. By (3.9.3) and (3.9.9)

|
uly = ) (Nap Ney)dS
a=1
4
]_ y,ﬂ _:I:ﬂ? "
= ) =(Nog Nap) de
1‘1_1‘} yls T!E
1 1
/uf};dﬂ = //uiéjdfdn
e —1-—-1
1 1
: Y —Ion
— Z//(Na__ﬁ Ny | dédn d;
(1:1_1 -1 _ysE :LJE

4 1 1
- Z / /{(Na,fy,?} - j\rﬂjfp'yjf)d;a - (Nﬂ'ﬂfxs?] - Najnw;‘f)dga} dﬁ- d??
) 1

Examining this expression, we note that for the four-node bilinear clement all derivatives
of N, , z and y with respect to € are lincar polynomials in » and vice versa (e.g., scc the
entries in the Jacobian matrix j above). The only quadratic terms in the integrand are thus
of the form &7 and are integrated exactly by one-point Gaussian quadrature. Likewise, the

linear terms in § and # are integrated exactly by one-point Gaussian quadrature. Thercfore

1 1
[obean = [ [ubiacan

e -1 —1

= 4u7,(0,0)7(0,0)

Conscquently, if u_?ji([):(]) = 0, then [ wf,dQ = 0.
e
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3.11 Exercise 8, p. 162

The solution to this problem is given in the text.

3.11 Exercise 9, p. 162

f'fl = /lede y f:§5 - /stz df}
0 Q

where, from Exercise 1, Sec. 3.7,

M= M) = (Lt (1)

and

N(E) = S -€)(1-n)

1

o = /]M&WM£®

—1 =1

1 1

2
= -—g%f/Nl d¢ dn

-1 -1

h?, 1 1
fis = —op [ [Nedean



The nodal forces at the corners point in the positive y-direction whereas the gravitational

force is assumed to act in the negative y-direction.

3.11 Exercise 10, p. 163

As in Exercise 8,

1
fNah{dF = hi/Na3,£d€
Tg, —1

In general

S = \/(93,5)2 +(y,¢)?
Since the threc nodes do not lie on a straight line the integrand is generally nef a poly-

nomial in £ {due to the square-root), and hence cannot be integrated exactly by Gaussian

quadrature.

3.11 Exercise 11, p. 163

Note that
by = —pni(§)
so 1n this case
1
/Nalli dl’ = —-p/Nang.S,E d&
Th, -1

where

5= /(2.6 + (e

as before, and
_¥e o T
S’E} S'&

7i1

N, is a sccond-order polynomial in £, while the product n, s ¢ is a first-order polynomial
in §. Thus the combined result is a third-order polynomial and thus two-point Gaussian

quadrature 1s required for exact integration.
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3.11 Exercise 12, p. 163

Consider the pressure applied to the surface ¢ = 1. The isoparamectric mapping restricted
to this surface is

8 4
z=> Nién1)as =) Nin)e;
a=1 a=1
where the N}’s are the usual bilincar shape functions in £€,7. The vectors 2 ¢ and @ ,, arc
tangent to the surface and the normal is parallel to, and in the same directions as, their

cross product. Hence

n— :B]E x :13’;?
(|

The prescribed traction contribution to the force vector is

= /N:hidr = . —p]N:nng‘
T‘h, l—\h‘
1 1
= [ [ NiE e leeem x el dedn
21l
i1
= -—p//N: (e X &) dE dn
S

For the trilinear brick ® ¢(£,7) is linear in #, and @ ,(£,n) is linear in {. The result,
combined with N, is a biguadratic polynomial in £,5. Thus 2 x 2 Gaussian quadrature is

needed to exactly integrate constant normal pressure.

3.11 Exercise 13, p. 163

As in the previous problem,

£ = —p/fN; (e x @ y)idédy



For the triquadratic brick, N¥(£,7) is biquadratic in £ and 5, @ ¢(£,n) islincarin ¢ and
quadratic in #, and 2 ,(£,n) is linear in 5 and quadratic in £ The combined result
contains monomials of order no higher than five in £ or . Thus we need 3 x 3 Gaussian

quadrature to exactly integrate the normal pressure.

Appendix 3.1 Exercise 1, p. 169

’
Tl(T) = 1
1 2r
To(r) = £ - 1) = 68 —1) = 4r
Ts(r) = eg(% -1 = fL@r—1) = 2r(4r-1)
Tu(r)y = Ei(% -1y = ff‘i(g—? -1 = %r(f-’h‘ — 1){(2r - 1)
4, 2T 4 4
Ts(r) = 35(—?—‘; —1) = £(2r—1) = r(d4r —1)(2r — 1)(5; -1
Then,
No(rys,t) = Ti(r)Ti(s) Tw(t)

90



where the indices are related as follows:

a I J K a I J K
1 5 1 1 9 1 2 4
2 1 5 1 10 2 1 4
3 1 1 5 11 3 1 3
4 4 2 1 12 4 1 2
5 3 3 1 13 3 2 2
6 2 4 1 14 2 3 2
7 1 4 2 15 2 2 3
8 1 3 3
Appendix 3.1 Exercise 2, p. 169
From the quadrafic triangle, Ny = 4rs . Then
, 1
N = Nl—-—2-N4 = r—2rs = 7r(l-—2s)
Similarly,
Ny = s{1-2r)
Ny = t=1—pr—3s
Appendix 3.I Exercise 3, p. 170
The 10 node quadratic tetrahedron:
No(rys,t,u) = Tr(r)Ty(s) Tr(t) To(u)
Using Figure 3.1.9,
N = eg(k ~1) = 2r(r—1)
r3
By cyclic symmectry,
N2 = 8(23 -1) Ng = f(gf— 1) N4 =
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drs

2r 2s
Ny = gé(?{ —~1) e;(s—z - 1)
Similarly,

Ng = 4st N7 = 4diun Ny = 4ru Ng = 4rt Nyp = 4su

It is casily verified that these functions satisfy the interpolation property.
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CHAPTER 4

4.1 Exercise 1, p. 187

Yw ¢ V

and Yw" € V*

Sinceg = 0utcViandueV

Thus,

with f(2) = é6(x — &)e;

alw,u) = (uf)

" f) < (wf)

(u* eb(x — &) < (u,ed(z—&))

4.1 Exercise 2, p. 188

e

€

= ul(@) < ui®)

i {l (u+ew, u+ ew)
dele=o 20 k

—{u+ew, f)—(u+ew, 11)1"}

d

de E:n{la(u, u) —{(u, ) — (u, hjr + ea(w, u)

2

L,
t e a(waw)—f(w;f)—f(‘”*h)r}

alw, u)~{w, f})—(w, h)r
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Thus

if and only if
d

de

IU) = 0

e={)

b. For I{U,) to attain a minimum at %, the following must hold:

d
. —| IU,) = 0
' de =0 ( )
L
11. @ €:OI(UE) Z 0

From part a, u satisfies 1. Also from a,

d d
21Uy = {setu,w) - (w )~ (u, b
+ela(w, w) — (w, £) — (w, Wr} + yealw, w) }
and thus
d? d
—IU) = E{a('w, W) — (w, f) - (w, h)p + ealw, w)}
= a(w, w)
Consequently,
di;f:uI(U") = a(w, w)

Since a(-, -) is positive definite,

alw,w) > 0

Thus I(U,) is minimized at u.

c. By part b, I is minimized at u € 8. Since ©* € §* C 8, it follows that I(u") > I(u).
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4.1 Exercise 3, p. 190

Tells < ek
B =min{k+1-s,2(k+1—-—m)}
m=1,k=2

ForL,, s =0=k+1—-s =3, 2(k+1-m) =4 Therefore
fello < ch®flull
For H', s =1 =k+1—-s =2, 2(k+1—m) = 4. Thereforc

bels < ch®Jlull

4.1 Exercise 4, p. 190

For Bernoulli-Euler beam theory, m = 2. For Hermite cubics, k£ = 3.

space s k+1-—s 2(k +1—m) | e ]|s convergence rate
La 0 4 4 h4
H! 1 3 4 h?
H? 2 2 4 h*

4.2 Exercise 1, p. 193

| X+ 2 A 0
0 0 I

For planc stress

_ - 221
X «— A where AT)\-}-Q#

(2.7.35)
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Since

2vp
N = 4.2.3
1-—-2v ( )
- v
A= 1—w
Hence,
limA = 24
v—i

Thus the coeflicients of the isotropic plane stress constitutive equation remain bounded as

1
V—i'z".

4.3 Exercise 1, p. 199

We need to show that

/’w(s,j)ffﬁj dQ = a(w,u)—(divw,p)
1
By definition,
a(w s u) - (C].IV w ;p) = /w(i,j)#(éikﬁjl + ‘5i15jk)u(k,l) 4 — /wi,i de
2 !

= zf#w(i,jlu(i,j}dﬂ - /w,',,-de
2 Y]

SR

w(;, 0, 40 = ]w(a‘,j)(—Pﬁﬁ+2#u(s,j))d9
1]

= prw(é,j)u(,‘,j) dﬂmfwg,gpdg
LY 2

The remaining terms are clearly identical.
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4.3 Exercise 2, p. 200

We need to show that (1.4.11) and (1.4.13) are satisfied, namely

a(w,v) = alv,u)
algu+ v, w) = caluw,w)+ca(v,w)
where
a(w,u) = f Wi, ) Cijkrti,p dS)
o
and
Gijet = p(ixbs+ Sudsi)

Note that &z = €rij, the so-called major symmetry. Consequently,
(_I('H. , ’U) = ]u(m) E,‘jﬂv(k,;) dfd

12

= f U(k (R U (1 5) D82
0

= a(v,u)

Lincanty 1s straightforward, viz.
&(clu + ot 'LU) = /(Clu“,j) -+ (:21_?(3',_5,‘))55}“1{)(]5‘1) d?
Q

= o f“(f,j)aia‘mw(k,:) d9+02/”(a,j)aijklw(k,t) dS}
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= aalu, w)+ cd(v, w)
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4.3 Exercise 3, p. 200

Positive definiteness of &y, :

Gijeibie = p(8inbit + Sudir bisbu
= p(ijdi; + i)

= 2wy 2

It follows from this result that if

I
=

CijriPi; e

then

Hence &,z 1s positive definite.

4.3 Exercise 4, p. 203

From (4.3.22)

Substituting into (4.3.23),

GTKYF-Gp)+Mp =

0

H

(M-G"K'Gyp = H-GTK'F

Rearranging yiclds the generalization of (4.3.26):

(GTK'G-Myp = G'K'F-H
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4.3 Exercise 5, p. 206

Part 1
ID array:
Global node numbers (A)
Global p ~ .
d.of. (¥) 1 2 3 4 5 6 7 8 9 10 11 12
1 0 2 5 7 10 13 16 19 22 0 27 30
2 0 3 0 8 11 14 17 20 23 25 28 31
3 1 4 6 9 12 15 18 21 24 26 29 32
The IEN array is unchanged; see Fig. 2.10.2.
LM array:
Element numbers (¢)
Local equation r . .
numbers (p) 1 2 3 4 5 6
1 0 2 7 10 16 19
2 0 3 8 11 17 20
3 1 4 9 12 18 21
4 2 5 10 13 19 22
5 3 0 11 14 20 23
6 4 6 12 15 21 24
7 10 13 19 22 27 30
8 11 14 20 23 28 31
9 12 15 21 24 29 32
10 7 10 16 19 0 27
11 8 11 17 20 25 28
12 9 12 18 21 26 29
The maximum half-bandwidth is 15.
Part 2
ID array:
Global node numbers (A)
Global - ~ .
d.of. (¢) 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 3 4 6 8 10 12 14 0 17 19
2 0 2 0 5 7 9 11 13 15 16 18 20
3 21 22 23 24 25 26 27 28 29 30 31 32
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The IEN array is unchanged.

LM array:

Element numbers (e)

Local equation

.

numbers (p) 1 2 3 4 5 6
1 0 1 4 o] 10 12
2 0 2 ] 7 11 13
3 21 22 24 25 27 28
4 1 3 6 & 12 14
5 2 0 7 9 13 15
6 22 23 25 26 28 29
7 6 8 12 14 17 19
3 T 9 13 15 18 20
9 25 26 28 20 al 32

10 4 6 10 12 0 17
11 9 7 il 13 16 18
12 24 25 27 28 30 31

The maximum half-bandwidth is 26. This illustrates that the segregated form increases

the band-profile population of the coefficient matrix. The sketches are straightforward

consequences of the LM arrays.

4.3 Exercise 6, p. 206

Part 1
ID array:
Glohal node numbers (4)
Global p .

d.of. (2) 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 3 4 7 10 12 15 18 0 22 25
2 0 2 0 5 8 11 13 16 19 20 23 26
3 0 0 0 6 9 0 14 17 0 21 24 0

The IEN array is unchanged.
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LM array:

Element numbers (e)

Local equation

numbers (p) 1 2 3 4 5 6
1 0 1 4 7 12 15
2 [{] 2 5 8 13. 16
3 0 0 0 0 0 0
4 1 3 7 10 15 18
5 2 0 8 11 16 19
6 0 0 0 0 0 0
7 i 10 15 18 22 25
8 8 11 [ 16 19 23 26
9 0 0 0 0 0 0
10 4 7 12 15 0 22
11 5 8 13 16 20 23
12 6 9 14 17 21 24
The maximum half-bandwidth is 13.
Part 2
ID array:
Global node numbers (A)
Global p o .
d.o.f. (%) 1 2 3 4 5 6 7 8 9 i0 11 12
1 1] 1 3 4 6 8 10 12 14 0 17 19
2 0 2 0 5 7 9 11 13 15 16 18 20
3 0 0 0 21 22 0 23 24 1] 25 26 ]

The IEN array 1s unchanged.
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LM array:

Element numbers {e)

Local equation y ~ .
numbers {p) 1 2 3 4 5 6
1 0 1 4 6 10 12
2 0 2 5 7 11 13
3 0 0 0 0 0 0
4 1 3 6 8 12 14
5 2 0 7 g 13 15
6 0 0 0 0 0 0
7 6 8 12 14 17 19
8 7 g 13 15 18 20
9 0 0 0 0 0 0
10 4 6 10 12 Q 17
11 5 7 11 13 16 | 18
12 21 22 23 24 25 | 26

The maximum half-bandwidth is 22. The conclusions are the same as for the previous

excreise.

4.4 Exercise 1, p. 223

Na(€n) = 71+ 3861+ 37an)

For the sclectively integrated nine-node quadrilatera.-i, pressure is interpolated at the 2 x 2

Gauss points,

o B Sl e T
d R~ o1 Il B
B DD 2]

Mg, = 40 -EE1 - VE)

Me,m) = 2(+vEO1- V)

102



M) = 0+ V3O +En)

1
N6, = 50—V +VEn)
From these expressions, it can be verified that the interpolation property is satisfied.

4.4 Exercise 2, p. 223

The sclcctive integration procedure can be implemented in the following two-loop gencr-

alization of the box on p. 151 in the text.

Loop over the number of normal integration points for k¢, [ = 1,2,..., fiins.
Set up the strain-displacement matrix B.
Set up the constitutive matrix D.
Multiply D« B.
Multiply BY' « (f)B), taking account of symmetry, and accumulate in k°.

Next integration point

Loop over the number of reduced integration points for Ee} I1=1,2,..., Agnt-
Set up the strain-displacement matrix B.

Set up the constitutive matrix D.
Multiply D * B.
Multiply B7 « (ﬁB)} taking account of symmetry, and accumulate in k°.

Next integration point
4.4 Exercise 3, p. 223

alw,u) = /w(f,j)cz'jkfuﬁk,f)dg
Q

103



For 1sotropic clasticity

alw,u) =

wii,g) {(8ikbjt + 8ibjr) + Aéijbui} ux,p dQ

SR

= /w(i,j)éijk;u(k,;) dl + /w(,;,g))\u(k,k) d?
9] 1]

= a(w, u)+ (divw, Adivu)

= d(w,u)+a(w, u)

4.4 Exercise 4, p. 225

The two-dimensional case is solved in the text. Here we consider the three-dimensional

case,
neg = 3(n-1)°
ne = n°—1 (normal integration; exact)
3 -1 3(n-—1)°
" nd-1 = nfin+l

As in the two-dimensional case, r improves as the order of the element increases:

n r
3
2 7
12
3 =3
9
4 7
00 3 (= n.a)
In the case of reduced integration of the A-term,
ne = {(n-— 1)3
r = 3 (= nsd) independent of n
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4.5 Exercise 1, p. 233

.\ 1 1 Nen
ey (u) = géijug,k = §6ijZNa,kd?m
a—=1
Vector form:
Lilg, by |
i () o
() !
dil h Tten
dily, h €33 (u") 1 (1 .
e“Hu") = _ SR N pdS,
() 0 (\32
égil(uh) 0
i
[ N,1 N.o2 N |
Ren j\ra,’] Na,z Nﬂ'-,3 dfa -
= 1 Neg Ngo Neg e, _ ZB;lildz
3,1:1 ﬂ U 0 dj,a a=1
0 0 0
] 0 0 0 )
Therefore
(B, B; B
B, B, B
g _ 1B B B,
310 0 0
0 0 G
| 0 0 0

where B; = N, ;.

4.6 Exercise 1, p. 241
Assume an isotropic, homogeneous material in which

cijpt = Aybg + p(Sindi + 8udsk)
where the Lamé parameters are constants. Thus we have

UG HCRIUGRD) T AU 2RUG UG )
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The exact stran cnergy is given by

1 A
é«/?a(i,j)cz‘j“u(hl) dafl = E/“isfufsj dﬂ+p/?£(i,j)u(i,j) df
$e Qe Qe

Given the regular gecometry of the two-dimensional element under consideration {i.e., r =
hE[2, y = hn/2), it is a simple matter to exactly evaluate these integrals. Likewise, it is

simple to evaluate the one-point quadrature expression for strain encrgy

: A
20 wg ek p)le=n=o = B (5“1?#”1,1 + ﬁ*“(z,j)U(iJ)N
E=n=0
These results are summarized in the following table:
Exact One-point
z-translation 0 0
y-translation 0 0
infinitesimal rotation 0 0
a-hourglass 2¢%(3 + 1) 0
y-hourglass 2¢%(2 + 1) 0
uniform z-extension 2¢2(A 4 244) 2¢%(A + 2p)
uniform y-extension 22 (A + 2p) 26N + 2u)
uniform shear 8ty 82

4.7 Exercise 1, p. 250

Ny(rys,t) = 1-2r
No(r,s,1) = 1 —2s

Na(r,s,8) = 124

a. Recall from (3.1.30) that

/ reBT A0 = it 54
J (@ + B+ v +2)
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where A is the element area.

[NfdQ = /(1—-2?')2059
e

1e

= /(1 — 4r +4r*)d

£

= /(r”s“tﬂ — 4rt %% 4 4925%¢%) dQ
QE

1 4 4.2
= (5*??)”‘

It is obvious that the same result is obtained for N} and N2.

/N2N3 i = /(1 — 2s)(1 — 2¢) d
S:!: Qrz

= /(1—23—2t+4.st)d9
Qe

= /(r%“f“ ~ 2r%14% — 2p%5%" + 4r%s'tt ) a2

Qe
1 2 2 4
= (-2 _Z42)24
(2 3! 3!+4!)
= 0

The calculation of the other cases yields identical results.

2
Neg = Ong,
Ng = Qngs
roo= 3



. We want shape functions that take on the value of one at the node they are associated
with {i.e., the centroid of one face of the tetrahedron) and vanish at the centroids of the
other faces. These requirements result in

Ni(r,s,t,u) = 1-3r Ny(r,s,t,u) = 1-—3s

Nay{r,s,t,u) = 1-3¢t Ny(rys,tu) = 1—3u

4.8 Exercise 1, p. 252

f o /Bg"adﬂ . aof{y‘?\;w}dﬂ

Q1= Qe

For a rectangular element aligned with the global z and y coordinates,

Na,x = Na,E&,z'{‘Na,nn,x = Na,.fg,x
5,1? ?J h]
hh

j o= 142 vol(§2¢) = hyihyt

N.B. The element thickness, f, was omitted in early printings of the book.

}},2 hlhz 2 1 . e
y = Zn = 2 n = ZEVOI(Q ¥,en
Thus,
1 e 2 1 e 2
yNoo = = vol(Q W) NN = — vol{Q)E ) "8a(l + 1am)
4t 16¢
1 +l
[otapan = o vy / f 71+ nan) dédn
Qe
Note that

+1 +1
/ ndnp = (, and / ntdn =
-1 —1
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Thus,

1
48t

1 4
JuNezd = o vol@P € 6m(3) = -

e

vol(Q°)*(£,2)"¢a

where ¢, = (=1)%. With g = *_\—'B%E(ELI $rdip), we have finally

fin e ol@) ¢ 124,(S, ducs)

4.8 Exercise 2, p. 252

Let the (z’,y') coordinate system be aligned with the (£, ) local coordinate system. Then
by using (4.8.5) and (4.8.7)

o cvol(ﬂe)[(f,zf)z 0 H%Z:ﬂ 15}

8 0 ()| | .20, d
Let
g (€s)* 0 _ [ 0
0 (?}-,yr)z 0 ("? z! )2
where
' [ 4 f
T, =, g = Y
T} _ oln
zh B *2
and
G _ 6w1 6532
Or; Oz
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Since z§ and z!, are parallel to £ and 7, respectively,

-1
"I:fl,ﬁ = (g,zﬁ)

and therefore

! -1 g
‘52,?] == (\'q,x;) 3’1,1} = {

Oz ) ) {,z,
_8_':?: = :.‘L‘l,gg,zl -+ 371,?]7?,2:1 = E,x’]
Thus,
b Lo |
- £t S
I S P
Tat Tz
fint —= G?'fint"
'}
, 1h
d, = = Gd,
dy,
and
4
fint ¢ VO]‘(Qe)é GTQ'G Zb:l dlb
’ 43 ZL] das
where
g,zif,rl E,:c;lf,zg
gG =
.z, ??,:85 T},zz?},z;
(6@1)2 + (n,xl)z g'flfsiﬁ? + ??»fl??,i'?
GTgG =
_£,$2£,£1 + T;],xg ??,:cl ((5,2:2)2 + (n,i‘g)z
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The result can he written compactly in indexcd notation as:
int int
fa - { ta }

4
= $i;¢a Zﬁf’bd;‘b (sum on 7 = 1,2)

=1

where

¢ vol(£2¢)

S = T (f,x.‘f,x_, + ??,x."?,xg)

4.8 Exercise 3, p. 254

(’).’:g
S 6;; and z; = 24:1 Nox;e . Therefore
ij @

a. Ty =
4 4
ij“xiﬂ = ZNa,Jm:'ﬂ. == L5 = 513
a=1 a=1

b. This is equivalent fo proving

4 4
a1 = — E hpxis, ay = E hpxap, and a3
=1

=1

We recall (4.8.14)—(4.8.16):
4 4 4
Z(rﬁa =0 1 Z(ﬁamla =0 1 Z(ﬁam'za = U
a=1 a=1

Employing the first of these and the definition of ¢, yiclds

4 4 4 4
@y batory butdaty b o= Y ¢ =
a=] a=1 a=1
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Note that 3% _ h, =(~1+1~-141)=0. Thus

4 4
alzbla + a3 Zan +4a3 = 0
a=1 a==1
We recall that

4 4 4
>N, = 1 and Y Negwy = > Nagy = 0
a=1 a=1 a=l

and, using the definitions from part a, we get

4 4

Zbla = ZNG;T-I = 0 EbZQ - ZNa,a:g =0

a=1 a=l a=1 a=1

Combining these results yields a3 = 0.

Now we employ (4.8.15) and the definition of ¢,:

4 4 4 4 4
ay g b1aT14 + G2 E baa®1q + a3 E T1a + E haxla = E ';ibamla. =0
a=1 a=1 a=1 a=1 a==1

By part a,

4 4
Zblaxla - 1 Zbgaxla = 0
a=1 a=1

Since a3z = 0

4
43] = - E IIhu.-"""la.
a=1

Likewise, we employ (4.8.16), the definition of $a, and similar reasoning to obtain:

4
0 = E ¢aﬂ72a
a=1
a=1

4 4 4 4
= a4 E bia2, + 02 E boaTaa + a3 E T2a + E BaZ2q
a=1 a=1 a=]

4
= az + E ha$2a
a=1
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Thercfore
4
az — - -_S ha, Tqa
a:l

Thus we have obtained the desired result:

4

b = ho— > [(hsz1a)bra + (Roz2s)ba]

b=1

4.9 Exercise 4, p. 258

From See. 4.1, p. 190, using results obtained by the Aubin-Nitsche method:
lefls < b’ | u ks

where 8 = min(k +1 - 5,2(k+1—-m)) and 0 < s £ m. For elasticity, m = 1. For
complete fifth-order polynomials, & = 5. Thus for s = 0, § = min(6,2(6 — 1)} = 6. For
s=1, f=mn(5 2(5 - 1)) = 5. Therefore

lello < ch®flulls and ey < ch®|lulls

4.9 Exercise 5, p. 258

The standard error estimate, from Sec. 4.1, p. 190, is
leltm < ™7™ ffu i

Here m = 1, so,

lel: < eh®llulle

Since || e |1 = O(h?), k = 2. Therefore the nine-node Lagrangian clement was used.
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Iy.

4.9 Exercise 6, p. 258

. Lagrange-multiplier method:

Let

H(d,m) = F(d)+mG(d)
where

Fd) = -;-dTKd—dTF and  G(d) = di+d

Minimizing H results in

K 1
d = F where 1 = :
17 0 m 0 1
or, in expanded form,
K eKN dq F
ek K ds = Fy
i 1 m 0
For K =1, and ¢ = 0,
1 0 1| {d £
0 1 1 ds = F 28
1 1 0 m 0
Solving,
1 1 :
= —(FJ +F2) s dl = §(F] --—FQ) and dg = §(Fg _Fl)
Penalty method:
Let
k
I(d) = F(d)+ §Q(d)2
Minimizing 7 results in
(K+k11"d = F
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K+k eK+k dy F

eK+k K4k da Fy
Setting € =0 and K = 1, we have
REEI R
k 1+k d, By
The solution 1s
dy = %—%:Fl *"'#{FQ and d; = ;i—i:iﬁ’g - 2_-{-1FF1

Thus,
. 1 . 1
kl-l_l"l;o d] = §(F1 - Fg) and klll;l;lo d2 = Q(Fz — F])

From (4.2.27)

I

kg(d)
= E(di+da)

1
= 2—|—k_1(Fl + Fy)

Note that

. 1 1
m o= lim o B = S+ By

4.9 Exercise 7, p. 258

a. Lagrange-multiplier method:

Kd = F adp+ fdg = v
Sa,
Gid) = (a1t + ,@'lg)d —v and  H(d,m) = F(d)+ mG(d)
Setting
oH OH OH
e — = — = € ]. e —
ad;y 0, dd, 0 anc dm 0



results in the matrix equation

K alp 4+ flg d F}
ald + p1% 0 o N

. Penalty method:

1
m = kG(d) , I(d) = Fd)+ §kg(d)2
Minimization of 7 leads to

(K + kalp + B1g)(a1} + 815)]d = F +k(alp+flg)y

4.9 Exercise 8, p. 259

. “Enrichcd” bilincar displacement—constant pressure element:

r o= E = 6
1
4.9 Exercise 9, p. 259
24
= — = 2
" 12

4.9 Exercise 10, p. 259

Problem 2 requires d, = z, but dsy = 2 # 2.1 = z5. So the element fails the patcl

test because it does not represent the linear temperature field,

wlez,y) = <«
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ii.

4.9 Exercise 11, p. 260

See the examples on the bottom of p. 238. The solution at nodes a = 5,6,7,8 may be
determined from the tables in the examples on p. 238 and the table on the top of p. 261.

Appendix 4.I Exercise 1, p. 265

Positive-definiteness immediately follows from property (iv) of the definition of an inner

product (p. 264).

Naz || = (az, az)t = (a¥(z, 2))T = |a|||z]]

fezt+yll={z+y,z+ y)% = ({z, 2} +2{z, y)+{y, y})z . Using the Schwarz inequality,

(e, w)l < (z,2)y, w)?

Therefore

)
b=

e+l < (o, o) +2, Dy, )7+, 9)

1
z

= (et t)] = den+iv

Appendix 4.1 Exercise 2, p. 268

It is obvious that f = log (logr )} is not in Cf(£2) because it is unbounded at r = 0, hence
not continuous. The H!({)} norm can be expressed in terms of the L, norm and the H?

seminorm:

IFIE = IAIS + 113
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To calculate the H' seminorm of f it is convenient to work in polar coordinates.

i = [ (2 ostionr ™))
T = gllogr™")) ) rdrdf
o b dr
1 2
s/ 1
5 /0" du
- i —_—
Ingzuz

(log2)-1
= 2’}‘1’/ dU
0

2r
log 2

1

We made use of the substitutions u = logr~! and v = u~! in the above calculations.

In order to bound the L, norm of f we consider an auxiliary function
g = f—log(log2) in

which was selected to satisfy the following two conditions:

lgl: = [fl
g = 0 on Jf}

Satisfaction of the second condition allows us to apply a Poincaré-Friedrichs inequality™

which states that therc cxists a constant ¢ = ¢({2) such that

clgf > gl

This 13 a well-known result in functional analysis with numerous applications in finite
element methods; see, e.g., G. Strang and G. J. Pix, An Analysis of the Finite Element
Method, Prentice-Hall, 1973, p. 42 for the derivation of a one-dimensional version of the
inequality, and p. 69 for the statement of a two-dimensional version; a proof for the multi-
dimensional case is presented by B. Mercier, Topics in Finite Element Solution of Elliptic
Problems, Springer-Verlag, 1979, pp. 9-10; also sce J. Mason, Methods of Functional
Analysis for Application in Solid Mechanics, Elsevier, 1985, p. 94 and references thercin,
for generalizations and proofs of inequalities this type.

*
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Therefore

\/E|f|1 \/E|g|1

Z  lgllo
= ||f —log(log2){lo
= Ifllo — || log(log 2)lo

| £l + \Elog(iog@

In the above calculation (fourth line} we made use of the triangle inequality. Hence

27c T
Hfllo < x/h)g;—\/;og(log%

Combining the results verifies that log (logr™") is a member of H'($2).
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CHAPTER. 5§

5.2 Exercise 1, p. 319

Using (5.2.29)-(5.2.32), (5.2.37) can be written as

/ [—8a,)Map — Bale + W aga) d4 + / [0 Cy — wF]dA
. A A
+ / (BuMy —5Q)ds = O
3h

Due to the symmetry of tensor mag

bapymap = Bagmap

Rearranging the weak form, we have

/ [“gﬂ,ﬂmﬂﬁ + w,a‘i’ﬂ] dA + / [ G(Cor - gor) - U_"F] dA
A A

+ / (BuM, — 5Q)ds = 0
LI
Using integration by parts on the first integral (assuming necessary differentiability) yields,

/ 0,(Co — ga + Mapp)dA — / W(Ga,a + F)dA
A A

+ [ Bu(Ma—magng)ds + [ wlgana - Q)ds = 0

Sg 3.1

To complete the proof select in turn different choices for 8, and w.
First, let @ = 0, and
b = (maﬂ,ﬁ + Co — Qa)ﬁf’

where ¢ > 0in A, ¢ = 0 on s, and ¢ is smooth. This choice implies

Maf,f+Ca—ga = 0 in A
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Next, let

This choice implies

Now, let @ = 0, and

W= (quat+F)d and 8, =20

oo+ F = 0 in A

bo = (My—mapanghp

where ¢b = 0 on sy, ¢ > 0 on sy, and ¥ is smooth. Then,

Finally, let

which leads to

5.2 Exercise 2, p. 319

a(il, u)

where

Mcr = m(,ﬁnﬁ on s

w = (Qofna - Q)¢

¢ = gamla on sy

L[g(a,ﬁ)cama@(ma) + (W0 — a)cap(w, g — 83)] dA
](@F —8,Ca)dA = / w- fdA
A JA

(0Q — 0, M )ds = f - hds
Ih

h = <Q _M, _Mg>'f‘



To prove symmetry of a(-, -) recall the major symmetry of c,5-5, (5.2.24), and symmetry
of ¢qg, (5.2.25). Symmetry and bilinearity are then shown in the same manncr as in
Exercise 1 of Sec. 2.3 and Exercise 1 of Sec. 2.7. The proofs of symmectry and bilincarity

of (+,-} and (-,-)p are trivial.

5.2 Exercise 3, p. 322

(Consult Fig. 5.2.1 for an illustration of the rclationships among the rotations.) The

curvature-displacement relation is

k = B'd = > Bl
a=1
By defining a new displacement vector, sz , using,
1 '8 h h
wy 10 0] |w
i = S0,y = |o o -6k = Rd;
4 0 1 0 gh
y L)
the new curvature-displacement relation is
Tten Nen

k= Bbdi = Bid:
a=1 n=1

where

0 0 ~Nga
= |0 N, 0
0 Ny, —Ng,



Using the same type of argument for the shear strain-displacement relation,

Nen Nyn

v =Bd* =) Bld, =) B:Rd;
a=1 a=1

where
1 0 0
Na,x "“Na 0
B, = 0 0 -1
Nyy 0 —N,
0 1 0
| N, —-N. 0

To derive the modified source vector it is necessary to recall that in the variational equation

the source vector term has the form:

r ™y
Spe NoFdA + fseﬂsh N,Qds

T o Ah A

dfl fﬁf = < wcf: 8;& 63{1 > § — .[A"' NﬂcldA - fs‘r‘lsh N“Mlds

— [4e NaCadA — [, NoMsds

E

Agam the change in the displacement sclection leads to

&Tf = di TR = de
where
1 0 0
fo = BT = o v 1|fs
0 -1 0

Jao NaFdA+ [, N.Qds

a¢Map

Lo NaCrdA+ [ N Mids

“ 7

= = [ N.CydA— [, N M,ds

e
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5.5 Exercise 1, p. 378

We first collect some preliminary results. The isoparametric mapping for a linear element

of length A is

r = %(1‘"5)331-}—%(1—?-5)272
= %(:c1+m2)+g£

Displacement and rotation interpolations:

1 1
W = 5(1—€)w1+‘2‘(1+5)w2
1 1
8 = 5(1—6)91+§(1+€)92
Strains:
4 y
u}l
ko= g - G % _ 1y, 101>J91
- - Th A E< B wy |
8,
\ /
= Bpd
_ '_g ’wl+wz 1(1 5)9 11+€)9
L S A A ISR
’U)l\
g
1 1 1 1 1
8,
\ /
= B.d
h h
ky = / BI(EIBydz k, = / BT (uA®)B,dx
1] 0
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i. Since Bj is a constant matrix,

ky

0 —1 0 1

i1. Using one-point Gaussian quadrature,

ks

pA°
h

A"

¢

— 41
75

b

[SE

-
|
—
|
b ar
—
|
valr
v
=3
/\\
¢
—
!
[N

h k
L 1 z
S SR U
4 2 4
k h
_k 1 -2
o _h A
4 2 4 ]
1 2k ~1

-1 —L=th 1
2
R
h Eo|
3 -1 2
Bk K
3 2 &
h h
-3 1 -3
13 bk k2
6 2z 3 ]

[y
I
TS
v




iv. The one-point quadrature version of k; is proportional to the outer product of a single non-
trivial vector. Conscquently, its rank is exactly one. When two-point quadrature is used,
ks is proportional to the sum of two outer products of non-trivial vectors. Conscquently,
its rank is at most two. To verify that the rank is exactly two, it is necessary to show that

the two vectors are lincarly independent. This is verified as follows:

( 1 ) 1
h R
~3(1+ Z5) ~3(1 - Z5)
{ . 1 >
h h
—3{1— ) ~3(1+ %)

There is no constant of proportionality between these vectors. Hence, they are linearly

independent. (There are other ways to solve this problem.)

v. Using the residual flexibility technique, the one-point shear stiffness matrix is replaced by

i ]
1 5 -1 5‘
-1 i3 ﬂi _h ﬁi
1 1 2 2 ) 3
ks = . +
h \pds  12E1 1 _h 1 _k
2 2
k K2 _k A
| 2 ] 2 e

The total stiffness is formed by adding to this shear matrix the bending stiffness,

k = kb + ka
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In the limit g — oo the resultant stiffness is

] ] 1 g ~1 g
0 0 0 0
h h? h h?
EI|U 1 0 -1 12ET | 2 4 2 r
o o 0 o O
D) 2
¢ -t 0 L] h K2 h X
2 4 T2 4
12FT 6ET 12ET 6EI
R K2 R h?
6ET 4BT 6E1 oFI
X h TR R
B 12E1 6ET 12E1 6EI
X R B3 X
6EI oEI 6ET AE]
i X h R ho

which is identical to the one obtained using the Bernoulli-Euler theory with Hermite cubic

interpolation functions. (See the solution of Exercisc 1, part j, Sec. 1.16.)

5.5 Exercise 2, p. 379

The displacement and rotation interpolations are

1 1 .
w; = -2-(1—£)w“+§(1+§)w21- t=1,2,3

1 1 ,
#; = 5(1—5)91i+§(1+§)92i 1=1,2,3
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The strains are

0 006G -+ 00000

=

Ka ==

"= <—%000—%(1_5)0%000-5(1%) 0>d
vy = <0 -1 0 3(1-¢ 0 0 0 + 0 F(1+£ 0 0 >d
6:<00—%00000%000>d
n1:<000—%00000-};00>d

<

0 >d
>d

T
d = <w11 wyy wis B B2 B3 wa wz was a1 b2 923>

==

¢:<00000ﬁ—};00000

where d 1s the element displacement vector,

The element stiffness in the local coordinate system may be inferred from the expression

h
dTkd = / (F}flpAf"h + Yo ppAsyy + R Bl k) + RoElyky + EEAe + i,EEJlI)) dx
0

Assuming one-point quadrature and carrying out the necessary calculations leads to

Bk 0 0 0 $k 0 ~k O 0 0 2k 0
ke 0 —%% 0 0 0 -k 0 -3k O 0
ks 0 0 0 0 0 k3 O 0 0

ks 0 0 0 %k 0 ks 0 0

ke 0 -2k 0 0 0 k7 0

ko= ks 0 0 0 0 0 —ks
ki 0 0 0 ~ik 0

ka0 %k 0 0

ks 0 0 0

Symmetric ky 0 0

ks 0

ks
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where

pA] pAg _EA
=5 k2= k=
_ pAj ElL Ay, EI A EL
ky = 1 h — ks 7 h - ke 1 I 3
_ pAy, EhL _EJ
k‘f i h— A ks = A

An alternative procedure for calculating k is to simply employ equations (5.4.73), (5.4.74),

and (5.4.85)-(5.4.97) directly.
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CHAPTER 6

6.2 Exercise 1, p. 391

The D matrix for the three-dimensional isotropic case was derived mn Excercise 5, Sce. 2.7,
p. 83 in terms of Lamé parameters A and i, and with respect to the stress and strain com-
ponent ordering given by (2.7.30) and {2.7.27), respectively. This matrix can be expressed
in terms of E and v by employing (2.7.32) and (2.7.33). Reordering according to that
delineated by (6.2.29) yields:

1 0 0 0 —
1 0 0 0 =
1-2v
D p. El-v G-y U 0 0
(1+»)(1 - 2v) 1—2y 0 0
Z(1—w}
Symmetric 21(1_31,1) 0

The components of the 5 X § reduced constitutive matrix are defined by (6.2.36) and

(6.2.37), namely

For example,
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ete.

T S{f i)m (1 - (T—_))

E(1-v) (1—-v)t -2
{1+ )1 —2v) ( (1 - v)? )

(e =

(1 f;(;l)(;i)zu) (1 i v (1 -Li)2>

E(l—-v) (1 — v — p?
(1+v)(1 - 2v) ( (1—-v)? )

vHE

12

E(l —v) 1 - 2v
(14 v)(1 ~2v) (2(1 - v])
E
2(1+v)

E 1—v
1—22 2
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The result of these calculations is (6.2.38).

6.2 Exercise 2, p. 395

In attempting to solve this problem it is worthwhile to review the isoparametric concept
vis-a-vis completeness (see Sec. 3.3). However, in the case of the shell interpolations the
technique is somewhat different. Recall that the geometry of the element is defined by
(6.2.1)-(6.2.6) and the kinematics by (6.2.20)-(6.2.24). The representations look decep-
tively alike:

r = ninNa:f:a + iNaXa
a=1 a=1

u = %Naﬁa + iera Ua
a=1 a=1

but X, and U, are perpendicular by construction, viz.

X: = 2z, X,
U, = 2z,
U, = 9a2€£1 — 6‘a16£2
leaf1'}i'a = 0 eﬁz'Xa = 0

Thus the geometric and kinematic descriptions are not form-identical, precluding the type

of argument used for continuum elements.

What we need to show is that u is capable of exactly representing a general linear poly-

nomial in the global coordinates, namecly
Uy = cy ey "|"Cg.’1'2—+—C33?3

when the nodal degrees of freedom are appropriately specified. To see that this is the case,

set
Uia = €+ 110 + c2%2q + 37834 + 1 X1 + 2 X020 + 3 X3,
Uiw = 0
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Note that the components of X, depend on (. Consequently, 4;, also inherits this depen-

dence. (This 1s not a problem.) Making use of these specifications, we have that

Man

u; = Z No(co + e1T14 + 3824 + 3%34)

a=1

Tlen

+ Z Ne(erXia + 2 Xoa + c3X3,)

a=1

= (i‘iNﬂ) Cg+61 (iNgﬁ]a+iNaXla)
a=1 a=1 a=1

+ ¢ (i Naf:2a + i NaX2a) + e3 (i Na§73a + i NaXSa)
a=1 a=1 a=1

a=z]

= ¢pt+ s+ e + oz
which completes the demonstration.

6.3 Exercise 1, p. 408

Corresponding to the ordering determined by (6.3.10), the matrix I} takes the form

1 0 L |5 O 0
0 25 0 | 0 0 0
e 0 1 | i O 0
Dr = — 1 e
A 0 &% | 1 0 0
12w
0 0 I 0
0 0 o | 0 05725

Employing (6.3.13) results in the desired reduced constitutive matrix D, namely {6.3.17),
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viz.

1
E(l —v)
0]
(1 +v)(1—2v)
1—v
— 0 0
0 0 0
20 0
1 0 v
£ —u
1~ 2 0 5= 0
v 0 1

6.3 Exercise 2, p. 409

Apply formula (6.3.20}) to (6.3.18) in order to derive (6.3.21), via.

etc.

1—2v
0 2{1—wv)

" ) Dt Dt FE
Y S h |-t 2y
Dy, « 11 DL, 1_1}2(1 v') = E
b o Db
12 =
Di,
bl Dt b%'gbéa 0
13 13 =
D:i;:;
. DL DL E &(1—v)
Di Dl . Z:T» 32 —
22 T ag Dég 1.2 5

134




CHAPTER 7

7.1 Exercise 1, p. 420

Use the same procedure as in Sec. 2.3. The only additional requirement is to show equiv-

alence of (7.1.12) and (7.1.8). Assume wu 1is a solution of (5). Then, using (7.1.8)
(w, pecu(®,0)) = (w, pcue(e)) YweV
or, suppressing the argument @,
(w, pcu(0)) = (w, pcuo)

which is identical to (7.1.12).

Now, assume = is a solution of (W). Then, by (7.1.12) and bilincarity

(w, pe(u(0) —u)) = O

/wpc(u((]) —up)dfl? = 0
L4

Let,
w = ¢u(0) — wg)

where ¢ > 0 on Q. Then,

/gﬁpc(u(ﬂ) —up)?dl = 0
£

and therefore u(0) = wqg.

7.1 Exercise 2, p. 422

The development of the matrix equations follows the same approach given in Secs. 1.6, 2.4

and 2.5.
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7.2 Exercise 1, p. 424

Equivalence of (7.2.6)-(7.2.8) and (7.2.11) is done in the same manner as in Sec. 2.7. To
prove cquivalence of (7.2.9) and (7.2.12), and (7.2.10) and (7.2.13)}, use the same argument

as given for Fixercise 1, Sec. 7.1,

7.2 Exercise 2, p. 426

The development of the matrix equations follows the same approach as given in Secs. 2.8

and 2.9,

7.2 Exercise 3, p. 428

1. Lincar element:

m* = [my] = | [eNaNid0
Joron
1 1
M©) = 0= MO = 30+0
! hof?
mi = i [ i = B[ ca-erd
L
Y
hof1 h
my = G ja-ee - e
Thus,
e phil2 1
meo= F[l 2]

il. Quadratic element:

We assume the Jacobian j = h/2,

Ni€) = 36E-1) M) = 1-€  Ny(e) = sE(E+1)
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1

NP = (et + )

Moo= 1o

N = (€424 8)

NNy = %(—f4+f3+52“‘f)
14 2

NNy = Z(f —£°)

NoNs = (€ =+ €4 6)

In integrating the above cxpressions over the parent domain, all odd power terms in £

integrate to zero. Thus we have
h 1
m¢, = %_ / N Ny dé
J—1

and carrying out the details results in

4 2 -1

m° = Ph 2 16 2
30

-1 2 4

7.2 Exercise 4, p. 428

The solution to this problem is given in the text.

7.3 Exercise 1, p. 432

This is the geometric stiffness matrix for the Bernoulli-Euler beam. Useful forms of the
shape functions may be obtained by transforming the expressions given in Exercise 1.186,
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part b, using ¢ = £h/2, z1 = ~h/2, and zy = h/2, viz.

Ni§) = TR+ MO = gE-DHE+D
Ni©) = OHEE-6  N(© = gEHDE-D
So,
3, hoo
M) = HE-1 M) = 3 -2%-D)
3, oo
N3e(§) = Z(l""f) Nye(§) = ‘8“(35 +2§-1)
= (6 [ MOl = o [ NoelONocl0) e

where £,, = 2/h . Clearly, m® is symmetric, and it can also be easily verificd that:
[ , _ s € L2 _— me
my = Mgy = Mg Mgy = 44
m$, = m$; = —miy = —miy

Thus, we need to calculate

& € [ €
Triqq Tit{g —1y LY
[H - € £
miy My
r -y 37 €
Symmetric M50

which involves only four distinct integrals:

! 18 1 2 +1
2 _ ___5__3

[ neorde = e -ze ol

81118

= %573 ~ @
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Sumrmarizing the remaining integrations:

1
h
[ mdomdon = 5
1 , 1,2
/_1(N2’&(£)) ¢ = 5
1 h2
[ Miomeor = -5
Thus, accounting for the factor £ , = 2/h,
36 3h 36 3h |
) 4h* —3h —h?
m¢ = —
30k 36 —3h
Symmetric 4h?
7.3 Exercise 2, p. 433
m® = [my]
wherc
me, = / N,pAN, dS
QC
Recall from Exercise 1, Sec. 7.3, that
1 2 . h 2
MiE) = SO0-9E+2) MO = FE-DHE+D
- 1 . h .
Ny(£) = Z(1+€)2(2—€) Ny(§) = g(f+1)z(€- 1)
1 1
ms. = flijh'p_quf == pAiZ}g/lequg
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where z, = h/2 , and p and A are constants. Clearly m® is symmetric and it may

also be verified that

e _ C € _ e
My = Mgz Mo = Thy
e . € e _ e
Mg = —Myy My = —Mgg

Therefore there are only six distinct integrals. Straightforward calculations result in:

[156 220 54 ~134]
2 _ap?
e pAh 4h* 13k 3h
mt =
420 156 —22h
Symmetric 4h? |
7.3.1 Exercise 3, p. 435
It is immediately obvious that .)” <At, I = 1,2,..,n, since the minimization over

the subspace E; also includes the minimization over the subset E! and hence can

achieve a smaller minimum because E; is a larger set.

7.3.1 Exercise 4, p. 435

. Using (7.3.30),

. _ }‘E(k—i—l—m)
" 1 O(h )

Thus,
wh
ln(—~—1> ~ 2k+1—-m)lnh
and from the given data,
k+1-m =1 and m =1

Thereforc & = 1 which indicates the three-node linear triangle was used.
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b. From (7.3.27) and (7.3.31),

— 7L k+1 2m
luly —ugllm < chGFI=mpGED/@m™

o k 2m
luly —uplle < ch AlRFD/(2m)

where ¢ = min(k+1,2(k+1-m)}). Here m = 1,k = 1, so

luly —uwl = O(hY)
luly —uplle = O(K*)

7.3.2 Exercise 5, p. 436

The solution to this problem is given in the text.

7.3.2 Exercise 6, p. 440
Employ the Lagrange interpolation formula with & = —1, £, = —1/v/5, & = 1/V/5, and
£y = 1t

(€+I)E - ZNE-1)

N = (—1+ (-1-F)(-1-1)
5 1
= vg(f —1)(& - 3)
Similarly,
Na(§) = 5\;5(5 - \/ig)(g 1)
Mo = s -

=4

Nie) = SerE -3
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7.3.2 Exercise 7, p. 445

[. Linear triangle:

For futurc reference, we calculate the consistent mass matrix, using area coordinates.

Recall (3.1.30) and:

N} = T Ng = ] N3 = t
me = [mg, | omr, = 5ijp/NaNb dQ
{ie
P = ned[a - 1) +2 g = ncd(b - 1) +]
2A21 A
2 _ .2 _ _
Qe Q¢
Thus,
mi; = % = m, i=1,...,n (no sum)
241! A
NNz dQ2 = "5 d = —_— = —
f 1N2 d92 fvs {1 1 5
Qc Qe
and,
. pA .
mis = 7 = mys , etc

Consequently, the consistent mass matrix for the linear triangle is:

2 01 010
0 20101

e _ pAi1 0 2 010
210102 01
101020

01 01 0 2]
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.

b.

Nodal quadrature:

Recall that numerical integration of triangles involves a scaling coeficient ¢ = £ to reconcile

the sum of the weights in the quadrature tables with the area of the parent triangle (see

(3.1.34), p. 174).

Tl _

{6,-jpchfVa Ha = b
0 otherwise

j=2A and W, =1/3, a =1,2,3. Thus,

where I 1s the 6 X 6 1dentity matnix.

Row-sum technique:

5,;3‘,0 J N, d€2 ifa =)
Qe,

m;q =
0 otherwise
Note that
241! A
N,d = — = =
3! 3

L3

and therefore the resultant lumped mass matrix is identical to that obtained using the

nodal quadrature method.

. “Special-lumping technique”:

@b, [pNZ2dQ ifa = b
Qe

My, =
G otherwise
where
[ pdQ
T —— 2
. 22:1 f pNE dfl
(1=
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11

Since the denominator is just the the sum of the diagonal elements of the consistent mass
matrix and p 13 constant,

o = 2

and again the same lumped mass matrix is obtained as by the previous methods.

Bilinear quadrilateral:

Apgain for future reference we calculate the consistent mass matrix. We shall assume
that the clement is rectangular with edge lengths Ay and 2;. In this case the Jacobian

determinant 7 = constant = hyho /4.

me = 5§J/{)NaNbdQ

{1e

h]hz

— & 22
Ly

1 p
/—1 /1 (14 £ 1+ &6)1 + nam)(1 + mem) dé dn (no sum on «, b)

5, phhg

1 1
e e, o 2 b
16 ( + 35661'1)(1 + 3']?0.7?[':)

where €, and 7, are given by Table 3.2.1, p. 113, of the text. Thus,

4 02 01 0 2 0
0 4 0 2 0 1 0 2
2 0 4 0 2 010
me o Phb2i0 2 04 0 2 01
36 1 02 04 0 2 0
01 ¢ 2 0 4 0 2
2 01 0 2 0 4 0
002010 2 0 4]
a. Nodal quadrature:
. SijpiWe ifa = b
Mpg = { .

0 otherwise
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where
W, = 1 a=1,234
Thus,

phyha
[ — I
m R

where I3 is the 8 x 8 identity matrix.

b. Row-sum technique:

Suyp [[NodQ ifa = b
Qc

My, =
0 otherwise
141
/Na dl = / / J N, dE dy
(e R
h-]_hz

1 1
— a Ng d
1 /-1/_1(1+€E)(1+ 1) dE dn

h] h‘g
4

Consequently, we obtain an identical result to the matrix derived from nodal quadrature.

¢. “Special-lumping technique”:

wdyy [ pNEdQ ifa = b
My, = e

0 otherwise

where
J pdQ
(2
S, TNz de
QB

From the consistent mass matrix computed previously,

9
¥ = -
¢ 1
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Thus,
. {&jp——hf,hz ifa = b
0 otherwise

which 1s the same result as for the previously computed lumped mass matrices.

7.3.2 Exercise 8, p. 445

Recall that for the three-node quadratic element,

M) = gD M = 1-8 N = S+

a. Row-sum technique:

[N
Mgy =

Thus,

. “Speaal-lumping technique”:

a [ pNZdQ ifa = b

me, = e
0 ifa#b
where
I pdQ
o = 2
2y [ pNZ dQ
Ql’:
72 _M_P_hll‘i.)a_z _ 2ph
[ontie = B[ @ -weenee - X



Similarly,

2ph
[onzan = [ovtan - 22
Qe §1e
hof! 8pl
/pNng - p—/ (1— 2% + &4 de didtd
- 15
Qe
Thus,
ph )
o = —— = —
phit + &) 4
1 0 0
me = % 0 4 0
0 0 1

These matrices are identical to that obtained using Simpson’s rule (7.3.39).

Appendix 7.I Exercise 1, p. 457

Recall the weak form of the heat equation:

{w, pct) + alw,uw) = (w,f)+ (w,h)r

Assume f, g, and h are zero. Since ¢ = 0, u€)V . Let w = ue€V . Then

(u, pcit) + alu,un) = 0
which may be written as

1d

55(& cpeu) = —alu, u)

Notice that the inner product on the left-hand side induces a natural norm and that the
right-hand side is non-positive, indicating the expected decay. Define |ullz = (u, pcu).

The first eigenvalue Ay minimizes the Rayleigh quotient, namely

A = minR(u)

where

a1, u)

lull3

R(u) =
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Therefore

Ml < alu, w)

Thus
1d
lullo ellallo = 550, pew)
= —alu, u)
< = Aglulfg
Consequently,

d
Zlelle = = Al

Integrating this result yields

u(®)lfo < exp(—A1t)[|u(0)}o

Identical calculations may be used to obtain the decay inequality for the Galerkin formu-

lation.

Appendix 7.I Exercise 2, p. 457

Recall the weak form of the equation of motion:
(w, pii) + a(w,w) = (w, f)+ (w, )

Assume f, g, and h are zero. Since ¢ = 0, wuw€V . Let w=a€ V. Then

(2, pit) + a(tt,u) = O

But
1 1d
(w, pi) = 5%('&, pit) and al@,w) = ~2—aa(u} u)
Employing these expressions and integrating from 0 to ¢,
E(u(t), u(t)) — E(u(0), ©(0)) = 0
where
1. . 1
E(ut), a(t)) = g, p9) + ja(u,u)



Thus,
E(u(t), w(t)) = E(u(0), u(0))

An identical proof of conservation of total energy may be performed for the Galerkin form

of the equation of motion.
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CHAPTER 8

8.1 Exercise 1, p. 462

My, + Kdppy = Faps
doyr = dnp + Atvgy,
Vnta = (1—a)v,+ aVpye
a(Mv,1 + Kdop1) = aFpp
(1-a)(Mv,+Kd,) = (1-a)F,
Adding (4) and (5):
Muv,io + aKd,11 + (1 -a)Kd, = Fuiq4

where

Foro = (1-a)F,+alF,
Using (2) and (6):

M(d,y1 —dy)+ adtKdyp = AtF4, — (1 — a)AtKd,
Thus,
(M +adtK)d, 1w = (M —(1-a)AtK)d, + AtF, 4,

8.2.3 Exercise 1, p. 470

The lowest order error term that is added to the truncation expansion is cA#?

by the problem statement. Thus,

to retain kth order accuracy.

8.2.5 Exercisc 2, p. 473

The solution to this problem is given in the text.
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8.2.5 Exercise 3, p. 474

i. We need to manipulate equations (a) and (b) to arrive at the desired form:

1
dopy = (1- §Ahm)dn (a)
1 h
L+ ADdnsr = dpyy (b)
Thus,
P 1— IAPAY g
n+1 = 1+ -é-)\hAf n
and so
1— FAMAL
1+ gARAL

ii. Comparing the amplification factor derived above to the A for the generalized trapezoidal

method, we sce that they are equivalent for a = % . Thus the fractional step method

is equivalent to the midpoint rule for linear problems. Hence, it is unconditionally stable.

Note also that it is implicit by equation (b).

1. The local truncation error 7 is defined by

Atr(ty) = d(tng) — Ad(ta)
We proceed as follows:

1

1
AUL+ A AD(t) = (1+ %A’*At)d(tnﬂ) — (1= SN Ad)d(1n)

= (14 %A’LA;&) (d(tn) + Atd(tn) + %Atzd'(tn)
+ %Atad(:‘)(tn))
—(1-— —;—AhAt)d(t,,) + O(AtY)
= (d(tn) — d(tn)) + At ((é)\" + -;-Ah)d(tn) + d(t))

+ At?(%d(tn) + %)\h&td{(tn)) + O(A)
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1.

Thus,

Kv, = -—-KM'Kd,
= (MM YWKM 'Kd, = -M(M™"K)d, (7
(5,7) L2 —1 g2
Md,,, (M ~ AtK + A M(MT'K) )dn (8)
Now with
Teg Tieg
dn = Z d'n.(m.)")bm 3 dn+1 - Z dn-{—](m)"pﬂ;
=1 p=1
and
I My, = 6, vIKy;, = 5,-J-)\f: (no sum)

and using the given hint, the modal cquation can be obtained from (8) as follows:

doy1 2 (1 APAE+ %(J\"‘At)i)dn (9)

and so

A = 1-XMAt+ %(,\’*/_\.t)?

(The plot is shown on the next page.)
For stability |4 <1 :

A < 1:

1-,\hm+-;-uhm)2 <1 = MAt <2 (10)

1 1
—1 < 1-XAt+ -2-()\"At)2 —  AAH(1 - A < 2
Since A"At > 0 | this condition is less restrictive than (10) because

1
1—--2—AhAt < 1
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2.0 F

1.5 F

1.0

0.5 -

Stability limit

So, for stabiltty:

_I 1 L L 1
0.5 1.0 1.5 2.0 2.5 3.0

MAE < 9

iii. If M is diagonal, then, by (8), the mcthod is explicit.

1v.

Atr(t,)

d(tny1) — (1= A At + %(Af*m)ijdun)

(d(t,) + Dtd(t,) + %Atzdf(tn) + %At'?d(‘”(tn))
— (1 -\ AE+ %(A"At)?)d(tn) + O{A%)

(d(tn) — d(tn)) + At(d(tn) + A"d(1,))

§ SAP(d(t) — (VPd(1) + O(AF)
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Taking the time derivative of the heat equation,

d(t,) =

Conscquently,

v. Clearly from part (iv), &

_’\hd(tn) = (_’\h)zd(tn) —

Atr(t,) = O(At?)

= 2.

8.2.5 Exercise 5, p. 475

1 — $AMAL+ (A AL)?

14 MAT+ (A AL)?

0.9
0.8
0.7 —
0.6 !

0.4 !
0.3 !
0.2 !
0.1 !
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For stability, —1 < A < 1. Clearlyy, A4 < 1 since XAt > 0.

A > -1,

1 h 1 h 2 1 ke 1 13 2
. —_ = [ o
1 ATAL 4 12()\ At) 1 2)\ At 12(/\ At)

and therefore

2+%(A"At)2 > 0

which holds for all A*At so the method is unconditionally stable.
i1,

Atr(ty) = (1 + %/\"At + %(A"At)z) dtnyi1)
(1 - —A"At+ (,\mt) ) d(t,.)

1 1 94k 1 1 2.k
- — - F — — At AN Fit

1. 1,
- 1—2-F(tn)+ EAt Ftn41)

— (1 + %)\"At + %(/\hm)?) (d(tn) + Atd(t,) + %At'zrf(tn)

1 . 1
v s Sacaon)

1

~ (1 - —)\"AH— (A At)2> d(tn) — (2 t— 1—12&3)&) F(ty)

( At+ - At‘a ) (F(tn) + AtF(ty)
+IALE(E,) + 1At‘q‘F(”(tn))
) 6
- _NZ Fity) + —AtQ( (tn) + AtE(t,)

+ %m?pm(tn)) + O(AD)
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Evaluating the cocfficient on each power of At separately, we have

d(ty) — d(t,) = 0
At! term

SARA(1)(2) + dita) — 5PN = 0
At? term

1. 1 1 1, 1 1
—:‘jf.n _/\»‘ad _ryvhy2 _ thr _)\th _.._....)\"‘Ft

~ I%F(tn) + %F(tn) = %(J(tn)Jr/\"tf(tn) —F(tn)) =0

At term

1 1. 1 . 1 . 1 . 1 .
2 4(3) Lyn IV SV _ Y -
6d (ta) + 4A d(t,) + 12(A 14d(t,) 4F(tn) 12/\ F(t,)+ 12F(t,,_)

(A9 6) 4+ M) — B(1)) + A (d(ta) + ARG~ F(2)) = 0

Loyl IS

At! term
wl—d(‘”(t )+ -—I—A"d("‘)(t )+ i(ﬂ*)?&‘(f ) — ~1—F(3)(t )_iA’*F(t )+ 3—?% )
24 "2 " 24 o 12 " 24 " 94 "
1 ' ‘ 1 . .
- ﬂ(c.e(‘”(:ej,,,) RO () —F(”")(tn)) o (d(?')(tn) +AR(1,) — F(tn)) ~ 0

Thus, the truncation error is at least O(At*) . To show that it is no grcater that O{At*)
we calculate the O(A#)  terms assuming F = 0. If it does not vanish for this special

case, 1t also will not vanish for the general case of F # O:
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At® term (assuming F' = 0)

1

1 1 1
o dON ) 1 kg @y 23 (s ) —

(5) 0
120 (d (tn) + A% (tn.))

REVIF b (3)
55 (d (tn) + ARd (tn))

+ (5 - 55) OO )

80
Lo a2 )
# 0
Therefore
(ty) = O(At‘*)
8.2.5 Exercise 6, p. 475
Upt1 T )\hd‘u-l—l + /H\hO?nJrl = F,q (1)
dot1 =  dnp+ A1 — v, (2)
dny1 = Jn+1 + Atavnqq (3)

where a € [0, 1]

1. To obtain the amplification factor, we just nced to evaluate the homogeneous case, but
include the forcing term also so the resultant displacement difference form of the algorithm
can be used to obtain the local truncation error equation for parts i and 1v.

aAan+1 é CEAtUn_}_l + O.’Af)\hdln_{_l + Q’Atthfn.i_l

—
e

—
e

= (dn+1 — Jn-kl) -+ &'At)\hde_] + aét;\"g.n+1

(1 + GfAf/\h)d,H_l — (1 — (YAtS(h)CE,-L+1

1l

= (14 aAA ) — (1= dALN(d, + AHL — a)v,) (4)
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il.

F, & vn + A, + A,

= v, + M, 4+ Ad, — aAtu,)
(1 — arAtih)vn + (/\h + S\h)dn

. A 3R
o 2 (1-aAti)E, - 2N g
1 — aAtih
(14 aAtAdnr: 2 aAtFa + (1 — aAtih)d,
+ (1 — a)ALF, - (A" + (1 - o) Atd,
= (1—aAtA — (1 - ) A + 3)d,
+ AtFn-{—cy
whore
Fn-{-(r - (1 - Q’)Fn + QEI—{—I

Thus,

1 — aAtA" — (1 — a)At( A" £ 34)
1+ aAtA?

For stability —1 < 4 < 1. Clearly A < 1.
-1 < A:
1—aAtAt - (1 — a)At(A* + 38 > —1 - aAtA?
So,
(1 — a)AtA" — o AP + (1 — o)A + aAtA? < 2
and

AH(1 = 2000\ + XF) < 2
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111,

Atr(ty) = (1+ aAtA)d(tarr) — (1= (1 — a)AtA® — AtAM)d(t,)
— Al —a)F(t,) — AtaF(t,4)

(1+ &AM (dltnta) + (1= @)At(Ena) + (1 - a)%m?&(tﬂﬂ))

— (1 — (1 - a)AIN — Ati") (d(znﬁ) — At (o)

1 2 2
us §(I At d(tn-l—cr))
~ A1 - @) (F(thra) . a-/_\tF(tn_m))
~ Ata (F(zn+a) +(1 = @A (taya)) + O(AL)

Evaluating the coefficient on each power of At scparately, we have
A term

d(tn+0’) - d(tn-{—u) = 0
At term
N d(tura) + (1= a)dltnia) + (1 = N dltnra) + adltura) + 5 d(tira)
- (1 - Q)F(tn+a) - CYF(tn+a)

— (j(tn—‘rrx) + ()\h + :\h)d(tn—i—ﬂ) - F(tn—!—(x)
= 0

At? term

1 2 . . 1, :
51— o) d(tpta) + (1 — )N d(tnta) — Eazd(tn+a.) - (1 — a)aXd(tpia)

— aMd(tppa) + ofl = @) F(tppa) — (1 = @) F(tnia)

1 . ey .
= (§ o Cl'-)d(tn-i-a) - Q)\ho{(tﬂ+0)
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Thus,

() = At(( - adlinee) — ofd(tasa)) + O(AR)

iv. Clearly, from part (iii), &» = 1.

8.2.5 Exercise 7, p. 476

The solution to this problem is given in the text.

8.3 Exercise 1, p. 480

Introduce the perturbation 6,(/m) which satisfles the algorithmic equation. Assume that,

5,;,(7’?1) _ Cneimf
a. BTCS algorithm:
Given the above perturbation,
C”“c"mf = (MM T_(Cnﬂef(mw)s _gentlgme | Cﬂ+1ei(1n—1)£)

Dividing both sides by ("¢'™% results in:
¢ = 1+Cr(e££ +eif 2) = 1 +gr(2 cosg—g)
| 1
= 14 2¢r( cosf - 1) = 1—4r({ s (éf)

Thus,

1
1+ 4rsin’(16)

For stability, it is necessary that || < 1 V &. Clearly, || < 1 simce » 2> 0
Thus BTCS 1s unconditionally stable.
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h. Crank-Nicolson:

Given the above perturbation,

(rtigime o engimé _é_?,c?t+l(ci£(y,-;+1) _Qeimﬁ_i_cif(m—l))

+ }_TC}'I (et'f(m.—{—l) . 201'.'1'115 + eif(?n—l])
2

Dividing both sides by ("¢ results in:

, _ 1 ,
(1 — %T.(esE + et — 2))( = 1+ Er(ets +e7% —2)

As in part (a),

¢t e 2 = 2cosf—2 = -4 si112(§€)

So,
1—2r sin®(¢

¢ = 14 2r sing(; ¢

[ e P

)
)
It is clear that ¢ < 1 so wemust also prove that ¢ > —1 . This follows immediately

from
. 1 2 ].
1 —2r sin (35) > —1-2r sin (55)

so the Crank-Nicolson algorithin is also unconditionally stable.

¢. Leap frog:
Given the above perturbation,

Cn-&-lesz — Cn—leimf + 2?,Cneim£ (eif + e—a& _ 2)

Dividing both sides by ("~ 'e!™¢ results in:

¢? = 1-8&¢ sinz(é-f)
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The roots of this quadratic cquation are

C1,2

C2

Consequently (2] > 1,

8.3 Exercise 2, p. 481

Recall that

a. BTCS:

uhya(m) =

1
2

= —4r sinz(%f) + ((4?' Sinz(%f))z + 1)

1
2

= —4r sing(%ﬁ) — (1 + (4r Siﬂz(%&))z)

-1

VAN

and thercfore the leap frog mecthod is unconditionally unstable.

Air(t,) = AtO(At* | kY

uf,: 4+ (U2+1(m +1)— 2?.¢ﬁ+l(?11) + uﬁ_“(m — 1))

Af'r(tn) = TL(xmatn—{—l) - u(:z;,,-“ tn) —-r (u(irm—i—l;tn—kl) - Qu(mm;tn—i—l)

+ u(xm—lgtn—I—l))

= U(.’Bn“ tnt1 )

1 .
- (U(ivm;tn—i—l) — AfU,t (xmu tn+l) + §At2u:tt (anutn—i—l))

1
-7 (u(xmatn-{—l) + hsyy (xmatn'ﬂ) + 'éh‘zuaxr (mmatn-H)

1 _ .
+ _haugzzz (m‘m;tn-i-l) - 2u($m;tn+1)

6

1
+ u(xﬂ'!,'.!tn-‘rl) — h'u'}:ii ($7i1}t71+1) + Eh‘zumi‘ (mrrut?k—‘rl)

1
- '"G'hguw:u:a: (x‘m ) tn-i—l ))

+ O(At? hY)
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Recall that r» = kA#/A% . So,

At"r(tn) = (u(ﬁ:?m tn+1) - U((Iim, tnt1 ))

+ At(h‘z(—k(l =24 Dul@m, tngr )
+ h—l(k(l — l)ux (xm, tn_|_1))
+ (uat (xm.: tn+1 ) - kuaxz (x'm.u t'n.—i—.l))
+ h( (1 - 1)kum:3:3: (mm:tn-i—l)))

+ O(At?, Ath?)

S|

Thus,
T(t,) = OAtR) = k=1 [ =2
b. Crank-Nicolson:
b (m) = Whm)+ i:r’ (uh (m+ 1) —=2ut (m)+ul, (- 1))
n+l n 9 n+1 4 n-t1 - n+1
1 I h fe
+ §T‘ (u'n.(?’n + 1) - 2?";’73(?”’) + un(”"‘ - 1))

Atrity)

”(mma tn.+1) — u(mmatn)

T kAL
— §—h2 (’U.(.’C-m—I—h tn-l-l) - Q'lL(RTm, tn—H) + u(:r,m_h tﬂ.—H ))

1 kAL
- 5_}}_2“ (u(mm—{—l 1 tn) - 2u($m.atn) + ’U,(ZL‘-m.,l 1 t‘ﬂ))

From part (a) it can be seen that,

1 kAL

2 K2 (u(mm+l 3 tn-H) - 2“(37??1; tn—i—l) + 'U-(J-'m—l ) tn—f-l)) =

1
— ;k&iu,“ (Zm,tnt1) + O(ALR?)
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Also from part {a),

1. .
u‘(x'!f!,'.! tn-H) - u(_-"{-'matn) = Atuy (-'Bma tﬂ,-+-l) - EAfoau (T‘matnﬁl) + O(AfB)

Now cvaluating the last term in the truncation error:

-5 (.u.(a:m+1,fn) — 2u(Zm,tn) + u($m—-1,fn))

1
= - §kAtu}M (T tn) + O(Ath?)

i
= - s’lhAt (u::cz: (mfriatn—l—l) - Atu}rxt (mnu tn—‘r—l ))

L

+ O(AL, Ath?)

So,
Atr(t,) = At (u,t (T, Ent1) — kttypr (T, fn+1))
+ At? ( — %u,“ (T, tnt1) + éku,m (Tom, tn+1))
+ O(At*, Ath?)
Using,
U = Ky
and differcntiating both sides by £,
Uy =  Kiypge

and substituting into the truncation error equation yields,

r(ty) = QAR = k =1=2

. Leap frog:

uﬁﬂ(m) = uk_(m)+2r (uf‘;(m + 1) — 2ut(m) + vl (m - 1))
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Atr(t,) = ulvp, o) —uwlem,tn1)

—2r (’IL(:IJm+1 ’ tn) - 2”(33111, tn,) + U(xm—l i ta ))

Using the results from the first two parts of this cxercise,

—2r ('f.!,(:.‘:m,in.{_l) - 2u{Ep, ty) + (T m 1 ,tn)) = —2kNtu, g, (T, t)

+ 0 (Ath?)

. 1
U(ii’)-_.n.,tn_+1) - rt';*(f":'."n.ﬂ tu—]) - (U(Iﬂm, tn) + Atuat ("I:‘m: t'n.) + SA{EU,,” (3-:!11: t?l))

1, .
- (u(xmyfﬁ.) — Atuy, (m‘nl}tn) + EAtzu}” (xmafn))

+ O (At?)
= 2&1’15?]{ (ii-m-,tn) + O (At%)

Thus,
Atr(t,) = At(guﬂ (Zmotn) — 2ku, (:L',mtn)) + 0 (Af3, Afh?)

and therefore & = | = 2,

8.3 Exercise 3, p. 481

DuFort-Frankel:

ul (m) = wh_(m)+2r (uﬁ(m F1)—ul om) =l (m) + ul(m - 1))

(1+ 27‘)1t:§+1(??1) = (1= 2r)ul_ (m)+2r (uﬁ(m + 1) + ul(m - 1))

Replace ul(m) by é,(m) = ("e'™¢ | Then after dividing both sides of the previous

cquation by (" 'e'™¢ | we get

(1+20)¢* = (1-2r)+ 2-?"(_:((:"5 + ¢ %)
= {1-2r)+4r(cos
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Thus,

(142r)C% = (4r cost)( —{(1—2r) = 0
and
(12 = 1 (2'r' cosé & \/(2?‘ cosf}2 +1— 47‘2)
’ 1+ 2r
= ! (2?‘ cosé £4/1 — 4r? 5i112§)
14 2r N
If { is real
€] < ! 12r cosé] + 4/ 1 — 4r? sin®£
- 142r - )
< 2 1) =
- 14 2'r( r+1)=1
Otherwise
Il = . jg?‘ \/4?"2 cos2é + 1 — 4r2 sin?é
1
= T3 \/4-r2( cos?€ — sin€) + 1
= ! /14 4r? cos(2¢)
1+ 2r
< 1 V14 4r?
1+ 2r
< 1

So the method is unconditionally stable.

Atr(ty) = (1 4+ 20)w(@m, fns1) — (1 — 2r)u(zm, ta-1)

— 2r (u(a:m+1 te) + u(Zmi, fn))
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2k At

h?

1
AtT(t“) — (1 + )(u(-r?rntﬂ,) + Atu}t (mnntn) + §At2u;tt (mmatﬂ.)

1
+ EAtSTL,fu (ﬁ?m; 39 ))

1
- (1 - < )(u(mma tﬂ.) - Atuai (J"ma tn.) + EAiguatt (:I:'ma tn)

1
- 5At3u'attf (x'.'na tn))

2k AR

1
(’:‘L(:I:m: tn) + hugx (xm: tn) + _-'132“'31".1: (xmatn)
h? 2

1
-+ 6]1315,“3; (x'.'n} tu))

2kAL

1..
h2 (U(a’?m, f’n) — hu,z (mmg tu) + Ehzugmz (3:7?11 tn)

o %fﬁu,xm (T tn)) + 0 (At4, Athz)
= At? ((1 — ll)u(xm, tn))
+ At (h_Q(Qk + 2k — 2k — 2k)u(w m, th)

+ !1_1(_2'% + 2k)“a,r (xma tn)

+ R (21, (Tmy tn) — 2ktypp (Tmotn))

+ hl(—%k + %k)uwm (% m, tn))
2L p2 — 2k ; l — l 1 Tonstn)
+ At h (zk 23")“’1! (3'1711 t'n.) + (2 2)u}tf ( Wiy b

1 1
+ Ats (h_z(k + .I(-')'{L,” ('Tﬂn tn) + (E + E)M;ttt (-'L'n-.a.; tn))

+ 0 (At Ath?)
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Thus,

(tn) = O(h"‘,mz,(%)?)

8.3 Exercise 4, p. 481

Saul'vev’s method:

ahy(m) = wh(m)+r(ul(m 4+ 1) = uh(m) — by, (m) + whyy (m = 1)

a. Stability:

Replacing u®(m) by 8,(m) = ("e'™¢ " and dividing both sides by Che'™E  yields,

C(l +r(l— e""‘f)) = (1—r)+re?
So,
1—r(1—c%)
¢ 14+ 7r(1 —e %)
(1 —r) +r?
ek RS 1

So the method is unconditionally stable.
b. Consistency:

Let

U = U(xmstn)
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Then,

Atr(t,) = (T +rhulzm, tugr) — ru(@me, g1 ) — (1 — ru{zm, i)

e PU(T g1, tn)
1
= {1+ —)(u + Atu,y +§At2u,u +0 (Atg) )

kAL 1. . .
— T ((u + Atuy —|—§At‘au,u +0 (At‘j))

1 .
— hu,y + Aty —|—§At2u,zu +O (Atd))
1 2 2
+ §h (Uyze + AUz py +O (Af. )

—~ éhf*(u,mz F AN oo +O (A1) + O (AY) )

k
—(1—7r)u — }?t

1.
(u + hu, ., +%hzu,w +ghdu,mx +0 (:’14) )

, 1 At 1 ,
= At(u, —ku,pe ) + A‘vd; (v, — kU, ppe )+ Tkum +6?c&t‘3hu,”“

+ O (Ath?, At?)
T(tn) = O (hz, At AL, —?—;)

8.3 Exercise 5, p. 481

With f = 0,
Md+ Kd = 0
where
Reg et
M = m* K = k¢
e=l e=1
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For heat conduction, it follows from (1.15.3) that
e K 1 -1
e g1 .
and from Scec. 7.2, Exercise 3, it follows that

o= [T 2

Isolating the assembly of elements about the mth degree of freedom results in

Gfm_ d'm—
pch 2 1.0 . pch 0 00 -
—6— 1 2 0 den -+ —G" 0 2 1 den
0 0D D Jm+1 0 1 2 Aot
P 1 -1 {0 d'm-—l K 0 0 { d'.-n--l 0
++|-1 1 0 dn ¢+ 510 1 -1 A = 30
v g 0 ] dm+1 0 -1 1 dm-{-l 0

Thus, from the completed mth row:

pch K

= (({?,1_1(@ 4 4d,, (1) + Jm+1(t)) - (dm_l(t) —2d,, (1) + dm+1(t)) =0

8.3 Exercise 6, p. 482

The generalized trapezoidal method, applied to the given stencil is:

ach
!T (Um—l(tn+1) + 4“171&11-{—1) + Um+1(tn+l ))
%
= = (dmo1(tns1) = 2dm(tas) + dmia(tan)) = 0 (1)
d'm(twrv+1) = dm(tn) + Atvm(tn+a) (2)
Um(tn-i—a) = (1 - G‘.’)’Um(fn) + (}f’f}m’(tn+1) (3)
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Equation (1) holds with n+1 replaced by n . Equations (2) and (3) hold with m
replaced by m +1 . Multiply (1) by @At and multiply (1) written at time step = by
(1 —a)At Adding these two cquations yields:

f
At&i (vm-l(tn+a) + 4Um(tu+o¢) + Um-i—l (tn+a))
6
At
- h& (dﬂt—l(tﬂ+(¥) - Qdm(tn—f-a) + dm+1 (tn+a)) == 0 (4)
where
dm(tu—l-rx) = Qfdm(tn-H) + (1 - Of)dm(tn) i cte. (5)

Using (2)-(5)
et ((dm_l(tnm (1) 4 lbars) = d(22)

+ {d 1 (th) - d"’*+1(t")))

Atk
- .-I? (d?n—l(tn-i—a) - Qdm(fn.-{-cr) ‘l‘ d?n-i—l(t‘.-'z+a)) = { (6)
Let,
OrAt
T = -
pch?
Then,

dm-—l(tn-}-l )+4dm(tn+1) + dm—}—l(tn—f—l) —

(dm—l(tn) + 4dm(tn) + dﬂ1+l(tT1))

+ 7 ((1 — «) (dm_1 (tn) — 2d,,(tn) + dm+1(tn))

+ o (dm_z (trg1) — 2dm{fny1) + dimt1(tns ))) (7)
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a. Stability:

In (7) replace d,,(¢;) by 8.(m) = ("™t . Dividing both sides by (me'™E yields:
(e tei®) 2 (dtet e (1—a)y(e 4o —2) .
+ ar(e® e —2)¢
Recall
. : 1
e e = 2cost and 1— cosf = 2 sing(aﬁ) (9)

P}

So, by (8),

((2 + cos€)+ 2ar sinz(%ﬁ))g = (24 cosf) -~ (1l —a)r2 sinz(%g) (10)

Thus,

(2+ cosg) — (1 —a)r2 sin®(5¢)
(2+ cosé) + ar 2 sin’(3€)

For stability, we require that {{| < 1 . Since a € [0,1] and r > 0
( < 1 V£

The critical casc is { > —1. This imposcs the following condition on (11):

(24 cos€}—(1—ap2 sinz(%{) > —(2+4 cosf) —ar2 Sin?(%{)

Thus,
9 .
- < Rt oo

(1 —2a) sin®(5€)
7. hasaminimum when £ = n7r,n = (27 -1),7 = 1,2,... Seofor the critical limit,
e, £ = nm,

2
¥ <
- 1-2«

which 1s the same stability condition previously derived.
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bh. Local truncation error:

We shall adopt the “u” notation rather than the “d” notation in calculating the local

truncation crror.

Atr(agm,tn) = (u”‘"’l + 4u2j’1 + a;"_".l]

m—1
n n t
- (um—-l + 4u1n + um-}-l)
H 1
+ ar(—ulth 4o 2yn “2:1-1

+ (1 — a)r(—upy, 4 + 2u;, — “‘::1+1)

where

u,, = "'ff(-’rmatn)

Henceforth, let

v = u(Tm,tn)

Expanding in a Taylor series in z and ¢ about (zm,t,) :

Atr(zm;m,ty) = (G?L—I—hzu,m)
- (61.5—}— hzu,m)

) 1
+ Gﬁ?‘( — hzumx ""1';’134“;3:1:1::{". )

P}

o 1
=+ (1 - a')'f'( - h‘u:rx _ﬁhétﬂazzzx)
+ At (5&,5 Ryt )
+ Atar(—h%u 0t )

1
+ _2“Af2 (6uatt +h2uax$it )

+ O (At*, Ath*)
174



.

Collecting terms:
1.. ;
AtT(xms tn) = At (S(U‘at '“iu;rx ) + :?‘hz (2“’:1‘.11‘3 _fgumxxx ))

1 1.
+ Atz (6(5'{&,3; "‘a;:_cu;x:tt ) + §hzumxtt )
+ 0 (Af*, Ath?)

1
= At(:z-hgu,m)

1 1
+ Atz (6(“2“(1 - 20)_.uax1:f- ) + 'ﬁhzuaxxtt)

K
pe
+ O (A, Ath*)
Thus,
r o= O{At*,RY

where | = 2 and

1 fa#i
Eoo=
2 ifuz%
8.3 Excrcise 7, p. 482
e _ rehi2 1 1 1 -1
m® = = {1 2]4—,0(:?1(6—1/)[_1 1}

The additional mass term is proportional to the stiffness matrix. Thus, using the results

from Sec. 8.3, Exercise 5, the added terms to the equation are:

,(J(’.h(é - V) ( - dm—l(t) + de?z(t) - dm+1(t))
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which, when added to (8.3.16) results in:

peh(vdm—1(8) + (1~ 20)dm(t) + vduy1 (1))

K

-7 (dm_l () — 2d,m(8) + dm+1(f))

i
o

h. Local truncation error:

,,Nn

Again, we shall adopt the “u” notation in computing the local truncation error. Using the

trapezoidal algorithm (a = %) and setting v = T]'E , the local truncation error 1s
Atr{zm,tn) = (uﬁf_]l + 10w + u’,;f])

- (u:;.—l + 10u -+ uf};ﬂ)

P Lr( ot 2 - )
1 . R 2 n
+ 5? — Upey H2U — um+l)
where
FAYS
T = 12"‘ h2 U = u(‘(sm’t”)
pch

Expanding in a Taylor series in = and ¢ about (z,,,%,) :

AtT{xm, ty) = (121;, + hu,, ) — (121:: + hu,p. )

1 1 ! !
+ 5’1( _ h?u’xi‘ —E’]Ldu;x:cxﬂ’i) ,_I_ Ef-( — hzu}:tix ——E’_’éh’l'{ijzxxx)

+ At (12?1,; +h%u,p )

1 1 1 .
+ ifAt( - h’z(u'm:a:t _ﬁh‘;un‘.rwu‘,t) + §At2 (12“':%! +h’2um3:££ )

+ 0 (A8, AthY)
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Collecting terms:
&tr(:z:m 'tn) = At (121; 1 —12—u, ) + R? (u ext ——U Mm)
’ ’ JLE TrE ’ pe ’

. 1 - K
+ Atz (G(H}u _it‘:jm??t ) + §h2 (uazztt _;:_Cuaxz:xa:t ))
+ O (At?, Ath?)

By virtue of the fact that

o, — Usrx = 0
C
the following hold:
K K
Uyt ——Uszz |zx - Uypgr =" Usrzre = 0
pe pe
K £
Uyt —=—Uypz |yt = MUyt — Uy = 0
pe pe
K K
Uyt =~ —UWUyze [zt —  Uypptt = Uszprzt = 0
pe pe
So,
T = 0(A#,RY)
8.3 Exercise 8, p. 482
The model equation now becomes:
PCUL —Klypy = f
where
[ = U-(JL'-_.-,;,tn) f — f(-r'matn)
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.To obtain the same rate of convergence for the inhomogencous problem as for the homoge-

neous problem, the “f-terms” in the Taylor series expansion of the truncation error must

be

1 2 2 1, 3 4
— (At(12f+h f) + At (Gf,t +5h f,,,n)) + 0 (A%, Ath)

to match up with the homogeneous terms as obtained in the previous exercisc.

Applying the trapezoidal rule to the above semidiscrete equation, and arranging the equa-

tion into displacement difference form, the inhomogencous term becomes:

12At1
pe 2

Fo= (vhath + = 20)f5 + vfiih)
12At1 T ¥ "1
+7§(V m—1 +(1 _QU)fm+me+1)

Setting v = 4+ expanding F in a Taylors series expansion in @ and £ about :
12 ¥

6AL B6AL AL h?
pe 12

pc pc

6At h* GAL 6AF hIAL
+ pC(lgfmﬁ)—}— pe tf=i+pc( 12 f} -‘.)

+ 0 (Athd}Atg)
At A1,
= —-(12f + hzfaz:r )"i' —(Gf}t +_hzfam:t )
pe pe 2
+ O (Ath' ) At?)

This result, combined with the results of the previous exercise, results in

T = (At2 ) }.',4)
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CHAPTER 9

9.1 Exercise 1, p. 492

Ma,1+Cvppn + Kdnyn = Fayp
doy1 = J?1+l + BA a4
V1 = Uuqy + YA,
2 -
BA @y @ drnyy —doyr
ﬂAtQFn—I—l (é) ﬁAtz{MG?L+] + CU-H.—i—l - Kdn-l—l}

= M(dpt1 — dnt1) T C(BAC VL) + BAE K dyia
=~ (M 4 4AIC + AAEK Yy — Mdog

-+— ﬁAtQCﬁn+1 — ’}’AtCJn+l

{M +y0i1C + AP K }dyyy = AAE Frupy + Mdoq

+ C(yAtd, gy — BAL G 41)

9.1 Exercise 2, p. 495

The central difference algorithm 1s:

Ma, +Kdpyn = Fops
1 2
dr1+l = dn + At’i)n + §At .y
1
vn—i—l = Un + 5&1:(0*31, "+' an—‘rl)

1
d‘n+] - d'ﬂ. (i) Atvn + §At2a’n

1
dn — d‘n—-l = Atvn_1 + §At2an-1
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Adding (4) and (5)

1
dﬂ.-‘rl - d“n—l = Atvn + At'v'n—l + §At2(a’n + a’n—l)

—d,,_ 1
v, _ (C'!n-{-lrﬁ)f 7 1) . ('Un-1 + §At(aﬂ + (In_]))

(3) (dn+] - dn—l)

B At v
Thus,

. (7) (diy1 — dn_y)
o 2A1

(2) 2 2
[ 2% = Zg‘z‘(dn—i—l - dn} - Evn

(8) 2 1

— E(dn-#l b du] - @(dn—{—l - d‘n-—l)

(dn+l - an + dn—l)
Ai?

9.1 Exercise 3, p. 495

With v = 1 and § = 1, the Newmark method is:

Ma, 1 +Cvpp1 + Kdoyn = Faps
1o
dny1 = dy+ Atv, + EAt (Gn + Gnt1)

1
Vn+1 - Un + EAt(a'n + a1z+].)

ady, = M_l(Fn_ Cv, — Kd-n)

Ayl = M (Fn+1 — Cvntr — I(d-n.—i—l)
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1
Vpt1 — U = 'Q*At(an + an+1)

26 1
doyr 2 d, 4 Atw, + 5 AHDn 1 = va)
1
= dn —+ §At(1}n+1 + 'Un)
6z5) L, ~I(p, _ Cv, — Kd
Untl = Vn + —2'Af M ( a— Lo, — n)

+ M7 (Foy1 — Congy — I(dn+1))

Vg1

1
+ At
2 M-t (Fn—i—l - Cvn-{-] - I{dn—I—l)

1 v'ﬂ.
—At
T35 MR, - Cv, - Kd,)
which is equivalent to:
1
Yni1 - Yn + §Af(zn.+l + zn)

9.1 Exercise 4, p. 498

Ynt1 = Ayn where A = Al_lAg and

14802 BALEQ

At=1402  1 4 4268

1—-2(1-23)Q% AH2 - (1-28)2£0)
~At7 1 - 4)0° 1—(1—7v)20
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So,

Al_] =

where D' = 14 ~2£Q + 502 .
1 - 5[5 +26Q(37 - B))
A =
2 -
—5i(1 = 52692 + $79%)
4‘1] _—
Ay = det A

1
—traccA =
2

L | 12t —paren

D _ a2 1402

A1 = B[E2+ (8 + (57 - A2

1— L2602+ 402 — (3y — 8)2607)

Q2
= (1-Flyr2engy - o) (1- e w97 - (50 - 9)260%)

D2

1 i 1 1
+ (1 ~ SlEQ (5 + (5 - ﬁ)(zf)%m) % (1 — 50260 + 57«921)

) —
D

9.1 Exercise 5, p. 501

S22+ %y - )]

d+@W'd = o0
b2
1 +(w') dpyr = €
dnt1 =  du+ OH(L - @)vn + avitr)
Unt1 =  vp + AH(1 — a)an + aangy)
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dn+] - CIL'At'Un_i_]_ = dn + At(l — Ot’)?)n
(5)
(4)
Va+1 — E}:Atan_q_l = Vn + Af(l — a)an
By using (2) we obtain
2
vnt1 + a0 dpyr = ve — A1 — o)) d, (6)

Using (5) and (6) we can set up the following system:

Y = {d} (7)

Yotr1 = Ayn (8)
wherc A = A7'Aq,
1 1 [AFAN
AT = = )
D _aatwh)” 1
1 A1 - )
A, =
~ A1 — a)(w) 1
D = 14a°Q?
and
M 1 [ 1—all —a)f? At
D —At(w")z 1—a(l —a)Q?
1 2
A = —traceA = 5(1 —a(l — a)f2*)



Ay = det A = 5—2—(1 + (1 = 2a + 2a*)Q% + o*(1 — a)2Q%)
or,
af)? (2a — 1)2*
A = 1- Ay = 1—— "
‘ D : D
Stability:

The stability regions are given by (9.1.52) and (9.1.53); sce also Fig. 9.1.1. We begin with
(9.1.52):
1 1
-1 £ 4; <1, —§(A2+1) < A < E(A2+1)
i. First check A9 < 1.
::>1(2 N > 0 = >1
D y — o 5

1. Ag

Y%
|
ot

1 1
5(2{]{— D2 < 2 = 2[(a(l —a) — §)Q4 -] <0

which is satisficd Y € [0, 1}.
. A € (42 +1).

1 . 1 1
1— —af)? < —(2 — —(2a — 1102
ha < 2( D(a* J§Q2°)

1 1
- — et —?
1 Daff +2DQ
= 1512 > hich is always satisfied
2D ~ \VlltllbcLWdy.‘: satlsiled.
iv. A1 > —-1(4; 4+ 1).
1 1 1 1 . 1 .
1— —af® > —Z(2—- Z2a—-1¥% = —14 —af)?-_—0*
ptt 2 3@ 5 - 1)0Y t 5 2D



which is satisfied Vo € [0, 1].

We may also attain stability by satisfying (9.1.53), namely —1 < A; < 1, Ay = 1.
A, < 11is obvious and we can use simple algebra to show that 4; > —1. The condition

A, = 1 implies that a = %— Thus, for stability,

S 1
(1' —
- 2
Order of accuracy:
Using the results from Exercise 2, Sec. 9.1, p. 495, it is clear that a = % corresponds to
the Newmark method with v = }and 8§ = 7§ and therefore is second-order accurate.

Otherwise, the method is first-order accurate.

9.1 Exercise 6, p. 501

dn-{-l A dn
Unt1 Un

where A was derived in Exercise 3, Sec. 9.1, p. 495. Thus we must evaluate limg_, o A .

We assume v = 2/ = % and & = 0.
_ 1-3% At(1 — 580%)
th A = Qlim . ,
& B acao g 1o
_ -1 0
- 0 -1
So, for £ — oo,
dn-i—l = "—dn s V41 = —Unp
and
ﬂ/fan+1 = —CUN_H — I\rdn+1 = C'Un + ff(fn
= —-ﬂrfﬂn
= Dn+1 = —in
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The reader is invited to generalize the argument to the case £ > 0. (This amounts to very

simple observations.)

9.1 Exercise 7, p. 502

Poo = QlE[éolrlm{|A1|, | Az}
Moda(A) = A (4] - Ao
where
1 1 1
A = 1 —[EQ+ =0y + =
i 7 602+ 50y + 5)]
Ae = 1- (260 402y —3)]
D = 14420+ O
- (v+3) v 1
| = — 2 = 1---=
m A =55 55 43
- B -3 y 1
20 =
. 1 ) 1
Qli?;o A = —4—5- Q]E;Iclx; A4y = -1+ gB-
1 1., 1.1
im A e) = ()l )
G, 11 e il g
B 1i(1 1
Y 48
1
- {1,1-—
{-1, 55

Since § > I, max|A| = 1. Thus,

Poo = 1
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i f=g(r+3)
4f~ — L
lim 4; = 1- 21 lim A, = 1__(:}(_]_22)
Groo (v+3) $1—00 (v+3)
4 4 4(y—3
lim A7 = 1-— — + — = 1= % y
00 r+2) v+ (v +2)
So,
dm AL = i A
= Qlim A1 = Hm Az
and therefore

—o0

S -
Poo = (v +3

7)

i,

Iy < B < Hy+ iy

From the upper bound we can derive

1
2 < ’)’+§
r}r..i_

2
7+%) 1
and ( — > 0
% 20 28
In general,

Poc =

. T+ 1 ’
Jim {|A:], [Aef} = 1~ :

11, 1F
27 i[j [E(ML"Q*) —ﬁ]
If 8 < $(y+3)%, then [f(v+3)%— A)t is a real number, so

1
Y+ 3

= 11—
oo ‘ 93

Note that

’Y‘F]ﬁ)?_l %
! (2ﬁ ﬂ}




implics

Consider two cases: If v < % then

and

o
oo ll“ 25 | T
Yt 3
1 2
-5

2 foo

On the other hand, if v > 2 then




and

.+1
Poc = ‘1_‘1“““_

v 8> s+

For this case, [+(v+ £)® — Bl7 s imaginary,

v 1 _1
Pl = 1— gt —|1—-4 fz
B v+3) |
:p?'x_)
-3 [y’
2 2 ! 2
= A +4 1—
’ (7 )2[ 48 ]
R i
>0 >0
> ok

Equality holds only for v =

E1 [

v. From part (i),




(v+3)?

9.1 Exercise 8, p. 502

The solution to this problem is given in the text.

9.1 Exercise 9, p. 512

The solution to this problem is given in the text.

9.1 Exercise 10, p. 513

The trapezoidal rule is:
2

LT | + (wh) dﬂ—l—l = 0
1 2
drt1 = dn+ Atv, + ZAt (an + @ngi1)
1
V41 = vyt sAf(Gn + aﬂ+])
1 .
Atv, (i) Atzvn—l + 5&)‘,3(&?1_1 + an)
1
Atvy, g (i) dy —dnp_1 — ZAtz(an—l + an)
1
Atvn (455) dn - dn—l + ZAtz(an—l + an)
1
dn+1 (i’f) 2d, — dp—1+ ZAtz(an-i—l + 2a, + an—])
1
dutt =2 +dny 2 = 20%(dnis + 20 + )
1 8
(dypt1 +2dn +dn_1)[1 + ZQQ] © 4d,,
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Thus,

dn-{—l -+ an + dn—l

1
do 2 14207
4
= 1+ %QQ]:::R
or
dy
T = T
1+ 102
9.2 Exercise 1, p. 518
E

ke = =

There 1s one rigid body mode: A; = 0, ¢ = {%

calculated knowing that ¥ = { 1 } Therefore

which implics

and

2 |E
h _ / _ - —_
“Winax - ’\2 — h P

The consistent mass case can be worked out in similar fashion.
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(v+3)?

9.1 Exercise 8, p. 502

The solution to this problem is given in the text.

9.1 Exercise 9, p. 512

The solution to this problem is given in the text.

9.1 Exercise 10, p. 513

The trapezoidal rule is:
2

LT | + (wh) dﬂ—l—l = 0
1 2
drt1 = dn+ Atv, + ZAt (an + @ngi1)
1
V41 = vyt sAf(Gn + aﬂ+])
1 .
Atv, (i) Atzvn—l + 5&)‘,3(&?1_1 + an)
1
Atvy, g (i) dy —dnp_1 — ZAtz(an—l + an)
1
Atvn (455) dn - dn—l + ZAtz(an—l + an)
1
dn+1 (i’f) 2d, — dp—1+ ZAtz(an-i—l + 2a, + an—])
1
dutt =2 +dny 2 = 20%(dnis + 20 + )
1 8
(dypt1 +2dn +dn_1)[1 + ZQQ] © 4d,,

190

(2)

(3)



11,

9.2 Exercise 2, p. 518

The solution to this problem is given in the text.

9.2 Exercise 3, p. 519

Comparing (9.2.15) and the lumped mass matrix (9.2.11), their only difference is the value
of the rotatory inertias. It is obvious that this difference will have no effect on the two

rigid body modes.

T
Assuming the bending mode to be < 01 0 -1 > , we verify this assumption and obtain

the corresponding eigenvalue by:

.
(ko + kg — Nomn) < 01 0 -1 >

Thus,

) 2c( I )%
w = —=|—
h, CICA

Shear Made

T
Designating the eigenvector as <€11 Gy ag ﬂ4> , orthogenality with respect to the

three other eigenvectors (in the “m-norm”) requires:

rigid translation: ay +a3 = 0
.. . 2
rigid rotation: —aq+ T(}:a,z + as + !,—cmr; = {
g )
o ~— (G4 = 0

These equations are identical to those obtained for the the trapezoidal lumped mass case

with

or 2



f
so the eigenvector is < 1 %ha'_l -1 %hc}f_] > . The cigenvalue is obtained by using

the following substitution in the trapezoidal lumped mass case, AI™! « a~!, which

results in

4l 1
h _ E] —1 2
L 2eq ERR SR
= i ; — F]
w 7 (1+a (2}1) }

9.2 Exercise 4, p. 520

The rigid body modes of the thin beam element {(cf. p. 518) are the same for both the

consistent and the lumped-mass cases. The eigenvectors corresponding to rigid translation

]

, T
7
and rotation are < 1 0 1 {]> and < -1 1 ﬁ—> , respectively, with eigenvalucs

)\;L,Q — [}‘

1. Consistent mass:

Recall that the consistent mass matrix for a thin beam was evaluated in Exercise 2, Sec. 7.3,

T
p. 433. Guessing the third mode to be of the form <o: 1 a -1 > we solve

-
[ke-—)\hn1ﬂ<cr 1 « —1> =0

and obtain & = —h/6. Since

[k¢ — A2mg] < —

e
—
;
}

. .
2E] Ap?

oo _ — LLd yupahs

6 1> =0 ( h A 360)

Thus the corresponding eigenvalue is A¥ = 720¢21/(h* A). For the fourth mode we take the

o
cigenvectortobe {1 a2 a3 « and orthoponalize it to the three known ones (w.r.t.
2 3 4 B

ms ).
6+ hay +6a3 —hay = 0
124 hay — 12a3 + hay = 0
ay —aq = 0
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11.

111.

T
] RO : 12 12 . : coof VR
The resulting eigenvector is <1 -5 -1 _T> with an eigenvalue of Ay =

840021 /(h*A). The time step for the central difference operator is bounded by

2
At £ —
wma.x
In our case w!,, = /A? s0
h? A
At < ) ——
¢ ¥ 21001
Lumped mass:
1
In this case the third mode is pure bending with an eigenvector of <0 1 0 —1>
and an eigenvalue of A} = 4¢?T/(aAh'). The fourth cigenvector is found by orthog-
i
onality {(w.r.t. m$) to be <1 e -1 ﬁ> and its corresponding eigenvalue is
M= 4c* (120 4+ 3)I/(aAh*). Hence
h? aA
At < —
— ¢ VY (12a+3)I
For any value of a > 6—% the critical time step for the case of consistent mass is smaller

1

than that of the lumped mass case. For example, take @ = 5. The critical time step for

lumped mass, namely

A h?

< oy
at < 487 ¢

1s almost one order of magnitude larger than for the consistent case.
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9.2 Exercise 5, p. 521

Consider the axial and torsional contributions to the C% beam element with only active
degrees of freedom of each shown. By comparing the equations in Sec. 5.4 pertaining to
axial (5.4.87), (5.4.91), (5.4.96) and torsional (5.4.88), (5.4.92}, (5.4.97) behavior of the
beam is is clear that the stiffness and lumped mass matrices for the torsional mode can be
obtained from those of the axial mode by replacing E with g and 4 with J. For the linear

element

e . #Jl1 —1 e _ P10
N

The answer in the text can now be obtained by analogy to the linear rod problem, equation

(9.2.2), since J cancels in the eigenvaluc analysis.

9.2 Exercise 6, p. 521

The solution to this problem is given in the text.

9.2 Exercise T, p. 523

Uy = Czumw (1)
u:;H(m) —2ul(m)+ul_(m) = rHul(m+1)—2ul(m)
+ul(m - 1)) (2)

where r = cAt/h . Using the following replacement,
uwhim) —  b.(m) = (me'™
sihstituting into (2) and dividing by ("1™ yields:
2041 = e e -2)

= Zr¥*cost —1)¢ = *47'23i“2(%§)<

195



So,
&+ 2(2?‘2sing(%§) —1}+1 = 0

For stability, [¢| < 1.

1

12 = 1= 2risin2(%§) +[(1— 2rzsin2(%§))2 —1]z

1. (1 = {2 unplies

51 !
1—2?‘zsinz(—2—£) =1 = 7'251112(55) =1

. €1,€; rcal implies
2. 2.1 0o 2 201
(1 — 2r°sin (56)" 2 1 = risin (;{) > 1
But if this holds,
T 2. 2,1 2 1
¢ = 1-—2r°sin (55) — [(1 — 2¢*sin (55)) —~ 1]z

< -1

So, for stability, r%sin’(3¢) # 1. This leads to the only possible stable case:
ii. (y,(; complex, and
Gl = ¢

= [2(1 - 2r'zsinz(%§))2 —1)3

Stability requires that

b o1 1
-1 < 1—2?‘2sin‘2(§{) <1 = 2?‘25i112(§§) < 2

Thus,r < 1 — At < hfe.
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The local truncation error is determined as follows:

Atz'r = u(-'fma tn-l—l) - QTL(:rmatn) + U(&?m, t“_l) ( )
3

— 72[“(-’”1:1—}—1 ) tn) — 2'”'(331711 tn) + u(xm—l 3 tn)]

1
u(x-ma t?l:i:]) - u‘(mmatn) + Afu;t (:E'ma tn) + 'Q'Atzu}tt (:Bm ] f'n)
X (4)
£ gAtB’E.{,“,{ (331,“ fn) + O(At4)

1..
u(il’lm.:tl:'t'n) = u’(:lrnnfﬂ) E= hu?f“ (.'L'm, tﬂ) * ;hz“jj:r (Llim,tn)
1,5 4
+ gh Uyrrr (Q:ms tn) + O(h )

Substituting (4) and (5) into (3) ,

Atzr — Atz [ugit (xm; tn.) - CQuaz:c (-Tma tn)] + O(Ati) + ()(Atzhz)

= AL2[O(A 1Y)
Hence, 7 = O(At%1h?).

9.3 Exercise 1, p. 524

We want to write: Md + Kd = F(t) in the fom: § = Gy + H(t). Cleatly, with
y = d,G = —M™'K, and H(t) = M~ 1F(t), the associated cigenproblem 1s

(G-AMG) W} = 0
Using the definition of G and pre-multiplying by M , yields,
(K+XMG)M)y = 0

This is the cigenproblem of Chapter 8, Sec. 2.1 with A(G) = —A. Since A is real and

positive, A{G) is real and negative.
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9.3 Exercise 2, p. 524

Md+Cd+Kd = F()
We want to write (1) in the form:

y = Gy+ H(t)

d
where y = { } Therefore
d
o
") = MUF(#)

} . Then, the eigenproblem has the form:

P1(G)

Let 9(G) = {¢(G)

0 1 XGI 0
({M‘K “M-e] | o NG )w(G) -0
Thus,
YaG) = MG)(G)
MKy (GY+ (M7'C + MGy, (G) = 0
and
QX GYM + MGYC+ K)yy(G) = 0
Using the modal reduction procedure of Chapter 7 yields,
NG+ 260" NG + (") = 0
Conscquently,
MG = oLtz
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9.3 Exercise 3, p. 524

(1) Heat equation,

{ii) Equation of motion,

MG) = —bwtiwy/1—¢2

MG) = =)
1 1Im(y)
XK HK—XK -
Re(A)
} Im(p)
K

'é)l-n ————————— -E->1 Fat Wt / -
-1) T .
Re(L)
L —ie
Koo
Ew
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9.3 Exercise 4, p. 527

Mﬂn+] + Ct’n+1 + Kdn-]—‘l = Fn+1
1. .
dn—l—l = dn —I— L\tvﬂ 4 5&?&2((1 — 2)8)(1“ + 2(6{1“_*_1)
Vpt1 = Vn -+ At((l - "]/)a'n + ’Yan—‘r-l)

. : 1 .
BARany 2 dyyy —dy —~ Atv, — SAE(1L - 2B)ay

BAC vy ) BAE (v, + AHL = ¥)ay)

1.
+ ’)’At(dn+] — d-n — Af’Un — iAtZ(l -— 26)(1“)

1 .
= yAHdpp —d,) H (B~ 7)At2vn + (8- 57)At3a’ﬂ

Multiplying (1) by BA#? results in,

(M + 4AtC + BAPK)d, 1 + (- M — yAtC)d,

—AtMuo, + (8 — %)AtzMa,.“ +(f — AL Co, + (8 — 1y)A Ca,

(1,4,5)
=7 BAYF.

Atvn : At"‘-’n—l + Afz((l - 'Y)an-—l + F:/a'n)
L1
= dy,—d,_; ~ At'((i — Blan-1 + fay}
+ A ((1 = yan_; +va.)

1
= doy—doy + AP((B+ 5 —)an + (7 — Blan)
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o~
i |
e

(7)



(1 - PAHdr —dn 1) 2 (1~ )APvn s + (% _ Y1 — At an_
(8)
+ B(1 — yv)Ata,

1 5 1 , 1
(5 = A1 = VAta,_y © (5 — BIAL (v = vuer) = 2(5 = DAL a, (9)
1 3 (8,9) 1 5
(B=5afay "= (1= 1A dy = duy) + (8 - 5)A1 v,
(10)
1.,
Ty - - 3)A v,
~AtMuv, + (8 - %)/_\tzMan + (8 — VAP Cv, + (8 - %7)&3&30&,1
(7,10) |
20 (M (1 - A, + (M~ (1~ V)AL
.. 1
+ Afﬁ(gﬂ il 3)(Man. + CU-H.)
., 1
+ At (7 - I)‘ - ﬁ)(Man—l + C'”n.—])
1 ,
(=M + (1 —y)AIC + (5 + v —28)A*K)d,
1
Y LM —yaC+ (548 = VAP K ),
\ 1 1
+ A2~ 7= 5)Fa + (v — 5 = BYFut) (1)

The proof is completed using {11) and (6) and defining

_ 1 1 .
Ipn — “‘“,‘BFn—I—l + (Qﬁ -7 - §)Frz + ('}( - 5 - [),)Fﬂ—l
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9.3 Exercise 5, p. 527

With F, = 0, and using standard modal decomposition arguments as presented in

See. 8.2.1, the following is obtained:
1 .
(1+ 72624 Q%) dngr + (=2 + (1 — 27)26Q + (§ ~ 284 7)Q%)d,

P-4 (5 + =)0y = O

Taking d,, = (" and comparing the above to (9.3.7), the following is obtained:
(l'g:(lz:l, (L} = =2

160 = s /81 = 1'_27 262:_(1_7)

1 1
Yo = B, M = 3—234‘% T2 = §+X3—“f

S0, comparing (9.1.44)-(9.1.51) to (9.3.7) and the above equation, it can be seen that:

D = 14+426Q+4 80 = g+ o260 + 02
A = (a1 + H2AQ+719%)/(2D)
Ay = (ag+ 26Q + 0%/ D

Thus the equations arc identical, i.e., (9.1.44) = (9.3.7), and ¢ = A(A).

9.3 Exercise 6, p. 527

We want to express

k

D (a4 AtAB)zapm, = 0 (1)

=0
in the form

Z'n—‘r-l = AZ,
T
where 2, = <Zn Zn-1 - 3n+1—k> and A 1sa & x L matrix.
a; + AtAS;
Zn41 == - ; (CYU I Af)\ﬁo) ‘n4l—1
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Let

o a; + AtASG;
i N xp + At/\ﬁn
Then,
I -Yr —Ye .- - Tk ]
1 0 0
A = 0 1 0
L 0 0 1 0

The stability polynomial of (1} is:

k
A>Tt =0 (2)
=1

We want an cxpression for det{A4 — A(A)I). Expanding in the cofactors of the first row:

det (A= AAM) = (=9 = MANAAD = (92)(=MAD T o+ (—7s)(—MA)
o (C1 T e )(AA) + (1 )
k
= (CDAIOCAD" + 3o n AT = 0 (3)
So,

A
MANF+D wMAp = 0

i=1

which is 1dentical to (2).

9.3 Exercise 7, p. 528

C*—24 P+ A (-4 = 0
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Using the results of the previous cxercise,

[ (it AIAB) (o0t AS)  —(astAtAB) |
o+ AEA Py o+ AtAFg g+ AP
A4 = 1 0 0
0 1 0
— AfA
trace A (o + A1)
¥pn -+- Af/\ﬁo
.. X g + AtAS,
sumn of the principal rsof A = —m— =
pI]Il(_,lI)c]. IIINOrs g + At)\ﬁ(}

—(ag + AtAS3)
Lot} + At)\ﬁg

det A =

From the previous exercise

5 Cl’k-{-Af)\/))k Ik _
¢ +Z( 0+At)\ﬁo)c = 0

or
24P+ A~ 4 = O
where
A, = ! trace 4
1 = g trace
A; = sum of the principal minors of A
As = det A

9.3 Exercise 8, p. 528

i. For the parabolic case, recall from Exercise 1 that Re(A*A#) < 0, Im(A*A¢) = 0.
From the figure, the method is stable for —2.7 < MAt < 0.

ii. For the undamped hyperbolic case, from Sec. 9.3, Excrcise 2,
APAEL = fiwAt

that is, the roots lie on the imaginary axis. So, stability requires wAf < 2.5
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9.3 Exercise 11, p. 528

The Euler forward-difference algorithm is given by:

@ = —a; =1, By =0, p = -1
or
So,
A = 1+ XAt
Re(A4) = 14 Re(MAL) Im(4A) = Im(A*At)
The equation |A| = 1 defines a unit circle in the complex plane M*At with center at

—1,07}. The region of absolute stahility lies within this circle.
g y

9.3 Exercise 12, p. 529

The local truncation error for the first-order system (9.3.2) is

k
At'rn — Z (aay(fn+1—-e) + Atﬁa f(y(tﬂ.—}—]-—'t) ) tn.+l—3))

i={}

The local truncation error for (9.3.6) 1s defined analogously, i.e.,

k
Atg"‘rn = Z (a‘iy(tn—i—l——i) + AtﬁtGly(tn%-l—a)

=10

+ AP [Goy(tngr-i) + H(fnJrl—é)])

The At? coefficient on the left-hand side is needed since displacement difference forms arc

used to approximate §.
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9.3 Exercise 13, p. 530

3
(afyn+1_i+ﬂfﬁa:f(yn+1~ufn.+1—i)) = 0

1=

where

Fwnr ta) ° ! )
Yo in == Yn +
~M'K —-M~iC M™'F,
For Park’s method,
g = —1, )] = 15, kg = —~061 ¥y = 0.1

Thus,

3 3 1 3
~dpp1+ zdy —~ —dy + —duo AtV = 0
2 5 10 5}

|4 [ 1
Vpp1 = A1 (%dn—l—l — “;"dn +d,_ g~ 6dnu2)

3 _1 3 3 1
(I + BAtM Cloppr = §’Un — E'Un—l + l—d’ﬂn—'z

3
— IAtM T K doy
g

3

5 5 1
T+ AtMT'O) =dpir — —dy + dpy1 — =dn—, =
( +5 )(3d +17 5 + doti Gd' z)

3

3 1
— — =Atv,_1 + —Atv,_,

3
M'Kd, “Atv,
At #1 ¥ AR =g 10
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5
(51 +AtMTIC + gAtzM—lK)dnH

5

1
+(I+ -g—AtM‘IC)(—gdn tdooy —wdag) =

3 3 1
-§At'vn — BAtvn_1 + ~1—D-Atvn_g

+ 11—[} (‘z—dn—Z - 'gdn—S +dyq— %dn—s)
— gdn - 14—9d,,__1 + ?dn_e - %dn—a
+ édnq — 'é%dn—~5

So,

(%I FAMTIC + SARM T Ky — (5T + g-AtM_IC)dn

5

23 3 10 1
I+ AIM'OVd, o) — (=T + =AM 'C)d,._.
11 1 1
_dnm - _dn— - '_‘d-n——f) - 0
T T T g
This 1s a six-step method.
9.3 Exercise 14, p. 530
Houholt’s method:
Ma,1 +Cvyr + Kdpyy = Frpy
L] = /—\tmg(zdn—%] - Sdn + 4d‘n.—] - dn—?)
vnst = ——(11dy s — 18d, + 9du_g — 2dn_s)
n+1l — GAf 141 1 n—1 n—2
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i. Applying the standard modal reduction technique yields:

an-i-l = 5dn + 4dﬂ—] - dn—?

2682 ,
+ %(11(1?14—1 —18d,, + 9d,,_1 — 2dn_9) + dup1 = Fap
Let
11 2
D = 2420+
Then for F,1; =0
dn—H dn
dn — A dn_1
dn—l dn—Z
(5+6£6Q)/D "—(4+36Q)/D (14 26Q)/D dy,
= 1 { 0 dn—l
0 1 0 dn—?

ii. The spectral radius for Houbolt’s method is plotted in Fig. 9.3.1.

iii. Note that the displacement difference form has been obtained in part 1, where

Gl = —2§wh Gg = -— ((.dh)g
H(tn41) = Fap H(tpy1—) = 0, = 1,2,3
and
? o B ¥i
0 2 -2 -1
1 -5 3
i 3
-
_1 1

The local truncation error is obtained by substituting these values into the expression in

the answer to Exercise 12 for LMS methods of the type (9.3.6). It can be vertfied that the

local truncation error is O(Atz).



Ay = %traceA = (5+66Q)/(2D)

A, = sum of the principal minors of A = (4 4+ 3§Q)/D
2
{a)
2
1-241+dy = A = 1 (54660)/D +(4+360)/D — (14 5¢90)/D
= (D-2- %gg)/p
= Q*D > 0
(b)
1/, 11 ) 2
3—24) — Ay + 34; = 5(3(2 + €+ OF) — (54 6602) — (44 3692) + 3(1 + ggfz))
= (4Q+30%/D > 0
(c)
1 11 ) )
3424, — Ay — 345 = 5(3(2+—3—59+9 )+ (5 + 669 — (4 + 36Q) — 3(1 +§gg))
= (4+126Q+30%/D > 0
(d)
1 11 0 . 2
1424+ Ao+ Ay = (24 €0+ 0N+ (5+662) + (4 +362) + (1 + 62)
> 0
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1— Ay + Ay(24) — Ay) = %((2+ -13—ng+ 02) - (4+ 3£9))

i %((1 + %gm(@ +6£80) — (1 + §&m))

1 1 2 2 2
—{@+ 360+ 00 (24 362+ )

2 16
L+ SEN(A + 7€)

126 34, L,
= — — — =
D2(3§Q+9(§Q)+§Q+SZ) > 0

Thus, the Houbolt method is unconditionally stable.

9.4 Exercise 15, p. 540

The solution to this problem is given in the text.

9.4 Exercise 16, p. 542

The solution to this problem is given in the text.

9.4 Exercise 1, p. 553

Explicit predictor-corrector method:

Manpy, +Co,yy + K&TH—] = Fun
dpyt =  dpsy + 8O A
Vntl = ﬁ'.-'r.-}—l + F}(Atanﬁ—l

Let v = 1/2 and Vn F, = 0. Then,

(M — %A?‘C — ﬁAtzK)an-{—l + Cvﬂ+1 + Kd“+1 = 0

Denote
1
M* = M- §AtC - BAYK
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Then, using the displacement difference equation derived for the Newmark method, (8.3.8),

replacing M by M* | and sctting v = %} results in

Md, i1+ (=2M + AIC + APK)d, + (M — AtCYd,,., = 0
This is equivalent to the Newmark displacement difference equation with 5 =0 and v = é
only if C = 0. It can be scen that the predictor-corrector method above is first-order

accurate if C # 0 (as noted in Remark 7, p. 358} whereas the Newmark method is

second-order accurate for y = =.

9.4 Exercise 2, p. 555

Recall that the a-mncthod is given by:

Ma'!H—l + (1 + Q)Cv'!t+l + (1 + O-’)Kdr'e-l—l - O-’CUR - Q'I(dn = F(tn-f-cr)

1
dfl+1 = dn + /_fst?}n + §At2((1 - 2)B)aﬂ, -+ 2,3an+])

Vny1r = ta + At((l — ’}')an + fya,n+1)

Define d~ﬂ+1 and ¥,41 by (9.4.3) and (9.4.4). Then the implicit-explicit algorithm has the

form;

Mag1+ (14 (.v.)C”'vnH +(1+ cr)CEﬁn+1 +(1+ r.w)K‘rd.,l+l
+(1+a)K8d,., = Fliyrs) +aCv, +aKd,

9.4 Exercise 3, p. 564

The solution to this problem is given in the text.
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CHAPTER 10

10.1 Exercise 1, p. 572
0 — (K* _ )‘*I)d)* _ (Er—»TK*Ij'—l _ )\*I)E}—TJ)*
— (I:'T—TK* . /\*6)'(,[)*
Premultiplying by U¥ and using (10.1.11) yields,
0 — ({_).TTI?_TK* . )\*U’.Fﬁ)l‘b*
— (K* _ )\*M*)'Z,b*

10.1 Exercise 2, p. 572

Tleg ey

dit) = > dpty  dit) = > dptyy  Md+Kd = F
=1 I=1

Substituting the first two equations in the third and performing the usual steps of modal

reduction (¢.g., see Sec. 8.2.1) results in

doy+Ndyy = Fu

where Fpy = ':f)fF . Using Duhamel’s integral,

1 t )
d(;) (f) = w—I /U F“)('r)smwg(t — ’i") dT

where w; = /A; and the total solution is given by (10.1.13), namely

Teg

dt) = ) du(tiv

{=1
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10.1 Exercise 3, p. 572

Again, see Sec. 8.2.1 for background. The associated eigenproblem for Kd = F is
(K -y = 0
where
iy, = &, and PIK¢, = Simim (no sum)
Let
dt) = 3 do(On
m=1

Then premultiplying the first equation by ¥ yiclds

Md = P
where Firy = 1;5;‘“1*" . Solving for dyy ,
F;
_ B
do =
Therefore,
Peg 1
d = Z xf (¥
=1
10.1 Exercise 4, p. 572
Md+Cd+Kd = F
where
C = aoM+IK
Defining £ = -;—(a/w; + bw;) and using the same approach as in Exercise 3,
(f(;) + 2& wgt’f(;) + w?d(;) = Fu)
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Using Duhamel’s integral and considering non-zero initial conditions,

dogy + Erwrdoq)

L

d(;}(f) = e_fxw:t{du(l)cos(ﬁ);t) -+ sin(r.&;t)}
1 t

+— / F(I)(T){:S‘“"(‘_T}sin(c&;(t — 1)) dr
5344 )

where

b = 41w doyy = YIMAO)  dyy = o Md(0)

The solution 1s

Ttag

d(t) = Z dy(t)n
=1

10.3 Exercise 1, p. 575

"
. I K K. I
K* — RIKR — 11 12 -
I:“K;21K21:| [Kzl Km} l—ngle]

T
[ I } {Kll“KliKQ_QIKM]

_Kz_:le??l Ky — Ky,
= K - KIQKQ_QIKEI = Kj
M* = R'MR - R’ P";ﬂ g] R = M,

10.5 Exercise 1, p. 579

The solution to this problem is given in the text.

10.6 Exercise 1, p. 584

The solution to this problem is given in the text.
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1.

111,

CHAPTER 11

11.2 Exercise 1, p. 643

. Crout factors:

1 1 -1 0 0
— 1 o 1 ~1 0
D= 1 U= 1 -1
1 1
Forward reduction:
1 1
T. J 0 _J)1
Utz = 0 — oz = .
0 i

Diagonal scaling:

Dy=z — y==z

Back substitution:

Ud=y — d=

[l o P RSN

The verification is straightforward.

11.2 Execrcise 2, p. 644

i
In components 4;, = > Gy, Gyj, where Gi; =0 for ¢ > 5. Expanding:
k=1

An = Gfl

A = G11Gha + Go1Gag
= G11Ga

Az = Giy + G,
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Ay = G11G13 + G Gas + G31Gag
= GG

Ags = G12G 13 + Ga2Gas + G32G33
= G12G13 + G22Gas

A3y = Gl + G+ Gy

A = G11G1a + G21Goy + Gar1Gas + GGy
= Gr11G g

Aot = G12G 14 + G2aGoy + GuaGan + GGy
= G12G1y + G22Gay

Azy = G13G1 + GosGos + GasGag + GaoGag
= G13G1s + G23Gar + G33Gaa

Ay =G+ G+ Gh +Ghy

And so on. Solving for the components of G-

G =+ 4An

G12 = Al?./GII
Gaa = (A — G2,)?

Gi1z = A13/G1y
G23 == (A'Z3 - G12G13)/G22
33 = (Ass — Gy — G2,)?

Gig = A /Gy

Gaa = (Azs — G12G14)/ Gaa

Gag = (As1 — G13G14 — Ga3Gas)/ Gas
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Gar = (A — G2, — G}y — G2 )7

And so on. Summarizing,

Forj =1,2,...,ne

For:=1,2,...,7—1

i—1
Gij = (A, — Y GuiGrj) /G
k=1

B

j—1
Gji = (A5~ > Giy)
k=1

11.5 Exercise 1, p. 716

The fundamental {requency of the rod may be estimated as

_ome 100w
T 2L 2(10.0)

M

The required stiflness-proportional damping ratio can be calculated from

1 /RDAMPM
£ = 0.10 = 5(———

=

+ RDAMPE x w])

Ly

thus RDAMPK = 2£, /w; = 1.273 x 10~%. The maximuin frequency

) 2c
Wi < — =400 = £mnx = 2.546
1

mMax -

and so the reduction factor in critical time step is

([(frznax + 2'3’]% — ‘fmax)/’}'
2/

= 0.1893

For a rod having 210 elements of length 0.05

h

C
max — I

o
.
[w]

w = 4000 == {max = 25.
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and the reduction factor in critical time step is

([ 4 2913 ~ bumax)/Y
2/v

=1.963 x 1072

This example illusirates the significant restriction stiffness-proportional damping can place

upon critical time-step size.
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