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INTRODUCTION

The first purpose of this booklet is to give answers, where
appropriate, to even-numbered problems in the text and to give hints
and comments on some even-numbered problems. Its second purpose is
to give supplementary material and references which teachers may or
may not want to use. Its third purpose is to let me comment on
aspects of number theory and its teaching. This material, which can
be easily recognized, may be passed over entirely.

Teaching mathematics is frustrating. One reason for this is
that for all too many students, mathematics is a collection of
formulas, and a course in mathematics consists in learning which
formula solves which type of problem. Why the formula is what it is,
how it connects with other formulas, or what the idea behind it is
are of little concern to the average student. He mainly wants to get
a good grade; besides, considering such things takes more mental
effort than applying, robot-like, some meaningless formula to some
artificial problem. We teachers know better, of course: we know that
mathematics is a rich and beautiful structure, filled with bright
ideas and satisfying consequences. We try to get students to see
this glory, but most of them stubbornly refuse even to try; instead
of beauty, give them a formula every time. It is frustrating.

No one is really to blame for this. In the early years of
education, minds are not mature enough to grasp anything but formulas
and it is inevitable that teachers and students should treat
mathematics as more or less arbitrary rules. Even in high school,
so many students lack the capacity for abstract thought that teachers
must present formulas and nothing else; they would soon go crazy
otherwise.

So, college students cannot be blamed for thinking that
mathematics is nothing but formulas and equations, but we should try
to get them to give up this error and see the truth. Unfortunately,
it is easy for students to go through the usual calculus sequence
without changing attitudes at all, and courses in statistics and
differential equations only reinforce their faith in formulas. What
students need is a course in which formulas and equations are not
much use; a course that demands thought, a course where ideas must
be understood. The ideal course is, as all teachers of number
theory know, a course in number theory. It is better than a course
in abstract algebra because the subject matter is familiar and
concrete: positive integers are much less threatening than left
semi- 1n]ect1ve k-groupoids. All teachers of number theory deserve
great praise for the hard work they do in introducing generations
of students to the true nature of mathematics. However, we will not
get it: virtue must be its own reward.

It is because number theory is different from almost all
mathematics a student has seen before that it is so difficult to
teach. The students do not know that the course will be different
from any other: master a few formulas, plug some things into them
on examinations, and forget them after the course is over. They
will not belleve you, at first, when you tell them that they must
concentrate on mastering the 1deas and understanding why things are
true. Number theory may be the first course that students have had
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where it is no longer possible to solve a problem by leafing back in
the text to find the example that is just like the problem and
mindlessly imitating it. (There is a successful elementary functions
text, published by a large and reputable firm, which says in its
preface "Practically every kind of problem found in the problem sets
was previously enunciated and solved in the various illustrations.”
How terrible! Encouraging students to become robots instead of
thinking people--there ought to be a law!) The problems in this book
often give no clue at all in their statements of how to go about
solving them. Students can find this upsetting, but that is where
mathematical development can take place: in trying this, that, or
the other idea until one works. Students should be encouraged to do
this. They should be told, with examples, that there is more than
one way to solve same problems and they should not expect to have a
solution spring fully before them. Some students have the idea that
if they cannot see, all at once, how a problem is to be solved, then
they cannot do it. They think that if they do not know the formula
that works, they are helpless. They should be told that some
problems cannot be solved with formulas and they should be persuaded
to try something even if they do not know where it will lead and
even though there is no guarantee of success. Their tolerance for
frustration may be so low that they will refuse, but point out that
it is through trial and error that knowledge advances. Think of
Edison, trying all those things for the filament of his light bulb.
This text is for a course that emphasizes problems and their
solution. There is not all that much material in the text that it
would not be possible to devote half of the class time to the
problems. One device that I have found useful, not unpopular with
students, and that encourages them to do problems is to require
that each student hand in a card on the day that a set of problems
have been assigned, listing the numbers of the problems he thinks
he has solved and the numbers of the ones he has not solved. By
looking through the collection of cards, the teacher can see which
problems gave difficulty, and then can call on students to write
solutions on the board of the hard problems, selecting the
"volunteers" from among the students whose cards say that they
have solved the problem. Students like to see lots of problems
solved and the teacher has time to go out for a drink of water.
Knowing that problems may have to be exhibited to the whole
class also encourages somne students to take some care in their
preparation. Most students do not realize that when they are
writing the solution to a problem in mathematics they are writing
in English. Most have the idea that the point of a problem is its
answer (which is usually put in a box) and that what led up to it
is unimportant. Of course, this is just backward. The answer to
a problem is its least important part: the point of a prohlem is
communicating its solution. One can point out that the practice
in communication that students get in writing solutions will be
valuable in life after school: they will most likely never have to
solve a diophantine equation, but they will have to get ideas out
of their heads and into the heads of others. Solving a problem
has two parts: the first is getting the problem solved to the
satisfaction of the solver and the second is putting the solution
in a form so that someone else can understand it. This is a new
idea to many students; they believe that once the answer is
written down, nothing else is needed. Some students will not give
up easily: if I had a dollar for every student who has said, in an



aggrieved tone, "But there's the right answer--why did you take
points off?" I would have--many dollars. Some students refuse to
try to produce solutions written in English, others try and succeed
only indifferently, but now and then a student will get the idea and
produce mathematical prose that is almost indistinguishable from the
prose in an average textbook. They are the students who master the
mathematics too: does clear writing come from clear thinking, or can
trying to write clearly force clear thinking?

All of the above may be of no particular use because teaching
styles differ and they all work when done by the right person. My
first number theory course was taught by an instructor whose style
was to, in effect, copy the textbook on the blackboard for the
class. That was probably bad style, and it is a tribute to the
power of number theory that it can be transmitted to a receptive
mind through many different agents.

SECTION 1

Some people think that a course in number theory ought to
start with the development of the number system. There is something
to be said for that idea, and students certainly ought to see the
nunber system developed somewhere, but I have chosen to omit that
material.

The purpose of mathematics is to deal with quantities in the
world of physical reality so as to enable us to understand and
control it. This is the reason mathematics is studied; if it were
only symbol manipulation there would be no reason for preferring
mathematics to chess as a topic of study. Both develop the mind
in the same way, but we study mathematics because it is useful.

I think that numbers are part of physical reality just as atoms

are. That 17 is a prime is independent of the human nervous

system; water is made up of hydrogen and oxygen throughout the
universe; the square root of 2 has been and always will be
irrational, even when the human race has disappeared. Number theory
deals directly with physical things, and a course in number theory
is thus a course in applied mathematics. Number theorists want to
know why numbers do what they do and they will apply any area of
mathematics--algebra, complex variables, anything useful--to find
out.

In courses in applied mathematics, you want to get right to
the real problems. In statics there is no time spent on the theory
of n-dimensional vector spaces; in statistics there is no
development of measure theory; we want to get our hands on the
objects of study right away. Numbers are things to be investigated,
even though ingenious man has shown that they can be constructed
from other things.

Problems

2. 1 and 73.

4. The equation is 7x + 13y = 1 and all solutions are
x=2-13t, y=-1+7t, t an integer.

6. All solutions are x = 5 + 19t, y = -6 - 23t, t an integer.

10. (a) If pln and pl(n + 1), then pl(n + 1) - n. Or, note
that 1¢(n + 1) + (-1)+n = 1.



(b) 1 or 2 depending on whether n 1is odd or even.

14. There are integers x and y such that cx + ay = d, so
bex + aby = db. Each of the terms on the left is divisible
by b.

SECTION 2

Identifying prime numbers has always been an important problem.
Gauss sounded a little annoyed at the intractability of the primes
when he wrote (Disquisitiones Arithmeticae, translated by A. A.
Clarke, Yale University Press, New Haven, 1966, p. 396)

The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most
important and useful in arithmetic. It has engaged
the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous
to discuss the problem at length. Nevertheless we
must confess that all methods that have been proposed
thus far are either restricted to very special cases
or are so laborious and prolix that even for numbers
that do not exceed the limits of tables constructed
by estimable men, i. e., for numbers that do not
yield to artificial methods, they try the patience

of even the practiced calculator.

Gauss was nothing if not a practiced calculator. Students
might be set to factoring numbers by hand--5-digit numbers would
probably be as large as they could handle--or by pocket calculator,
which would add two or three more digits. It would make ?hem
appreciate what labor factor tables and computers save, since even
a mediocre factoring program can factor eight-digit numbers with
ease and no one's patience is tried. .

Students should be aware that number theory is not a deaq
subject and that the problem of distiqgu@shlng prime numbers is
getting as much attention now as it did in the time of Gauss.

The sieve of Eratosthenes, which takes.about n;5 steps to ve?ify
that an integer of size n is prime, is not the last w7rd in

. . 1/3
finding primes since there exist methods using only n or
ni/4 steps. But even they take too long when they are used on
integers of 60 or so digits. Very recently a new method has been
devised which takes only about log, n steps, and 60-digit integers

cause computers no difficulties at all.

Such an astonishing improvement is not made without some
loss, and the loss is that the new method is probabtlistic so
it does not identify primes with absolute certainty. The idea is
to test an integer, using a test based on Fermat's Theorem. The
test says either '"the integer is composite" or '"the probability
the integer is prime is 1/2." The test can be repeated,
independently, so by doing it enough times, we can find that the
integer being tested is eithier composite or that it prime with
probability as close to 1 as we please. If the test does not say



that the integer is composite 60 times in a row, then the
probability that the integer is prime is 1/2%0 = 8.67+1071% and
that is close enough to zero to conclude that the integer is prime.
Ve cannot be absolutely sure, and if we test 1,000,000,000,000,000,000
integers we will most likely make at least one mistake, but we can
take that risk.

M. 0. Rabin in "A probabilistic algorithm for testing
primality" (to appear) reports that all of the Mersenne primes
2P -1 with p < 500 were found by a computer in 10 minutes
without error. Also, with probability 1 - 10'18, the largest primes
less than 2390 and 2400 ape 2300 _ 153 and 2400 _ 593, respectively.
With the same probability, the largest pair of twin primes known--
they have about 123 digits--are ( ’TT. p ) 338 + 821 and that
number plus 2. p <300

This new method has an application outside of mathematics. A
method for sending messages in cipher, unreadable to those who do
not know how to decipher them, is based on finding large numbers
with exactly two large prime factors. If we have two 60-digit
primes and multiply them together, even if our enemy captures the
120-digit product he will be helpless because he will not be able
to factor it. (The probabilistic method tells only if an integer is
prime or composite. It is of no help in finding the factors of
integers known to be composite.) But we know the factorization and
can decipher the message. The probabilistic method makes it easy
to find 60-digit primes, something that was not easy before.
Details on this application of number theory to national security

can be found in Martin Gardner's Mathematical Games column in
Scientific American 237 (August 1977) 120-124.

Problems

2. 5¢7¢67, 24544567, 33-7'11013'37>101'9901. One way of getting
the last factorization is to note that 1012 - 1 =
(108 - 1)(10% + 1) = (103 - 103 + 1% + 1) -
999-+1001-1000001.

4. (a) The first counterexample occurs at n = 20: 119 = 7+17

and 121 = 112, There are others at n = 24, 31, and 36.

(b) Each counterexample generates infinitely many others.

For example, if n = 20 + 77k, k = 0, 1, ..., then 7\(6n - 1)
and 111(6n + 1) for all n.

8. No: 6|u-3.

10. One way is to note that nl< n(n + 1) < (n + 1)2 if n > 0.
Another is to note that (n, n + 1) = 1 and no two consecutive
integers are perfect squares.

12. Since p >nl/3, n/p« n2/3, 1f n/p 1is composite, it has a

prime factor less than (n2/3)1/2 - nl/3, which is a
contradiction.

1w, 28b _ 1 = (228 - 1)(2(b-Da 4 2(b-Da |+ 1),



SECTION 3

Some of the problems at the end of this section are problems
of recreational mathematics, so it would be appropriate to point
out to students here that there is such a thing. It will no doubt
surprise many that there are people who actually get enjoyment out
of mathematics, but that is one reason for education--to learn about
the new and strange. It is possible that a few students have latent
within them the taste for recreational mathematics, and they should
be given the chance to develop it. After all, recreational
mathematics is a potential source of pleasure and those are rare
enough that we should not let any slip by us. Much of recreational
mathematics is number theory, and that provides yet another reason
for studying it: in the March 1978 issue of a periodical that
deserves wider circulation among students of mathematics, Crux
Mathematicorum (currently $8 per year from the Managing Editor,
F. G. B. Maskell, Mathematics Department, Algonquin College, 200
Lees Avenue, Ottawa, Ontario KIS IN3, Canada), five of the ten
problems for solution are problems in number theory and one of them--
let p, be the nth prime; for which n is p% + 2 prime--is problem

32 on page 198.

Less obscure than Crux Mathematicorum is Martin Gardner's
monthly recreational mathematics column in Scientific American,
always high in quality. The most important recreational mathematics
journal is the Journal of Recreational Mathematics (Baywood
Publishing Company, 120 Marine Street, Farmingdale, New York
11735) now in its tenth year.

One of the most popular forms of recreational mathematics
problemsis the cryptarithm, where an addition or multiplication
has letters replacing digits and the problem is to find which
digit stands for each letter. The first cryptarithm

SEND

MORE

MONEY

was the invention of the great English recreational mathematician,
Henry Dudeney (1847-1930). A cryptarithm is good when it can be
solved with the largest possible use of logic and the smallest
possible use of trial and error. (Any cryptarithm can be solved
by machine by substituting the at most 10! = 3,628,800 possible
values for the letters.) Dudeney's is good because logic shows
that =1 and O = zero. It follows that S must be 9 and that

X

E+1=N. Fron N+ R+ carry =E + 10 we get N = 8 and
carry = 1. There are only a few cases to be considered to find that
» Ny ¥Y=7,5,6, 2 and the unique solution is
9567
_ 1085
10652.

Such things are fun to solve in the same way that crossword puzzles
are fun to solve. Here is another which can be solved by most
students, in print for the first time here: it is a chemical
experiment, A + SOLID + A+SOLID = LIQUID. Inspection shows,
successively, L =1, 1 =8,S=9,U=3,and 24 +D = 20. It
follows that A = 7 and D = 6, and then all that is left for 0



and Q are 2 and 4. The field is inexhaustible. For example, the
cryptarithm
NINE
EIGHT
THREE
TWENTY
(J. of Recreational Mathematics % (1971) 137) was rotated ninety
degrees
T
ETW
NIHE
IGRN
NHET
ETEY

by Sidney Kravitz (J. of Recreational Mathematics 8 (1975-76)
309-310); not only do both have exactly two solutions, in both

the sum of the digits in TWENTY is 20. Moreover, the missing digit
is the same in both. Astonishing!

Recreational mathematics is not part of number theory, but
students are not likely to hear about it otherwise, nor are they
likely to discover it on their own. The alternative to bringing
it up in class would be to have a course in recreational mathematics,
but that would be a mistake, since reducing samething to a course
can take the fun out of it. Courses sometimessuck the life out of
a topic.

Problems

2. x=1+t,y=-2t; x = U4t,y = 3t; no solutiors.

4, No solutions; x = 4t, y =3t, t=1,2, ...5 %=3,y=2.

6. If p, d, and q denote the number of pennies, dimes, and
quarters, respectively, then p =79 - 5t, d =7 + 8t, and
q = 14 - 3t. Solutions in positive integers occur for t =
0, 1, 2, 3, and 4.

8. If s, j, and b stand for the number of sophomores, juniors,
and backward seniors, then s + j + b = 26 and 125s + 90j +
50b = 2500. There is only one solution in positive integers:
(s, j, b) = (8, 15, 3).

10. The problem is to solve 100c + d - 23 = 200d + 2c in non-

negative integers, and the solution shows that the check was
for $25.51.

SECTION 4

The question "What is all this good for anyway?" may not have
came up or it may already have been settled, but this section gives
an opportunity to bring up an application of congruences, namely in
generating random numbers. To answer "So who needs random numbers?"
refer to authority: D. E. Knuth in volume 2 of The Art of Computer
Programming devotes a long chapter to them. They are useful, he
says, in a variety of ways: for simulation of natural phenomena in
a computer, for selecting random samples, for giving data to test
the effectiveness of computer algorithms, for making decisions
(for example, optimal strategies in game theory involve random
selections), and for recreation.



It is not easy to generate random numbers--any sequence written
down by a person "at random" will fail one or more tests for
randomness--and many different methods have been used. A currently
popular one is the linear congruential method; it generates a
sequence of numbers which is really not random at all since each
number is determined by the one before, but the sequence passes all
of the tests for randomness. Although strictly determined, the
sequence looks absolutely chaotic, and that is the essence of
randomness. The method is simple enough to describe: choose a
starting value r(0), a multiplier k, an increment a, a modulus m,
and go to it: r(n+ 1)=kr(n) +a (mdm), n=0,1, ... .

The sequence will repeat with period m, but if m is chosen
large enough the repetition will not occur in practice. If a and
k are chosen properly, the period of the sequence will be m, the
largest possible value. Conditions which suffice for this are

(a, m) = 1

k-1= 0 (mod p) for all p which divide m

if m is a multiple of 4, then u|(k - 1).
There is an example of a theorem of number theory which has been
applied in the world outside of number theory. Starting with
r(0) = 069315, k = 2701, a = 314159, and m = 1000000 gives a
sequence which starts 069315, 533974, 577933, 311192, 843751,
285610, 746769, 337228, 166987, 3u60u6, 984405, 192064, 079023,
755282, 330841, ... : it will repeat after 1000000 terms and no term
appears more than once, but to the eye it is total, utter, random
chaos. Perfect chaos is very hard to create.

Problems
2. 1, 9, 72.
4. True.

6. 1, 2, 3, 6, 11, 22, 33, or 66.

10. 1, 7, 11, 13, 17, 19, 23, or 29.

w, +D3-Md ;@ +D+1 =1 (md3).

16. (c) Sum every other digit in an integer and subtract the sum
of the remaining digits. If the difference is divisible by
11, then the integer is divisible by 11.

18. Every palindrome with an even number of digits is divisible
by 11.

20, M- 1= (x-DGL+ ™24 +1). Since x =1

od ),  m|(x - 1). Since x =1 (mod m),

M Le 24 41 21+1+...41 (mterms) = 0
(mod m). Thus %" - 1 is divisible by m k + 1 times.

SECTION 5

. The method for solving linear diophantine equations is very
§atlsfy1ng. Students in linear algebra classes often have trouble
in going from, say, x+ 3y =5 to x=2-3t, y=1+t, but
the congruence method forces the result on them. The method
generalizes, and it might be worthwhile to point this out. For
example3 take 3x + Wy + 5z = 100. That is, 3x + 4y = 0 (mod 5)
f;om which y = 3x + 5t. Substitute in the original equation,
divide by 5, and we get 3x + Ut + z = 20. That is, 3x + z = 0
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(mod 4) from which z = x + 4s. Substitute and divide by 4 to get
X+ t + s =5, and that gives the solution:

x= 5- s- ¢t
y = 15 - 3s + 2t
z= 5+ 3 - t.

Not only have we solved a linear diophantine equation, we have found
a basis for the kernel of the linear transformation T : R —a R
defined by T(x, y, z) = 3x + Uy + 5z: it is
{1, -3, 3, (-1, 2, -1} .
Further, we have found two lines which lie on the plane whose
equation is 3x + 4y + 5z = 100:
(5, 15, 5) + s(-1, -3, 3) and (5, 15, 5) + t(-1, 2, -1).
Number theory, transformations, planes--all mathematics is one!
Somewhere in any number theory course, students should see

multigrades. If there are some students adept with the pocket
calculator, you can set them to calculating the sums of

1, 15, 22, 50, 57, 71;

2, 11, 27, 45, 61, 70;

5, 6, 35, 37, 66, 67.
If done correctly, each of the three lines will sum to 216. That is
no big surprise. Then set them to calculating the sums of the
squares of the integers in the three sets. All will be 11500.
That is mildly interesting, but when the sums of the cubes all
turn out to be 682128 there ought to be some surprise, which should
increase when the sums of the fourth powers all come out to be
42502564. (Students may be uninterested and daydreaming, but in
an ideal world there would be gasps of astonishment.) Such
astounding coincidences cannot go on forever since sooner or later
the sums of the nth powers of the integers in the first set will
dominate, because 71" grows much faster than 70“, but for fifth
powers the sums are still identical: 2724334416. Anyone not
amazed at that is fundamentally unamazable. A challenge to students
would be to find a, b, ¢, r, s, t such that a + b + c =

r+s+t and a“ + b2 + ¢ = r2 +s” + t2; they might uncover
some of the easily-discovered properties of multigrades. The
problem of finding such things excited a great deal of interest
once: there is a survey article, "The Tarry-Escott problem" by

H. L. Dorwart and 0. E. Brown in the American Mathematical Monthly
44 (1937) 613-626 that is as good now as it was 40 years ago.
Multigrades continue to appear, off and on, in the literature of
recreational mathematics; for example, there is "Multigrades" by
D. C. Cross in Recreational Mathematics Magazine #13 (February
1963) 7-9. It is a field in which amateurs can find amusement .

Problems

2. 1035 135 6, 155 10x = 492 = -500 (mod 992), so
X = -50 = 942 (mod 992) and the solutions are 94?2 and 1934,
b, x =5 (mod 6), x = 82 (mod 385), x =605 (mod 1066).

6. For example, 15x = 14, 13x = 14, 12x = 14, and

20x =0 (mod 20) have, respectively, 0, 1, 4, and 20
solutions.
8. 1092.

10, x =2,y =15; no solutions.
12. 301 or any number congruent to it (mod 420).
62.

16. (a) Any integer congruent to 2223 (mod 3600).

10



(b) No. The first and third conditions cannot both be
satisfied.
18. Let the integers be a, b, and ¢ and solve 3a = 20r + r,
Sb = 20(r + 1) + (r + 1), and 7c = 20(r + 2) + (r + 2).
200 ax = 0 (mod b) has (a, b) solutions.

SECTION 6

If aa' 21 (mod p), a' can be called the reciprocal of
a (mod p), and that allows us to define rational numbers (mod p):
let a/b (mod p) be ab'. This leads to picturesque congruences
which sometimes interest some students: 3 = 1/5 2 2/3 (mod 7).
It is a good exercise to see which properties of rational numbers
carry over to rational numbers (mod p). 3*3 = 9 = 2 (mod 7) and
(1/5)(2/3) = 2/15 = 2/1 = 2 (mod 7): no true mathematician could
rest without verifying that what happens in that example happens in
general.

Another example of picturesque congruences
S - 10 4 -9 - 3 _.8_2_17 1 6
illustrates what surprising discoveries can be made even at the
lowest level of number theory. If the row of congruences is looked
on as a permutation, with numerators going to denominators, then it
can be written (51 9 4 3)(10 2 7 8 6). Do the same thing starting
with 9 and you get
10 — =
T =E7E2g=Eg5=2 15 (mod 11);
the permutation is (9 1 5 3 4)(7 8 6 10 2). The same one! And you
get the same one starting with 3 or 4. If you start with 2, 6, 7,
8, or 10 you get the same one--(1 8 9 6 4 10 3 2 5 7). What's more,
1, 3, 4, 5, and 9 are precisely the quadratic residues of 11. Why
in the world is that? Does it happen in general? Give me my pencil
and paper! Number theory offers the best place for a bright
undergraduate to experience the joy of mathematical discovery
and the mixed pain and pleasure of mathematical research. It is
a pity that most students never experience the joy. It is more a
pity that many of them do not believe that it exists.

S)
®
!
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Problems

2. 1, by Fermat's Theorem; 52 = 52 = 3 (mod 11);
19u512 = 912 = 92 = 4 (mod 11).
b, M= 1 (mod 100), so 73%% = (74)88.93 = 73 = 43 (mod 100).

6. (31w)162 = (_1)182 = 1 (mod 7).

8. (20012000 = ()20 = 3 = 25 (mod 26).

10. (a) o0, 0, 0, O.
() (n-1!= 0 (modn) if n >4 1is composite. To prove
this, if n = ab with a # b, then both a and b occur
among the factors of (n - 1)!. If n = a2, then both a
and 2a occur among the factors of (n - 1)! because
n>4 and thus a - 1 2a.

12. Fermat's Theorem says that a® = b =1 (mod n + 1).

11



W, (p-K!k-D!= (DX modp), k=0,1, ..., p. The
proof is a generalization of Problem 11.

16. 2= 1 (mod 381), but 341 = 11+31 is not prime.

18. 21 = 2P 2= 2 (mdp), so p|2%P1 - 2). The
number is even, so 2 divides it also.

20. Apply Problem 19 with n = 10.

SECTION 7

The formula @ (p™) = (p"1! - 1)/C p - 1) appears in this
section only because it is shorter to write than
oM =1+p+ p2 + ...+ ph.
That is its only advantage, and it gives an excuse for a short
lecture against formulas. Students love formulas, but formula
thinking is just the opposite of what mathematical reasoning ought
to be and students should be discouraged from using formulas

whenever possible. Which is easier to calculate, 1 + 3 + 9 or
(33 - 1)/(3 - 1)? The first. Which suggests a sum of divisors

better, 1+ 3+ 9 or (27 - 1)/2? The first. Formulas often
obscure meaning. Students should be told that no formula has ever
or will ever solve any serious problem. That is because a serious
problem is, by definition, one on which a formula will not work.
Students should be aware that the serious problems of the future--
the ones they are going to have to solve--are not going to yield

to any formula they can learn now, and instead of committing things
to memory, they should concentrate instead on developing their
powers of reason, of abstraction, of seeing analogies and patterns,
and so on. Giving such a lecture will not change students' behavior
at all, or at most not much, since the safest way to a grade is to
memorize formulas, they think, but a few students may remember
twenty or thirty years on and think, "How right my number theory
teacher was about formulas! How wise he or she was!" Such are the
delayed rewards of teaching.

Problems

2. 24, 1680, 48, 18600.
4, 18, 25662; 36, 264992,
8. Yes: a2kl =k,

10. d(psg) =230 for any p, as is obvious. Less obvious is
60 = g(p q) = d(pl qz) =ud(pqu3) = d(plqu) = d(pgqs) =
d(pgq r) = d(p qur) = d(p q2
P> q, r, S.

12. Any n which is a power of 2 times an odd square.

16. let n be any prime greater than 3.

18. Proceed as in the text to get U}(pe) =1+ p2 + .0t p2e
e, e
and - G5 (p{"p3t... pEr) = OL(pf) OL(pSY ... TH(pET).

rs) for distinct primes
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SECTION 8

Amicable numbers are still being looked for. Euler, who had
great computational skill, found 59 pairs and almost 1500 are known
now. Recently a computer search was made for pairs of the form
kpq, kr where p, q, and r are distinct primes, each relatively
prime to k. (J. of Recreational Mathematics 10 (1977-78) 183-189.)
Seven new pairs were found, the smallest being 201,477,789,315

and 202,655,860,605. Factored, the pair is 37+ 5:11-59-197+1297

and 35-5-11-59~257003. An exercise, to be done either by hand or
to test a computer program which calculates a-(n), would be to verify
that the pair is indeed amicable. It would be harder if the pair
was given in unfactored form; in that case the student should be

told that 257003 is a prime. Another new pair is

3% 5.11% 137.71-542519  and 3“-5-113-137-39061H39

or 2,844,637,606,234,215 and 2,884,708,168,019,865. There are
many unanswered questions about amicable numbers, and some may be
unanswerable.

The first problem in the Additional Problems for this section
deals with numerology. That problem concerns deficient years, an
idea I thought of by myself, though no doubt it appears somewhere
in the vast literature of numerology. That literature consists of
books and pamphlets, mostly printed on cheap paper, with titles
like The Secret of Numbers Revealed, or Numbers, Their Occult
Power and Mystic Virtues, for sale in stores which specialize in
the occult. It is all great nonsense, but students are invariably
fascinated by it so it may be worthwhile to devote some class time
to it. Students who never ask questions will, and faces which
usually bear looks of long-suffering boredom will brighten up.

This is because there seems to be a natural tendency in the
human mind to wish to believe the incredible, as if the world as it
is does not provide enough things to marvel at. Astrology,
pyramid power, biorhythms: there is always some expression of the
human lust for the irrational and there always will be until
evolution has proceeded far enough that rational thought comes
naturally to the human species. Astrology is the most widespread
of the occult sciences; many newspapers, to their shame, publish
astrology columns which pretend to give accurate predictions of the
future, arrived at with no hard work or rational thought. It is
mostly harmless stuff like "Relative may cause difficulty. Relax
in the evening," but it is still encouraging the idea that
knowledge about the future can be arrived at by revelation, and
revelation is superior to other methods. Teachers of mathematics
ought to be opposed to such notions, since our job is to illustrate
the advantages of rationality. What astrologer could have found
Maxwell's Equations?

Numerology is very like astrology even though it has not yet
made the newspapers. Astrologers divide all people into twelve
classes according to their dates of birth and numerologists divide
all people into nine classes according to what their names turn out
to be congruent to (mod 9). The method for converting a name into
a number is quite simple, perhaps because numerologists are not
capable of anything more complicated mathematically. Let A have
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the value 1, let B be 2, ..., let Z be 26, add, and reduce the
total (mod 9). The modulus 9 was picked partly because each person
is assigned a single digit 1, 2, ..., 9 (if the sum is 0 (mod 9),
numerologists change it to 9) and partly because the calculation is
simple, since addition modulo 9 never involves more than adding one
digit to another: 9+ 8 = 17 = 1+ 7 =7 (mod 9). So as to
never have to consider two-digit numbers, numerologists use the
following chart

1 2 3 4 5 6 7 8 9
A B CDETFGHTI
J K LMNUOPAQR
S T UV WXY Z

For example, Carl Friedrich Gauss has for his number
3+1+9+3+6+9+9+5+L4+3+93+3+8+7+1+3+1+1

and that is 1 (mod 9). Just as all Aquarians share certain traits,
according to the astrologers, so do all 1s, according to the
numerologists. VWords which characterize 1ls include

positive, creative, optimistic, progressive,

self-determination, forceful, independent,

decisive, a leader, courage, pioneer

agression, arrogance, bossiness, vacillation

Isn't that Gauss? Creative and independent, and also arrogant. You
would never confuse him with a 2, whose characteristic words are
emotional, maternal, sympathetic, understanding
sensitivity, cooperation, rhythm, attentive to
detail, rest
self-depreciation, cowardice, shyness, apathy,
mischievousness, appeasement
Numerology 1is onto something, isn't it?
. Numerology goes back at least as far as Pythagoras, who was very
impressed with how number permeated the universe. He, or his
followers, got carried away and went beyond verifiable facts about
numbers, such as pairs of vibrating strings produce harmonious tones
when their lengths have ratios which are quotients of small whole
numbers like 3 to 2, to non-verifiable ones such as odd numbers are
male and even numbers are female. (The reason for that was that
odd numbers have male shapes and even numbers have female shapes:

. e e o e e . o e e .

o . o e . s e e o e .

6 7 8 9
female male female male

$ring that up in class and interest will be redoubled, as it always
is at any hint of sex.) That survives today, as the characteristics
of 1s and 2s show: the words describing ls are those assigned to
stereotypical males and the words for 2s are traditionally assigned
to females. Pythagoras's school developed a whole number mysticism,
and its ideas have been copied by generations of numerologists.
Open.any numerology book--they are all essentially the same--
and you will find what the characteristics of each number are.
Just as there is general agreement among astrologers about the
;haracteristics of those born under each sign of the Zodiac, there
1s agreement among numerologists about what the characteristics of
each number are. That is because they have independently had the
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same revelation or that they have all copied from each o@her.
Numerology, like astrology, has undergone great elaboration. There
are not only name numbers, but birth date numbers, cycle numbers,
karma numbers, destiny numbers, intensification numbers, number§
without end, harmonizing or conflicting with each other; the chief
difference among numerologists is how they choose to elaborate the
basic system. Most numerological writing about specific numbers is
SO vague that anyone can see himself described, just as in astrology.
For example,

You are very versatile. You can handle

many types of people and can use your
talents in more than one field at a time.

You have a clear, logical head that can size
up situations with an uncanny sense of
fairness and justice.

You would agree, perhaps with a modest blush, that those describe
you, would you not? But the first is a description of a 3 and the
second is a 6.

Numerology has lasted a long time and it is not likely to
wither away. It appeals to the irrational in all of us. A group
of people who know each other can test the claims of numerology by
having the words descriptive of the various numbers written on slips
of paper and choosing the slip most characteristic of each person.

I have done this, and the results showed considerably more agreement
with numerology than chance would have caused to occur. It is
enough to shake one's faith in reason. In astrology, nature may
imitate art: after reading fifty times that Capricorns are reserved,
a Capricorn may start to act reserved, but numerology has not been
as well written up. Clearly, more research is needed, and to make
it possible here are lists of words characteristic of the other
digits.

3: communication, extrovert, entertainer,

creative imagination, charm, popularity,

physical beauty, pleasure, facility with

language

conceit, verbose, superficial, impatience,

extravagance

4: self-discipline, practicality, physical
work, endurance, order, method, construction,
industry, honesty, reliable

isolation, reactionary, cautious, stingy,
stubborn, vulgarity, envy

5: freedom, change, adaptability, variety,
resourceful, risk, travel, curiosity,
sensual, speculation

impulsive, restless, fickle, hypercritical,
irresponsibility

6: responsibility, conscientious, reliability,

adjustment, teaching, conservative, concern
for balance

meddling, self-righteous, obstinacy, overanxiety
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7: wisdom, secrecy, study, research, writing,
observation, faith, dignity, pride, specialization,
introspection

scepticism, pessimism, melancholy, aloof,
dishonesty

8: control, power, success, good judgement,
achievement, executive ability, fairness, material
freedom, efficiency

greed, ruthless, vindictiveness, poor judgement

9: selflessness, completion, compassion, tolerance,
generous, justness, benevolence

extremes in emotions, vulgar, sentimentality,

bitterness, waste
These lists are too short for someone to internalize the occult
meanings of integers; that takes a long immersion in the writings of
numerologists, which is probably not a good thing to do. In fact,
it is best to stay away from them completely, lest anyone be
seduced from the path of rationality, so hard to stay on, so
pleasant and easy to fall off.

Problems

4. 402, 408, 414, 416, and 420 are abundant and the others are
deficient.

6. TIf o(2330) = 3233 then (22" - 1Pt - 1) = HgbHl
and that is impossible.

8. 3%.5.7 is abundant for every a 2 3.

10, Yes: 2PL(2P-1)=1+2+ ...+ (2P - D).

12. If n=2p(2p+1) and 2p +1 is a prime, then
g (n) - 2n = -2p2 + 8p + 6, and this is negative if p 2 5.

W, Since 2° 21 (mod 9, P71 = 1or7 (md9) for
p 25. Also, 2P 2 2 or 5 (mod 9). Thus PP _ )

3 l'lor7¢4 =1 (mod 9). The case p = 3 can be
considered separately.

SECTION 9

Number theory is full of names of mathematicians: Euler's
function, Legendre symbols, Gauss's lemma, Fermat's theorem, the
Euclidean algorithm. there is great opportunity to include
historical material. It is a good idea. Students tend to like it
because it is a break from the routine of mathematics and it will
not be on the next test. It can let a student who knows some history
put mathematical discoveries (which are hardly ever mentioned in
general historical works) into their proper place in the scheme of
human development. It can show that mathematics is a human activity
and theorems are not handed down by gods, carved on stone tablets,

It is hard to do that because most writers of mathematical
history concentrate on mathematical life and ignore the rest. Pick
up a book of mathematical history at random and see if that is not
so. Here is an excerpt from the middle of page 154 of Hilbert, by
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Constance Reid (Springer, New York, 1970)

The next summer Hilbert lectured on relativity theory
as part of a University series for all of the faculties.
The middle of page 154 of Niels Henrik Abel, by Oystein Ore
(University of Minnesota Press, Minneapolis, 1957):
With very few acquaintances and low ebb in his purse
Abel could do little else than write mathematics, and
the last months in Paris turned out to be extremely
fruitful. A few days after his great memoir had been
submitted to the Institute, he completed a lesser paper
on equations, which he presented to Gergonne's Annals.

The middle of page 154 of Carl Friedrich Gauss, by G. Waldo
Dunnington (Hafner, New York, 1955):

By January, 1832, he had thrown himself with all force
into the investigation of magnetism, and by February
of that year had succeeded in reducing the intensity
of terrestrial magnetism to absolute units.

The middle of page 154 of Joseph Fourier, by I. Grattan-Guinness
(M. I. T. Press, Cambridge, 1972):

On calculera de mfme la valeur de d pour le cas de
quatre 1nconnues et on multlplera cette valeur par

9 /(9 - 172 ), ll /(ll - 7 ), 13 /(13 - 72 ),

It is hard to make mathematics human. Mathematicians mostly
lead dull lives, and colorful anecdotes bringing them alive as
people are rare. Howard Eves has collected almost all known
mathematical anecdotes in In Mathematical Circles (two volumes),
Mathematical Circles Revisited, and Mathematical Circles Adieu
(Prindle, Weber, and Schmidt, Boston 1969, 1971, 1977) and the
National Council of Teachers of Mathematics have done their best to
gather useful material in Historical Topics for the Mathematics
Classroom (NCTM, Washlngton D. C., 1969), but the amount of human
interest is llmlted It is a shame that mathematicians as people
have been so neglected. (If you think that they have not been
neglected, then can you tell which of legendre, Laplace, Lagrange,
and L'Hospital was the tallest? Which had the most children?

Which had the happiest life?) The names of mathematicians are not
the names of people, they are the names of gods who create theorems,
and it is too bad.

We need a supply of better anecdotes. It is so bad now that
even the anecdotes that were made up and tell about things that
never happened are no good. For example, the one about how DeMoivre
started sleeping 15 minutes more each night until he got up to 24
hours and then died is incredible on the face of it and pointless
even if it were true. It was clearly made up by a non-mathematician,
and not a clever non-mathematician either. The well-known anecdote
about Euler's algebraic proof of the existence of God is another
example. Why would Diderot agree to hear such a thing when he was

no mathematician? Why would Euler present nonsense like "(al + b)/c

= n donc Dieu existe"? Ridiculous! That such feeble stories should
gain acceptance and be constantly repeated shows how easy it is for
counterfeit anecdotes to get into circulation and stay there.
Mathematical authors should make up good anecdotes about famous
mathematicians, illustrating their human qualities; there is a need
for them, it is not being filled by historians, and unless such things
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start to appear I will make some up. . )
Another great need is a good supply of mathematical quotations.
There is a collection (Memorabilia Mathematica, by Robert Edouard
Moritz, 1914, reprinted by Dover, New York, 1955 as On Mathematics
and Mathematicians), but it is filled with pedestrian things like

We may safely say, that the whole form of modern
mathematical thinking was created by Euler. It is
only with the greatest difficulty that one is able
to follow the writings of any author immediately
preceeding Euler, because it was not yet known how
to let the formulas speak for themselves. This art
Euler was the first one to teach.

which is taken from page 154. There are a few good things, like
Kronecker's "God made integers, all else is the work of man,"
(which should be repeated to every number theory class at least
once), and some jokes

Why are wise few, fools numerous in the excess?
'Cause, wanting number, they are numberless.

(Lovelace, 1659, quoted on page 269) which will go over the heads
of most of a class. There is a need for made-up quotations which
tellingly illustrate mathmatical points. Put students to work on
the job.

Problems

2. 18, 1luuy, 1uy0.

4. 3360, 330u8.

6. a- =1 if a isodd and 0 if a is even (mod 16).

8. None: @(n) < n for all n.

0. 2+ - Lp-1 = 22 = 2.dp.
pEx p<x pEx PR

12, ax = ca®™ = ¢ (mod m).

14, All solutions are 17, 32, 34, 40, 48, and 60.

16. Use the Corollary to Theorem 3: if m and n have a common
factor, then :‘l—!:(l - 1/p) 'n;(l - 1/p) has more factors,
each smaller than 1, then (1 - 1/p).

- ok . Pimr k-1
18. Put n = 2°N with N odd. Then @(n) = 2 @ (N) and

n/2 = 2N, The two are equal if and only if @®(N) = N, and
that is true if and only if N = 1.
20. If n has more than two distinct odd prime factors, then

@ (n) would be divisible by 8. Thus n = 2apch and

q(n) = 2a'lpb'l(p - 1)q°1(q - 1). It is not hard to show
that product can never equal 14 = 2.7,

SECTION 10

Some students may have seen the words "primitive root" before
in primitive roots of 1. The same words are used because the idea
is the same: the powers of a primitive root sweep through everything
possible. Thus -i 1is a primitive fourth root of 1 because its
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. . 0 .
powers (—i):L = -i, (—i)2 = -1, (-J.)3 = i, and (—1? = 1 include
all of the fourth roots of 1. In the same way that -i is a

primitive root of the equation xt = 1, 2 1is a primitive root of

the congruence M= (mod 5) since its powers 2ls 2,
22 =, 2P = 3, and 2" = 1 (mod 5) include all solutions of

the congruence. Students familiar with complex numbers should feel
satisfaction at the exact parallel. . o

The parallel extends to finding which roots are prugutl\xlﬁ
roots. If r is a primitive root of x" = 1, then so is
for those k with (k, n) = 1: the proof is the same as the proof
of Lemma 1, but with equalities instead of congruences. Thus there
are @(n) primitive nth roots of 1.

Problems

2. 3, 5,6, 7,10, 11, 12, and 14 have order 16; 2, 8, 9, and 15
have order 8; 4 and 13 have order 4; 16 has order 23 1 has order

1.

4. They are 7, 10, 11, 14, 15, 17, 19, 20, and 21.

6. 4, 4,2, 2, 4,42, No.

8. 11 and 27.

10. If k is even, then (W)P1/2= 1 (44 p), which is
impossible since h is a primitive root. Ancther way to
solve the problem is to note that since hK is a primitive
root, (k, p-1) =1 so k must be odd.

12. No. If h = g' and k = g5 (mod p), it is possible that
(L+r+s,p-1) #1. For example, 2, 8, and 19 are
primitive roots of 29, but the least residue of their
product is 17, not a primitive root of 29.

4. Since aP = -1 (mod qQ), a has order 2por 2. If a has
order 2, then a = -1 (mod q) and ql(a + 1), If a has
order 2p, then 2p|@{q), or 2p|(g - 1).

16. From Theorem 3, any prime factor must have the form 3uk + 1.
Also, the smallest prime factor must be less than V131071 =
362.037... The only primes to test are 103, 137, 239, and 307.

18. let x=g . If gx = x+ 1 (mod p), then (g - 1)x =1

(mod p). This has exactly one solution since (g - 1, p) = 1.
20. (a) If g 1is a primitive root of p

s th? product is
g‘gZ.Ugé)(m) = gQ(m)(‘(’(m\)+l)/2 = (¥M/2)P(m)+1
= (DI = ) g my.

(b) If m = 8, the result is not true.
SECTION 11

It is conceivable that a student might wonder, while on the
subject of quadratic congruences, whether the quadratic formula, so
useful for solving quadratic equations, is any good on congruences.
It is, since completing the squape works (mod m), and students might
enjoy solving something like 3x? + x + 8 = 0 (mod m) using it.
The solutions should be x = (-1 + J1 = 36)/6 (mod 11). Since
V=952 JU 2 2 and 1/6 = 2 (mod 11), this is x =
(-1£2)2= 20r5 (mod 11), and those are indeed the solutions.
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This is an example of how if one proceeds as if something is
true, true results may come out. Euler did the same thing, dealing
with divergent series as if they were convergen?,.and found new and
useful things. Try something--it might work: timid students, fearful
of doing something wrong, should be told to emulate Euler.

Problems

2. Only the 1last.

4, x = 25 or 9948 (mod 9973).

6. -1, -1, 1, 1

8. x = 2o0or5 (mod 11) for both.

10. 1, -1.

2. p =1 (mod¥) so (3/p) = (p/3) = ((12k + 1)/3) = (1/3) = 1.

16. 1 = (1/p) = (ab/p) = (a/p)(b/p) = (b/p).

18. Llet (p - 1)/2 = q. Then (q/p) = (p/q) because Q=1
(mod 4). But (p/q) = ((2q + 1)/q) = (/) = 1.

20, (p/q) = ((q + 4a)/p) = (4a/q) = (a/q). Also (q/p) =
((p - va)/p) = (~nva/p) = (-1/p)(a/p). Thus (p/q)(q/p)
(-1/p)(a/p)(a/q). Since p = q (mod Y, if p =gq
(mod %), then by the quadratic reciprocity theorem, 1
(p/q)(q/p) = 1-(a/p)(a/q) so (a/p) = (a/q). The case
P=2q9g 23 (mod4) is similar.

= 1

SECTION 12

This section contains the hardest material in the text.

Gauss's proof of the quadratic reciprocity theorem is an example,
perhaps the first that students have seen, of an extended proof
where more than one idea is needed to go from hypotheses to
conclusion and it is worth going through if only to induce awe that
a human mind could produce such a thing. In many students awe may
not be induced, but the principle of exposing students to the best
is as good in mathematics as it is in music, literature, or art, and
the hope is that if appreciation is not immediate, then the seeds of
later appreciation have been sown. At least students may appreciate
that there is something there to appreciate.

Problems

2. p=t1+1 21 (md4), so (3/p) = (p/3) = (2/3). Or,
note that 4" = 4 (mod 12) for all positive n and apply
Problem 1.

4. (a) 2 is a quadratic residue (mod p), so 1 = (2/p) = 2(p-1)/2
(mod p), by Euler's Criterion.
(b) 167.

6. (a) p =2, and those odd p with (-1/p) = 1. That is,
P=2 or p E1 (modu).
(b) All: pI(p2 + p).
(c) Those congruent to 1 (mod 4) because n2 +2n+ 2 =
(n + l)2 +1, )

8. The sum of the residues is twice 12 + 22 + oot (p - 1)/2)°,
and since the sum of the first n squares is n(n + 1)(2n + 1)/6,
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the sum is (p - L)p(p + 1)/12. Since 12)(p - 1)(p + 1), the
sum is zero (mod p).
10. Let h = (p - 1)/2. Then
-1 = (p - D!

(p - (- 2)...(p - h)h!
(-1)(-2)...(-h)h!

(-1)Ph!h!  (mod p).

Since p = 1 (mod 4), the first factor is 1 and the result
follows.

w o

SECTION 13

This section and the next two are included for relaxation from
the rigors of the last few sections. What they contain is not used
later, and they do not contain much from what has gone before. If
a class does not need the relaxation, they can be left out without
loss or students may read them by themselves.

There are all sorts of ways of representing numbers. Bases
may be negative integers, and I have heard that such bases are
useful inside computers. The result for negative bases is the same
as for positive bases: every integer n has a unique representation
n=dg+db+dp?+ ..+ a D where 04d;<b, iz0,1, ...,
k. The result is the same because the algorithm for finding the
digits is the same: repeated division by the base. For example, to
find the representation of 1453 in base -8 we have

1453 = (-181)(-8) + 5
-181 = (23)(-8) + 3
23 = (-2)(-8) + 7
-2 = (1)(-8) + 6
1=(0)(-8) +1
so 1145310 = 16735_g. Similarly, 1H5310 = 19583_;;5. Students may

extract some enjoyment out of counting in negative bases: in base
-3, it goes 1, 2, 120, 121, 122, 110, 111, 112, 100, 101, 102, 220,

Problems

2. 123300, 2H1015, 121206, 33608, 137611.
4. 239, 653, 905, 8425,

6. 254, 11, 1.

8. 2 3 4 5 6 7

2 4 610 12 14 16
3 6 11 14 17 22 25
4 10 14 20 24 30 34
512 17 24 31 36 43
6 14 22 30 36 uy 52
7 16 25 34 43 52 61
10. 106, 376, 1340, 287286.
12. 15/32, 4/7, 53/63.
14, (c¢) In any base with b = 1 (mod 2).
16. To prove that there is such a representation, mathematical
induction will work. To show that it is unique, choose
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r so that (3" + 1)/24n < G} + 1)/2. Then
(-3"+ 1)/2 £n - 30 < @37+ 1)/2.
18. Group the terms in a base-2 representation by threes:

(dg + 42+ d222) +(dy+d,2+d 298 + ...
each of the numbers in parentheses is one of 0, 1, 2, 3, 4, 5,
6, 7.

2

20. 4 +5=n°, 5 +5=(n+ 1)2, b=2n+1l,n=9,b =19,
SECTION 14

Problem 6 is the easy verification that in base 12 the last
digit of a square is always itself a square. There are other bases
with this property, namely 2, 3, 4, 5, 8, and 16; students would be
able to find them, though they might not be able to prove that they
are the only such bases, which is in fact true.

Problems

2. .658, remainder 19X0.

4. .6, 30/1u3.

10. (a) 265; 266 in leap years.
(b) Only 260, 261, ..., 269.
(c) No: if the number is abed, then in base X we have
1728a + 144b + 12c + d = 1000(a + 1) + 100b + 10c + d, and
this has no solution with a, b, c, and d one-digit integers.

SECTION 15

Problems
2. 3, 3, 6.
4. There are no such integers, because (10, 42) # 1 and
(10, 45) # 1. But 10’ = 10 (mod 42) and 102 = 10 (mod u5).

10. .01, .00I1, .00OII1.

12. .0t, .0x35188.

14, If the decimal expansion of a number is neither terminating
nor repeating, then the number is not rational. Thus

.101001000100001... is irrational in any base, seven in
particular.

SECTION 16

To a mind quick to see analogies, the expressions m? - n?
and 2mn that occur in the parametric Pepresentatlon of the sides
of Pythagorean triangles might suggest cos 29 _ sin 0 and
2sinfcos® and one might wonder if there might be a trigonometric

derivation of the formulas. There is, and Olga Taussky published it
in "Sums of squares" (American Mathematlcal Monthly 77 (13870) 805-
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830). Define the acute angle 26 by sin 20 = a/c,
cos 26 = b/c, where a, b, and ¢ are integers such

that a2 + b2 = c2. At least one of a and b 1is even, c o

since if both were odd we would have c? = 2 (mod y),

impossible. We can suppose that a is even. A []
sin® = (1 + cos 20) = r, b

COSze = 4(1 ~ cos 26)
sin@ cosB = Lsin 28 = t

are all rational, and t = J;E. Also,
sin@ =Jr = (Jrs{E) = (t/s)cosH .

(sin29 y/n? = (cos29 )/m2. )
But those quantities are equal, respectively, to r/n? and s/m
so they are both rational. Let the common rational value of the
quantities in the last equation be k. Thus )

sinZ@ = kn2, cos?8 = ym®.

S,

Thus

It follows that
a = csin20 = c(2 sinP cosB ) = ck(2mn)

b = ccos20 = clcos?@ - sin’B )
= ck(m? - n?).
There they are: all that remains is to show that ck is an integer.
Suppose that ck = u/v with (u, v) = 1. Then av = u(2m) and

bv = ulm? - n?). Suppose that plv. Then pl2m and pl(m2 - n?).
If p 1is odd, then the first shows that p|m or pln and in
either case, the second shows that p divides both m and n, but
this is impossible. If p = 2 and pln then plm. Finally, if
p = 2, pfn and pfm, then a would be odd. That shows that no
prime divides v, so v =1 and ck is an integer.

The derivation is not as natural as the one in the text, but
it is nice to know that the similarity of form is no accident.

A student who is bri§ht and hag caught on to how mathematicians
think mi%ht ask, after x¢ + y2 = 2z 1is all settled, about
ax? + by* = czz. Even if no one brings it up, it gives a chance for
the teacher to bring it up and illustrate how when one question is
settled others are suggested, so there is no danger of the world ever
running out of mathematics. It also gives a chance to give the
nice answer, proved by Legendre in 1785. If the equation is written

in the symmetrical form ax2 + by2 + 022 = 0 where each of a, b,
and ¢ has no square factor, are relatively prime, and are not all
positive or all negative, then the equation has solutions if and only
if -bc, -ac, and -ab are quadratic residues of a, b, and ¢
respectively. In 1953 it was shown that if solutions exist, then
there is one with z < Jab. Students can find hundreds of
diophantine equations in the more than 800 pages of the second

volume of L. L. Dickson's History of the Theory of Numbers (three
volumes, Chelsea, New York, 1966 reprint of the 1913 edition), a
fascinating book to browse through.

Problems

2. (96, 247, 265) and (264, 23, 265).
4. There are 13, with long sides 1104, 1100, 1092, 1073, 1071, 1020,
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1001, 975, 952, 943, 884, 855, and 817.
8. It is not necessary to use the parametric representation of the
sides, though that works: if ab/2 = ¢ then a2b2 = uc? =
ua? + ub2. Solve for a’: a = 4 + 16/(b2 - 4). That implies
b? - u = -16, -8, -4, -2, -1, 1, 2, 4, 8, or 16, all of which are
impossible.
12, (a) 23u.
(b) Another has sides 33, 56, 63, 16, with one diagonal 65.
(c) Yes: paste together Pythagorean triangles with the same
hypotenuse. To see there are infinitely many, take m = 1
and n 2 (mod 5) so that ¢ will be divisible by 5,
say c¢ = 5k. If a and b are the other sides of the
fundamental triangle, then the quadrilateral with sides
a, b, 3k, 4k will have diagonal 5k, integer sides, and
area 3abk“‘.
. From ma(m? - n?) = 3(2m + (m? - n?) + (m? + n2)) there
follows n{m - n) = 6, so (m, n) = (6, 7) or (2, 5) and
the triangles have sides (84, 13, 85) and (20, 21, 29).
6. If (a-d)?+a’=(a+d?, then ala- ud) = 0.
18. (a) (20, 21, 29) and (12, 35, 37) have area 210.
(b) The triangles with generators 35, 11 and 33, 23 have
the same area.
(c) Let the sides of the two triangles be a, b, ¢ and

r, s, ¢. Then a2 + b2 = r2 +s2 and ab = rs. There

follow (a + b)2 = (pr + s)2 and (a - b)2 = (r - s)2 and
these imply a =r and b = s.

SECTION 17

Since this section has Fermat in its title, it is a good
place to humanize him by pointing out that even he, like other
mathematicians, could make mistakes. (Legendre once thought that he
had proved Euclid's parallel postulate and he almost presented his
proof in public, but at the last minute he had doubts. More
recently, Kurt Mahler thought that he had proved that Euler's
constant, n%}%L( -lnn+1+1/2+1/3+ .., +1/n) was
irrational but he too had second thoughts.) Fermat was wrong about
his proof that ¥ + y" = 2" had no nontrivial solutions for
n 23 and he was wrong in saying that the Fermat numbers Fn =

n .

22" + 1 are prime for all n. F is prime for n =0, 1, 2, 3,
and 4, but Euler discovered F, was divisible by 641. F_ is
also composite for n =6, 7, 8, ..., 16 and many larger values of
n. The first Fermat number whose status is unknown is Fi;. It is
a large integer, with 39u57 digits: u401...(39451 digits)...697.
(The first three digits can be found from the logarithm of 2131072
and the last three by finding 2131072 (mod 1000), using the fact that
2103 = 53 (mod 1000).) The factorization of F_ was completed as

recently as 1971 (M. A. Morrison and John Brillhart, "The factorization

24



of F,," Bulletin of the American Mathematical Society 77 (1971) 264),
when 1t was shown that

2128 4 1 - 340282366920938463463374607431768211457
= (59649589127497217)(5704689200685129054721),
both of the factors being primes.

The great lengths that people will go to to factor numbers are
illustrated in "A method of factoring and the factorization of F "
by Morrison and Brillhart, Mathematics of Computation 29 (1975) 183-
205. It is pure puzzle-solving: the challenge is the number, just
because it is there, and once it has been factored it ceases to have
any interest. It is like a solved crossword puzzle, fit only for being
thrown away; the fun is all in the doing.

The journal Mathematics of Computation often contains interesting
number theory results. One can get the square root of 2 to 1,000,000
decimal places (Math. Comp. 25 (1971) 939), find that thg smallest odd
perfect number, if there is one, must be greater than 10°0 (Math. Comp.
31 (1973) 1005), and be one of the first to know that there are
seventeen primes in arithmetic progression. It is nice to read
results that are immediately understandable.

. . n
It is no use looking for primes of the form 23 4 1, because

Fermat primes are the only ones of the form 22 + 1. That is because
if a has an odd divisor, a = rs with s odd, then

22+ 1= 25 4 1= (28 + 1(er(sel) Lopr(s=2) oy

and that is composite. So a must be a power of two, since those are
the only numbers with no odd divisors.

Problems

2. Because it cannot be concluded that the denominators decrease
in size. 3

4. If 3[x, then x=3X and 9X> + y3 = 323. Thus 3|y, so

y = 3Y and 3X3 +9y® = 23, But this gives 3|z, z = 3Z,

and x3 + 3Y3 z 923; the first step in the infinite descent.
. No. Just as in Problem 4, p divides x, y, z, and w.
If two of x, y, and z are odd and the other even, the equation
is impossible (mod 4). So, x, y, and z are all even. A

similar argument shows that x/2, y/2, and 2/2 are also all even,
and so on.

10.  The first equation can be shown to be impossible by infinite
descent or by writing it as y2 =1+ 1/(x2 - 1), which implies

that x? -1 is 1 or -1, both impossible. In the second
equation, x, y, and z must all be even.

@ o

SECTION 18

If a student wants a challenge, challenge him or her to copy the
method of the text to get a theorem about the representation of
integers as differences of two squareg. There are no hard theorems
to prove. First one can note that x° - y2 = 0, 1, or 3 (mod 4)
for any x and y, so a necessary condition for the representation
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is that n = 2 (mod 4). Second one can note that
(a2 - b2)(c2 - d?) = (ac + bd)2 - (ad t be)?
so it is necessary only to investigate the representation of primes
as differences of two squares. If p is an odd prime and
p = @ -b%) = (a+b)a-b)
we can write

at+hb
za-b>b
and solve: a = (p +1)/2 and b = (p - 1)/2. Thus all odd primes
are representable as differences of two squares, and so all integers
which are products of odd primes are representable. Every power of
two greater than 2 is also representable because
X2 (%24 12 - (k2112

However, 2 is not a difference of two squares. Thus the analogue is

Theorem: n cannot be written as a difference of two

squares if and only if the prime-power decomposition

of n contains a prime congruent to 2 (mod 4) raised

to the power 1.

Copying the text is not the only way to the theorem. It is
also possible to note that if n = (a + b)(a - b), then r = a + b,
s = a-b and it is impossible to solve those equations in integers
when and only when n does not have two factors r and s of
different parity. That is the case when and only when n is twice
an odd number. That argument makes the theorem even more trivial
than it was before, but the first proof was a nice example of
analogy in action.

The book by Sierpinski cited in the References has a corollary to
the main theorem of this section, namely

A positive integer n is a hypotenuse of a Pythagorean

triangle if and only if n has at least one prime divisor

congruent to 1 (mod 4).

Every positive square would be a hypotenuse of a Pythagorean triangle
if Pythagorean triangles with one side of zero length were allowed:
the condition in the corollary guarantees that this does not happen.
There is a recent exposition of Waring's Problem in "Waring's
Problem" by Charles Small, Mathematics Magazine 50 (1977) 12-15.

p
1

Problems

2. 2001 = 3-23-29, 2002 = 2-3-:7-11-13, 2003, and 2004 = 22-3'167
are not sums of two squares, but 2000 = wy? 4 82 = MOZ + 202.

u. 582 + 332 or 3% + 222,

6. Anything except 3 or 6.

8. True: this is what Lemma 1 says.

SECTION 19

Saying that 11 is the sum of four squares because 11 = 32 + 22

+ 27 + 0" is slightly artificial, and a Pythagorean would insist that
11 is a sum of three squares, not four. It is natural to ask which
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integers are the sum of four squares of natural numbers, and the

answer was conjectured by Descartes, though it was not proved (G. Pall,
"On sums of squares," American Mathematical Monthly 40 (1933) 10-18)
until much later. What is true is that all integers except

1, 3, 5,9, 11, 17, 29, 41, 220+l 3.2n*1 5.,20%1 o g g o,
are sums of four squares of positive integers. It would be interesting
to see how many of those students could discover, and if anyone would
see the pattern of the last three.

It is not likely, but perhaps the discovery of one powerful mind
makes up for the frustration of hundreds of ordinary minds. Or
perhaps not. It could be argued either way: should teachers of
mathematics do their best to make the largest number of student feel
good about mathematics or should they concentrate on developing to
the full the potential of those who have potential? The first, I
think, right now: there is no shortage of mathematics or
mathematicians and mathematical talent has a way of developing
in spite of instruction--think of Galois. It would be interesting
to see what students think, and it is a good topic for a refreshing
15-minute discussion. Students who have a hard time factoring
100 will have opinions and will not hesitate to give them.

Problems
Exponents and plus signs are extraneous here: 32 + 12 + l2 will
be denoted (3, 1, 1).
2. 11 =4(3,1,1), 13 =4(3,2)=(2,2,2,1), 17 = (4, 1) =
(3, 2,2), 19 =(4,1,1,1) =(3, 3, 1), 23-=(3, 3, 2,1),
).

29 = (5, 2) = (4, 3, 2

(112, 63, 35, 21).

3-197 = (17, 14, 9, 5).

8. Consider cases. If at least three of x, y, z, w are divisible
by three, call the ones divisible by three x, y, z. If exactly
two are divisible by three, let x be one of them and let vy
and z be the ones not divisible by three. If y+z2 34 0
(mod 3), change z to -z and x +y + z will be divisible
by three. If at least three are not divisible by three, call
them x, y, z; sign changing can be done, if necessary, to
get x+y+2z2 =1+1+1 =0 (mod 3).

10. Since two of X, y, and z must be odd (otherwise the three

numbers have a common factor of two), the right-hand side is
2 (mod 4), which is impossible.

o F

SECTION 20

The book by C. D. 0lds mentioned in the References shows how it
is possible to find solutions to Fermat equations from continued
fractions. It is written simply enough that undergraduates can
understand it, but to get far enough to be able to solve Fermat
equations takes some time: it is a project for a few spare days, not
a few spare hours. 2 2

Examples such as the smallest solution to x° - 6ly

text, or the smallest solution to x2 - 991y2, which is
x = 379516400906811930638014896080

= 1 in the
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y = 12055735790331359447442538767

illustrate that non-mathematical induction cannot be relied upon. To
find solutions to the equation by trial, one would have to test so many
values of y that the conclusion that the equation had no non-trivial
solutions would be forced on any inductive scientist. If a computer
ocould check 1,000,000 values of y each second, it would take in
excess of 100 trillion years to find the smallest solution. The fact
that the sun has risen each day for some billions of years can thus
give us no confidence that it will rise tomorrow. But we still do

feel that confidence. Non-mathematical induction is full of
difficulties not found in mathematical induction.

Problems

1 1
2. 4 +15% 8 + 3-7%, 10 + 3-11%, 649 + 180-13°,
4. (4, 1) and (31, 8); (8, 3) and (127, 48); (10, 1) and (193, 20).

1
6. (%, yk) is a solution where (x + yk) + yk-EI;ﬁ = (2 + 3§)k,

k=1, 2y eov >
8. (a) ék ;nd n  are generators for the triangl?, and they can

be determined from m - n + nk~2;é = (3 + 2'2‘)k for any k.

(b) (3, 4, 5), (696, 697, 9393).

10. (a) For the area of the triangle, see the answer to Problem
9.
() 3(2a + D2 - ) = c? is impossible (mod 4).

£ = - - ] - 3
12. %, + le >1 and 1 = Xy Ny1 = (xl + le )(x1 le ).

. L 3 i . .
14, Start with X1 * Y N° = (% + ykN )(xl + yjN?) which gives
a1 = XX P Ny and vy Xy b ygxe

SECTION 21

One can have mystical experiences, almost, contemplating the
properties of ‘the primes. Euclid proved that there are infinitely
many, the Prime Number Theorem (or Theorem 1 of this section) shous
that they are scattered. more and more thinly through the integers as
the integers get larger, but they almost certainly continue to
clump together so that no matter how far out we go, there are still
twin primes--primes whose difference is two. Even more, there are
infinitely often patches of primes as dense as they were back near
the start of the sequence of integers, followed by long stretches with
hardly any primes at all. The sequence of primes, though steadily
weakening, constantly reasserts its youth at ever-increasing lengths
only to fall back once again, for ever and ever. If that is not
clear, it is because mystical experiences are well known for not
being easily reduced to words.

The Prime Number Theorem says, roughly, that the probability
that an integer whose size is around n is prime is 1/(ln n). The
factor table in Appendix C gives numerical evidence of this. For
example, between 6000 and 7000 there are 117 primes and 1000 times
1/(1n 6500) is close to 114. A student who remembers his or her
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statistics could run a chi-square test on the primes to see if they
are behaving as they should.

Let & stand for "behaves about the same as when things get big;"
then the Prime Number Theorem says that m(n) = n/(ln n). Let p

n
denote the nth prime. Then it follows from the Prime Number Theorem
that p =~ n ln n. To see this, note that n ='ﬂ(pn), so n &

pn/(ln pn). Take logarithms: 1n n = 1n P, - Inlnp = 1n P,

...n
because the logarithm of a quantity is negligible with respect to
the quantity when things get big. Substituting, we get

n = pn/(ln p,) * pn/(ln n)
whence

p,® n 1n n.

From this we can get the picturesque result that the sum of the
reciprocals of the primes diverges:
2 1 T 1 (1) o |
p<x p - 2 pn"’% rilnr %1ln InTi(x)
n=1 2

% 1n 1n x.
This compares with
1
nex N
if students thought that series diverged slowly, then they should
change their minds. By the time x is 1,000,000, 1ln 1n x is only
2.6, and it will not get to 3 until x = 528,491,312. Anyone
looking at 1n 1n x would swear that it was constant, but it gets
larger than any number sooner or later, though more likely later.

The probability that two integers whose difference is two are
both prime ought to be 1/(ln n)2, assuming that the primes are
independently distributed through the odd integers, which they are not
even though they behave as if they were. So the number of twin

primes up to n ought to be about n/(ln n)2 and the nth twin prime

ought to be around n(ln m?2, Further, the sum of the reciprocals of
the twin primes should be like

z_l_.
n(1ln n)2

But that sum converges, since it behaves like

X 1n X;

00 00
5 ar/r(ln m? = -1/(n r) .
2 2
It is true (and not just guessed, as above) that the series converges.
Brun showed long ago that the nth twin prime is greater than cn(ln n)?
divided by (In 1n n)?2 for some constant c, and this implies that
the sum of reciprocals converges. It is a shame that this theorem
is true because if it were false and the series d1verged we would
know that there were infinitely many twin primes since no series
with only a finite number of terms in it can diverge. Even though it
is almost certainly true that there are infinitely many twin primes,
the proof has not yet been found.
We would expect not only prime twins but prime quadruplets like
11, 13, 17, 19; 101, 103, 107, 109; 5651, 5653, 5657, 5653 to
appear forever, since the probablllty of such a quadruplet around

n should be about 1/(1n n) They get rare: between 900,000 and
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1,000,000 one would expect to find only around

(100,000)(1/(1n 950,000)%) = 2.79...
They are, however, there: after finding 907391, 907393, 907397,
907399 I stopped looking for the other 1.79. There should be patches
of integers with even higher densities of primes if the probabilistic
argument does indicate true results.

The first proofs of the Prime Number Theorem depended on finding
regions in the complex plane where the Riemann zeta function had no
zeros. MNo undergraduate is going to grasp that pruof, but a very
good student might get something out of "A motivated account of an
elementary proof of the prime number theorem," by Norman Levinson,
American Mathematical Monthly 76 (1969) 225-2u5. "Elementary'" in the
title does not mean easy; it indicates only that there are no complex
variables in the proof. Another interesting reference is "A history
of the prime number theorem," by L. J. Goldstein, American Mathematical
Monthly 80 (1973) 599-615; correction 80 (1973) 1115.

The Riemann zeta function is the subject of the Riemann Hypothesis,
the most important unsolved mathematical problem because if it is true
then many other things will follow from it. Hilbert has been quoted
as saying that if he were raised from the dead, his first question
would be "Is the Riemann Hypothesis true?" let s = ¢~ + it be a
complex variable, using the odd notation traditional in number theory.

Then for o > 1, the zeta function is o

j(s) = 22 1/nS,
n=1

Raising an integer to a complex power is done using al = eb Ina,
so that 2% =z el 1M 2 = co5(dn 2) + i sin(ln 2) = .769 + .640 i
to three places. It is curious that nice formulas exist for f(?k),

k an integer-- $(2) =112/6 and Z(4) = T'/90 are the first two--
but there is nothing similar for odd integers. The series does not
converge for ¢ % 1, but there is a function which agrees with the
series definition when @ > 1 and which exists when G £ 1, so the
domain of the zeta function does not have to be restricted to O > 1,
The Riemann Hypothesis is that all of the complex zeros of this
extended zeta function lie on the line G- = 1/2. This has been
checked for quite a few zeros and we can be sure that none of the
first few million stray off the line. It is also known that if any
zero does not lie on the line, then it is not very far away from it.
Anyone who settles the Riemann hypothesis will have fame which will
not die as long as humans care about prime numbers, but it may be
that the hypothesis is forever undecidable: there may be a zero,
light-years up the complex plane that is just a tiny bit off the
line, and it is so far away that we will never be able to find it.
The first proofs of the Prime Number Theorem, by the way, were

based on the fact that the zeta function is never zero on the line
o =1.

Problems

2. To complete the induction amounts to showing that when n 2 1,
(2n + 1)/(n + 1)y0 > 2/fn + 1. Squaring and simplifying shows
that it is indeed true. The problem approaches the best possible
result: if we use Stirling's formula, n' = n"e™ 2 n, where
2 means "behaves like' then
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2n)~22“‘1. 2
n/~” "n o’

4. p 1is a factor in the denominator and 2p is a factor in the
numerator. 3p does not appear in the numerator since 3p >
2n.

SECTION 22

In spite of the fact that formulas are in general bad, there is
evidently a great hunger for them, even among more or less
professional mathematicians, because formulas for primes keep
appearing in the literature. Almost all of them are absolutely
useless and most are not even pretty. Nor do they contain many
new ideas: Wilson's Theorem is all some of them have.

To get a formula for P,> the nth prime, all you need is a
representation of the characteristic function of the primes: X(n)
=1 if n 1is a prime and 0 otherwise. Given that, you have
immediately a formula for T(n): merely sum X(n) from 2 to n.
Given that, you can quickly get a formula for P if 'Pk is the

characteristic function of {l, 2, ..y k 301} then
M = 2+ 2 Y (ran.
i=2

That may look impressive--lots of formulas look impressive--but it
disguises nothing except simple counting as the example below shows.
It is yet another example of how formulas can obscure ideas.

i 2 3 % 5 6 7 8 9 10 11
(1) 1 2 2 3 3 4 4 4y y 5
oo
=po=2 + 2 ¥m@En
i=2

the counting stops when Tr(i) > 5. A formula person might object that
\.Pk is not sufficiently formulg;like, but that can be remedied:

LPk(n) = 1 + Z (-1)i*S(k)(“ T 1)(i - 1)

izk-1 1 Ak-2

k]
where s(k) = (1 - (-1)¥)/2.
Here are some examples of formulas for primes. Some of their
authors may have had the idea they were making a serious contribution
to mathematics. One author noted in 1950 that

= 0, m composite m-1 m-1
(g (m)

= T T Gk - m).
# U, m prime j=1 k=1
Hence . 2mn
TT(n) = n - cos(x &(m)) dx,
o mel

because the integral of the cosine is 27 only when m is composite.
Another author used Fermat's Theorem in 1969 to note that
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1 - cos(2np—lTV;Q = XM
2¢pein 1 - cos(21Vp) - :
An author used Wilson's Theorem in 1964 to note that
sin’Gr((n - 1)H%/mn)
sin?(r/n)

was another way to write X(n). Yet another way was noted in 1975:
if n 2 3, then

sgn (2(n -ur [Z(n - 1):]> - X,
n n

Wilson's Theorem again, by an author in 1972

1 - cos((2k) ! /(2k + 1))
1 + cos(r/(2k + 1))

I have others in my collection, but those are plenty.

The statement in the text that the longest known arithmetic
progression of primes has 16 terms is no longer correct: in
"Seventeen primes in arithmetic progression" Sol Weintraub announces
(Mathematics of Computation 31 (1977) 1030) that the sequence
3430751869 + 87297210k is prime for k = 0, 1, ..., 16. Seventeen
primes in arithmetic progression is a lot, but it is a long way from
that to proving Erdos's conjecture that there exist arithmetic
progressions of primes of any length. Erdos has offered $3000 for
a proof or disproof, but even an offer of $3,000,000 might not
elicit a solution.

V. Pratt in "Every prime has a succinct certificate" (SIAM
Journal of Computing 4 (1975) 214-220) shows that there is a proof
that p is prime that uses at most 4log,p + 1 lines. It is
startling that such a theorem could be proved, but it has been, and
it is even presentable to undergraduates.

= X(2k + 1).

SAMPLE TESTS

Now that the text is complete it is time for the final
examination. A sample final follows, along with three sample
hour examinations. They were given to a class of twenty in 1971;
the class met for 50 minutes three times a week for 14 weeks.
Besides covering Sections 1 to 20, each member of the class wrote
ten computer programs. This took a good deal of time and energy and
the students, not an exceptional group, may have learned less
number theory than they would have with no programming.

Test 1 (after Section §)

1. Find the solutions of 19x + 7y = 1.

2. Prove or disprove: if dla, d|b, and dlc, then d?|a(b, o).
3. Prove that if each exponent in the prime-power decomposition of
n is divisible by three, then n is the cube of an integer.

4. Prove that n5 = n (mod 8)

for all odd positive integers n.

5. Find the solutions of ax = a2 (mod a + 2).

Answers
1. x=-4 -7t, y =11+ 19t for some integer t.
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Since d|b and dlc, d}(b, ¢); since (b, c) =rd and a = sd,
a(b, ¢) = rsd® and the assertion is true.

n = p%e'pge‘...pie‘ is the cube of p?‘p;‘...pﬁ“.

The result follows from the table (mod 8):

n nZ % nd

1 1 1 1

3 1 1 3

5 1 1 5

7 1 1 7

If a is odd, (a, a + 2) = 1, the congruence becomes

x = a (mod a + 2), and the only solution is a. If a is
even, (a, a + 2) = 2, the congruence becomes x = a ( mod

(a+2)/2 ) and there are two solutions, a and a - (a + 2)/2
= (a/2) + 1.

Scores: high 100, low By, average 83.

Y.

Test 2 (after Section 12)

Evaluate @ ( @(1000)), 3*® (mod 97), and (51/67).

Give an example of

(a) an integer without primitive roots

(b) a function whose domain and range are in the set on integers
which is not multiplicative.

(a) Find two primitive roots of 17.

(b) Find an integer with order 4 (mod 17).

Suppose that p = 13 (mod 20) 1is prime. Does x?

have a solution?

Suppose that a has order e (mod p) and a # 1. What is the

least residue (mod p) of 1+ a + a2+ ... + a® 17

i

5 (mod p)

Answers

160. Use Euler's Criterion: 38 = (3/97) = (97/3) = (1/3)
= 1 (mod 97). (51/67) = (3/67)(17/67) = -(67/3)(67/17) =

-1.

(a) Any number not 1, 2, 4, an odd prime-power, or twice an odd
prime-power will do.

(b) Almost anything will do. For example, let f(n) = 2 for
all n.

3.()Trial shows that 2 is not a primitive root of 17 but 3 is, and so

all the primitive roots are the least residues of the odd powers
of 3, namely 3, 10, 5, 11, 14, 7, 12, and 6. (k) Selve x'z -\ 2 16,
(5/p) = (p/5) = ((13 + 20k)/5) = (13/5) = (3/5) = (5/3) = (2/3)

= -1, so the congruence has no solution.

0z a®-1=(@-DQ+a+al+ ...+ a® 1) (mod p). The
rfirst factor is not zero (mod p), so the second factor must be
zero (mod p).

Scores: high 100, low 18, average 70.

Test 3 (after Section 20)

Give an example of a six-digit number n, n >0, such that

2 . . . .
n = x +vy 1is impossible for integers x and y.
Give an example of a Pythagorean triangle
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(a) with hypotenuse 29

(b) with one leg 29.
3. In what base b is 14l = 226, ,?
4. Watson said, '"Look at these two hundred-digit numbers a anq b )
and this 1600-digit number c. These seventeen pages of arithmetic
show that a + b8 = c”." Holmes said, after only a few seconds
of thought, "Your calculations are in error." How did he know?
Find two solutions of 9x% - 2y2 = 1 with x21 and y 2 1.
6. Find all x, y, and z in arithmetic progression such that

3 2_ .2
xy # 0 and x° + xy + y° = z°,

o
.

Answers
1. Any n = 3 (mod 4) will do.
(a) m? + n2 = 29: take m = 5, n = 2. The legs are 20 and 21.

(b) m2 - n? = 29: take m = 15, n = 14, The other sides are
420 and u421.

3. Given is b2+ u4b+ 1= 2(b - 2)%2 + 2(b - 2) + 6. The solution
is b =9

b @HY + OHY = (D" is impossible.

5. Put 2z = 3x and get the Fermat equation 22 - 2y2 = 1. The
first three solutions are (3, 2), (17, 12), and (99, 70),
gotten by raising 3 + ZJE to powers 1, 2, and 3. The first
and third give an integer value for x, and the first two
solutions are (x, y) = (1, 2) and (33, 70).

4. Substitute x =a-d,y=a,z=a+d and the equation reduces

to 2a2 - 5ad = 0. That implies 2a = 5d, so d 1is even,
d=2D, a=5D, and (x, y, z) = (3D, 5D, 7D).
Scores: high 100, 10w 38, average 76.

Final Examination

1. Give precise statements of
(a) the Unique Factorization Theorem
(b) Fermat's Theorem
(c) the Quadratic Reciprocity Theorem.
2. (a) Write 1971 in the base 12.
(b) Write 1971 in the base 2.
(c) Find all solutions of 19x + 71y = 1971.

3. (a) Does x°“ = 19 (mod 71) have a solution?
(b) Does x2 + y2 = 1971 have a solution?

4. Give an example of a diophantine equation, not a congruence ,
with

(a) no solutions

(b) exactly one solution

(c) infinitely many solutions.
5. Find all solutions of

(a) d(pq) = 36
M) ¢(pq) = 36
(c) o(pq) = 36,

where p and q are distinct primes.
6. Prove or disprove: if a and b are not relatively prime and
(a, b)l(a, c), then b and ¢ are not relatively prime.
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7. Suppose that 22 z 2x2 + 3y2 and (x, y) = 1. Show that x, y,
and z are all odd.

8. Suppose that 2 is a primitive root of p. What is ind, (p - 1)?

9. Let s(x) denote the number of squares less than or equal to

x. Prove that s(x) = [J§-1

Answers

1. These can be looked up.
2. (a) 1183.
(b) 11110110011.
(c) x =29+ 71t, y = 20 - 19t.

3. (a) (19/71) = -(71/19) = -(-5/19) = -(-1/19)(5/19) = (19/5)
= (4/5) = 1, so there is a solution. (There are two: 27 and 44.)
(b) No: 1971 = 3 (mod %) and it has 3 raised to an odd
power in its prime-power decomposition.

4. There are many examples, of varying merit.

5. (a) d(pq) = 4 always.

(b) (p - 1)(q - 1) = 36 implies (p, q) = (37, 2), (19, 3),
(7, 7), (3, 19), or (2, 37).

(c) (p+1)(q +1) = 36 implies (p, q) = (11, 2), (5, 5), or
(2, 11).

6. The assertion is true. If d = (a, b), then dla and d‘b.
If f = (a, c), then flc. d|f and flc imply d|c whence
d|(b, o).

7. If y 1is even, then x 1is odd and this implies 2 + 3y2
= 2 (mod 4), which is impossible. Therefore y is odd.

If x 1is even, then 2%% + 3y2 =3 (mod 4) which also is .
impossible. Thus x and y are odd, and this shows that z is

odd also.

8. ind,(p - 1) = a implies 22 =p-1=-1 (mod p). Since
2 is a primitive root, a = (p - 1)/2.

9. Suppose that 02<¢ 1< ... <n?< x <(n+ 1)2. Then

s(x) =n. But n<&X<n+1 and that says n = [J§ .
Scores: high 100, low 56, average 8u4.

SECTION 23

Since this section is a miscellany of problems, there follow five
miscellaneous small problems.

1. A pastime which can become compulsive once you get into it is
writing n! as a product of integers between n and 2n,
inclusive. For example, 3! =6, 6! = 8-9.10, 8! = 12'14
©15-16, and 11! = 15-:16°18-20-21-22. It is easy to find such
representations when they exist and easy to see that they are
impossible when they do not exist, and the transition from one
integer to the next is so easy that it is hard to stop. Once
40 has been conquered--40! = 42 - L44-45-48-49-50-51-52-54-55-56
+57:58-59-6062-6364-65-66-68-69-72+74- 80--41 beckons.

2. 12:42 = 21-24 and 46-96 = 64-69. It is easy to find more such
products.

3. It is striking, if you are struck by such things (and many
people are not), that 9876/12345 = 4/5. Can that happen in
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any other base or is 10 really special°

4. Equalities like 224 = 2° + 27 + u ﬁau =254 6% 4 42,
332 = 3+ 35 + 27, and 333 = 3 + 3 seem fairly common,
a computer could no doubt grind out as many as anyone would want,
and some mlght be interesting.

5. It is sing to see the small integer solutions to xl(y + a)
and yJ(x + b) for various a and b; which ones are picked
influence how hard the system will be to solve.

Problems

4-6 will denote Problem 6 of Section 4, M-42 will denote
Problem 42 of the Miscellaneous Problems, and A-2 will denote Problem
2 of Appendix A. The meaning of the other labels can be found by
non-mathematical induction.

1-4. The result follows from the fact that d is odd, so (d, 2)
=1, dl2c, and d|2b.

1-6. Since alb, (a, b) = a.

1-8. (a) Let d=(a, b,c), e=(a,b), and f = (e, c): we
want to prove that d = f. This can be done by showing that
dIf and fld.

1-10. The last digit of 3™ is 9, and the last digit of 3"" = 81"
is 1, so the last digit of 3M-81" will be 9.
2-2. (a) 23.
() 2|(k! +2), 3lk! +3), ..., k[(k! + k): at least
k - 1 consecutive composites.
2-4. a+ b >p, and none of the first n primes divides a + b

because (a, b) = 1.
3-2. 1 man, 5 women, and 1l4% children.
3-4 If a and b denote the number of eggs sold at 5 cents each by
Anna and Barbara respectively, and c¢ 1is the price in cents per
egg that the remainder was sold for, then 5a + (30 - a)c =
5b + (40 - b)c and this can be rearranged to

S(a - b) = c(a - b) + 10c.

This is possible only for c¢ = 3 and the amount each recieved
was 2a + 90. Since 1 4 a %29, the minimum yield was 92¢.

y-2 False. For example, take a =1, b = 4, and m = 3.
4-4, (a) 98765u43210.
(b) 98763210.
4-10. 118050660 = 22.32-5.7-13:7207.
5-2. 6560.
5-4. To prove the second, for example, let a =

r/s, b = t/u, and

= (ru + st)/su. Then as = r (mod m), bu =t (mod m),

and csu = ru + st (mod m). Substitute.
csu = (as)u + s(bu) (mod m);

since (s, m) = (a,m) =1, ¢ =a+b (modm), and that was
what was to be shown.

6-2. Put a=1 toget (p-1)!Z -1 (mod p). Substitute that
back to get aP(-1) = a(p - 1) (mod p) and then cancel the
-1.

6-4. (8) The quiclest way is to note that p'(p) for n=1, 2,

» P - 1 since the denominator of p!/(n!(n - p)!) has no
factor of p to cancel the p in the numerator.
(b) Adding
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, P -1P =, P -@-1P =21 (modp)
gives aP = a (mod p).

1P-oP =1

6-6. In fact, 113*1 - 11 = 13 (mod 3u1).
6-8. The least residues of 2, 4, 6, ..., 2(p - 1) (mod p) are a
permutation of 1, 2, 3, ..., p - 1. Thus
M+ M o+ (p-D"= 2"+ d™ e 2 - 1))M
= M1"+ 2™ L+t (p-D™) (mod p),
so n n m m
(2" -1DA"+ 27+ ...+ (p-1)) =0 (mxd p);

since 2™ -1 '# 0 (mod p), the result is proved.

6-10. a®P-1D/n = (MP-D/n= pl= 1 (goqp).
7-4 (a) n 34 5 6 7 8 91011 12 13 14 15
f(n) 111 2 2 2 1 3 2 2 2 2 2 4
1

(b) The odd divisors are s Py eees pm.
(c) f<2“p§'p§=...p§~) = (e) + ey + D..(ey + 1.
g-2. If p®and m are an amicable pair, then o ((p€ - 1)/(p - 1))
=gl +p+t ...+ pe'l) = on) = o).
. None.

8-6
8-8. All a such that 2% > (p + 1)/2.
8-10. If n is composite, then o"(n) > n + 1, so

(X2 C 1) = @@ J ) > @R -y ok
B—lz'dg‘d'l = g (m)/m, so the sum is m/g-(m) + n/G(n) =

m/(m + n) + n/(m + n) = 1.
8-14, (a) 1, 3, 5, 8, 15, 24, 40, 120; 1, 5, 8, 9, 40, u5, 72, 360.
(b) Integers that are products of distinct primes.
() 2%
(d) 6, 60, and 90 are the only such numbers less than 1012.
1 -
9-2. (n@m)? = (pp? Lp - 1% = (p2a-l(p - )%, The integer
in parentheses is not a square, since p appears in its
prime-power decomposition to an odd power.

9-4, If n is composite, it has a divisor a £ n%, and the

(n/a) - 1 integers a, 2a, ..., (n/a)a are not relatively
1

prime to n. Thus @(n) < n - (n/a) £n - n*.

9-6. (dt, dm) = d if and only if (t, m) = 1, so there is a one-
to-one correspondence between positive integers less than m
and relatively prime to it and positive integers less than n
whose greatest common divisor with n is d.

9-8. If m=pM and n = pN then (M, N) =1,

@Gm) = OO = plp - P M) PN,
and o (m) @(n) = @ (PN (PN) = (p - 12 P M) PN).

Thus @(mn) = (p/(p - 1))@ (m) £ (n).

9-10. If 14<m<n and (m, n) =1, then (n-m, n) = 1. If
n > 2, the integers less than n and prime to it can thus
be arranged in @(n)/2 pairs so that the sum of each pair
is n.

9-12. If p>q and a »1, then pi(p-1) = qb_l(q -1 =
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p)J(q - 1), which is impossible.

9-14, n can have only one prime factor, and n = 1, 2, 4, pk, or
2pk where p = 3 (mod 4) and k is a positive integer.

10-2. 1979 and 1982.

10-4. 25 = 1 (mod 31), so 2 has order 5.

10-6. If (a, p) =1, then a = g% (mod p) for some k, where
g 1is a primitive root of p. Suppose that x = gy. Then

gV = ¢X (md p), and this holds if and only if ny = k
(mod p - 1). Since (n, p - 1) = 1, there is exactly one
solution y of this congruence.

10-8. Start with (a™N = a™ (mod p) and multiply successively
by a™™ and (8™,

10-10. Let indga = r and indgb = s. Then gPE a and
gs = b (mod p), so ab = gl*S  (mod p). But this says
that indgab = r+s (mod p - 1), which was what was to be
shown.

10-12. x = 10 (mod 19).

10-14. If 2" = p-1=-1 (mdp), then 271 = 2 = p -2
and 272 = 4 = p -4 (mod p).

11-2. x> = 3 (mod 11), x* - x+3 =0 (mod 11),

x2+3x+25 0 (mod 11).
-4, 1,1, 1, -1, -1, -1.
1-6. (a) Four: 1, 7, 9, and 15.
(b) No: 16 is not an odd prime.
11-8. If p=5, 1i=2, and a+ 2b = 0 (mod 5) is satisfied
by a= 3, b= 2.
11-10. Yes. The proof is the same as in Problem 20 of Section 11.
12-2. (a) n2+2an+b=(n*c':l)z*b—a2 so if n? + 2an + b

is divisible by p, then 32 - b 1is a quadratic residue
of p.
12-4. (a) (-3/p) = (-1/p)(3/p): apply Problem 1 of Section 12.
(b) Let s be the unique solution of 2s = r (mod p).
It x2+xr‘*r‘2’—5 0 (mod p) then 0.=.x2+2sx+us2
2
= (x+ ) +35° (mod p), so (-3s2/p) = (=3/p) = 1,
and this holds for p = 1l or 7 (mod 12).
13-2. b(b + 1)(b +2) + 1 if b is odd, and b(b + 1)(b + 2)/2 + 1
if b is even.

13-4, If b2+ b+ 1=n, then 4n? -3 = (2b+ 12 = 52

is a square, and (2n - s)(2n + s) = 3 implies n? = 1.

14-2. If p 25, its last duodecimal digit is 1, 5,7, or €.

-4, (b) (b - l)l(n - m) because b - b® is always divisible by
b - 1.
15-2. 2
/n .8 TN TS T B S vor
D E F
/n I3B .12 .1

3 4 5 6 7 8 9 A B c_
"7 .18 17450 .15
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15-4.
16-2.

17-10.

18-2.
18-4,

18-6.

18-8.

Yes. No: 1/2 = 2/22 = 8/“2.

(a) If a is even, put a =2mn and b = m2 -n2. If a
odd, put a = m? - nz, b = 2mn.
= x, yP=y,2° = 2 (mod p).

If one, two, or all three of x, y, and z are odd, then the
left-hand side of the equation is odd.

X =y =2z=2 is one solution. x =y = 216, z =2
solution derived from Problem 7 with a = b = 1,
s = 13,
As in Problem 9, put rn2 + 1 = ms. This has solutions if
(%, m = 1.
Any square congruent to 0, 1, or 4 (mod 8).
37, 149, ... are missed.

13 is a
r = 4, and

Take x so that n - x2 = m is odd and positive. Then let
y = (m+ 1)/2.

If n= (a/c)? + (b/c)z, then c?n = a2 + b2, and c2n is
representable if and only if n is. The amswer is, "The
same integers as in Theorem 1."
The generalization is false: (-5/3) = 1, but x2 + Sy2 =3
is impossible.
The theorem is that the number of representations of n,
where the representations which differ only in order or sign

are counted as distinct, is eight times the sum of divisors
of n which are not multiples of u4.
The values are 2 and -2.

m-D3+n3+ (n+ 13 =32+ 2): if 3Tn, then

n2+ 220 (md 3).
n= 3, 4, or 5.
22 Z 50r6 (mod 7) for any n.
(a) 9.
(b) 90. 1
(¢) If k = 2n, there are 9:10"%; if k = 2n - 1, there
are 9.10M1,
(g) and (h).

at + Y+ (a v v = 2(a2 4 ab + D)2,

n 2/ = 2/ = Td o+ o,
din din din

X = -1,y £ 2 (mod m).
Those with sides 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24,
30, 32, and 3u.

k= (<2 -1)/8+ (y2 - 1)/8 + (22 - 1)/8, and each of the
summands is a triangular number.

Yes: (a+ (b/c))® = a+ (b/c)® if and only if blc = a +
a/(a‘ - 1).

3[(p2 + 2).
(@) If 3p+ 1 a2, then 3p = (a + 1)(a - 1) and p = 5.

(b) If 3p+ 2= a2, then- a2 = 2 (mod 3), which is
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M-38.
M-u0.
M-42,

M-u6.
M-,

M-u8.

M-50.
M-52.

M-54.
M-56.
M-60.

M-68.
M-70.

M-72.
M-74

impossible. )
The Rational Root Theorem says that if r/s 1is a root of
anxn + an_lxn’l * ... *tax+ag =0, then rla0 and sfa

2 4 b2 = 2(a + b)x + x2, then

2

N
So, if r/s 1is a root of a
rl(a2 +b?) and s|l1. Note that if x° is rational and
a+b#0, then x = @? + p? - x2)/(2(a + b)) is a
rational number. If a + b = 0, then x2 = a2+ b2 is
rational.

No. It neither repeats nor terminates.

No. Yes. 10" = 28 (mod 36), n = 2, 3, ...

ka= k+1 (modp), so (k+ DX = ka)X = KKk = ke
(mod p).
2

(x, y) = (4s, -3s) for any s. x° + y2 > ((x + y)/2)2.

If r is the smallest integer such that [x] < x + (r/n),
then the sum of |x + (k/n) for k=0 to k=n-1 is
rix} + (n - r)([x] + 1) = n[x] - r. On the other hand,
n(x]<nx +r so [nx] = n(x] - r, the same value as the sum.

The equation becomes a2 + b2+ 2 - 2abc  which can be

shown to be impossible by infinite descent.

20413 = 137-149, so the loan was for $137, 7 years ago, at 7%.
Sixteen solutions are given by (x, y) = (2, -3), (3, -6),

(4, -12), (5, -30), (7, 42), (8, 24), (9, 18), (10, 15)

and their reversals. The seventeenth is (12, 12).

The first of a pair of twin primes is congruent to -1 (mod 6).
The equation can be turned into 2kmZ2 - 1 = (2n + 1)2,

If pla; and pla;, then plGi - j)Pn. Since ]i -jl<n

< P> P must be one of Py> Pgs «-+» Py- But none of
those primes divide a; or a;.
(@) 7™ = 1+ 6n (mod 36): use mathematical induction or

expand (1 + &)1,
() 7™ = 180 - 12n + 1 (mod 216).

The number is 227 - 1 and 27 is composite.
(a) No: at least one corner will have two even coordinates.

(b) The one nearest the origin has corners (14, 20), (14, 21),
(15, 20), and (15, 21).

(¢) The bottom line is all dotted except at (p, p). The top
line has @(p + 1) dots. The first, at (1, p + 1) gives one
three-dot box. Each of the next ®(p +1) -2 give two
three-dot boxes. The last, at (p, p + 1) gives none since
the last box has only two dots. The total number of three-
dot boxes is thus 1+ 2(®@(p + 1) - 2) = 2 P(p + 1) - 3,
Consider n = 0, 1, 2, ey 23 (mod 24).
If kp+ b= m2, then m2= b = c? (mod p), so
m = cor -c (mod p). That is, for some integer n, m =
c + pp or -c + np.
1097 = (103" - 1202 3 4 1o
= - + 107 + 1),
(@) m = un(n + 1).
(b) Yes: m = (4n + 3)2.n,
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M-78. n+(n+ 1)+ ...+ (n+d =(2n+d)Xd+ 1)/2, and this
always has an odd factor.

M-80. Its last digit is 3.

M-84. If n = dy+dpr10 +d, 1084 L, 0 £d, €9, then
37|n if and only if 37|(dydyd,) + (23dud5) LRI

M-86. (c) ab((a + b)/2)((a - b)/2) = (c/2)%.

M-88. (a) un’ - 3n + 1.
(b) an -2n+ 1.

(c) knz +n+ 1.
(d) (n, -n).
(e) (-n + 1, n).
(f) (9, 16).

M-90. (a) Put y=x+d, z=x+2d. Then (d + x)(3d - 2x) = 0,
so (x, vy, z) = (3t, 5t, 7t), t an integer.
(b) With xandy as in (a), (d + x)(3d - (k + 1)x) = 0.
If kX # 2 (mod 3), then (x,y, z) = (3t, (k + u)t,
(2k + 5)t); if k = 2 (mod 3), then (%, vy, z) =
(t, (k + Wt, (2k + 5)t) for nonzero integers t.
M-92. (b) If n =1 (mod 3), then 23[p’", so p= 3. But
n =1,4,0or7 (md9), so n“+n+1 = 3 (mod 9).
Hence r = n = 1.
(c) If r =2k, then (2n+ 1)2 - (2pk)2 = 3. Factor the
left-hand side.
(d) Suppose that p # 3 and p = 2 (mod 3). Since r is
odd, pr = 2 (mod 3). Moreover, n2 +n+l1 =1 (mod 3).
Mgy, (a) If ¥ = a Gmod p)y, then 1 = xP~1 = M(P-1)/n =
aP /N (mod p).
(b) No: 252 2 (mod 31). )
M-96. (a) The equation is (2n + D? = em? - 1, but no square is
congruent to -1 (mod 6).
() (2n+ 1)2 = -1 (mod 2k) must have a solution.
M-98. (a) x? = 10Mrs + x. )
(b) r =178 and s =5 give x = 625, x° = 390625.
M-100. Solutions are

X 10 10 14 14 17 17 21 21 31
y 6 35 7 34 7 34 [$) 35 41
X 36 uyy 108
y 45 52 111,

A-2. 13+ 284+ .+ 03 (ntn + 1)/2)2,

A-10. 124424 v Gn+e DZ = (n+ DG6n? + on + 2)/2.
A-12. f(n) = 17(n - 1)(n - 2)(n - 3)(n - 4)/24 is one of infinitely
many such functions.

APPENDIX A

It can be argued that proof by mathematical induction ought to
start the text since it is such an important method of proof. The
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reason it does not is that students have such a hard time grasping
the idea that it might get the class off to a bad start; once the
morale of a class is shattered it is hard to get it back together.
But if a class can take the shock, by all means start with induction
and use it at every opportunity.

To see if a class has really gotten the point, it can be given
the problem of deciding where the flaw is in the well-known proof that
everyone has the same sex. This was left out of the text on account
of the confusion it might cause in the minds of students who have not
grasped induction.

Theorem: In a group of n people, all have the same sex.

Proof: The theorem is trivially true for n = 1. Suppose
that it is true for n = k. Given a group of k + 1 people,
arrange them in a line: K
T
Ne) o) ok ... 0, ©
By the induction assumption, the first k people all have the same
sex. Similarly, so do the last k. Hence, because of the overlap,
all have the same sex.

The flaw is so obvious that it is hard to understand why it is
not seen immediately, but many students will not see that the proof
does not work when k = 1.

Problems

2. 3+ 22+ 0¥ (atn v 122

4. It is not likely that anyone will note that 1/(1:2) =
(1/1) - (1/2), 1/(2:3) = (1/2) - (1/3), ..., so that the
series becomes
1-1/2+1/2-1/3+1/3-1/4+ ... +#1/(n-1) -1/n

=1-1/n.

It is not likely because the problem comes at the end of a
section on mathematical induction and hence all proofs must
use that method. If any student does hit upon the telescoping
series idea, he or she should be praised for not having a mind
confined with self-imposed limitations. He or she should also
be able to solve the well-known puzzle about connecting the
nine dots .

with four lines

10, 12+42+ .+ Gn+ DZ= (n+ 16+ 9n + 2)/2.

12. Some students are delighted with the method for constructing
a polynomial passing through given points by making a difference
table. For example,

x  £(x) OFx) D) NFx)

0 2 2 2 3
1 4 4 5

2 8 3

3 17

42



gives f(x) = 2 + 2(x - 0) + (1/21)2(x - 0)(x - 1)
+ (1/31)3(x - 0)(x - 1)(x - 2)
= (x3 - %2 + ux + u)/2.
If that example did not make the general method clear, here is
another: 2
f(x) D) Dfx)

X

2 8 -4 2
3 4 -2

Y4 22

F(x) = 8 - U(x = 2) + (1/21)2(x - 2)(x - 3) = x? - 9x + 22, It

gives a sense of power, being able to find a formula for any collection
of points. If any student wants to know why the process works, he or
she can be told that is a consequence of the binomial expansion,

first found by Newton, and its derivation can be found in any book

on finite differences or numerical analysis.
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