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Preface

Every serious student of a technical scientific subject has spent late nights struggling
with homework assignments at some time during their career. The frustrations
which go along with this activity range from: “I don’t have the foggiest idea how
to do this exercise” to “this is probably right, but it would be nice to have my
solution checked by an expert.” It is our expectation that the student exercises
in our book Linear Robust Control, published by Prentice-Hall, 1994, will generate
both the above sentiments at some stage or other and many others besides!

Because we would like our book to be useful both as a teaching and as a research
aid, we decided that a reasonably detailed solutions manual would have a role to
play. We hope that most of the answers are informative and that some of them
are interesting and even new. Some of the examples took their inspiration from
research papers which we were unable to cover in detail in the main text. In some
cases, and undoubtedly with the benefit of hindsight, we are able to supply different
and possibly nicer solutions to the problems studied in this literature.

What about the answer to the question: “who should have access to the solutions
manual?” We believe that in the first instance students should not have access to
the solutions manual, because that would be like exploring the Grand Canyon from
the window of a rental car—to really experience you have to actively partake.

In an attempt to steel the nerve for the task ahead, we thought it appropri-
ate to repeat a quotation due to Brutus Hamilton (1957), from the book Lore of

Running (Oxford University Press, 1992), by the South African sports scientist and
ultramarathon runner Tim Noakes.

“It is one of the strange ironies of this strange life that those who work
the hardest, who subject themselves to the strictest discipline, who give
up certain pleasurable things in order to achieve a goal are the happiest
of people. When you see twenty or thirty men line up for a distance
race, do not pity them, don’t feel sorry for them. Better envy them.”

After reading Noakes’ book a little further, we couldn’t help noticing a number
of other analogies between doing student exercises and training for a marathon.
Here are a few:

ix
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1. Nobody can do them for you.

2. At least in the beginning, there is no doubt that they are hard.

3. Like any acquired skill, the more effort that goes into the acquisition, and the
more difficulties overcome, the more rewarding the result.

4. To achieve success there must always be the risk of failure no matter how hard
you try.

5. Student exercises, like running, teach you real honesty. There is no luck.
Results cannot be faked and there is no one but yourself to blame when
things go wrong.

6. Don’t make excuses like my feet are too big, I don’t know enough mathematics,
I am too old and so on. Overcoming such difficulties will only heighten the
reward.

We have tried to tie the solutions manual to the main text as closely as possible
and from time to time we refer to specific results there. Equation references of
the form (x.y.z) refer to equations in the main text. For example, equation (3.2.1)
means equation (3.2.1) of Linear Robust Control, which will be the first equation in
Section 3.2. Equations in the solutions manual have the form (x.y). For example,
equation (8.1) will be the first equation in the Solutions to Problems in Chapter 8.
All cited works are as listed in the bibliography of Linear Robust Control.

We have made every effort within stringent time constraints to trap errors, but
we cannot realistically expect to have found them all. If a solution is hard to follow
or doesn’t seem to make sense it could be wrong! Don’t get mad, we have tried to
help and we hope our solutions will assist teachers and students alike.

Michael Green

David Limebeer

London
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Solutions to Problems in

Chapter 1

Solution 1.1. We will establish the three properties of a norm and then the
submultiplicative property:

1. If h = 0 supω |h(jω)| = 0. Conversely, if supω |h(jω)| = 0, h(jω) = 0 for all
ω, then h = 0. If h 6= 0, it is clear from the definition that ‖h‖∞ > 0.

2.

‖αh‖∞ = sup
ω

|αh(jω)|

= sup
ω

|α|.|h(jω)|

= |α| sup
ω

|h(jω)|

= |α|‖h‖∞.

3.

‖h+ g‖∞ = sup
ω

|h(jω) + g(jω)|

≤ sup
ω

(|h(jω)|+ |g(jω)|)

≤ sup
ω

|h(jω)|+ sup
ω

|g(jω)|

= ‖h‖∞ + ‖g‖∞.

This establishes that ‖·‖∞ is a norm. We now prove the submultiplicative property:

4.

‖hg‖∞ = sup
ω

|h(jω)g(jω)|

= sup
ω

(|h(jω)|.|g(jω)|)

≤ sup
ω

|h(jω)| sup
ω

|g(jω)|

= ‖h‖∞‖g‖∞.
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Solution 1.2. Set

ĥ = w(1− gk)−1

= w(1 + gq), q = k(1− gk)−1.

Therefore,
q = g−1w−1(ĥ−w).

In the case that α < 0, g−1 is stable and ‖ĥ‖∞ may be made arbitrarily small by

using the constant compensator k → ∞. If α ≥ 0, ĥ must satisfy the interpolation
constraint:

ĥ(α) = w(α)

=
α+ 4

2(α+ 1)
.

Now

|ĥ(α)| < 1, α ≥ 0

⇔ (α+ 4) < 2(α+ 1)

⇔ α > 2.

Thus the problem has a solution if and only if α < 0 or if α > 2.

Solution 1.3. Since e = h− gf with f ∈ RH∞,

f = g−1(h− e).

In order for f to be stable, we need

e(1) = h(1)

= 1/5.

Differentiating e = h− gf gives

de

ds
=

dh

ds
− g

df

ds
− f

dg

ds
.

Thus, f is also given by

f =

(
dg

ds

)−1(
de

ds
− dh

ds
+ g

df

ds

)
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Since d
dsg|s=1 = 0, the stability of f requires a second interpolation constraint:

de

ds

∣∣∣∣
s=1

=
dh

ds

∣∣∣∣
s=1

=
−1

(s+ 4)2

∣∣∣∣
s=1

= −1/25.

Solution 1.4.

1. It is sufficient for closed loop stability that |gk(1 − gk)−1(jω)|.|δ(jω)| < 1
for all real ω, including ω = ∞. (This follows from the Nyquist criterion.) If
‖δ‖∞ < α, we need

‖gk(1− gk)−1‖∞ ≤ α−1,

with α maximized. This may be achieved via the following procedure:

Step 1: Factorize gg∼ = mm∼, in which both m and m−1 are stable.

Step 2: Define the Blaschke product

a =
m∏

i=1

p̄i + s

pi − s
,

in which the pi’s are the right-half-plane poles of g.

Step 3: If q = k(1− gk)−1 and q̃ = amq, we observe that

(i)

‖gq‖∞ = ‖gaq‖∞, since a is allpass

= ‖aqmm∼(g∼)−1‖∞
= ‖aqm‖∞, since m∼(g∼)−1 is allpass

= ‖q̃‖∞.

(ii) q̃ ∈ RH∞ ⇒ q ∈ RH∞.

(iii) q̃ ∈ RH∞ ⇒ q(pi) = 0.

(iv) (1 + gq)(pi) = 0 ⇔ q̃(pi) = −(amg−1)(pi).

Step 4: Find a stable q̃ of minimum infinity norm which satisfies

q̃(pi) = −(amg−1)(pi).



4 SOLUTIONS TO PROBLEMS IN CHAPTER 1

Step 5: Back substitute

k = q(1 + gq)−1

= q̃(am+ gq̃)−1.

2. (i) If g is unstable and α ≥ 1, we can always destabilize the loop by setting
δ = −1 since in this case g(1 + δ) would be open loop.

(ii) Suppose for a general plant that

g =
n+n−

d+d−

in which n− and d− are polynomials that have all their roots in the closed-
right-half plane, while n+ and d+ are polynomials that have all their roots in
the open-left-half plane. Then

a =
d∼
−

d−

, m =
n+n

∼
−

d+d
∼
−

,

and consequently

g−1ma =
d+d−

n+n−

.
n+n

∼
−

d+d
∼
−

.
d∼
−

d−

=
n∼

−

n−

,

which is an unstable allpass function. The implication now follows from the
fact that |a(pi)| > 1 for any unstable allpass function a and any Re(pi) > 0.

3. In this case

g =

(
s− 2

s− 1

)
⇒ a =

(
s+ 1

1− s

)
and m =

(
s+ 2

s+ 1

)
,

so that

g−1am =

(
s− 1

s− 2

)(
s+ 1

1− s

)(
s+ 2

s+ 1

)

= −
(
s+ 2

s− 2

)
.

Therefore

g−1am(1) = 3

⇒ q̃opt = −3 and ‖q̃opt‖∞ = 3.
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Since αmax = 1/‖q̃opt‖∞, we see that αmax = 1/3. Finally

k = q̃opt(am+ gq̃opt)
−1

= −3

((
s+ 2

1− s

)
− 3

(
s− 2

s− 1

))−1

=
3(s− 1)

4(s− 1)

= 3/4.

Solution 1.5.

1. The closed loop will be stable provided

‖δk(1− gk)−1‖∞ < 1

⇔ ‖δw−1wk(1− gk)−1‖∞ < 1

⇐ ‖δw−1‖∞ <
1

‖wk(1− gk)−1‖∞
.

This last inequality will be satisfied if |δ(jω)| < |w(jω)| for all ω and ‖wk(1−
gk)−1‖∞ ≤ 1.

2. We will now describe the optimization procedure

Step 1: Define
q̃ = waq,

where

q = k(1− gk)−1 and a =

m∏

i=1

(
p̄i + s

pi − s

)
,

in which the pi’s are the right-half-plane poles of g.

Step 2: Find a stable q̃ of minimum infinity norm such that

q̃(pi) = −g−1aw(pi).

Step 3: Back substitute using k = q̃(aw + gq̃)−1.

3. Since

g =

(
s+ 1

s− 2

)
,
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we must have

a =

(
s+ 2

2− s

)
.

Therefore

g−1aw =

(
s− 2

s+ 1

)(
s+ 2

2− s

)(
s+ 1

s+ 4

)

= −
(
s+ 2

s+ 4

)
.

Consequently

q̃opt =

(
s+ 2

s+ 4

)∣∣∣∣
s=2

= 2/3.

Thus, a controller exists, since mink ‖wk(1−gk)−1‖∞ = ‖q̃opt‖∞ = 2/3 < 1.
The optimal controller is

k =
2

3

((
s+ 2

2− s

)(
s+ 1

s+ 4

)
+

2

3

(
s+ 1

s− 2

))−1

= −
(
2(s+ 4)

s+ 1

)
.

Solution 1.6.

1. If E = H −GF , it follows that

F = G−1(H −E).

It is now immediate from the stability requirement on F that all the right
half plane poles of G−1 must be cancelled by zeros of (H −E).

2. It follows from the standard theory of stable coprime matrix fractions that a
cancellation between G−1 and (H −E) will occur if and only if

[
H(zi)−E(zi) G(zi)

]

looses rank at a zero zi of G. If such a loss of rank occurs, there exists a w∗
i

such that
w∗

i

[
H(zi)−E(zi) G(zi)

]
= 0.

If
w∗

iH(zi) = v∗i ,
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the vector valued interpolation constraints will be

w∗
iE(zi) = v∗i .

Satisfaction of these constraints ensures the cancellation of the unstable poles
of G−1.





Solutions to Problems in

Chapter 2

Solution 2.1.

1.

σ(I −Q) ≥ σ(I)− σ(Q)

= 1− σ(Q)

> 0.

2.

σ(

∞∑

k=0

Qk) ≤
∞∑

k=0

σ(Qk)

≤
∞∑

k=0

{σ(Q)}k

=
1

1− σ(Q)
< ∞.

3. Consider

(I −Q)(

∞∑

k=0

Qk) =

∞∑

k=0

Qk −
∞∑

k=0

Qk+1

= I +

∞∑

k=0

Qk+1 −
∞∑

k=0

Qk+1

= I.

Hence

(I −Q)−1 =
∞∑

k=0

Qk.

9
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Solution 2.2.

1.

Q(I −Q)−1 = (I −Q)−1(I −Q)Q(I −Q)−1

= (I −Q)−1(Q−Q2)(I −Q)−1

= (I −Q)−1Q(I −Q)(I −Q)−1

= (I −Q)−1Q.

2.

(I −Q)−1 = (I −Q+Q)(I −Q)−1

= I +Q(I −Q)−1.

3.

K(I −GK)−1 = (I −KG)−1(I −KG)K(I −GK)−1

= (I −KG)−1(K −KGK)(I −GK)−1

= (I −KG)−1K(I −GK)(I −GK)−1

= (I −KG)−1K.

Solution 2.3. Suppose that Q = Y ΣU∗, where Σ = diag(σ1, · · · , σp) and σ1 ≥
σ2 ≥ · · · ≥ σp > 0. Then

Q−1 = UΣ−1Y ∗

= Udiag(σ−1
1 , · · · , σ−1

p )Y ∗,

where σ−1
p ≥ · · · ≥ σ−1

2 ≥ σ−1
1 . Hence

σ(Q−1) = σ−1
p

=
1

σ(Q)
.

Solution 2.4.

1. Let Q = WJW−1, in which J is the Jordan form of Q. Then

detQ = det(W )det(J)det(W−1)

= det(W )det(J)
1

det(W )

= det(J)

=

p∏

i=1

λi(Q).
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Now let Q = Y ΣU∗, with Σ = diag(σ1, · · · , σp) be a singular value decompo-
sition of Q. Then

det(Q) = det(Y )det(Σ)det(U∗)

= eiθY
p∏

i=1

σi(Q)e−iθU , since Y and U are unitary

= eiθ
p∏

i=1

σi(Q).

2. It is well known that

σ(Q) ≤ ‖Qu‖
‖u‖ ≤ σ(Q)

for any non-zero vector u. Now if Qwi = λiwi, we see that

σ(Q) ≤ ‖Qwi‖
‖wi‖

= |λi| ≤ σ(Q).

Solution 2.5. Nothing can be concluded in general. To see this consider the
system

G =

[
1 + α s+1

s−1
1
ǫ

0 1 + α s+1
s−1

]
.

Each eigenvalue λi(jω) makes one encirclement of +1, and |1− λi(jω)| = α for all
ω and any value of ǫ. It is easy to check that the (constant) additive perturbation

A =

[
0 0
ǫα2 0

]

will destabilize the loop, since det
(
I − (G(jω) + A)

)
passes through the origin (at

ω = 0). Since limǫ→0 ‖A‖ = 0, we see that the loop may be made arbitrarily close
to instability for any value of α.

Solution 2.6.

1. These are just the Nyquist plots of 1
s+1 and 2

s+2 , which are circles cutting the
real axis at 0 and 1. (i.e., both are circles with center 1/2 and radius 1/2.)

2. This can be checked by evaluating C(sI −A)−1B with

A =

[
−1 0
0 −2

]

B =

[
7 −8

−12 14

]

C =

[
7 8
6 7

]
.



12 SOLUTIONS TO PROBLEMS IN CHAPTER 2

3. We begin by setting k1 = k + δ and k2 = k − δ. This gives

det(sI −A−BKC) = det

([
s+ 1− k − 97δ −112δ

168δ s+ 2− 2k + 194δ

])

= s2 + s(3− 3k + 97δ) + 2
(
(1− k)2 − δ2

)
.

We therefore require positivity of the linear coefficient 3− 3k + 97δ. Now

3− 3k + 97δ = 3− 50(k − δ) + 47(k + δ)

= 3 + 47k1 − 50k2.

Solution 2.7. The plots given in Figures 2.1, 2.2 and 2.3 can be verified using
MATLAB procedures.

-0.5
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0.2

0.3

0.4

0.5

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Figure 2.1: Generalized Nyquist diagram when ǫ = 0.005.

Solution 2.8. The proof of Theorem 2.4.3 has to be modified to make use of

Γǫ = det(I − (I + ǫ∆1(s))GK(s))

= det(I − ǫ∆1GK(I −GK(s))−1) det(I −GK(s)).
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Figure 2.2: Generalized Nyquist diagram when ǫ = 0.

It is now clear that Γǫ will not cross the origin for any ǫ ∈ [0, 1] if

σ
(
∆1(s)

)
σ
(
GK(I −GK(s))−1

)
< 1

⇔ σ
(
∆1(s)

)
<

1

σ
(
GK(I −GK(s))−1

)

for all s on the Nyquist contour DR.

Solution 2.9. In this case we use

Γǫ = det
(
I − (I − ǫ∆2(s))

−1GK(s)
)

= det
(
I − ǫ∆2(s)−GK(s)

)
det
(
(I − ǫ∆2(s))

−1
)
.

We need σ
(
∆2(s)

)
< 1 to ensure the existence of

(
I − ǫ∆2(s)

)−1
, and we need

σ
(
∆2(s)

)
< σ

(
I −GK(s)

)

to ensure that Γǫ will not cross the origin for any ǫ ∈ [0, 1]. Thus a sufficient
condition for closed loop stability is

σ(∆2(s)) < min{1, σ(I −GK(s))}

for all s on the Nyquist contour DR.
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Figure 2.3: Generalized Nyquist diagram when ǫ = −0.005.

Solution 2.10. To see that the implication in (2.4.8) is true we argue that

σ(K(I −GK)−1) ≤ γ

⇒ σ(K)σ((I −GK)−1) ≤ γ

⇔ σ(K)

σ(I −GK)
≤ γ

⇒ σ(K)

1 + σ(G)σ(K)
≤ γ

⇔ σ(K) ≤ γ

1− γσ(G)
, for 1− γσ(G) > 0.

For the implication in (2.4.9),

σ(K(I −GK)−1) ≤ γ

⇐ σ(K)

1− σ(G)σ(K)
≤ γ

⇔ σ(K) ≤ γ

1 + γσ(G)
.

To establish the inequalities given in (2.4.13), we argue that

σ(Q(I −Q)−1) ≤ γ
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⇒ σ(Q)

σ(I −Q)
≤ γ

⇒ σ(Q)

1 + σ(Q)
≤ γ

⇔ σ(Q) ≤ γ

1− γ
, for γ < 1.

Also,

σ(Q(I −Q)−1) ≤ γ

⇐ σ(Q)

σ(I −Q)
≤ γ

⇐ σ(Q)

1− σ(Q)
≤ γ

⇔ σ(Q) ≤ γ

1 + γ
.

Solution 2.11. The aim of this question is to construct a rational additive per-
turbation A of minimum norm such that

I −AK(I −GK)−1

is singular at ω0. The frequency point ω0 is selected to be ω0 = argmaxs=jω σ(K(I−
GK)−1(jω)). If K(I −GK)−1(jω0) has singular value decomposition

K(I −GK)−1(jω0) =

2∑

i=1

σiviu
∗
i ,

then a constant complex perturbation with the correct properties is given by

A = σ−1
1 u1v

∗
1 ,

since ‖A‖ = σ−1
1 . To realize this as a physical system, we set

v∗1 =
[
r1e

−iφ1 r2e
−iφ2

]
and u1

[
r3e

−iθ3

r4e
−iθ4

]
,

in which the signs of the ri’s are chosen to make all the angles positive. We then
select the αi’s and βi’s, both nonnegative, so that the phase of

(
jω0 − αi

jω0 + αi

)
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is given by φi and the phase of

(
jω0 − βi

jω0 + βi

)

is given by θi. The perturbation is then given by

A = σ−1
1


 r3

(
s−α1

s+α1

)

r4

(
s−α2

s+α2

)


[
r1

(
s−β1

s+β1

)
r2

(
s−β2

s+β2

) ]
.

To find the pole locations for the allpass functions we argue as follows:

re−iφ = x+ iy

and so
x+ iy

±
√

x2 + y2
=

(
jω0 − α

jω0 + α

)
.

This gives

(x+ iy)(jω0 + α) = ±
√
x2 + y2(jω0 − α)

and equating real parts yields

α =
yω0

x±
√

x2 + y2

in which the sign is selected to ensure α ≥ 0. If αi ≥ 0 and βi ≥ 0, A will be stable.
These ideas are implemented in the follow MATLAB1 code.

%
% Enter the transfer function and find a state-space model for it
%
d=[1 3 2];

num=[0 -47 2;0 -42 0;0 56 0; 0 50 2];

[a,b,c,d]=tfm2ss(num,d,2,2);

%
% Find the frequency response singular values of (I −GK)
%
w=logspace(-2,3,100);

[sv]=sigma(a,b,c,eye(2)+d,1,w);

svp=log10(sv(2,:));

%
% Find K(I −GK)−1

%
[af,bf,cf,df]=feedbk(a,b,c,d,2);

1MATLAB is a registered trademark of The MathWorks, Inc.
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%
% Find the frequency response singular values of K(I −GK)−1

%
w=logspace(-2,3,100);

[sv]=sigma(af,bf,cf,df,1,w);

svp2=-log10(sv(1,:));

semilogx(w,svp,w,svp2)

grid

pause

%
% Find the singular values and singular vectors of K(I −GK)−1(j3)
% with K = −I
%
wp=3

ac=a-b*inv(eye(2)+d)*c;

bc=b*inv(eye(2)+d);

cc=inv(eye(2)+d)*c;

dd=-inv(eye(2)+d);

g=dd+cc*inv(j*wp*eye(4)-ac)*bc;

[u,s,v]=svd(g);

zz=u’;

u1=zz(1,:);

v1=v(:,1);

s2=1/s(1,1);

%
% Find the constant for the first allpass function
%
x=real(u1(1,1));

y=imag(u1(1,1));

%
% Select the sign of r1 so that β1 is positive
%
r1=-abs(u1(1,1))

alp1=y*wp/(x+r1)

pause

%
% Find the constant for the second allpass function
%
x=real(u1(1,2));

y=imag(u1(1,2));

%
% Select the sign of r2 so that β2 is positive
%
r2=-abs(u1(1,2))
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alp2=y*wp/(x+r2)

pause

%
% Assemble the first part of the perturbation
%
aper=[-alp1 0;0 -alp2];

bper=[-2*alp1*r1*s2 0 ;0 -2*alp2*r2*s2];

cper=[1 1];

dper=[s2*r1 s2*r2];

%
% Find the constant for the third allpass function
%
x=real(v1(1,1));

y=imag(v1(1,1));

%
% Select the sign of r3 so that α3 is positive
%
r3=abs(v1(1,1))

alp3=y*wp/(x+r3)

pause

%
% Find the constant for the forth allpass function
%
x=real(v1(2,1));

y=imag(v1(2,1));

%
% Select the sign of r3 so that α3 is positive
%
r4=-abs(v1(2,1))

alp4=y*wp/(x+r4)

pause

%
% Assemble the second part of the perturbation
%
aper1=[-alp3 0;0 -alp4];

bper1=[1;1];

cper1=[-2*alp3*r3 0; 0 -2*alp4*r4];

dper1=[r3; r4];

%
% Assemble the full perturbation
%
adel=[aper1 bper1*cper;zeros(2,2) aper];

bdel=[bper1*dper;bper];

cdel=[cper1 dper1*cper];
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ddel=dper1*dper;

%
% Plot the perturbation’s frequency response to check that it is allpass
%
[sv]=sigma(adel,bdel,cdel,ddel,1,w);

loglog(w,sv(1,:))

grid

pause

%
% Check results by assembling and plotting I −AK(I −GK)−1

%
at=a-b*inv(eye(2)+d)*c;

bt=b*inv(eye(2)+d);

ct=inv(eye(2)+d)*c;

dt=-inv(eye(2)+d);

w=logspace(0,1,400);

[ae,be,ce,de]=series(at,bt,ct,dt,adel,bdel,cdel,ddel);

[sv]=sigma(ae,be,-ce,eye(2)-de,1,w);

loglog(w,sv)

grid

%
% As a last check check, find the poles of the perturbed closed
% loop system
%
[A,B,C,D]=addss(a,b,c,d,adel,bdel,cdel,ddel);

eig(A-B*inv(eye(2)+D)*C)

These are:

0.0000

0.0000 + 3.0000i

0.0000 - 3.0000i

-2.0000

-1.0000

-0.0587

-0.0616

-0.0382

You will note, that in this case, the perturbation has an unobservable mode at the
origin which is finding its way into the closed loop pole set.

Solution 2.12. It is immediate from Figure 2.13 that

y = G(I −KG)−1r,
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so
r − y = (I −GK)−1(I −G(K +R))r.

We can thus argue

σ
(
(I −GK)−1(I −G(K +R))

)
≤ γ

⇐ σ
(
I −G(K +R)

)

σ(I −GK)
≤ γ

⇐ σ
(
I −G(K +R)

)

σ(GK − 1
≤ γ

⇔ 1 +
σ(I −G(K +R))

γ
≤ σ(GK).

Solution 2.13. Suppose that

ρσ(S) < 1− δσ(GKS)

⇒ ρσ(S) < 1− σ(∆GKS)

⇒ ρσ(S) < σ(I −∆GKS)

⇔ ρσ(S)σ
(
(I −∆GKS)−1

)
< 1

⇒ ρσ
(
S(I −∆GKS)−1

)
< 1.

Conversely,

ρσ
(
S(I −∆GKS)−1

)
< 1

⇒ ρσ(S)σ
(
(I −∆GKS)−1

)
< 1

⇒ ρσ(S) < σ(I −∆GKS)

⇒ ρσ(S) < 1 + δσ(GKS).

Solution 2.14. It follows from Figure 2.4 that

yc = GtK(I −GtK)−1r.

Therefore

r + yc = (I +GtK(I −GtK)−1)r

= (I −GtK)−1r

= (I − (I +∆2)
−1GK)−1r

= (I +∆2 −GK)−1(I +∆2)r.
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This means that

σ
(
(I −GtK)−1

)
≤ ρ(jω)

⇔ σ
(
(I +∆2 −GK)−1(I +∆2)

)
≤ ρ(jω)

⇐ σ
(
(I +∆2 −GK)−1

)
σ(I +∆2) ≤ ρ(jω)

⇔ σ(I +∆2)

σ(I +∆2 −GK)
≤ ρ(jω)

⇐ 1 + δ(jω)

σ(I −GK)− δ(jω)
≤ ρ(jω)

⇔ σ(S) ≤ ρ(jω)

1 + δ(jω)(1 + ρ(jω))

Solution 2.15. The solution to this problem is similar to the previous one and
we will therefore simply present an annotated working MATLAB code.

%
% Enter the batch reactor model...
%
a=[ 1.3800 -0.2077 6.7150 -5.6760;

-0.5814 -4.2900 0 0.6750;

1.0670 4.2730 -6.6540 5.8930;

0.0480 4.2730 1.3430 -2.1040]

b=[ 0.0 0.0 ;

5.6790 0;

1.1360 -3.1460;

1.1360 0]

c=[1 0 1 -1;

0 1 0 0]

d=[ 0.0 0.0;

0.0 0.0]

%
% and now the controller
%
ac=[0 0;0 0];

bc=[1 0;0 1];

cc=[0 2;-8 0];

dc=[0 2;-5 0];

%
% Evaluate the frequency response of 1/σ(GK(I −GK)−1(jω))
%
w=logspace(-2,3,100);
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[A,B,C,D]=series(ac,bc,cc,dc,a,b,c,d);

[af,bf,cf,df]=feedbk(A,B,C,D,2);

[sv]=sigma(af,bf,cf,df,1,w);

svp1=-log10(sv(1,:));

semilogx(w,svp1)

grid

pause

%
% Find GK(I −GK)−1(j2.5)
%
wp=2.5

g=df+cf*inv(j*wp*eye(6)-af)*bf;

[u,s,v]=svd(g);

u1=u(:,1)

v1=v(:,1)

s2=1/s(1,1);

%
% Evaluate the first pair of allpass function constants
%
x=real(v1(1,1));

y=imag(v1(1,1));

r1=abs(v1(1,1))

alp1=wp*y/(r1+x)

%
x=real(v1(2,1));

y=imag(v1(2,1));

r2=abs(v1(2,1))

alp2=wp*y/(r2+x)

%
% Assemble the first part of the perturbation
%
aper=[-alp1 0;0 -alp2];

bper=[1;1];

cper=[-2*alp1*r1*s2 0;0 -2*alp2*r2*s2];

dper=[s2*r1;s2*r2];

%
% Evaluate the second pair of allpass function constants
%
x=real(u1(1,1));

y=-imag(u1(1,1));

r3=abs(u1(1,1))

alp3=wp*y/(r3+x)

%
x=real(u1(2,1));
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y=-imag(u1(2,1));

r4=-abs(u1(2,1))

alp4=wp*y/(r4+x)

%
% Assemble the second part of the perturbation
%
aper1=[-alp3 0;0 -alp4];

bper1=[-2*alp3*r3 0;0 -2*alp4*r4];

cper1=[1 1];

dper1=[r3 r4];

%
% Put the whole perturbation together
%
adel=[aper bper*cper1;zeros(2,2) aper1];

bdel=[bper*dper1;bper1];

cdel=[cper dper*cper1];

ddel=dper*dper1;

%
% Plot the frequency response of the perturbation to check that
% it is allpass
%
w=logspace(0,1,400);

[sv]=sigma(adel,bdel,cdel,ddel,1,w);

loglog(w,sv(1,:))

grid

pause

%
% Assemble and plot I −∆GK(I −GK)−1 and check that it is
% singular at ω = 2.5
%
[ae,be,ce,de]=series(af,bf,cf,df,adel,bdel,cdel,ddel);

[sv]=sigma(ae,be,-ce,eye(2)-de,1,w);

loglog(w,sv)

grid

%
% As a last check, find the closed loop poles of the perturbed system
%
ach11=af+bf*inv(eye(2)-ddel*df)*ddel*cf;

ach12=bf*inv(eye(2)-ddel*df)*cdel;

ach21=bdel*inv(eye(2)-df*ddel)*cf;

ach22= adel+bdel*inv(eye(2)-df*ddel)*df*cdel;

ach=[ach11 ach12; ach21 ach22];

eig(ach)
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These are:

0.0

-14.6051

-10.8740

-0.0000 + 2.5000i

-0.0000 - 2.5000i

-3.2794

-2.3139

-0.6345 + 0.3534i

-0.6345 - 0.3534i

-0.7910



Solutions to Problems in

Chapter 3

Solution 3.1.

1. For any finite T > 0 and any 0 < ǫ < T ,

∫ T

ǫ

|f(t)|2 dt =

∫ T

ǫ

t2α dt

=

{
1

2α+1 (T
2α+1 − ǫ2α+1) for α 6= − 1

2

log(T/ǫ) for α = − 1
2 .

If α > − 1
2 , then ‖f‖2,[0,T ] =

T 2α+1

2α+1 < ∞ for any finite T . If α ≤ − 1
2 , then f

is not in L2[0, T ] for any T .

2. For any finite T > 0

∫ T

0

|g(t)|2 dt =

∫ T

0

(t+ 1)2α dt

=

{
1

2α+1 ((T + 1)2α+1 − 1) for α 6= − 1
2

log(T + 1) for α = − 1
2 .

Hence g ∈ L2[0, T ] for any finite T , which is to say g ∈ L2e. The integral∫ T

0
|g(t)|2 dt remains finite as T → ∞ if and only if α < − 1

2 , so this is a
necessary and sufficient condition for g ∈ L2[0,∞).

Solution 3.2. XX−1 = I. Therefore

0 =
d

dt
(X(t)X−1(t))

=
( d
dt

X(t)
)
X−1(t) +X(t)

d

dt
X−1(t).

The result follows upon multiplying on the left by X−1(t).

25
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Solution 3.3.

1. Let v ∈ R
n and consider the differential equation

ẋ(t) = A(t)x(t) x(t1) = v.

The unique solution is x(t) = Φ(t, t1)v, for all t. Choose any real τ and
consider the differential equation

ẏ(t) = A(t)y(t) y(τ) = Φ(τ, t1)v,

which has unique solution y(t) = Φ(t, τ)Φ(τ, t1)v for all t. Since y(τ) = x(τ),
it follows from the uniqueness of solutions to linear differential equations that
y(t) = x(t) for all t. Therefore Φ(t, t1)v = Φ(t, τ)Φ(τ, t1)v for all t, τ, t1 and
all v. Consequently, Φ(t2, t1) = Φ(t2, τ)Φ(τ, t1) for all t2, τ, t1.

2. From Item 1, Φ(τ, t)Φ(t, τ) = Φ(τ, τ) = I. Hence Φ−1(t, τ) = Φ(τ, t).

3.

d

dτ
Φ(t, τ) =

d

dτ
Φ−1(τ, t)

= −Φ−1(τ, t)[
d

dτ
Φ(τ, t)]Φ−1(τ, t)

= −Φ−1(τ, t)A(τ)Φ(τ, t)Φ−1(τ, t)

= −Φ−1(τ, t)A(τ)

= −Φ(t, τ)A(τ).

Solution 3.4.

1.
∫ ∞

−∞

f(α+ jω)∗f(α+ jω) dω =

∫ ∞

−∞

1

(α− a)2 + ω2
dω

=
1

α− a

[
tan−1(

ω

α− a
)

]∞

−∞

=
π

α− a
.

Alternatively,

∫ ∞

−∞

f(α+ jω)∗f(α+ jω) dω
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=
1

2(α− a)

∫ ∞

−∞

1

jω + (α− a)
− 1

jω − (α− a)
dω

=
1

2(α− a)j

∫

DR

1

s− (α− a)
− 1

s+ (α− a)
ds

=
π

α− a
by Cauchy’s integral formula.

(The contour DR is a standard semicircular contour in the right-half plane of
radius R > α − a and is traversed in an anticlockwise direction.) The result
follows, since 1

α−a is maximized by setting α = 0.

2. f satisfies

ẋ(t) = ax(t) x(0) = 1

f(t) = x(t).

Since a < 0, f ∈ L2[0,∞). Furthermore, the observability gramian q, which
is the solution to

2aq + 1 = 0,

is given by q = 1
−2a .

Solution 3.5.

1. Choose an arbitrary x0 ∈ R
n and let x(t) be the solution to

ẋ(t) = Ax x(0) = x0

z(t) = Cx.

Noting that limt→∞ x(t) = 0 we obtain

x0Qx0 = −
∫ ∞

0

d

dt
(x′Qx) dt

= −
∫ ∞

0

x′A′Qx+ x′QAxdt

=

∫ ∞

0

z′z dt

≥ 0.

2. Let Ax = λx. Then

0 = x∗(QA+A′Q+ C ′C)x

= (λ+ λ̄)x′Qx+ ‖Cx‖2.
Since x′Qx ≥ 0, it follows that either (a) ‖Cx‖ = 0 or (b) λ+ λ̄ < 0. That is,
x is either asymptotically stable or is unobservable.



28 SOLUTIONS TO PROBLEMS IN CHAPTER 3

Solution 3.6.

1. Let zi = Giw. Then z = z1 + z2 is the output of G1 +G2 and

z = C1x1 + C2x2 + (D1 +D2)w.

2. The input to G2 is z1 = C1x1 +D1w. Therefore

ẋ2 = A2x2 +B2(C1x1 +D1w)

= B2C1x1 +A2x2 +B2D1w

and the output of G2 is

z = C2x2 +D2(C1x1 +D1w)

= D2C1x1 + C2x2 +D2D1w.

3. [
ẋ1

w1

]
=

[
A1 B1

0 I

] [
x1

w1

]
;

[
x1

y1

]
=

[
I 0
C1 D1

] [
x1

w1

]
.

Hence [
ẋ1

w1

]
=

[
A1 B1

0 I

] [
I 0
C1 D1

]−1 [
x1

y1

]
.

4. 


ẋ
z1
z2


 =




A B
C1 D1

C2 D2



[

x
w

]

Hence [
x
z1

]
=

[
I 0
C1 D1

] [
x
w

]

and [
ẋ
z2

]
=

[
A B
C2 D2

] [
I 0
C1 D1

]−1 [
x
z1

]
.

A more pedestrian approach:

G−1
1

s
=

[
A−BD−1

1 C1 BD−1
1

−D−1
1 C1 D−1

1

]
.

Hence, by the series formula,

G2G
−1
1

s
=




A−BD−1
1 C1 0 BD−1

1

−BD−1
1 C1 A BD−1

1

−D2D
−1
1 C1 C2 D2D

−1
1


 .
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Now apply the state transformation T =

[
I 0
−I I

]
to obtain

G2G
−1
1

s
=




A−BD−1
1 C1 0 BD−1

1

0 A 0

C2 −D2D
−1
1 C1 C2 D2D

−1
1




s
=

[
A−BD−1

1 C1 BD−1
1

C2 −D2D
−1
1 C1 D2D

−1
1

]
.

The final step follows since the states associated with A are uncontrollable.

Solution 3.7.

1. Since any state-space system has finite L2[0, T ] induced norm, we may set ǫ2 =
‖G‖[0,T ] < ∞. Since G−1 has realization (A−BD−1C,BD−1,−D−1C,D−1),

it too has finite L2[0, T ] induced norm as we may take ǫ1 = 1/‖G−1‖[0,T ].

2. Take ǫ2 = ‖G‖∞ and ǫ1 = 1/‖G−1‖∞.

Solution 3.8.

1.

G∗(s)G(s)

=
(
D′ +B′(s̄I −A′)−1C ′

)(
D + C(sI −A)−1B

)

= D′D +D′C(sI −A)−1B +B′(s̄I −A′)−1C ′D

+B′(s̄I −A′)−1C ′C(sI −A)−1B

= I −B′Q(sI −A)−1B −B′(s̄I −A′)−1QB

+B′(s̄I −A′)−1C ′C(sI −A)−1B

= I +B′(s̄I −A′)−1 (C ′C − (s̄I −A′)Q−Q(sI −A)) (sI −A)−1B

= I − (s+ s̄)B′(s̄I −A′)−1Q(sI −A)−1B.

The conclusion that G∗(s)G(s) ≤ I if Q ≥ 0 and s+ s̄ ≥ 0 is immediate.

2. Since D′D = I, there exists a matrix De such that
[
D De

]
is a square or-

thogonal matrix—the columns of De are an orthonormal basis for the orthogo-
nal complement of the range ofD. To show that Be = −Q#C ′De, in whichQ#

denotes the Moore-Penrose pseudo inverse, satisfies D′
eC +B′

eQ = 0, we need
to show that kerC ⊂ kerQ. Let Qx = 0. Then 0 = x′(QA+A′Q+ C ′C)x =
‖Cx‖2, giving Cx = 0.
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Solution 3.9. Suppose, without loss of generality, that

A =




A1 0 0
0 A2 0
0 0 A3




C =
[
C1 C2 0

]

in which A1 and −A2 are asymptotically stable and A3 has only imaginary axis
eigenvalues. Let

0 = Q1A1 +A1Q1 + C ′
1C1

0 = Q2(−A2) + (−A1)Q2 + C ′
2C2

which exist by Theorem 3.1.1. Set

Q =




Q1 0 0
0 −Q2 0
0 0 0


 .

Solution 3.10.

1. Consider f(x) = |x|, which is not differentiable at the origin. Then |(|x1| −
|x2|)| ≤ |x1 − x2|. It follows that γ(f) = 1.

2. The inequality ∣∣∣∣
f(x1)− f(x2)

x1 − x2

∣∣∣∣ ≤ γ(f)

shows that | dfdx | ≤ γ(f). On the other hand, f(x2) = f(x1)+(x2−x1)
df
dx |x=x1

+

0((x2 − x1)
2) shows that supx | dfdx | = γ(f).

If f is differentiable except at isolated points xi then supx 6=xi
| dfdx | = γ(f).

3. See Figure 3.1

Solution 3.11. Notice that

(XY ′)ii =
∑

j

xijyij .

Therefore,

trace(XY ′) =
∑

i,j

xijyij .
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y = γ(f)x+ f(0)

y = f(x)

y = −γ(f)x+ f(0)

y = x

Figure 3.1: Illustration showing that γ(f) < 1 implies x = fx has a solution.

1.

trace(XY ′) =
∑

i,j

xijyij

=
∑

i,j

yijxij

= trace(Y X ′).

2. Follows from the above.

3. Let ‖X‖ =
√
trace(XX ′).

(a)
√
trace(XX ′) ≥ 0 is obvious, and

√
trace(XX ′) = 0 ⇔ xi,j = 0 for all

i, j. That is
√
trace(XX ′) = 0 ⇒ X = 0.

(b)
√
trace(αXαX ′) =

√∑
i,j α

2xij = |α|
√

trace(XX ′).

(c)

trace
(
(X + Y )(X + Y )′

)

=
∑

i,j

(xij + yij)
2

=
∑

i,j

x2
ij + 2xijyij + y2ij

= trace(XX ′) + trace(Y Y ′) + 2
∑

i,j

xijyij
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≤ trace(XX ′) + trace(Y Y ′) + 2

√∑

i,j

x2
ij

√∑

i,j

y2ij

by Cauchy Schwartz

= (
√
trace(XX ′) +

√
trace(Y Y ′))2.

Solution 3.12. Consider g = 1
s−a1

and h = 1
s−a2

, with ai < 0. Then

‖g‖2‖h‖2 =
1

2
√
a1a2

.

Also,

hg
s
=




a1 0 1
1 a2 0
0 1 0


 .

The observability gramian of this realization is given by

Q =

[
1

−2a1a2(a1+a2)
1

2a2(a1+a2)
1

2a2(a1+a2)
1

−2a2

]
.

Hence

‖hg‖2 =
1√

−2a1a2(a1 + a2)
.

It follows that ‖hg‖2 > ‖g‖2‖h‖2 for any a1, a2 such that −2 < a1 + a2. For
example, choose a1 = −1/2. Then ‖g‖22 = 1 and ‖g2‖2 =

√
2.

Solution 3.13.

1.

‖GB‖ = sup
w 6=0

‖GBw‖S2

‖w‖S0

= sup
z 6=0

‖Gz‖S2

‖z‖S1

= ‖G‖.

2. Take the infinite horizon 2-norm

‖AG‖2 =

∫ ∞

−∞

trace
(
G(jω)∗A(jω)∗A(jω)G(jω)

)
dω

=

∫ ∞

−∞

trace
(
G(jω)∗G(jω)

)
dω

= ‖G‖2
since A(jω)∗A(jω) = I.
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Solution 3.14.

Sufficiency Suppose Z ∈ H∞ is strictly positive real. The condition Z ∈ H∞

implies that Z has finite incremental gain. Equation (3.9.1) gives

inf
σ0>0

σ
(
Z(σ0 + jω0) +Z∗(σo + jω0)

)
≥ 2ǫ,

which implies that Z(jω) +Z∗(jω) ≥ 2ǫI for all real ω.

Suppose the system is relaxed at time t0, let w be any signal in L2[t0, T ] and
let z = Zw. Define the L2(−∞,∞) signals we and ze by

we(t) =

{
w(t) for t ∈ [t0, T ]

0 otherwise

and

ze(t) =

{
z(t) for t ≥ t0

0 otherwise.

Then

〈z, w〉[t0,T ] =

∫ T

t0

w′(t)z(t) dt

=

∫ ∞

−∞

w′
e(t)ze(t) dt

=
1

2π

∫ ∞

−∞

ŵ∗
e(jω)ẑe(jω) dω

=
1

2π

∫ ∞

−∞

ŵ∗
e(jω)Z(jω)ŵe(jω) dω

=
1

4π

∫ ∞

−∞

ŵ∗
e(jω)[Z(jω) +Z∗(jω)]ŵe(jω) dω

≥ ǫ

2π

∫ ∞

−∞

ŵ∗
e(jω)ŵe(jω) dω

= ǫ

∫ ∞

−∞

w′
e(t)we(t) dt

= ǫ

∫ T

t0

w′(t)w(t) dt.

In the above, ŵe and ẑe denote the Fourier transforms of we and ze. Conse-
quently, Z defines an incrementally strictly passive system.
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Necessity Suppose the system defined by Z has finite incremental gain and is
incrementally strictly passive. The finite incremental gain assumption implies
that Z ∈ H∞.

Notice that for any complex numbers z and w, Re(z)Re(w) =
1
2Re(w̄z+wz).

Choose s0 = σ0 + jω0 with σ0 = Re(s0) > 0 and choose x ∈ C
n. Consider the

input
w(t) = Re(xe

s0t1(t− t0))

in which 1(·) denotes the unit step function. For t0 → −∞, the response to
this input is

z(t) = Re(Z(s0)xe
s0t1(t− t0)).

Therefore,

w′(t)z(t) =
1

2
Re

(
e2σ0tx∗Z(s0)x+ e2s0tx′Z(s0)x

)
.

Integrating from −∞ to some finite time T we have
∫ T

−∞

w′(t)z(t) dt =
1

2
Re

(
1

2σ0
e2σ0Tx∗Z(s0)x+

1

2s0
e2s0Tx′Z(s0)x

)
.

Also,

ǫ

∫ T

−∞

w′(t)w(t) dt =
ǫ

2
Re

(
1

2σ0
e2σ0Tx∗x+

1

2s0
e2s0Tx′x

)
.

Suppose ǫ > 0 is such that

〈z, w〉[−∞,T ] ≥ ǫ‖w‖2,[−∞,T ]

for all finite T (such an ǫ exists by the assumption that Z is incrementally
strictly passive). Then

Re (x
∗Z(s0)x− ǫx∗x) ≥ 2σ0

e2σ0T
Re

(
e2s0T

2s0
(x′Z(s0)x− x′x)

)
. (3.1)

If w0 = 0 (i.e., s0 is real), we choose x real and obtain x′Z(s0)x − ǫx′x ≥ 0.
Since x may be any real vector and since Z∗(s0) = Z ′(s0) for s0 ∈ R, we
conclude that Z(s0) +Z∗(s0) ≥ 2ǫI for all real s0 > 0.

If ω 6= 0, we notice that arg e2s0T = 2ω0T takes all values between 0 and
2π as T varies. This implies that the right-hand side of (3.1) is nonnega-
tive for some values of T (which will depend on the choice of s0 and x).
Because the left-hand side of (3.1) is independent of T , we conclude that
Re (x

∗Z(s0)x− ǫx∗x) ≥ 0. Consequently,

Z(s0) +Z∗(s0) ≥ 2ǫI

for all s0 such that Re(s0) > 0.
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Solution 3.15. Since Z ∈ H∞, the complex function f(s) = v∗Z(s)v is also in
H∞ for any (complex) vector v. Also,

g(s) = e−f(s)

is analytic and nonzero in the closed-right-half plane. It follows from the maximum
modulus principle that maxRe(s)≥0 |g(s)| = maxω |g(jω)|. Now note that

|g(s)| = e−Re

(
f(s)
)
.

Therefore, minRe(s)≥0 Re

(
f(s)

)
= minω Re

(
g(jω)

)
. The result follows.

Solution 3.16.

1. The nonsingularity of Z(s) follows from the definition:

Z(s0)v = 0 ⇒ v∗
(
Z∗(s0) +Z(s0)

)
v = 0

and it follows that v = 0.

2. Since Z is strictly positive real, D is nonsingular. The eigenvalues of A −
BD−1C are either (a) zeros of Z or (b) unobservable modes of (A,C) or un-
controllable modes of (A,B). Since A is asymptotically stable, the realization
(A,B,C,D) has no uncontrollable or unobservable modes in the closed-right-
half plane and any eigenvalue of A−BD−1C which is in the closed-right-half
plane is a zero of Z. Since Z has no zeros in the closed-right-half plane,
A−BD−1C is asymptotically stable.

Solution 3.17. Notice that

[
I +G

I −G

]
s
=




A B
C I +D
−C I −D


 .

Hence

(I −G)(I +G)−1 s
=

[
A B
−C I −D

] [
I 0
C I +D

]−1

s
=

[
A−B(I +D)−1C B(I +D)−1

−C − (I −D)(I +D)−1C (I −D)(I +D)−1

]

s
=

[
A−B(I +D)−1C B(I +D)−1

−2(I +D)−1C (I −D)(I +D)−1

]
.



36 SOLUTIONS TO PROBLEMS IN CHAPTER 3

Solution 3.18. Consider Figure 3.2 and define

z2 =

[
z21
z22

]
; w2 =

[
w21

w22

]
.

Then

f f

f

ss

G

K

∆1

- -

?��

6

?

-

w21 z21

z22 w22

z1 w1

Figure 3.2:

[
z1
z2

]
= P

[
w1

w2

]

in which

P =




SGK SG SGK

KS (I −KG)−1 KS

S SG S


 ,

with S = (I −GK)−1. The nominal closed loop is stable if and only if P is stable.

1. The result follows by a direct application of Theorem 3.6.1.

2. By Theorem 3.5.7, the closed loop will be stable provided that −GKS is
incrementally strictly passive. By Lemma 3.5.6, this is equivalent to γ

(
(I +

GKS)(I −GKS)−1
)
< 1, which can be simplified to

γ
(
(I − 2GK)−1

)
< 1.

Solution 3.19.

1. The condition min γ(∆)γ(DGD−1) < 1 implies that there exists a D ∈ D
such that γ(∆)γ(DGD−1) < 1. Therefore, there exists a D ∈ D such that
γ(D∆D−1)γ(DGD−1) < 1, by virtue of the commutative property of D.
The stability of the closed loop is now immediate from Corollary 3.5.2.
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2. For any matrix valued ∆i, the corresponding block-diagonal entry Di in D

must have the form αI, for some scalar transfer function α ∈ H∞ such that
α−1 ∈ H∞. For any ∆i that is of the form βI, the corresponding block-
diagonal entry Di in D must satisfy D±1 ∈ H∞. The other block-entries of
D are zero.

Solution 3.20. Firstly note that at least one solution always exists (see Solu-
tion 3.9). Also, if Q1 and Q2 are any two solutions, then X = Q2 −Q1 satisfies

XA+A′X = 0,

which we may write as
[

A 0
0 −A′

] [
I
X

]
=

[
I
X

]
A.

But [
A 0
0 −A′

] [
I
0

]
=

[
I
0

]
A,

so if λi(A) 6= λj(−A′), which is to say λi(A) + λj(A) 6= 0, for all i, j, then X = 0
by the uniqueness properties of eigenvalue decompositions.

Conversely, if λi(A) + λj(A) = 0 for some i, j, we have
[

A 0
0 −A′

] [
I
0

]
=

[
I
0

]
A

and [
A 0
0 −A′

] [
I
X

]
=

[
I
X

]
A, for some X 6= 0.

Therefore, Q and Q+X 6= Q are two solutions.

To illustrate these nonuniqueness properties, consider A =

[
1 0
0 −1

]
. Then

XA + A′X = 0 has the solution set X = α

[
0 1
1 0

]
. As another example, if

A =

[
0 w
−ω 0

]
, then X = αI is a solution.

Solution 3.21.

1. Let Hx = λx, x 6= 0.

x∗SH = x∗(SH)′ by the Hamiltonian property

= x∗H ′S′

= λ̄x∗S′

= −λ̄x∗S since S′ = −S.
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Noting that x∗S 6= 0, we conclude that −λ̄ is an eigenvalue of H.

2.

(X ′SX)Λ + Λ′(X ′SX) = X ′SHX +X ′H ′SX

= X ′
(
SH − (SH)′

)
X since S′ = −S

= 0 by the Hamiltonian property.

We conclude that X ′SX = 0, because linear matrix equations of the form
Y Λ + Λ′Y = 0 in which Re(λi(Λ)) < 0 have the unique solution Y = 0 (see
Problem 3.20).

3. From Item 2, X ′
1X2 = X ′

2X1. HenceX2X
−1
1 = (X ′

1)
−1X ′

2 and P is symmetric.
Also from Item 2, X ′SHX = X ′SXΛ = 0. Hence

0 = (X ′
1)

−1X ′SHXX−1
1

=
[
P −I

] [ H11 H12

H21 H22

] [
I
P

]

= PH11 −H21 + PH12P −H22P

= PH11 +H ′
11P + PH12P −H21.

The final equality is valid because the Hamiltonian property implies that
H22 = −H ′

11.

Finally,

H11 +H12P =
[
I 0

]
HXX−1

1

=
[
I 0

]
XΛX−1

1

= X1ΛX
−1
1 .

Solution 3.22.

1. Since Φ(T, T ) = I, it is immediate that P (T ) = Σ.

−Ṗ = −Ẋ2X
−1
1 + PẊ1X

−1
1

= −(Φ̇21 + Φ̇22Σ)X
−1
1 + P (Φ̇11 + Φ̇12Σ)X

−1
1

=
[
P −I

]
Φ̇

[
I
Σ

]
X−1

1

=
[
P −I

]
HΦ

[
I
Σ

]
X−1

1

=
[
P −I

]
H

[
X1

X2

]
X−1

1

=
[
P −I

]
H

[
I
P

]
.
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The result follows upon expansion of the right-hand side and noting that
H22 = −H ′

11.

2. Matrix addition, multiplication and inversion are continuous operations. (A+
B)ij and (AB)ij are continuous functions of the entries of A and B, and
(A−1)ij is a continuous function of the entries of A, provided A is nonsingular.
The result follows from these facts and Item 1.

Solution 3.23.

1. Write the Riccati equation as

ΠA+A′Π+
[
C ′ γ−1ΠB

] [ C
γ−1B′Π

]
= 0

Therefore Π is the observability gramian of (A,

[
C

γ−1B′Π

]
). Hence (A,C)

observable implies that Π is nonsingular.

2. Write the Riccati equation as

Π(A+ γ−2BB′Π) = −A′Π− C ′C.

Suppose that Ax = λx and Cx = 0, x 6= 0. Note that Re(λ) < 0 since A is
asymptotically stable. It follows that

x∗Π(A+ γ−2BB′Π) = −λ̄x∗Π.

Since A + γ−2BB′Π is asymptotically stable and Re(−λ̄) > 0, we conclude
that Πx = 0. Hence the unobservable subspace is contained in kerΠ.

Suppose now thatM2 is a basis for kerΠ. ThenM ′
2(3.7.17)M2 yields CM2 = 0

and (3.7.17)M2 results in ΠAM2 = 0. That is, kerΠ is an A invariant subspace
contained in kerC, which shows that kerΠ is a subset of the unobservable
subspace. We therefore conclude that kerΠ is the unobservable subspace.

3. Follows immediately from Item 2.

Solution 3.24.

1. LetX(t) = Π−P (t). DifferentiatingX(t) and using the two Riccati equations,
we obtain

Ẋ = XA+A′X + γ−2ΠBB′Π− γ−2PBB′P

= X(A+ γ−2BB′Π) + (A+ γ−2BB′Π)′X − γ−2XBB′X. (3.2)
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Choose a t∗ ≤ T and an x such that X(t∗)x = 0. Then x′(3.2)x gives
x′Ẋ(t)x|t=t∗ = 0, which is equivalent to Ẋ(t)x|t=t∗ = 0 (since P (t) and hence
X(t) are monotonic, which implies Ẋ is semidefinte). Consequently, (3.2)x
gives X(t∗)(A + γ−2BB′Π)x = 0. That is, the kernel of X(t∗) is invariant
under multiplication by A+ γ−2BB′Π.

Consider the differential equation

ẋ(t) =
(
(A+ γ−2BB′Π)′− γ−2XBB′

)
x(t)+X(A+ γ−2BB′Π)x, x(t∗) = 0.

One solution is x1(t) = X(t)x. Another solution is x2(t) = 0 for all t. Hence
X(t)x = 0 for all t by the uniqueness of solutions to differential equations.

2. Let M =
[
M1 M2

]
be any nonsingular matrix such that M2 is a basis for

the kernel of Π. Since P (T ) = 0, M2 is also a basis for the kernel of Π− P (t)
for all t ≤ T by Item 1. It follows that

(
Π−P (t)

)
M2 = 0 andM ′

2[Π−P (t)] = 0

for all t ≤ T and that Π1 − P1(t) = M ′
1

(
Π − P (t)

)
M1 is nonsingular for all

t ≤ T .

3. The matrix Π−P (t) is nonsingular for all t ≤ T if and only if Π is nonsingular
(this follows from P (T ) = 0 and Item 1).

If Π is nonsingular, the assumptions used in the text hold and A+ γ−2BB′Π
is asymptotically stable.

In the case that Π is singular, let M be as in Item 2. By the solution to
Problem 3.23 Item 1,

M−1AM =

[
Â11 0

Â21 Â22

]
, M−1B =

[
B̂1

B̂2

]
,

CM =
[
Ĉ1 0

]
.

(Note that we cannot, and do not, assume that (Â11, Ĉ1) is observable). Fur-
thermore, M ′

1

(
Π− P (t)

)
M1 is nonsingular and P1(t) = M ′

1P (t)M1 satisfies

Ṗ1 = Â11P1 + P1Â
′
11 + γ−1P1B̂1B̂

′
1P1 + Ĉ ′

1Ĉ1 P1(T ) = 0

with limt→−∞ P1(t) = Π1 in which Π1 = M1ΠM1. Applying the argument

of the text to this subspace shows that Â11 + γ−2B̂1B̂1Π1 is asymptotically
stable. We conclude that A+ γ−2BB′Π is asymptotically stable, since

A+ γ−2BB′Π = M

[
Â11 + γ−2B̂1B̂1Π1 0

Â21 + γ−2B̂2B̂1Π1 Â22

]
M−1.



SIGNALS AND SYSTEMS 41

Solution 3.25. Define

G = (I −Z)(I +Z)−1

s
=

[
A−B(I +D)−1C B(I +D)−1

−2(I +D)−1C (I −D)(I +D)−1

]

s
=

[
Â B̂

Ĉ D̂

]
.

Since Z defines an incrementally strictly passive system with finite incremental
gain, γ(G) < 1 by Lemma 3.5.6. This is equivalent to ‖G‖∞ < 1 since G is linear,
time-invariant and rational. Now verify

R̂ = I − D̂′D̂

= I − (I +D′)−1(I −D′)(I −D)(I +D)−1

= (I +D′)−1
(
(I +D′)(I +D)− (I −D′)(I −D)

)
(I +D)−1

= (I +D′)−1
(
I +D′ +D +D′D − I +D′ +D −D′D

)
(I +D)−1

= 2(I +D′)−1(D +D′)(I +D)−1.

Condition 1 of the bounded real lemma says that R̂ > 0. Therefore R = D+D′ > 0.
Using this identity, we easily obtain

B̂R̂−1B̂′ =
1

2
BR−1B′

and

Â+ B̂R̂−1D̂′Ĉ = A−B(I +D)−1C −BR−1(I −D′)(I +D)−1C

= A−B
(
I +R−1(I −D′)

)
(I +D)−1C

= A−BR−1
(
D +D′ + I −D′

)
(I +D)−1C

= A−BR−1C.

Finally, notice that for any matrix X with I −X ′X nonsingular,

I +X(I −X ′X)−1X ′ = I + (I −XX ′)−1XX ′

= (I −XX ′)−1(I −XX ′ +XX ′)

= (I −XX ′)−1.

Consequently,

I + D̂R̂−1D̂′ = (I − D̂D̂′)−1

=
(
(I +D)−1

(
(I +D)(I +D′)− (I −D)(I −D′)

)
(I +D′)−1

)−1

=
1

2
(I +D′)(D +D′)−1(I +D)
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which results in
Ĉ ′(I + D̂R̂−1D̂′)Ĉ = 2C ′R−1C.

Condition 2 of the Bounded Real Lemma ensures the existence of a P̂ such that

P̂ (A−BR−1C) + (A−BR−1C)′P̂ +
1

2
P̂BR−1B′P̂ + 2C ′R−1C = 0

with A − BR−1C + 1
2BR−1B′P̂ asymptotically stable (and P̂ ≥ 0). We therefore

define P = 1
2 P̂ .

Solution 3.26.

1. Suppose Φ = W∼W . Then Φ∼ = W∼W = Φ. Furthermore, W−1 ∈ RH∞

implies that Φ(jω) > 0.

Now suppose that Φ = V ∼V . Then

WV −1 = (W∼)−1V ∼.

The elements of the left-hand side have no poles in Res ≥ 0 and the ele-
ments of the right-hand side have no poles in Res ≤ 0. Hence WV −1 = M ,
a constant matrix, which satisfies M = M∗. We conclude that M is real
(hence orthogonal) by noting that W and V are implicitly assumed to be
real systems.

2. Since Φ = Φ∼, the poles of Φ are symmetric about the imaginary axis and

Φ =
∑

i

∑

j=1

Mij

(s− pi)j
+
∑

i

∑

j=1

M∗
ij

(−s− pi)j
,

in which Mij are complex matrices and Re(pi) < 0. Define

Z =
∑

i

∑

j=1

Mij

(s− pi)j
.

Since Φ is real and in RL∞, Z is real and in RH∞.

(Alternatively, let Φ(t) be the inverse Fourier transform of Φ, define

Z(t) =

{
Φ(t) for t ≥ 0

0 otherwise

and let Z be the Fourier transform of Z.)

Since Φ(jω) > 0 for all ω, it follows that

Z(jω) +Z∗(jω) > 0

for all ω. Consequently, since Z is rational, there is an ǫ > 0 such that

Z(jω) +Z∗(jω) > 2ǫI.

It follows that Z is strictly positive real.
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3. The fact that W ∈ RH∞ and W−1 ∈ RH∞ follows trivially from the asymp-
totic stability of the matrices A and A − BR−1(C − B′P ) = A − BW−1L.
Verify that the Riccati equation can be written as

PA+A′P + L′L = 0.

(This shows that (A,L) is observable if and only if P is nonsingular.) Now
verify

W∼W = W ′W +B′(−sI −A′)−1L′W +W ′L(sI −A)−1B

+B′(−sI −A′)−1L′L(sI −A)−1B

= D +D′ +B′(−sI −A′)−1(C ′ − PB) + (C −B′P )(sI −A)−1B

+B′(−sI −A′)−1L′L(sI −A)−1B

= D +D′ +B′(−sI −A′)−1C ′ + C(sI −A)−1B

+B′(−sI −A′)−1
(
L′L− P (sI −A)

− (−sI −A′)P
)
(sI −A)−1B

= D +D′ +B′(−sI −A′)−1C ′ + C(sI −A)−1B

= Z +Z∼.





Solutions to Problems in

Chapter 4

Solution 4.1.

1(a) The function h = γ
(

s−1
s+1

)
maps the imaginary axis s = jω into the circle

|h| = γ. We can therefore find w by solving the equation

1

1−w
= γ

(
s− 1

s+ 1

)

⇒ w =

(
s+ 1

s− 1

)(
(s− 1)− γ−1(s+ 1)

s+ 1

)

=

(
s(1− γ−1)− (1 + γ−1)

s− 1

)
.

1(b) In this case we need to solve

w

1−w
= γ

(
s− 1

s+ 1

)

⇒ w = γ

(
s− 1

s+ 1

)(
1 + γ

(
s− 1

s+ 1

))−1

=

(
γ(s− 1)

s(1 + γ) + (1− γ)

)
.

2(a) Let

1

1− q
= γ

(
s− 1

s+ 1

)

⇒ q =

(
s(1− γ−1)− (1 + γ−1)

s− 1

)
where q = gk

⇒ k = s(1− γ−1)− (1 + γ−1).

45
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The Nyquist plot of q cuts the real axis at 1 ± γ−1. This means that there
will be one encirclement of +1 for all γ > 0. In order to make the controller
realizable, one could use

k =
s(1− γ−1)− (1 + γ−1)

ǫs+ 1

for arbitrarily small ǫ.

2(b) In this case we solve
q

1− q
= γ

(
s− 1

s+ 1

)

to obtain

q =

(
γ(s− 1)

s(1 + γ) + (1− γ)

)
.

It is not hard to check that the Nyquist plot of q cuts the real axis at γ
1±γ .

We therefore require γ > 1 for the single required encirclement. The corre-
sponding controller is given by

k =

(
γ(s− 1)2

s(1 + γ) + (1− γ)

)
,

or

k =

(
γ(s− 1)2

s(1 + γ) + (1− γ))(1 + ǫs)

)

for a proper approximation.

3 Just repeat the calculations of Part (2a) using

1

1− q
= γ

(
s− 1

s+ 1

)2

.

This gives

q =

(
s2(1− γ−1)− 2s(1 + γ−1) + 1− γ−1

(s− 1)2

)

⇒ k =

(
s2(1− γ−1)− 2s(1 + γ−1) + 1− γ−1

(ǫs+ 1)2

)
.
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Solution 4.2. Since

Fℓ(P ,K1) = P 11 + P 12K1(I − P 22K1)
−1P 21

and
Fℓ(P ,K2) = P 11 + P 12(I −K2P 22)

−1K2P 21,

it follows that

Fℓ(P ,K1)−Fℓ(P ,K2)

= P 12(I −K2P 22)
−1
(
(I −K2P 22)K1 −K2(I − P 22K1)

)

× (I − P 22K1)
−1P 21

= P 12(I −K2P 22)
−1(K1 −K2)(I − P 22K1)

−1P 21.

The result now follows because P 12(I −K2P 22)
−1 has full column rank for almost

all s and (I − P 22K1)
−1P 21 has full row rank for almost all s.

Solution 4.3. To see this we observe that
[

z
y

]
= P

[
w
u

]

u = Ky





⇒ z = R w where R = Fℓ(P ,K)

and [
w
u

]
= P−1

[
z
y

]

z = R w





⇒ K = Fu(P
−1,R).

Solution 4.4. This follows because:

Z = (I + S)(I − S)−1

= (I − S + 2S)(I − S)−1

= I + 2S(I − S)−1

= Fℓ

([
I I
2I I

]
,S

)
.

Solution 4.5.
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1. Let
[

z
y

]
=

[
P 11 P 12

P 21 P 22

] [
w
u

]
(4.1)

u = Ky

so that z = Fℓ(P ,K)w. Rewrite (4.1) as
[

z
w

]
=

[
P 11 P 12

I 0

] [
w
u

]

[
u
y

]
=

[
0 I

P 21 P 22

] [
w
u

]

which gives

[
z
w

]
=

[
P 11 P 12

I 0

] [
0 I

P 21 P 22

]−1 [
u
y

]

=

[
P 11 P 12

I 0

] [
0 I

P 21 P 22

]−1 [
K

I

]
y

=

[
Θ11 Θ12

Θ21 Θ22

] [
K

I

]
y.

Hence y = (Θ21K +Θ22)
−1w and

z = (Θ11K +Θ12)(Θ21K +Θ22)
−1w.

We conclude that

Fℓ(P ,K) = (Θ11K +Θ12)(Θ21K +Θ22)
−1.

2.

P∼P − I

=

[
P∼

11 P∼
21

P∼
12 P∼

22

] [
P 11 P 12

P 21 P 22

]
−
[

I 0
0 I

]

=

[
P∼

11P 11 + P∼
21P 21 − I P∼

11P 12 + P∼
21P 22

P∼
12P 11 + P∼

22P 21 P∼
12P 12 + P∼

22P 22 − I

]

=

[
P∼

11 I
P∼

12 0

]
J

[
P 11 P 12

I 0

]
−
[

0 P∼
21

I P∼
22

]
J

[
0 I

P 21 P 22

]

=

[
0 P∼

21

I P∼
22

]
(Θ∼JΘ− J)

[
0 I

P 21 P 22

]
.

The last line follows from

Θ =

[
P 11 P 12

I 0

] [
0 I

P 21 P 22

]−1

.
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3.




0 I
P 21 P 22

P 11 P 12

I 0




s
=




A B1 B2

0 0 I
C2 D21 D22

C1 D11 D12

0 I 0



.

It follows (see Problem 3.6) that Θ has realization




A B1 B2

C1 D11 D12

0 I 0






I 0 0
0 0 I
C2 D21 D22



−1

.

That is,

Θ
s
=




A−B1D
−1
21 C2 B2 −B1D

−1
21 D22 B1D

−1
21

C1 −D11D
−1
21 C2 D12 −D11D

−1
21 D22 D11D

−1
21

−D−1
21 C2 −D−1

21 D22 D−1
21


 .

Solution 4.6. Note that

XA+DX +XBX + C = X(BX +A) + (DX + C).

The result is now immediate.

Solution 4.7. We see from the diagram that

z = Fℓ(P ,Ξ)w

where
Ξ = Fℓ(K,Φ11).

It is now immediate that
[

z
r

]
=

[
Fℓ(P ,Fℓ(K,Φ11)) ∗

∗ ∗

] [
w
v

]
.

Solution 4.8.

1. From the diagram we see that

z = P 11w + P 12u

y = P 21w + P 22u

u = K11y +K12v

r = K21y +K22v.
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Eliminating y and u from these equations gives

z = (P 11 + P 12K11(I − P 22K11)
−1P 21)w + P 12(I −K11P 22)

−1K12v

r = K21(I − P 22K11)
−1P 21w + (K22 +K21(I − P 22K11)

−1P 22K12)v.

2. Since we require

0 = P 11 + P 12K11(I − P 22K11)
−1P 21,

we obtain

K11 = −(P 12 − P 11P
−1
21 P 22)

−1P 11P
−1
21

= −P−1
12 P 11(P 21 − P 22P

−1
12 P 11)

−1.

Setting
I = K21(I − P 22K11)

−1P 21,

gives

K21 = P−1
21 (I − P 22K11)

= P−1
21 + P−1

21 P 22(P 12 − P 11P
−1
21 P 22)

−1P 11P
−1
21

= P−1
21 (I − P 22P

−1
12 P 11P

−1
21 )

−1

× (I − P 22P
−1
12 P 11P

−1
21 + P 22P

−1
12 P 11P

−1
21 )

= (P 21 − P 22P
−1
12 P 11)

−1.

A similar calculation starting from

I = P 12(I −K11P 22)
−1K12,

results in

K12 = (I −K11P 22)P
−1
12

= P−1
12 + (P 12 − P 11P

−1
21 P 22)

−1P 11P
−1
21 P 22P

−1
12

= (P 12 − P 11P
−1
21 P 22)

−1.

Finally,
0 = K22 +K21(I − P 22K11)

−1P 22K12

and K11 = −P−1
12 P 11K21 results in

K22 = −K21(I − P 22K11)
−1P 22K12

= −K21(I + P 22P
−1
12 P 11K21)

−1P 22K12

= −(K−1
21 + P 22P

−1
12 P 11)

−1P 22K12

= −(P 21 − P 22P
−1
12 P 11 + P 22P

−1
12 P 11)

−1P 22K12

= −P−1
21 P 22(P 12 − P 11P

−1
21 P 22)

−1.
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Hence

P# =

[
P

#
11 P

#
12

P
#
21 P

#
22

]
, (4.2)

in which

P
#
11 = −(P 12 − P 11P

−1
21 P 22)

−1P 11P
−1
21

P
#
12 = (P 12 − P 11P

−1
21 P 22)

−1

P
#
21 = (P 21 − P 22P

−1
12 P 11)

−1

P
#
22 = −P−1

21 P 22(P 12 − P 11P
−1
21 P 22)

−1.

It is easy to check that

P−1 =

[
0 I
I 0

]
P#

[
0 I
I 0

]
.

3. We are going to need the six equations from

[
P 11 P 12

P 21 P 22

] [
P∼

11 P∼
21

P∼
12 P∼

22

]
=

[
I 0
0 I

]

and [
P∼

11 P∼
21

P∼
12 P∼

22

] [
P 11 P 12

P 21 P 22

]
=

[
I 0
0 I

]
.

Since
P∼

12P 11 + P∼
22P 21 = 0,

we have
P 11P

−1
21 = −(P∼

12)
−1P∼

22.

Substituting into the formula for P# gives

P
#
11 = −(P 12 + (P∼

12)
−1P∼

22P 22)
−1P 11P

−1
21

= −(P∼
12P 12 + P∼

22P 22)
−1P∼

12P 11P
−1
21

= −P∼
12P 11P

−1
21

= P∼
22

since I = P∼
12P 12 + P∼

22P 22. In much the same way

P∼
11P 12 + P∼

21P 22 = 0

gives
P 22P

−1
12 = −(P∼

21)
−1P∼

11.
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Substituting into the formula for P#
21 yields

P
#
21 = (P 21 − P 22P

−1
12 P 11)

−1

= (P 21 + (P∼
21)

−1P∼
11P 11)

−1

= P∼
21

since I = P∼
21P 21 + P∼

11P 11. The other partitions of P# follow in the same
way.

Solution 4.9.

1. One has to check that Cℓ(P 1,P 2) and its (1, 2)- and (2, 1)-partitions are non-
singular. By referring to the general formula (4.1.9) for Cℓ(·, ·), we see that
this is indeed the case for any P 1,P 2 ∈ P.

2. The best way to establish the associativity property is to transform the P i’s
into Θi’s in a scattering framework (see Problem 4.5). We then get

Cℓ(Cℓ(P 1,P 2),P 3) = (Θ1Θ2)Θ3

= Θ1(Θ2Θ3)

= Cℓ(P 1, Cℓ(P 2,P 3))

in which Θi are the scattering matrices associated with each P i. The associa-
tivity property comes from the fact that matrix multiplication is associative.

3. The identity is given by

P I =

[
0 I
I 0

]
,

and by referring to (4.1.9) it is easy to check that

P = Cℓ(P ,P I)

= Cℓ(P I ,P ).

4. Again, it is a routine matter to check that P# given in (4.2) has the de-
sired properties. The fact that Cℓ(P ,P#) = Cℓ(P#,P ) comes from Θ#Θ =
ΘΘ# = I.

5. The group property now follows directly from the definition.
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Solution 4.10.

1. We begin by expressing s−1 as function of w−1.

s = (b− wd)(cw − a)−1

= (w−1b− d)(c− aw−1)−1

⇒ s−1 = (c− aw−1)(w−1b− d)−1

= −(c− aw−1)(1− w−1bd−1)−1d−1

= −cd−1 + (a− cbd−1)w−1(1− w−1bd−1)−1d−1

= Fℓ

([
−cd−1 a− bcd−1

d−1 bd−1

]
, w−1

)
.

We therefore have

G(s) = D + C(sI −A)−1B

= D + Cs−1(I − s−1A)−1B

= Fℓ

([
D C
B A

]
, s−1

)

= Fℓ

([
D C
B A

]
,Fℓ(

[
−cd−1 a− bcd−1

d−1 bd−1

]
, w−1)

)

= Fℓ

([
D − cC(dI + cA)−1B C(dI + cA)−1(ad− bc)

(dI + cA)−1B (aA+ bI)(dI + cA)−1

]
, w−1

)

= Fℓ

([
D̂ Ĉ

B̂ Â

]
, w−1

)

= Ĝ(w).

2. Suppose Ax = λx and Cx = 0, x 6= 0. Define y = (cA+ dI)x = (cλ+ d)x 6= 0

(since cA+ dI is nonsingular). Then Ĉy = 0 and Ây = aλ+b
cλ+dy.

Suppose x∗B = 0 and x∗A = λx, x 6= 0. Define y∗ = x∗(cA + dI) = (cλ +

d)x∗ 6= 0. Then y∗B̂ = 0 and y∗Â = (cλ+d)(aλ+ b)x∗(cA+dI)−1 = aλ+b
cλ+dy

∗.

Similar arguments establish the converse implications.

Solution 4.11.

1. Writing W 1(I −GK)−1 as W 1

(
I +GK(I −GK)−1

)
, gives

[
W 1(I −GK)−1

W 2K(I −GK)−1

]
=

[
W 1

0

]
+

[
W 1G

W 2

]
K(I −GK)−1.



54 SOLUTIONS TO PROBLEMS IN CHAPTER 4

Comparing terms with

Fℓ(P ,K) = P 11 + P 12K(I − P 22K)−1P 21

establishes that [
P 11 P 12

P 21 P 22

]
=




W 1 W 1G

0 W 2

I G


 .

2. Note that

[
P 11 P 12

P 21 P 22

]
=




W 1 0 0
0 W 2 0
0 0 I






I G

0 I
I G


 ,

that




W 1 0 0
0 W 2 0
0 0 I


 s
=




A1 0 B1 0 0
0 A2 0 B2 0
C1 0 D1 0 0
0 C2 0 D2 0
0 0 0 0 I



,

and that 


I G

0 I
I G


 s
=




A 0 B
C I D
0 0 I
C I D


 .

The state-space realization of P is obtained using the series connection rule
(see Problem 3.6).

Solution 4.12. The solution comes from noting that




y
r − y
u
d
r

y + n




=




Gd 0 0 Gt

−Gd I 0 −Gt

0 0 0 I
I 0 0 0
0 I 0 0
Gd 0 I Gt







d
r
n
u




u =
[
F R K

]



d
r

y + n


 .
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Solution 4.13. Follows immediately from Theorem 3.6.1. Alternatively, using
the fact that ‖P 22K‖∞ < 1 with P 22, K ∈ RH∞, we observe that

det(I − ǫP 22K) 6= 0 for all ǫ ∈ [0, 1] and all s ∈ DR.

This means that det(I − P 22K) has a winding number of zero around the origin.
We therefore conclude from the argument principle that (I − P 22K)−1 is stable
and therefore that Fℓ(P ,K) is stable.

Solution 4.14.

1. D′D = I follows by calculation.

2. It is immediate that

Fℓ(D, f) =

[
1 0
0 f

]

with ‖Fℓ(D, f)‖ = 1 for all |f | < 1.

3. If |f | > 1, it is clear that ‖Fℓ(D, f)‖ > 1.

Solution 4.15. We use Lemma 4.4.1. D11 =

[
I
0

]
and D12 =

[
X
I

]
and

Q = F (I −XF )−1. Set D̃12 =

[
I

−X∗

]
and note that

D̃∗
12

[
D̃12 D12

]
=
[
I +XX∗ 0

]
.

We therefore set D̂12 = D̃12(I +XX∗)−
1
2 . Now D̂∗

12D11 = (I +XX∗)−
1
2 . Hence F

exists if and only if γ ≥ ‖(I +XX∗)−
1
2 ‖. Now note that

‖(I +XX∗)−
1
2 ‖ = σ((I +XX∗)−

1
2 )

=
√
σ((I +XX∗)−1)

=
1√

σ(I +XX∗)
.

To find F̂ , set Q̂ = Θ11 = X∗(I + XX∗)−1. Solving for F̂ we obtain F̂ = (I +
2X∗X)−1X∗.

Solution 4.16.

1. Θ has the property Θ′Θ = I. By Theorem 4.3.2, ‖Fℓ(Θ, γ−1G)‖∞ < 1 if and

only if ‖γ−1G‖∞ < 1. Hence ‖G‖∞ < γ if and only if ‖Ĝ‖∞ < γ.
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2. Since G(s) = Fℓ(

[
D C
B A

]
, s−1),

[
γ−1D̂ Ĉ

γ−1B̂ Â

]
= Cℓ(Θ,

[
γ−1D C
γ−1B A

]
)

which yields (after some calculation)

Â = A+B(γ2I −D′D)−1D′C, B̂ = −γB(γ2I −D′D)−1/2,

Ĉ = γ(γ2I −DD′)−1/2C, D̂ = 0.

3. If A is asymptotically stable and ‖γ−1G‖∞ < 1, then ‖γ−1Ĝ‖∞ < 1 and Ĝ is

stable by Theorem 4.3.3. We conclude that Â is asymptotically stable, since
any uncontrollable or unobservable modes of (Â, B̂, Ĉ) are eigenvalues of A.
The converse follows likewise.

Solution 4.17. Observe that

G(z) = D + C(zI −A)−1B

= D + Cz−1(I −Az−1)−1B

= Fℓ

([
D C
B A

]
, z−1

)
.

The result now follows from Theorem 4.3.2, since:
∥∥∥∥
[

D C
B A

]∥∥∥∥ ≤ 1 and |z−1| ≤ 1

for all |z| ≥ 1.

Solution 4.18. The first step is to find Ĝ(s) from G(z) using the bilinear trans-
formation:

G(z) = D + C(zI −A)−1B

= D + C(

(
s+ 1

1− s

)
I −A)−1B

= D + C(1− s)(sI − (I +A)−1(A− I))−1(I +A)−1B

= D + C(1− s)(sI − Â)−11/
√
2B̂

= D + C(I − Is− Â+ Â)(sI − Â)−11/
√
2B̂

= D − 1/
√
2CB̂ + 1/

√
2C(I − Â)(sI − Â)−1B̂

= D − C(I +A)−1B +
√
2C(I +A)−1(sI − Â)−1B̂

= D̂ + Ĉ(sI − Â)−1B̂

= Ĝ(s).
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This completes the first part. To prove the second part, we substitute into the
continuous bounded real equations:

0 = Â′P + PÂ+ Ĉ ′Ĉ + L̂′L̂ (4.3)

0 = D̂′Ĉ + B̂′P + Ŵ ′L̂ (4.4)

0 = γ2I − D̂′D̂ − Ŵ ′Ŵ . (4.5)

Substituting into (4.3) gives

0 = (I+A′)−1(A′−I)P+P (A−I)(I+A)−1+2(I+A′)−1
[
C ′ L′

] [ C
L

]
(I+A)−1

where
L̂ =

√
2L(I +A)−1.

Therefore

0 =
√
2(I +A′)−1

(
A′PA− P + C ′C + L′L

)√
2(I +A)−1

⇒ 0 = A′PA− P + C ′C + L′L. (4.6)

Substituting (4.6) into (4.4) gives

0 =
√
2(I +A′)−1

[
C ′ L′

]([ D
W

]
−
[

C
L

]
(I +A)−1B

)

+
√
2P (I +A)−1B

= C ′D + L′W + (A′PA− P )(I +A)−1B + (I +A′)P (I +A)−1B

= C ′D + L′W + (A′PA− P + P +A′P )(I +A)−1B

= C ′D + L′W +A′PB. (4.7)

Finally, we may substitute into (4.5) using (4.6) and (4.7) to obtain

0 = γ2I −D′D −W ′W −B′PB. (4.8)

Equations (4.3), (4.4) and (4.5) may be combined as

[
A′ C ′ L′

B′ D′ W ′

]


P 0 0
0 I 0
0 0 I






A B
C D
L W


 =

[
P 0
0 I

]
.

Note that the same P solves the discrete and continuous bounded real equations.

Solution 4.19. Since ‖G‖∞ < 1, it has a minimal realization which satisfies the
discrete bounded real equations

[
A′ C ′ L′

B′ D′ W ′

]


P 0 0
0 I 0
0 0 I






A B
C D
L W


 =

[
P 0
0 I

]



58 SOLUTIONS TO PROBLEMS IN CHAPTER 4

for certain matrices P , L and W . We may now select a new state-space basis such
that P = I. This gives

[
A′ C ′ L′

B′ D′ W ′

]


A B
C D
L W


 =

[
I 0
0 I

]

so that ∥∥∥∥∥∥




A B
C D
L W



∥∥∥∥∥∥
= 1.

We may now conclude that ∥∥∥∥
[

A B
C D

]∥∥∥∥ ≤ 1.



Solutions to Problems in

Chapter 5

Solution 5.1. Let
[
x′
1 u′

1

]′
and

[
x′
2 u′

2

]′
be any two initial condition and

control input pairs, and let z1 and z2 denote the corresponding objectives (z =[
Cx
Du

]
). By linearity, the objective signal obtained by using the initial condition

and control input pair
[

xα

uα

]
= α

[
x1

u1

]
+ (1− α)

[
x2

u2

]

is
zα = αz1 + (1− α)z2.

The cost associated with this initial condition and control input pair is

Jα =

∫ T

0

zαzα dt.

Let J1 and J2 denote the cost associated with
[
x′
1 u′

1

]′
and

[
x′
2 u′

2

]′
respec-

tively. To show convexity, we need to show that

Jα ≤ αJ1 + (1− α)J2

for any 0 ≤ α ≤ 1. Now

z′αzα − αz′1z1 − (1− α)z′2z2 = −α(1− α)(z1 − z2)
′(z1 − z2)

≤ 0

for any 0 ≤ α ≤ 1. Integrating from 0 to T , we obtain the desired inequality

Jα ≤ αJ1 + (1− α)J2,

and we conclude that J is convex.
Since we are free to choose x2 = x1, J is convex in u. Similarly, by choosing

u2 = u1, we see that J is convex in x0.

59
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Solution 5.2.

1. The optimal state trajectory satisfies

ẋ∗ = Ax∗ +Bu∗, x(0) = x0.

If u = u∗ + ǫũ, then

d

dt
(x− x∗) = A(x− x∗) + ǫBũ, (x− x∗)(0) = 0.

Thus

(x− x̃)(t) = ǫ

∫ t

0

Φ(t, τ)Bũ dτ

= ǫx̃,

in which

x̃(t) =

∫ t

0

Φ(t, τ)Bũ dτ

and Φ(·, ·) is the transition matrix corresponding to A.

2. Direct substitution of u = u∗ + ǫũ and x = x∗ + ǫx̃ into the cost function J
yields the stated equation after elementary algebra.

3. Since u∗ is minimizing, changing the control to u∗ + ǫũ cannot decrease J .
Therefore, as a function of ǫ, J must take on its minimum value at ǫ = 0. Since
the cost function is quadratic in ǫ, with a minimum at ǫ = 0, the coefficient
of the linear term must be zero. That is

∫ T

0

(x̃′C ′Cx∗ + ũ′u∗) dt = 0.

4. Substituting the formula for x̃ into the above equation and interchanging the
order of integration gives

∫ T

0

ũ′(B′λ+ u∗)dt = 0,

in which λ is the adjoint variable defined by

λ(t) =

∫ T

t

Φ′(τ, t)C ′Cx∗dτ.

Thus, B′λ+u∗ is orthogonal to every ũ ∈ L2[0, T ]. Hence B
′λ+u∗ = 0 almost

everywhere.
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5. Differentiating λ with respect to t and using Leibnitz’s rule, we obtain

λ̇(t) = −C ′(t)C(t)x∗(t)−
∫ T

t

A′(t)Φ′(τ, t)C ′(τ)C(τ)x∗(τ)dτ

= −A′(t)λ(t)− C ′(t)C(t)x∗(t).

The fact that d
dtΦ

′(τ, t) = −A′(t)Φ′(τ, t) has been used—see Problem 3.3 for
this. Evaluating λ(T ), we conclude that the terminal condition λ(T ) = 0
applies.

Substituting u∗ = −B′λ into the dynamical equation for the optimal state,
we obtain ẋ∗ = Ax∗ − BB′λ. Combining this with the equation for λ, one
obtains the TPBVP.

6. The solution to the TPBVP is given by
[

x∗

λ

]
(t) = Φ(t, T )

[
x∗

λ

]
(T ),

in which Φ is the transition matrix associated with the TPVBP dynamics.
Imposing the boundary condition λ(T ) = 0, we see that

[
x∗

λ

]
(t) =

[
Φ11

Φ21

]
(t, T )x∗(T ).

Thus λ(t) = Φ21(t, T )Φ
−1
11 (t, T )x

∗(t) for all time for which the inverse exits.
It remains to show that Φ11(t, T ) is nonsingular for all t ≤ T .

Observe that

d

dτ

(
Φ′

21(τ, T )Φ11(τ, T )
)

= −Φ′
11(τ, T )C

′CΦ11(τ, T )

− Φ′
21(τ, T )BB′Φ21(τ, T ).

Integrating from t to T and noting that Φ21(T, T ) = 0 yields

Φ′
21(t, T )Φ11(t, T ) =

∫ T

t

(
Φ′

11(τ, T )C
′CΦ11(τ, T )

+ Φ′
21(τ, T )BB′Φ21(τ, T )

)
dτ.

Suppose Φ11(t, T )v = 0. Multiplying the above identity by v′ on the left and
v on the right, we conclude that B′Φ21(τ, T )v ≡ 0 and that CΦ11(τ, T )v ≡ 0
for all τ ∈ [t, T ]. Now B′Φ21(τ, T )v ≡ 0 implies

d

dτ
Φ11(τ, T )v = AΦ11(τ, T )v.

Recalling that Φ11(t, T )v = 0, we see that Φ11(τ, T )v = 0 for all τ , since linear
differential equations with specified initial conditions have a unique solution.
Since Φ11(T, T ) = I, we must have v = 0, from which we conclude that
Φ11(t, T ) is nonsingular.
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7. That P (t) = Φ21(t, T )Φ
−1
11 (t, T ) is the solution to the Riccati differential equa-

tion (5.2.5) follows by direct substitution; see Problem 3.21.

Solution 5.3. Write the two Riccati equations

PA+A′P − PB2B
′
2P + C ′C = 0

P̄A+A′P̄ − P̄B2B
′
2P̄ + C ′C = 0

and subtract them equations to get

(P − P̄ )A+A′(P − P̄ )− PB2B
′
2P + P̄B2B

′
2P̄ = 0.

Hence

(P − P̄ )(A−B2B
′
2P ) + (A−B2B

′
2P )′(P − P̄ ) + (P − P̄ )B2B

′
2(P − P̄ ) = 0.

Since P is stabilizing, A − B2B
′
2P is asymptotically stable and we conclude that

P − P̄ ≥ 0.
Suppose (A,C) is detectable and P ≥ 0 is a solution to the Riccati equation.

Write the Riccati equation as

P (A−B2B
′
2P ) + (A−B2B

′
2P )′P + PB2B

′
2P + C ′C = 0.

If (A−B2B
′
2P )x = λx, then we obtain

(λ+ λ̄)x′Px+ ‖B′
2Px‖2 + ‖Cx‖2 = 0.

Hence (λ+ λ̄)x′Px ≤ 0. If equality holds, then Cx = 0 and B2Px = 0, which gives
Ax = λx, Cx = 0 and we conclude that Re(λ) < 0 from the detectability of (A,C).
If, on the other hand, (λ + λ̄)x′Px < 0, we must have x′Px > 0 since P ≥ 0 and
hence Re(λ) < 0. Hence P is a stabilizing solution. But the stabilizing solution is
unique, so we conclude that it is the only nonnegative solution.

Solution 5.4.

1. The identity is established by noting that

C ′C = P (sI −A) + (−sI −A′)P + PB2B
′
2P,

which gives

(−sI −A′)−1C ′C(sI −A)−1 = (−sI −A′)−1P + P (sI −A)−1

+ (−sI −A′)−1PB2B
′
2P (sI −A)−1,
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and

I +B2(−sI −A′)−1C ′C(sI −A)−1B2 = (I +B′
2P (sI −A)−1B2)

∼

(I +B′
2P (sI −A)−1B2)

Therefore,
(
W (jω)

)∗(
W (jω)

)
≥ I for all ω, and hence σ

(
S(jω)

)
≤ 1 for all

ω, which is equivalent to ‖S‖∞ ≤ 1.

2.

[
W

G

]
s
=




A B2

B′
2P I
C 0
0 I


 .

It now follow from Problem 3.6 that

GW−1 s
=




A−B2B
′
2P B2

C 0
−B′

2P I


 .

Since the Riccati equation can be written in the form

P (A−B2B
′
2P ) + (A−B2B

′
2P )′P + PB2B

′
2P + C ′C = 0,

it follows from Theorem 3.2.1 that GW−1 is allpass. Since P is the stabilizing
solution, A − B2B

′
2P is asymptotically stable, GW−1 ∈ H∞ and hence it is

contractive in the right-half plane.

3. If u = −Kx is optimal w.r.t.
∫∞

0
(x′C ′Cx+ u′u) dt, then K = B′

2P , in which
P is the stabilizing solution to the Riccati equation (5.2.29) and Item 1 shows
that the inequality holds.

Conversely, suppose A−B2K is asymptotically stable and
(
I +K(sI −A)−1B2

)∼(
I +K(sI −A)−1B2

)
≥ I.

Then S = I −K(sI − (A− B2K))−1B2 satisfies ‖S‖∞ ≤ 1 and the equality
version of the bounded real lemma ensures the existence of P ≥ 0 and L such
that

P (A−B2K) + (A−B2K)′P +K ′K = −L′L

−K +B′
2P = 0.

Substituting K = B′
2P into the first equation and re-arranging yields (5.2.29),

in which C = L, we and we conclude that K is the optimal controller for the
performance index

∫∞

0
(x′C ′Cx+ u′u) dt, with C = L.

4. The inequality |1+b′2P (jωI−A)−1b2| ≥ 1 is immediate from the return differ-
ence equality. This inequality says that the Nyquist diagram of −b′2P (jωI −
A)−1b2 cannot enter the circle of unit radius centered at +1. The stated gain
and phase margins then follow from the geometry of this situation.
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Solution 5.5. If x̃(t) = eαtx(t) and ũ(t) = eαtu(t), then J =
∫∞

0
x̃′C ′Cx̃+ ũ′ũ dt.

Furthermore,
˙̃x = (αI +A)x̃+B2ũ

follows from ˙̃x = eαtẋ+αeαtx. This is now a standard LQ problem in the variables
x̃ and ũ. Hence ũ = −B′

2Pαx̃ is the optimal controller, which is equivalent to
u = −B′

2Pαx.
The required assumptions are (αI +A,B2) stabilizable and (C,αI +A) has no

unobservable modes on the imaginary axis. Equivalently, we require that (A,B2)
has no uncontrollable modes in Re(s) ≥ −α and that (C,A) has no unobservable
modes on Re(s) = −α.

The closed-loop dynamics are ẋ = (A−B2B
′
2Pα)x; the closed-loop poles are (a

subset of) the eigenvalues of (A − B2B
′
2Pα), which are all in Re(s) < −α because

αI +A−B2B
′
2Pα is asymptotically stable.

Solution 5.6.

1. Substitute u = −Kx into the dynamics to obtain

ẋ = (A−B2K)x+B1w

z =

[
C

−DK

]
x.

The result is now immediate from Theorem 3.3.1.

2. Elementary manipulations establish the Lyapunov equation. Theorem 3.1.1
and the asymptotic stability of A−B2K establishes that Q− P ≥ 0.

3. trace(B′
1QB1) = trace(B′

1(Q − P )B1) + trace(B′
1PB1). Hence the cost is

minimized by setting Q− P = 0, which we do by setting K = B′
2P .

Solution 5.7.

trace(QS) = −trace(QA′P +QPA)

= −trace(PQA′ + PAQ)

= trace(PR).

The main thing is to recall that trace(XY ) = trace(Y X) for any square matrices
X and Y .
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Solution 5.8. Let

J(K, xt, T,∆) =

∫ T

t

z′z dτ + x′(T )∆x(T ).

For any controller, J(K, xt, T,∆1) ≥ J(K, xt, T,∆2), since ∆1 ≥ ∆2. If we use
K = K∗

∆1
, the optimal controller for the problem with terminal-state penalty

matrix ∆1, the left-hand side is equal to x′
tP (t, T,∆1)xt. Hence

x′
tP (t, T,∆1)xt ≥ J(K∗

∆1
, xt, T,∆2)

≥ min
K

J(K, xt, T,∆2)

= x′
tP (t, T,∆2)xt.

Since xt is arbitrary, we conclude that P (t, T,∆1) ≥ P (t, T,∆2) for any t ≤ T .

Solution 5.9. The case when

∆A+A′∆−∆B2B
′
2∆+ C ′C ≤ 0

is considered in the text. We therefore consider the case that

∆A+A′∆−∆B2B
′
2∆+ C ′C ≥ 0.

The same argument as used in the text shows that P (t, T,∆) is monotonically non-
increasing as a function of t, and P (t, T,∆) is therefore non-decreasing as a function
of T (by time-invariance). It remains to show that P (t, T,∆) is uniformly bounded.

Let K be such that A−B2K is asymptotically stable. Then

J(K,x0, T,∆) ≤
∫ ∞

0

z′z dt+ e−αTx′
0∆x0

for some α ≥ 0. Hence

x′
0P (0, T,∆)x0 = min

K
J(K, x0, T,∆)

≤ J(K,x0, T,∆)

≤
∫ ∞

0

z′z dt+ e−αTx′
0∆x0

≤
∫ ∞

0

z′z dt+ x′
0∆x0,

which is a uniform bound on x′
0P (0, T,∆)x0. Thus P (t, T,∆) is monotonic and

uniformly bounded. Hence it converges to some Π as T − t → ∞.
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Solution 5.10.

1. By Problem 5.9, Π = limT−t→∞ P (t, T, 0) exists; it is a solution to the alge-
braic Riccati equation by virtue of time-invariance (see the argument in the
text). Also, Π ≥ 0 because the zero terminal condition is nonnegative definite.
Thus P (t, T, 0) converges to a nonnegative definite solution Π to the algebraic
Riccati equation. We conclude that Π is stabilizing because when (A,B2, C)
is stabilizable and detectable, the stabilizing solution is the only nonnegative
definite solution.

2. Let
X = ΓA+A′Γ− ΓB2B

′
2Γ + C ′C.

Since X is symmetric, it has the form

X = V ′




I 0 0
0 0 0
0 0 −I


V.

Let

R = V ′




I 0 0
0 0 0
0 0 I


V,

and let ∆ be the stabilizing solution to the algebraic Riccati equation

∆A+A′∆−∆B2B
′
2∆+ C ′C +R = 0,

which exists under the stated assumptions, since R ≥ 0. This implies that ∆
satisfies the inequality

∆A+A′∆−∆B2B
′
2∆+ C ′C ≤ 0.

It remains to show that ∆ ≥ Γ. By subtracting the equation defining X from
the Riccati equation defining ∆, we obtain

(∆− Γ)(A−B2B
′
2∆) + (A−B2B

′
2∆)′(∆− Γ)

+(∆− Γ)B2B
′
2(∆− Γ) +R+X = 0.

Since R +X ≥ 0 and A− B2B
′
2∆ is asymptotically stable, we conclude that

∆− Γ ≥ 0.

3. Let Γ ≥ 0 be arbitrary. Let ∆ ≥ Γ be as constructed above. Then P (t, T, 0) ≤
P (t, T,Γ) ≤ P (t, T,∆) for all t ≤ T , by Problem 5.8. Since P (t, T, 0) and
P (t, T,∆) both converge to the stabilizing solution to the algebraic Riccati
equation, we conclude that P (t, T,Γ) also converges to the stabilizing solution
to the algebraic Riccati equation.
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Solution 5.11. That the stated control law is optimal is immediate; that it is
constant if the problem data are constant is also obvious, since in this case P (t, t+
T,∆) = P (0, T,∆), which is independent of t. A counter-example to the fallacious
conjecture is

A =

[
−1 0
1 1

]
, B2 =

[
1
0

]

with C arbitrary and ∆ = αI. Then FT |T=0 = B′
2∆ and

A−B2B
′
2∆ =

[
−1− α 0

1 1

]
,

which is not asymptotically stable. The graph shows a plot of the real parts of the
closed-loop poles versus the horizon length T if we take C =

[
1 1

]
and α = 1.

Solution 5.12. Kalman filter is

˙̂x = Ax̂+H(y − Cx̂),

in which H = QC ′. Hence the state estimation error equation is

ẋ− ˙̂x = (A−HC)(x− x̂) +
[
B −HD

] [ w
v

]
.
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The innovations process is
η = C(x− x̂) +Dv.

Therefore, the system A mapping
[
w′ v′

]′
to η is given by the realization

A
s
=

[
A−HC

[
B −HD

]

C
[
0 D

]
]
.

Theorem 3.2.1 and the identity

(A−HC)Q+Q(A−HC)′ +HH ′ +BB′ = 0

shows that AA∼ = I. Hence the power spectrum of η is I, which shows that η is
white, with unit variance.

Solution 5.13. Combine the arbitrary filter given in the hint with the state dy-
namics to obtain

d

dt




x
x̃
ξ


 =




A 0 0
QC ′C A−QC ′C 0
GC 0 F






x
x̃
ξ


+




B 0
0 QC ′D
0 GD



[

w
v

]

x− x̂ =
[
I − JC −H1 −H2

]



x
x̃
ξ


−

[
0 JD

] [ w
v

]
.

Since v is white noise and DD′ = I, J ≡ 0 is necessary and sufficient for E{(x̂(t)−
x(t))(x̂(t)−x(t))′} to be finite. Set J ≡ 0 and denote the matrices in the realization
above by Ã, B̃, C̃. We then have that

E{(x̂(t)− x(t))(x̂(t)− x(t))′} = C̃(t)P̃ (t)C̃ ′,

in which P̃ is the solution to the equation

˙̃P = ÃP̃ + P̃ Ã′ + B̃B̃′, P̃ (0) =




P0 0 0
0 0 0
0 0 0


 .

Elementary algebra reveals that P̃ has the form

P̃ =




P P −Q X
P −Q P −Q X
X ′ X ′ Y


 ,

in which P is the solution to

Ṗ = AP + PA′ +BB′, P (0) = P0,
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and X and Y satisfy the linear matrix differential equations

Ẋ = AX + PC ′G′ +XF ′, X(0) = 0

Ẏ = FY + Y F ′ +GG′ +GCX +XC ′G′, Y (0) = 0.

Since P̃ ≥ 0, we may write the Schur decomposition

P̃ =

[
I Z
0 I

] [
R 0
0 Y

] [
I 0
Z ′ I

]
,

in which

Z =

[
X
X

]
Y #

R =

[
P P −Q

P −Q P −Q

]
− ZY Z ′ =

[
W +Q W

W W

]
,

in whichW = P−Q−XY #X ′ and (·)# denotes the Moore-Penrose pseudo-inverse.1

It now follows that

C̃(t)P̃ (t)C̃ ′ = (terms independent of H2) + (H2 −H∗
2 )Y (H2 −H∗

2 )
′,

in which H∗
2 = (I − H1)XY #. Now Y ≥ 0, since P̃ ≥ 0, and it follows that an

optimal choice for H2 is H∗
2 . With this choice for H2, the cost is given by

C̃(t)P̃ (t)C̃ ′ =
[
I −H1

] [ W +Q W
W W

] [
I

−H ′
1

]

= Q+ (I −H1)W (I −H1)
′.

From P̃ ≥ 0, it follows that R ≥ 0 and hence that W ≥ 0. Therefore, Q is the
optimal state error covariance and H∗

1 = I is an optimal choice for H1. This gives
H∗

2 = 0 as an optimal choice for H2.
We now note that if H2 = 0, the values of F and G are irrelevant, and an optimal

filter is therefore ˙̂x = Ax̂+QC ′(y − Cx̂), which is the Kalman filter.

Solution 5.14. The problem data are

A =

[
1 1
0 1

]
, B1 =

√
σ

[
1 0
1 0

]
, B2 =

[
0
1

]

C1 =
√
ρ

[
1 1
0 0

]
, D11 = 0, D12 =

[
0
1

]

1It is a fact that the Schur decomposition using a pseudo-inverse can always be nonnegative

definite matrices. If

[
A B

B′ C

]
≥ 0, then Cv = 0 ⇒ Bv = 0, which is what makes it work.
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C2 =
[
1 0

]
, D21 =

[
0 1

]
, D22 = 0.

Since D′
12C1 = 0, there are no cross-terms in the control Riccati equation, which

is
XA+A′X −XB2B

′
2X + C ′

1C1 = 0.

The stabilizing solution is easily verified to be

X = α

[
2 1
1 1

]
.

Thus F = B′
2X = α

[
1 1

]
.

Similarly, since B1D
′
21 = 0, the measurement and process noise are uncorrelated

and the Kalman filter Riccati equation is

AY + Y A′ − Y C ′
2C2Y +B1B

′
1 = 0.

It is easy to check that the stabilizing solution is

Y = β

[
1 1
1 2

]
.

Hence H = Y C ′
2 = β

[
1
1

]
.

The optimal controller is therefore given by

˙̂x = Ax̂+B2u+H(y − C2x̂)

u = −F x̂.

Rewriting this, we obtain

K∗ s
=

[
A−B2F −HC2 H

−F 0

]
.

Now

A−B2F −HC2 =

[
1− β 1

−(α+ β) 1− α

]
.

Evaluating −F (sI − (A−B2F −HC2)
−1H, we obtain

K∗ =
αβ(1− 2s)

s2 + (α+ β − 2)s+ 1 + αβ
.

The optimal cost is given by
√
trace(B′

1XB1) + trace(FY F ′) =
√

5α(σ + αβ).
The optimal cost is monotonically increasing in both ρ and σ.



Solutions to Problems in

Chapter 6

Solution 6.1.

1. This follows by replacing u with ũ and elementary algebra.

2. This follows from Theorems 6.2.1 and 6.2.4.

3. A direct application of (6.3.25) gives




˙̂x
ũ[

w − w∗

x− x̂

]


 =




Ã−B2B
′
2P

[
0 B1

]
B2

0
[
−B′

2P 0
]

I[
0
−I

] [
−γ−2B′

1P I
I 0

] [
0
0

]







x̂[
x
w

]

r




r =
[
U V

] [ w − w∗

x− x̂

]
.

Since u = ũ−D′
12C1x, we obtain




˙̂x
u[

w − w∗

x− x̂

]


 =




A−B2F
[
0 B1

]
B2

0
[
−F 0

]
I[

0
−I

] [
−γ−2B′

1P I
I 0

] [
0
0

]







x̂[
x
w

]

r




r =
[
U V

] [ w − w∗

x− x̂

]
,

in which F = D′
12C1 +B′

2P .

4. See Section 5.2.3.

5. There exists an X∞ satisfying

ÃX∞ + Ã′X∞ −X∞(B2B
′
2 − γ−2B1B

′
1)X∞ + C̃ ′C̃ = 0

such that Ã− (B2B
′
2 − γ−2B1B

′
1)X∞ is asymptotically stable and X∞ ≥ 0.

71
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Solution 6.2. Using the properties of Φ (see Problem 3.3),

λ̇(t) = −B(t)u(t) +

∫ T

t

d

dt

(
Φ′(σ, t)B(σ)u(σ)

)
dσ −A′(t)Φ′(T, t)λT

= −B(t)u(t)−
∫ T

t

A′(t)Φ′(σ, t)B(σ)u(σ) dσ −A′(t)Φ′(T, t)λT

= −B(t)u(t)−A′(t)λ(t).

Setting B = C ′C and λT = ∆x∗(T ) shows that (6.2.7) satisfies (6.2.14).

Solution 6.3. For any vector z and any real number α, we have the identity
(
αz1 + (1− α)z2

)′(
αz1 + (1− α)z2

)
− αz′1z1 − (1− α)z′2z2

= −α(1− α)(z1 − z2)
′(z1 − z2). (6.1)

1. Suppose z is the response to inputs u and w, and z̃ is the response to inputs
ũ and w. The response to inputs αu+ (1− α)ũ and w is zα = αz + (1− α)z̃.
Hence, for any α ∈ [0, 1],

J(αu+ (1− α)u,w) =

∫ T

0

z′αzα − γ2w′w dt

≤
∫ T

0

αz′z + (1− α)z̃′z̃ − γ2w′w dt, by (6.1)

= α

∫ T

0

z′z − γ2w′w dt+ (1− α)

∫ T

0

z̃′z̃ − γ2w′w dt

= αJ(u,w) + (1− α)J(ũ, w).

That is, J is convex in u.

2. Set u = u∗ = −B′
2Px = K∗x. Then J(K∗, w) = −γ2

∫ T

0
(w−w∗)′(w−w∗) dt,

in which w∗ = γ−2B′
1Px. Let W be the closed-loop map from w to w − w∗,

which is linear. Let w 7→ (w − w∗) and w̃ 7→ (w̃ − w̃∗). That is, w∗ is
produced by the input w, with the controller K∗ in place, and w̃∗ is produced
by the input w̃, with with the controller K∗ in place. Then αw+(1−α)w̃ 7→
α(w − w∗) + (1− α)(w̃ − w̃∗). Thus

J(K∗, αw + (1− α)w̃)

= −γ2

∫ T

0

((
α(w − w∗) + (1− α)(w̃ − w̃∗)

)′

×
(
α(w − w∗) + (1− α)(w̃ − w̃∗)

))
dt

≥ −γ2

∫ T

0

α(w − w∗)′(w − w∗) + (1− α)(w̃ − w̃∗)′(w̃ − w̃∗) dt

= αJ(u∗, w) + (1− α)J(u∗, w̃).
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That is, J is concave in w.

3. SupposeK is a linear, full-information controller that makes J strictly concave
in w. That is,

J(K, αw + (1− α)w̃) > αJ(K, w) + (1− α)J(K, w̃) (6.2)

for all w 6= w̃ and all α ∈ (0, 1). Let w 6= w̃, α ∈ (0, 1) and let z and z̃ be
the responses of the closed-loop system Rzw for inputs w and w̃ respectively.
From (6.2) and the identity (6.1), we conclude that

−α(1− α)

∫ T

0

(
(z − z̃)′(z − z̃)− γ2(w − w̃)′(w − w̃)

)
dt > 0.

Taking w̃ = 0, which implies z̃ = 0, we see that

∫ T

0

z′z − γ2w′w dt < 0 for all w 6= 0.

Therefore, ‖R‖[0,T ] < γ and we conclude that P (t) exists on [0, T ].

Solution 6.4. Since Rzw is causal and linear, γ(Rzw) < γ if and only if
‖Rzw‖[0,T ] < γ for all finite T . Hence, there exists a controller such that γ(Rzw) < γ
if and only if the Riccati differential equation

−Ṗ = PA+A′P − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C, P (T ) = 0

has a solution on [0, T ] for all finite T .

Solution 6.5.

1. P (t, T,∆) = Ψ2(t)Ψ
−1
1 (t) is a solution to the Riccati equation provided

d

dt

[
Ψ1

Ψ2

]
= H

[
Ψ1

Ψ2

]
,

[
Ψ1

Ψ2

]
(T ) =

[
I
∆

]
. (6.3)

(see Section 6.2.3 for details.) We therefore verify that the given formulas for
Ψ1 and Ψ2 do indeed satisfy this linear differential equation. We are going to
find the solutions Ψi and Ψ2 via the change of variables

[
Ψ̃1

Ψ̃2

]
= Z−1

[
Ψ1

Ψ2

]
,

since Z−1HZ block-diagonalizes H.
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Let Ψ̃1(t) and Ψ̃2(t) be the solutions to

d

dt

[
Ψ̃1

Ψ̃2

]
=

[
Λ 0
0 −Λ

] [
Ψ̃1

Ψ̃2

]
,

[
Ψ̃1

Ψ̃2

]
(T ) = Z−1

[
I
∆

]
.

That is,

Ψ̃1(t) = eΛ(t−T )Ψ̃1(T )

Ψ̃2(t) = e−Λ(t−T )Ψ̃2(T ).

The boundary condition can be written as

Z

[
Ψ̃1

Ψ̃2

]
(T ) =

[
I
∆

]
,

from which we obtain

Z11Ψ̃1(T ) + Z12Ψ̃2(T ) = I

Z21Ψ̃1(T ) + Z22Ψ̃2(T ) = ∆.

Multiplying the first equation by ∆ and subtracting from the second, we
obtain

(Z21 −∆Z11)Ψ̃1(T ) + (Z22 −∆Z12)Ψ̃2(T ) = 0.

Therefore,

Ψ̃2(T ) = −(Z22 −∆Z12)
−1(Z21 −∆Z11)Ψ̃1(T )

= XΨ̃1(T ).

Hence

Ψ̃2(t) = e−Λ(t−T )Ψ̃2(T )

= e−Λ(t−T )XΨ̃1(T )

= eΛ(T−t)XeΛ(T−t)Ψ̃1(t).

Then
[

Ψ1

Ψ2

]
= Z

[
Ψ̃1

Ψ̃2

]

=

[
Z11 Z12

Z21 Z22

] [
I

eΛ(T−t)XeΛ(T−t)

]
Ψ̃1(t)

is the solution to (6.3).
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2. From HZ = Z

[
Λ 0
0 −Λ

]
, we obtain

C ′CZ12 +A′Z22 = Z22Λ. (6.4)

Hence
Z ′
12C

′CZ12 + Z ′
12A

′Z22 = Z ′
12Z22Λ = Z ′

22Z12Λ.

Suppose Z22x = 0. Multiplying the above equation on the left by x′ and on
the right by x we see that CZ12x = 0. Now multiply (6.4) on the right by x
to obtain Z22Λx = 0. We can now multiply on the left by x′Λ′ and on the
right by Λx, and so on, to obtain

Z22x = 0 ⇒
[

Z22

CZ12

]
Λkx = 0, k = 0, 1, 2, . . . .

We first prove that Z22 is nonsingular if (A,C) is detectable. Suppose, to ob-
tain a contradiction, that x 6= 0 and Z22x = 0. Then, by the above reasoning,(
Λ,

[
Z22

CZ12

])
is not observable. Therefore, there exists a y 6= 0 such that




Λ− λI
Z22

CZ12


 y = 0.

Note that Re(λ) ≤ 0 because Re(λi(Λ)) ≤ 0. From the (1, 1)-partition of

HZ = Z

[
Λ 0
0 −Λ

]
, we obtain AZ12y = −λZ12y. Therefore,

(λI +A)Z12y = 0

CZ12y = 0.

Hence Z12y = 0, since (A,C) is detectable. This gives

[
Z12

Z22

]
y = 0, which

implies y = 0, since Z is nonsingular. This contradicts the hypothesis that
there exists an x 6= 0 such that Z22x = 0 and we conclude that Z22 is nonsin-
gular.

We now prove the rank defect of Z22 (the dimension of ker(Z22)) is equal to
the number of undetectable modes of (A,C). Let the columns of V be a basis
for ker(Z22). Arguments parallel to those above show that

[
Z22

CZ12

]
ΛkV = 0, k = 0, 1, 2, . . . .

Furthermore AZ12V α = −Z12ΛV α = −Z12V β (for some β), so Z12V is an
unstable A-invariant subspace contained in ker(C). That is, Z12V is a subset
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of the undetectable subspace of (A,C). Since Z is nonsingular, rankZ12V =
rankV = dimker(Z22). Thus (A,C) has at least as many undetectable modes
as the rank defect of Z22. For the converse, suppose W is a basis for the
undetectable subspace of (A,C). Then

AW = WΣ, Reλi(Σ) > 0,

CW = 0.

(Strict inequality holds because we assume that (A,C) has no unobservable
modes on the imaginary axis.) Let

[
X1

X2

]
= Z−1

[
W
0

]
.

Then
[

X1

X2

]
Σ = Z−1H

[
W
0

]

=

[
Λ 0
0 −Λ

]
Z−1

[
W
0

]

=

[
ΛX1

−ΛX2

]
.

Since Reλi(Σ) > 0 and Reλi(Λ) ≤ 0, X1 = 0. From

[
W
0

]
= Z

[
X1

X2

]
= Z

[
0
X2

]
=

[
Z12X2

Z22X2

]
,

we see that Z22X2 = 0 and that W = Z12X2. We conclude that the dimension
of the kerZ22 is (at least) the number of undetectable modes of (A,C).

3. Multiply HZ = Z

[
Λ 0
0 −Λ

]
on the right by

[
Z−1
11

0

]
. The upper block of

the resulting equation is A− (B2B
′
2 − γ−2B1B

′
1)Π = Z11ΛZ

−1
11 .

Solution 6.6.

1. Suppose Px = 0, x 6= 0. Multiplying the Riccati equation by x∗ on the left
and by x on the right reveals that Cx = 0. Now multiplying by x on the right
reveals that PAx = 0. Thus ker(P ) is an A-invariant subspace. Hence, there
exists a y 6= 0 such that Py = 0, Cy = 0 and Ay = λy, which contradicts
the assumed observability of (A,C). Thus (A,C) observable implies P is
nonsingular.
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2. (A− SP ) is asymptotically stable.

Suppose (A,C) has no stable unobservable modes. If Px = 0 for some x 6= 0,
then (as in part 1), there exists a y 6= 0 such that Py = 0, Cy = 0 and
Ay = λy. Thus (A − SP )y = Ay = λy, which implies Re(λ) < 0, since
A−SP is asymptotically stable. This contradicts the assumption that (A,C)
has no stable unobservable modes and we conclude that P is nonsingular.

Conversely, suppose P is nonsingular. If Ax = λx, Cx = 0 for some x 6= 0,
then multiplying the Riccati equation on the right by x results in (A −
SP )′Px = −λPx. Since (A − SP ) is asymptotically stable and P is non-
singular, we have Re(λ) > 0. This shows that any unobservable mode is in
the right-half plane, which is equivalent to the proposition that (A,C) has no
unobservable modes that are stable.

3. The fact that the given P satisfies the Riccati equation is easily verified. Also,
since

A− SP =

[
A11 − S11P1 0
A21 − S′

12P1 A22

]
,

we see that A− SP is asymptotically stable.

Solution 6.7. Since (A,C) is observable, X and Y are nonsingular (see Prob-
lem 6.6). Therefore,

AX−1 +X−1A′ − S +X−1C ′CX−1 = 0

AY −1 + Y −1A′ − S + Y −1C ′CY −1 = 0.

Subtract these to obtain

AZ + ZA′ +X−1C ′CX−1 − Y −1C ′CY −1 = 0

in which Z = X−1 − Y −1. Some elementary algebra reveals that this equation can
be re-written as

−(A+X−1C ′C)Z − Z(A+X−1C ′C)′ + ZC ′CZ = 0.

Now −(A + X−1C ′C)′ = X(A − SX)X−1, so −(A + X−1C ′C) is asymptotically
stable. Hence, Z ≥ 0, which is to say X−1 ≥ Y −1. Since X ≥ 0 and Y ≥ 0, this is
equivalent to Y ≥ X.

This problem shows that the stabilizing solution is the smallest of any nonneg-
ative definite solutions.
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Solution 6.8.

1.

(
I +B′

2(−sI −A′)−1PB2

)(
I +B′

2P (sI −A)−1B2

)

= I +B′
2P (sI −A)−1B2 +B′

2(−sI −A′)−1PB2

+B′
2(−sI −A′)−1

(
−P (sI −A)− (−sI −A′)P

+C ′C + γ−2PB1B
′
1P
)
(sI −A)−1B2

= I +B′
2(−sI −A′)−1

(
C ′C + γ−2PB1B

′
1P
)
(sI −A)−1B2.

2. Immediate from setting B2 = b2 in Part 1.

3. The Nyquist diagram of −b′2P (sI − A)−1b2 cannot enter the circle of radius
one, centered on s = 1. The stated gain and phase margins follow from this
fact. (see Problem 5.4 for more details.)

Solution 6.9. Substituting u = −px and using x = (1− γ−2)q, we have

(1− γ−2)q̇ = −
(
γ−2 +

√
1 + c2(1− γ−2)

)
q + w

z =

[
c(1− γ−2)

−(1 +
√

1 + c2(1− γ−2))

]
q.

When γ → 1, q = w/2 and z =

[
0

−w

]
.

Solution 6.10. X(t) = Π− P (t, T, P2) satisfies the equation

−Ẋ = XÂ+ Â′X +X(B2B
′
2 − γ−2B1B

′
1)X, X(T ) = 0. (6.5)

in which Â = A − (B2B
′
2 − γ−2B1B

′
1)Π. Suppose

(
Π − P (t∗)

)
x = 0 for some t∗.

Then x′(6.5)x yields x′Ẋ(t∗)x = 0 and it follows that Ẋ(t∗)x = 0, since Ẋ ≤ 0 by

the monotonicity property of P (t, T, P2). Now (6.5)x yields X(t∗)Âx = 0 and we

conclude that kerX(t∗) is an Â invariant subspace. Therefore, there exists a y such

that X(t∗)y = 0 and Ây = λy. (It follows as before that Ẋy = 0.) Hence X(t)y is
a solution to α̇ = 0, α(t∗) = 0 and we conclude that X(t)y = 0 for all t. Therefore,
without loss of generality (by a change of state-space variables if necessary), Π−P (t)
has the form

Π− P (t) =

[
Π1 − P1(t) 0

0 0

]
, for all t ≤ T, (6.6)
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in which Π1 − P1(t) is nonsingular for all t. Furthermore, since ker(Π− P (t)) is Â
invariant

Â =

[
Â11 0

Â21 Â22

]
.

The asymptotic stability of the Â11 follows as in the text. We therefore need to
establish the asymptotic stability of Â22. Setting t = T in (6.6), we see that

Π− P2 =

[
(Π− P2)11 0

0 0

]
.

From equation (6.3.20), (P − P2)y = 0 implies B′
1Py = 0. Therefore, Â22 =

(A−B2B
′
2P )22, which is asymptotically stable by Lemma 6.3.4.

Solution 6.11.

1. From the Riccati equation, we have −(A+P−1
2 C ′C) = P−1

2 (A−B2B
′
2P2)

′P2,
so −(A+ P−1

2 C ′C) is asymptotically stable.

2. Suppose a stabilizing, nonnegative definite P exists. Since P ≥ P2 > 0, P is
nonsingular. Therefore, we may write

AP−1
2 + P−1

2 A′ −B2B
′
2 + P−1

2 C ′CP−1
2 = 0

AP−1 + P−1A′ −B2B
′
2 + γ−2B1B

′
1 + P−1C ′CP−1 = 0.

Subtracting these equations and a little algebra yields

0 = (A+ P−1
2 C ′C)(P−1

2 − P−1) + (P−1
2 − P−1)(A+ P−1

2 C ′C)′

−γ−2B1B
′
1 − (P−1

2 − P−1)C ′C(P−1
2 − P−1).

Multiplying by γ2 and defining Y = γ2(P−1
2 − P−1) yields the given Riccati

equation for Y . From the Riccati equation for P , we see that

−(A+ P−1
2 C ′C) + γ−2Y C ′C = −(A+ P−1C ′C)

= P−1
(
A− (B2B

′
2 − γ−2B1B

′
1)P

)′
P.

Hence Y is the stabilizing solution. Since γ2I − P2Y = γ2P2P
−1 and P and

P2 are positive definite, we conclude that γ2 > ρ(P2Y ).

Conversely, suppose Y is a stabilizing solution to the stated Riccati equation
and γ2 > ρ(P2Y ). Then X = P−1

2 − γ−2Y is positive definite and satisfies

AX +XA′ −B2B
′
2 + γ−2B1B

′
1 +XC ′CX = 0.

Hence P = X−1 satisfies the Riccati equation (6.3.5). Furthermore,

−(A+ P−1
2 C ′C) + γ−2Y C ′C = −(A+ P−1C ′C)

= P−1
(
A− (B2B

′
2 − γ−2B1B

′
1)P

)′
P,

so P is the stabilizing solution.
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3. A suitable controller exists if and only if a stabilizing, nonnegative definite
solution to the Riccati equation (6.3.5) exists, which we have just shown is
equivalent to the existence of a stabilizing solution Y such that ρ(P2Y ) < γ2.
Since C = 0 and −A is asymptotically stable, Y is the controllability gramian
of (−A,B1). Therefore, a suitable controller exists if and only if γ2 > ρ(P2Y ).

In the case that C = 0, this result gives a formula for the optimal performance
level.

Solution 6.12.

1.

‖z‖22 − γ2‖w‖22 =

∫ ∞

0

(z′z − γ2w′w) dt

=

∫ ∞

0

[
z
w

]′ [
I 0
0 −γ2I

] [
z
w

]
dt

=

∫ ∞

0

[
w
u

]′
G′JG

[
w
u

]
dt

=
1

2π

∫ ∞

−∞

[
w
u

]′
G∗JG

[
w
u

]
dω

by Parseval’s theorem.

2.

G∼JG
s
=




A 0 B1 B2

−C ′C −A′ 0 0

0 B′
1 −γ2I 0

0 B′
2 0 I




s
=




A 0 B1 B2

−C ′C − PA−A′P −A′ −PB1 −PB2

B′
1P B′

1 −γ2I 0
B′

2P B′
2 0 I




s
=




A 0 B1 B2

−P (B2B
′
2 − γ−2B1B

′
1)P −A′ −PB1 −PB2

B′
1P B′

1 −γ2I 0
B′

2P B′
2 0 I




= W∼J̃W .

In the above,

J̃ =

[
I 0
0 −γ2I

]
.
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The dimension of the −γ2I-block is the same as the dimension of w and the
dimension of the I-block is the dimension of u. (In J , the dimension of the
I-block is the dimension of z.)

3. The A-matrix ofW−1 is Â = A−(B2B
′
2−γ−2B1B

′
1)P which is asymptotically

stable if P is the stabilizing solution. Hence W−1 ∈ H∞. Using Problem 3.6,
we obtain

GW−1 s
=




Â B2 B1

C 0 0
−DB′

2P D 0
γ−2B′

1P 0 I


 ,

Hence GW−1 ∈ H∞.

4. By direct evaluation,

(GW−1)∗J(GW−1)

= J̃ +

[
B′

2

B′
1

]
(s̄I − Â′)−1

(
C ′C + P (B2B

′
2 − γ−2B1B

′
1)P

−(s̄I − Â′)P − P (sI − Â)
)
(sI − Â)−1

[
B2 B1

]

= J̃ − (s+ s̄)

[
B′

2

B′
1

]
(s̄I − Â′)−1P (sI − Â)−1

[
B2 B1

]

≤ J̃ , for (s+ s̄)P ≥ 0.

The equation

[
u− u∗

w − w∗

]
= W

[
w
u

]
follows immediately from u∗ = −B′

2Px

and w∗ = γ−2B′
1Px.

If u = u∗, then
[
W 11 W 12

] [ w
u∗

]
= 0. Hence u∗ = −W−1

12 W 11w.

(Note: It can be shown that the J-lossless property implies that W−1
12 is

nonsingular.)

Solution 6.13.

1. Suppose there exists a measurement feedback controller u = Ky that achieves
the objective. Then

u = K
[
C2 I

] [ x
w

]

is a full-information controller that achieves the objective. Therefore, P (t)
exists.
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Conversely, if P (t) exists, then u = −B′
2Px is a controller that achieves the

objective. Now consider the measurement feedback controller defined by

˙̂x = Ax̂+B1(y − C2x̂) +B2u, x(0) = 0

u = −B′
2P x̂.

Note that x̂ is a copy of x, since

d

dt
(x̂− x) = (A−B1C2)(x̂− x), x̂(0)− x(0) = 0.

Consequently, the measurement feedback controller u = −B′
2P x̂ generates

the same control signal and hence the same closed loop as the controller u =
−B′

2Px. Therefore, it is a measurement feedback controller that achieves the
objective.

The generator of all controllers is obtained by noting that all closed-loops
generated by full-information controllers are generated by u−u∗ = U(w−w∗),
in which u∗ = −B′

2Px and w∗ = γ−2B′
1Px. Replacing x with x̂ and replacing

w by y − C2x̂ results in the LFT




˙̂x
u

w − w∗


 =




A−B1C2 −B2B
′
2P B1 B2

−B′
2P 0 I

−(C2 + γ−2B′
1P ) I 0






x̂
y
r


 ,

r = U(w − w∗).

2. Since the measurement feedback controller u = −B′
2x̂ generates the same

closed-loop as the controller u = −B′
2x, the closed loop generated by u =

−B′
2x̂ is stable. To conclude internal stability, we need to show that no unsta-

ble cancellations occur. The cancellations which occur are at the eigenvalues
of A − B1C2, since these are uncontrollable modes (see the error dynamics
equation in the preceding part). Thus, the measurement feedback controller
is internally stabilizing if and only if A−B1C2 is asymptotically stable.

(You may like to connect the controller generator Ka to the generalized plant
using the inter-connection formula of Lemma 4.1.1 and verify that the modes
associated with A−B1C2 are uncontrollable).

Solution 6.14. Let A = diag(si), and let G∗ and H∗ be the matrices with rows
g∗i and h∗

i . The dynamics are therefore

ẋ = Ax−H∗w +G∗u.
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1. Recall that any control signal (and hence any closed-loop transfer function
matrix R) that can be generated by a stabilizing full-information controller
can be generated by

u = −Fx+Uw,

in which F is a stabilizing state feedback and U ∈ H∞ (see Section 4.2.2).
Taking the Laplace transform of the dynamics and substituting the control
law u = −Fx+Uw, we obtain

x =
(
sI − (A−G∗F )

)−1
(G∗U −H∗)w.

The closed-loop R maps w to u. Hence

R = U − F
(
sI − (A−G∗F )

)−1
(G∗U −H∗). (6.7)

Now note the identity

I =
(
sI − (A−G∗F )

)(
sI − (A−G∗F )

)−1

= (sI −A)
(
sI − (A−G∗F )

)−1
+G∗F

(
sI − (A−G∗F )

)−1
.

Therefore G∗R is given by

G∗R = H∗ + (sI −A)
(
sI − (A−G∗F )

)−1
(G∗U −H∗). (6.8)

Suppose R is a closed-loop system generated by a stabilizing, full-information
controller. Then G∗R is given by (6.8) for some U ∈ H∞ and some F
such that A − G∗F is asymptotically stable. This implies that the zeros of
sI −A, which are in the right-half plane, cannot be cancelled by the poles of(
sI−(A−G∗F )

)−1
(G∗U−H∗), which are in the left-half plane. Hence, since

the ith row of sI − A is zero for s = si, we obtain the interpolation equation
g∗i R = hi.

Conversely, suppose R satisfies the interpolation constraints. We want R

to be the map from w to u for some stabilizing controller. We therefore
back solve for U and then show that the satisfaction of the interpolation
constraints ensures that U is stable. To back solve for U , simply note that
R : w 7→ u implies that sx = Ax+ (G∗R−H∗)w. Hence u+ Fx is given by
u+ Fx =

(
R + F (sI − A)−1(G∗R −H∗)

)
w. Therefore, U , the map from w

to u+ Fx, is given by

U = R+ F (sI −A)−1(G∗R−H∗).

Since the ith row of G∗R − H∗ whenever ith row of (sI − A) is also zero,
namely when s = si, we conclude that U ∈ H∞.



84 SOLUTIONS TO PROBLEMS IN CHAPTER 6

2. Using the result of Item 1, we can determine the existence of an interpolating
R such that ‖R‖∞ < γ by invoking our full-information H∞ control results.
Thus, R exists if and only if there exists a stabilizing solution to the Riccati
equation

PA+A∗P − P (G∗G− γ−2H∗H)P = 0

such that P ≥ 0.

Suppose R exists. Then a stabilizing P ≥ 0 exists. Because all the eigenvalues
of A are in the right-half plane, we must have P > 0 (see Problem 6.6). Define
M = P−1. Then M > 0 satisfies the equation

AM +MA∗ −G∗G+ γ−2H∗H = 0,

from which it follows that

Mij =
g∗i gj − γ−2h∗

i hj

si + s̄j
.

Conversely, suppose M given by this formula is positive definite and define
P = M−1 > 0. Then A− (G∗G− γ−2H∗H)P = −P−1A∗P , which is asymp-
totically stable. Thus P = M−1 is a positive definite, stabilizing solution to
the Riccati equation and we conclude that R exists.

3. Substituting into the generator of all closed-loops for the full-information
problem, we see that all solutions are generated by the LFT R = Fℓ(Ra,U),
in which U ∈ H∞, ‖U‖∞ < γ and

Ra
s
=




A−G∗GP −H∗ G∗

−GP 0 I
γ−2HP I 0


 .

For example, solutions to the scalar interpolation problem r(1) = 1 such that
‖r‖∞ < γ exist when (1 − γ−2)/(1 + 1) > 0, i.e., γ > 1. All solutions are
generated by Fℓ(ra,u), in which

ra
s
=




−(1 + γ−2)/(1− γ−2) −1 1
−2/(1− γ−2) 0 1
2γ−2/(1− γ−2) 1 0


 .

It is easy to verify that the ra11 = 2
s(1−γ−2)+1+γ−2 , which clearly interpo-

lates the data and ‖ra11‖∞ = 2/(1 + γ−2), which is less than γ provided
γ > 1. It is also easy to see that ra12(1) = 0, from which it follows that
Fℓ(ra,u)(1) = ra11(1) = 1. Note that since r(1) = 1 is a one-point inter-
polation problem, γopt ≥ 1 follows from the maximum modulus principle,
and consideration of the constant interpolating function r = 1 shows that
γopt = 1. Can you explain what happens in the parametrization of all sub-
optimal (γ > 1) solutions above as γ → 1?
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4. Let −AX −XA∗ +G∗G = 0 and −AY − Y A∗ +H∗H = 0. Note that X ≥ 0
and Y ≥ 0, since −A is asymptotically stable. Then M = X − γ−2Y =
γ−2X(γ2I − X−1Y ). Therefore, γopt =

√
λmax(X−1Y ). Note that X is

nonsingular provided none of the gi’s is zero.

Solution 6.15.

1. Stability of the loop is an immediate consequence of the small gain theorem.

2. Immediate from the full-information synthesis results.

Solution 6.16.

1. Completing the square with the Riccati equation yields

‖z‖22 − γ2‖w‖22 = x′
0Px0 + ‖u− u∗‖22 − γ2‖w − w∗‖22.

Setting u = u∗ and w ≡ 0, we see that ‖z‖22 = x′
0Px0 − γ2‖w∗‖22 ≤ x′

0Px0.

2. The closed-loop Rzw with u = u∗ is given by

ẋ = (A−B2B
′
2P )x+B1w

z =

[
C

−DB′
2P

]
x.

Hence, by Theorem 3.3.1, ‖Rzw‖22 = trace(B′
1QB1), in which Q is the observ-

ability gramian, which satisfies

Q(A−B2B
′
2P ) + (A−B2B

′
2P )′Q+ PB2B

′
2P + C ′C = 0.

The Riccati equation for P can be written as

P (A−B2B
′
2P ) + (A−B2B

′
2P )′P + P (B2B

′
2 + γ−2B1B

′
1)P + C ′C = 0.

Subtracting these results in

(P −Q)(A−B2B
′
2P ) + (A−B2B

′
2P )′(P −Q) + γ−2PB1B

′
1P = 0.

Since A − B2B
′
2P is asymptotically stable, we have P − Q ≥ 0. Hence

‖Rzw‖22 = trace(B′
1QB1) ≤ trace(B′

1PB1).
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Solution 6.17. Suppose there exists a stabilizing controller K such that
‖Rzw‖∞ < γ. Then by the argument of Section 6.3.4, there exists an L such
that K stabilizes the plant

ẋ = Ax+B1w +B2u

za =




Cx
Lx
u


 ,

(A,
[
C ′ L′

]′
) has no unobservable mode on the imaginary axis and ‖Rzaw‖∞ <

γ. Hence there exists a solution to the Riccati equation

PA+A′P − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C + L′L = 0 (6.9)

such that A− (B2B
′
2 − γ−2B1B

′
1)P is asymptotically stable and P ≥ 0. Clearly, P

is a solution to the stated Riccati inequality.
Conversely, suppose P ≥ 0 is a stabilizing solution to the Riccati inequality. Let

L be a Cholesky factor such that

L′L = −(PA+A′P − P (B2B
′
2 − γ−2B1B

′
1)P + C ′C).

Thus, the Riccati equation (6.9) holds. Hence, by Theorem 6.3.1, the controller
u = −B′

2Px stabilizes the augmented system, and ‖Rzaw‖∞ < γ. Hence, since z
consists of the upper components of za, the controller also stabilizes the system and
satisfies ‖Rzw‖∞ < γ

Solution 6.18.

1. Suppose K stabilizes the augmented system and ‖Rzaw‖∞ < γ. Then the
system is stabilized by K and

‖z‖22 + ǫ2‖u‖22 − γ2‖w‖22 ≤ −µ‖w‖22 (6.10)

for some µ > 0. Hence

‖z‖22 − γ2‖w‖22 ≤ −µ‖w‖22
and we conclude that ‖Rzw‖∞ < γ.

Conversely, suppose K stabilizes the system and ‖Rzw‖∞ < γ. Then the
closed-loop system mapping w to u has finite infinity norm M , say. This
follows from the definition of internal stability for linear fractional transfor-
mations. This observation shows that K stabilizes the augmented system.

Set 0 < ǫ ≤
√

1
2M2 (γ2 − ‖Rzw‖2∞). Then

‖z‖22 + ǫ2‖u‖22 − γ2‖w‖22 ≤ ‖z‖22 + (ǫ2M2 − γ2)‖w‖22
≤ (‖Rzw‖2∞ + ǫ2M2 − γ2)‖w‖22
≤ −1

2
(γ2 − ‖Rzw‖2∞)‖w‖22

= −µ‖w‖22,
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for µ = (γ2 − ‖Rzw‖2∞)/2 > 0. Hence ‖Rzw‖∞ < γ.

2. Suppose Pǫ exists. Then u = −B′
2Pǫx is stabilizing for za, hence also for z, and

‖Rzaw‖∞ < γ, hence also ‖Rzw‖∞ < γ. Conversely, if a stabilizing controller
K satisfies ‖Rzw‖∞ < γ, then it also stabilizes an augmented objective system
of the form given in Item 1 and ‖Rzaw‖∞ < γ. This augmented system
satisfies the standard assumptions (modulo scaling by

√
D′D + ǫ2I), which

is nonsingular since ǫ > 0. Consequently, the stated Riccati equation has a
stabilizing, nonnegative definite solution.

Solution 6.19. This problem is simply a combination of the previous two. If K
stabilizes the system and ‖Rzw‖∞ < γ, we can choose ǫ > 0 and an L such that

(A,
[
C ′ L′

]′
) has no unobservable mode on the imaginary axis, and K stabilizes

the augmented system with

za =




Cx
Lx
u
ǫu




and ‖Rzw‖∞ < γ. Consequently, the stated Riccati inequality has a stabilizing,
nonnegative definite solution. Conversely, if the stated Riccati inequality has a
stabilizing, nonnegative definite solution, then the controller u = −B′

2Pǫx stabilizes
the augmented system for

L′L = −(PǫA+A′Pǫ − Pǫ(B2R
−1
ǫ B′

2 − γ−2B1B
′
1)Pǫ + C ′C),

and ‖Rzaw‖∞ < γ. Since z consists of components of za, we conclude that u =
−B2Pǫx stabilizes the system and ‖Rzw‖∞ < γ.





Solutions to Problems in

Chapter 7

Solution 7.1. Subtracting (7.2.17) from (7.2.16) gives

( ˙̄Q− ˙̂
Q) = (A−QC ′C)(Q̄− Q̂) + (Q̄− Q̂)(A−QC ′C)′ + (Q− Q̂)C ′C(Q− Q̂),

which has a nonnegative solution, since (Q̄ − Q̂)(0) = 0. This proves that Q̄(t) ≥
Q̂(t). Subtracting (7.2.16) from (7.2.13) gives

(Q̇− ˙̄Q) = (A−QC ′C)(Q− Q̄) + (Q− Q̄)(A−QC ′C)′ + γ−2QL′LQ,

which also has a nonnegative solution, since (Q− Q̄)(0) = 0. We therefore conclude

that Q(t) ≥ Q̄(t) ≥ Q̂(t) as required.

Solution 7.2. Firstly, we replace the message generating differential equation

ẋ = Ax+Bw

with
ẋ = Ax+BQ1/2w̃.

Next, we replace the observations equation

y = Cx+ v

with

ỹ = R−1/2y

= R−1/2Cx+ ṽ.

From the general theory presented in the text, we see that the Riccati differential
equation associated with w̃, ṽ and ỹ is

Q̇ = AQ+QA′ −Q(C ′R−1C − γ−2L′L)Q+BQB′, Q(0) = 0

89
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and that the observer gain (for the scaled variables) is H̃ = QC ′R−1/2. The filter
for the scaled variables is

˙̂x = (A−QC ′R−1C)x̂+QC ′R−1/2ỹ

ẑ = Lx̂,

which is equivalent to

˙̂x = (A−QC ′R−1C)x̂+QC ′R−1y

ẑ = Lx̂.

This shows that the observer gain (for the original variables) is given by H =
QC ′R−1.

Solution 7.3. It is easy to verify that

Q =

[
Q̂ 0
0 0

]

satisfies
AQ+QA′ −Q(C ′C − γ−2L′L)Q+BB′ = 0

if Q̂ satisfies

A11Q̂+ Q̂A′
11 − Q̂(C ′

1C1 − γ−2L′
1L1)Q̂+B1B

′
1 = 0.

We can now complete the calculation by observing that

A−Q(C ′C − γ−2L′L)

=

[
A11 − Q̂(C ′

1C1 − γ−2L′
1L1) A12 − Q̂(C ′

1C2 − γ−2L′
1L2)

0 A22

]

is stable because A22 and A11 − Q̂(C ′
1C1 − γ−2L′

1L1) are stable.

Solution 7.4. Consider the given signal generator

G :

{
ẋ = Ax+Bw
y = Cx+Dw, DD′ = I.

The filter
ẑ = F y

is to provide an estimate of z = Lx. In order to remove the cross coupling be-
tween the input and observations disturbances, we introduce the observations pre-
processor

P :

{
˙̃x = (A−BD′C)x̃+BD′y
ỹ = −Cx̃+ y.
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Thus, ỹ is generated from w by the system

(ẋ− ˙̃x) = (A−BD′C)(x− x̃) +B(I −D′D)w

ỹ = C(x− x̃) +Dw.

Since the pre-processor is an invertible system, there is a one-to-one correspondence
between the original and the modified filtering problems. Since (I −D′D)D′ = 0,
the modified problem fits into the standard theory, which we can use to find an
estimator F̃ of L(x − x̃) given the “observations” ỹ. We obtain a filter F for our
original problem from F̃ by noting that

Lx̂ = L(x̂− x̃) + Lx̃

= F̃ ỹ + L
(
sI − (A−BD′C)

)−1
BD′y

=
(
F̃ P + L

(
sI − (A−BD′C)

)−1
BD′

)
y.

We use (7.2.10) and (7.2.11) to give the generator of all estimators of L(x− x̃),
given the information ỹ:

F̃ a
s
=




A− (BD′ +QC ′)C QC ′ −γ−2QL′

L 0 I
−C I 0


 ,

where Q(t) satisfies

Q̇ = (A−BD′C)Q+Q(A−BD′C)′ −Q(C ′C − γ−2L′L)Q+B(I −D′D)B′

with initial condition Q(0) = 0. Since F̃ a generates all estimators of L(x− x̃) (and
not Lx), all the estimators of Lx will be given by

F a
s
=




A−BD′C BD′ 0
L 0 0
0 0 0




+




A− (BD′ +QC ′)C QC ′ −γ−2QL′

L 0 I
−C I 0






A−BD′C BD′ 0
−C I 0
0 0 I




s
=




A−BD′C BD′ 0
L 0 0
0 0 0




+




A− (BD′ +QC ′)C −QC ′C QC ′ −γ−2QL′

0 A−BD′C BD′ 0
L 0 0 I
−C −C I 0



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s
=




A−BD′C BD′ 0
L 0 0
0 0 0




+




A− (BD′ +QC ′)C 0 BD′ +QC ′ −γ−2QL′

0 A−BD′C BD′ 0
L −L 0 I
−C 0 I 0




s
=




A− (BD′ +QC ′)C BD′ +QC ′ −γ−2QL′

L 0 I
−C I 0


 .

That is,

˙̂x = Ax̂+ (BD′ +QC ′)(y − Cx̂)− γ−2QL′φ

ẑ = Lx̂+ φ

η = y − Cx̂.

The filters are obtained by closing the loop with φ = Uη.

Solution 7.5.

G(I +G∼G)−1G∼ ≤ γ2I

⇔ (I +GG∼)−1GG∼ ≤ γ2I

⇔ GG∼ ≤ γ2(I +GG∼)

⇔ (1− γ2)GG∼ ≤ γ2I

⇔ (1− γ2)δ2 ≤ γ2, in which δ = ‖G‖∞

⇔ γ2 ≥ δ2

1 + δ2

⇔ γ ≥ 1√
1 + δ−2

.

Solution 7.6. We deal with the case in which w(t) is frequency weighted first.
Suppose

˙̃x = Ãx̃+ B̃w̃

w = C̃x̃+ D̃w̃

and

ẋ = Ax+Bw

y = Cx+ v.
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Combining these equations gives

[
ẋ
˙̃x

]
=

[
A BC̃

0 Ã

] [
x
x̃

]
+

[
BD̃

B̃

]
w̃

y =
[
C 0

] [ x
x̃

]
+ v,

which is the standard form.
The case in which v(t) is frequency weighted may be handled in much the same

way. Suppose

˙̃x = Ãx̃+ B̃ṽ

v = C̃x̃+ D̃ṽ.

Then
[

ẋ
˙̃x

]
=

[
A 0

0 Ã

] [
x
x̃

]
+

[
B 0

0 B̃

] [
w
ṽ

]

y =
[
C C̃

] [ x
x̃

]
+
[
0 D̃

] [ w
ṽ

]
,

which contains cross coupling in the disturbance input—i.e., it is of the form in
Problem 7.4.

Solution 7.7. The equations describing the message generating system as drawn
in Figure 7.12 are

ẋ = Ax+Bw

y = Cx+ v

and

ẋw = Awxw +BwLx

δ = Cwxw +DwLx,

which may be combined as
[

ẋ
ẋw

]
=

[
A 0

BwL Aw

] [
x
xw

]
+

[
B
0

]
w

[
y
δ

]
=

[
C 0

DwL Cw

] [
x
xw

]
+

[
I
0

]
v.

Substituting this realization into the general filtering formulas and partitioning the
Riccati equation solution as

Q =

[
Q1 Q2

Q′
2 Q3

]
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gives

F̃ a
s
=




A−Q1C
′C 0 Q1C

′ −γ−2(Q1L
′D′

w +Q2C
′
w)

BwL−Q′
2C

′C Aw Q′
2C

′ −γ−2(Q2L
′D′

w +Q3C
′
w)

DwL Cw 0 I
−C 0 I 0


 .

The generator of all filters can now be found from

F a =

[
W−1 0
0 I

]
F̃ a

=




Aw −BwD
−1
w Cw BwD

−1
w 0

−D−1
w Cw D−1

w 0
0 0 I




×




A−Q1C
′C 0 Q1C

′ −γ−2(Q1L
′D′

w +Q2C
′
w)

BwL−Q′
2C

′C Aw Q′
2C

′ −γ−2(Q2L
′D′

w +Q3C
′
w)

DwL Cw 0 I
−C 0 I 0


 .

After the removal of the unobservable modes we get the filter generator F a defined
by the realization




Aw −BwD
−1
w Cw Q′

2C
′C −Q′

2C
′ BwD

−1
w + γ−2(Q2L

′D′
w +Q3C

′
w)

0 A−Q1C
′C Q1C

′ −γ−2(Q1L
′D′

w +Q2C
′
w)

−D−1
w Cw L 0 D−1

w

0 −C I 0


 ,

which is free of degree inflation.

Solution 7.8.

1. Collecting all the relevant equations gives




ẋ
ẑ − Lx

y


 =




A
[
B 0

]
B2

− L
[
0 0

]
I

C
[
0 I

]
0







x[
w
v

]

ẑ


 ,

which has the associated adjoint system

P∼ =




A′ −L′ C ′

[
B′

0

] [
0
0

] [
0
I

]

B′
2 I 0


 .
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This problem is now of the form of the special measurement feedback control
problem considered in Problem 6.13. The results of this problem show that a
solution exists if and only if the Riccati equation

Q̇ = AQ+QA′ −Q(C ′C − γ−2L′L)Q+BB′, Q(0) = 0.

has a solution on [0, T ], in which case all F∼’s are generated by Fℓ(F
∼
a ,U

∼),
in which

F∼
a

s
=




A′ + L′B′
2 − C ′CQ −L′ C ′

−CQ 0 I
−(B′

2 − γ−2LQ) I 0


 .

Taking the adjoint, we see that all filters are generated by Fℓ(F a,U), in which

F a
s
=




A+B2L−QC ′C QC ′ B2 − γ−2QL′

L 0 I
−C I 0


 .

(We have adjusted the signs of the input and output matrices so that the filter
state is x̂, an estimate of x, rather than −x̂.) Note that the “central” filter
can be written

˙̂x = Ax̂+QC ′(y − Cx̂) +B2ẑ

ẑ = Lx̂.

2. The internal stability results are immediate from the corresponding results in
Problem 6.13.

Solution 7.9. The generalized regulator configuration we are interested in given
by the diagram:

s s

s s

P

∆

F

-

�

�

-

�

�

�

z − ẑ

y ẑ

αφ

[
w
v

]
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in which φ = Ex. Writing down the appropriate equations gives




ẋ[
φ

z − ẑ

]

y


 =




A
[
H1 B 0

]
0

E
[
0 0 0

]
0

L
[
0 0 0

]
−I

C
[
H2 0 I

]
0







x


α
w
v




ẑ



.

A filter F with the desired properties exists if and only if there exists a “controller”
F such that the map R, which maps

[
α′ w′ v′

]′ →
[
φ′ (z − ẑ)′

]′
, has

the property ‖R‖∞ < 1. Note that the solution of two Riccati equations will be
required. The reader may like to study Chapter 8 before returning to this problem.



Solutions to Problems in

Chapter 8

Solution 8.1.

1. Since λi(I−A) = 1−λi(A), we conclude that I−A is nonsingular if ρ(A) < 1.

2. First observe that λi

(
A(I + A)−1

)
= λi(A)/

(
1 + λi(A)

)
. Since λi(A) are

real and nonnegative and λi(A) ≥ λj(A) implies that λi(A)/(1 + λi(A)) ≥
λj(A)/(1 + λj(A)), the result follows. You might like to check for yourself
that x/(1+x) is monotonically increasing for all real nonnegative values of x.

Solution 8.2.

1. Using the definition of the HY Hamiltonian we have that
[

I −γ−2X∞

0 I

]
HY

[
I γ−2X∞

0 I

]

=

[
I −γ−2X∞

0 I

] [
Ā′ −(C ′

2C2 − γ−2C ′
1C1)

−B̄B̄′ −Ā

] [
I γ−2X∞

0 I

]

=

[
Ā′ + γ−2X∞B̄B̄′ Φ

−B̄B̄′ −Ā− γ−2B̄B̄′X∞

]

=

[
A′

z Φ
−B̄B̄′ −Az

]
,

in which

Φ = −(C ′
2C2 − γ−2C ′

1C1) + γ−2(X∞Ā+ (Ā′ + γ−2X∞B̄B̄′)X∞)

= −(C ′
2C2 − γ−2C ′

1C1) + γ−2X∞(A−B1D
′
21C2)

+ γ−2(A−B1D
′
21C2)

′X∞ + γ−4X∞B1(I −D′
21D21)B

′
1X∞

= −(C2 + γ−2D21B
′
1X∞)′(C2 + γ−2D21B

′
1X∞)

+ γ−2(D′
12C1 +B′

2X∞)′(D′
12C1 +B′

2X∞)

= −C ′
2zC2z + γ−2F ′

∞F∞.

97
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2. If Y∞, the stabilizing solution to (8.3.12), exists, we have

HY

[
I 0
Y∞ I

]
=

[
I 0
Y∞ I

] [
Ā′ − (C ′

2C2 − γ−2C ′
1C1)Y∞ ∗

0 ∗

]
,

in which Reλi(Ā
′ − (C ′

2C2 − γ−2C ′
1C1)Y∞) < 0. Substituting from Part 1

gives

HZ

[
I −γ−2X∞

0 I

] [
I 0
Y∞ I

]

=

[
I −γ−2X∞

0 I

] [
I 0
Y∞ I

] [
Ā′ − (C ′

2C2 − γ−2C ′
1C1)Y∞ ∗

0 ∗

]
,

which implies that

HZ

[
I − γ−2X∞Y∞ −γ−2X∞

Y∞ I

]

=

[
I − γ−2X∞Y∞ −γ−2X∞

Y∞ I

] [
Ā′ − (C ′

2C2 − γ−2C ′
1C1)Y∞ ∗

0 ∗

]
.

If ρ(X∞Y∞) < γ2, it follows that (I−γ−2X∞Y∞)−1 exists. It is now immedi-
ate that Z∞ = Y∞(I−γ−2X∞Y∞)−1 satisfies (8.3.9) and that it is stabilizing.

3. Multiplying

HY

[
I γ−2X∞

0 I

]
=

[
I γ−2X∞

0 I

]
HZ

on the right by
[
I Z∞

]′
gives

HY

[
I + γ−2X∞Z∞

Z∞

]

=

[
I γ−2X∞

0 I

] [
A′

z − (C ′
2zC2z − γ−2F ′

∞F∞)Z∞

−B̄B̄′ −AzZ∞

]
.

Expanding the (1, 1)-partition of this equation and using the Z∞ Riccati equa-
tion yields

Ā′(I + γ−2X∞Z∞)− (C ′
2C2 − γ−2C ′

1C1)Z∞

= A′
z − (C ′

2zC2z − γ−2F ′
∞F∞)Z∞

+ γ−2X∞(Z∞A′
z − Z∞(C ′

2zC2z − γ−2F ′
∞F∞)Z∞).

Since Y∞(I + γ−2X∞Z∞) = Z∞, we obtain

(Ā′ − (C ′
2C2 − γ−2C ′

1C1)Y∞)(I + γ−2X∞Z∞)

= (I + γ−2X∞Z∞)
(
A′

z − (C ′
2zC2z − γ−2F ′

∞F∞)Z∞

)
.
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Hence

Ā− Y∞(C ′
2C2 − γ−2C ′

1C1)

= (I + γ−2Z∞X∞)−1
(
Az − Z∞(C ′

2zC2z − γ−2F ′
∞F∞)

)
(I + γ−2Z∞X∞)

as required.

Solution 8.3. Suppose (8.6.2) has solution P (t) with P (0) = M . From this it is
immediate that

[
I
P

]
(A−DP )−

[
A −D
−Q −A′

] [
I
P

]
=

[
0

Ṗ

]
,

so that
[
I P

]′
is a solution to (8.6.3) with the correct boundary conditions.

Now suppose that (8.6.3) has a solution with P1(t) nonsingular for all t ∈ [0, T ]
and with P2(0)P

−1
1 (0) = M . This gives

[
P −I

] [ A −D
−Q −A′

] [
I
P

]
=

[
P −I

]([ I
P

]
P1X −

[
Ṗ1

Ṗ2

])
P−1
1

= Ṗ2P
−1
1 − P2P

−1
1 Ṗ1P

−1
1

= Ṗ

as required.

Solution 8.4.

1. It follows from (8.2.4) and
[

I −γ−2X∞

0 I

]
HY

[
I γ−2X∞

0 I

]
= HZ +

[
0 γ−2Ẋ∞

0 0

]

that

HY

[
I + γ−2X∞Z∞

Z∞

]

=

[
I + γ−2X∞Z∞

Z∞

] (
Az − Z∞(C ′

2zC2z − γ−2F ′
∞F∞)

)′

− d

dt

[
I + γ−2X∞Z∞

Z∞

]
.

Since X∞, Z∞ ≥ 0, it follows that (I + γ−2X∞Z∞) is nonsingular for all
t ∈ [0, T ]. Also Z∞(I + γ−2X∞Z∞)−1(0) = 0. We can now use Problem 8.3
to show that Y∞ = Z∞(I + γ−2X∞Z∞)−1 is a solution to (8.2.8). Also

ρ(X∞Y∞) = ρ
(
X∞Z∞(I + γ−2X∞Z∞)−1

)
=

γ2ρ(X∞Z∞)

γ2 + ρ(X∞Z∞)
< γ2.
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2. If Y∞ exists and ρ(X∞Y∞) < γ2, then I−γ−2X∞Y∞ is nonsingular on [0, T ],
Y∞(I − γ−2X∞Y∞)−1(0) = 0, and from (8.6.1) we get

HZ

[
I − γ−2X∞Y∞

Y∞

]

=

[
I − γ−2X∞Y∞

Y∞

]
(Ā− Y∞(C ′

2C2 − γ−2C ′
1C1))

′

− d

dt

[
I − γ−2X∞Y∞

Y∞

]
.

It now follows from Problem 8.3 that Z∞ = Y∞(I−γ−2X∞Y∞)−1 is a solution
to (8.2.15).

Solution 8.5. A direct application of the composition formula for LFTs (see
Lemma 4.1.2) gives

APK =

[
A+B2DKC2 B2CK

BKC2 AK

]

BPK =

[
B1 +B2DKD21

BKD21

]

and

AGK =

[
A+ γ−2B1B

′
1X∞ +B2DK(C2 + γ−2D21B

′
1X∞) B2CK

BK(C2 + γ−2D21B
′
1X∞) AK

]

BGK =

[
B1 +B2DKD21

BKD21

]
.

It is now easy to see that

[
AGK − λI BGK

]
=
[
APK − λI BPK

]



I 0 0
0 I 0

γ−2B′
1X∞ 0 I


 .

Solution 8.6.

1. Eliminating y and u from the five given equations yields

ẋ = Ax−B2C1x̂+B1w
˙̂x = (A−B2C1)x̂+B1(C2x+ w − C2x̂)

z = C1x− C1x̂.
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This means that
ẋ− ˙̂x = (A−B1C2)(x− x̂).

It follows that (x− x̂)(t) = 0 for all t, since x(0) = 0 and x̂ = 0. It also follows
that z(t) = 0.

In the same way, we eliminate y and u from the six given equations to obtain

ẋ = Ax−B2C1x̂+B1w +B2(u− u∗)

˙̂x = (A−B1C2 −B2C1)x̂+B1(C2x+ w) +B2(u− u∗)

ẋ− ˙̂x = (A−B1C2)(x− x̂)

and

z = C1(x− x̂) + (u− u∗)

ŵ = C2(x− x̂) + w.

Hence x̂ = x, ŵ = w and z = u − u∗. Since u − u∗ = U ŵ, it follows that
z = Uw and the result is proved.

2. Just choose a ‖U‖∞ ≤ γ and assemble the corresponding controller.

3. We need note two things. Firstly,

[
z
ŵ

]
=

[
0 I
I 0

] [
w

u− u∗

]

and secondly that all the internal cancellations occur at λi(A − B1C2) and
λi(A − B2C1) (see Lemma 4.1.2). We can now select a stable U such that
‖U‖∞ ≤ γ.

Solution 8.7.

1. Consider the diagram and observe that

β = K(I −GK)−1α.

If

P =

[
0 I
I G

]
,

then Fℓ(P ,K) = K(I −GK)−1 as required. (Alternatively, observe that

[
β
y

]
=

[
0 I
I G

] [
α
u

]
.)
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f

s s

s s

A

G

K

- -

�

-

?

β α

u y

A state-space realization for P is

P
s
=




A 0 B
0 0 I
C I 0


 .

2. If
A−P + PA′

− +B−B
′
− = 0

and
A′

−Q+QA− + C ′
−C− = 0,

then
A′

−P
−1 + P−1A− + P−1B−B

′
−P

−1 = 0

and
A−Q

−1 +Q−1A′
− +Q−1C ′

−C−Q
−1 = 0.

Next, we see that the equation defining X∞ is given by

[
A′

− 0
0 A′

+

]
X∞ +X∞

[
A− 0
0 A+

]
−X∞

[
B−

B+

] [
B′

− B′
+

]
X∞ = 0.

One nonnegative solution is clearly

X∞ =

[
−P−1 0

0 0

]
.

To show that this solution is stabilizing, we observe that

[
A− +B−B

′
−P

−1 0
B+B

′
−P

−1 A+

]

=

[
A− 0
0 A+

]
−
[

B−

B+

] [
B′

− B′
+

] [ −P−1 0
0 0

]
.
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Since
A− +B−B

′
−P

−1 = −PA′
−P

−1,

with Reλi(A−) > 0, the solution is indeed stabilizing. A parallel set of argu-
ments may be developed for Y∞.

3. The smallest achievable value of γ is determined by

γ2 ≥ ρ(X∞Y∞)

= ρ(P−1Q−1)

=
1

λmin(PQ)
.

Hence
γ(A) ≤ ν = γ−1 =

√
λmin(PQ).

4. Direct substitution into the formulas of (8.3.11) gives

Ak = A−BB′X∞ − Z∞C ′
2C2

Ck1 = −B′X∞

Bk1 = Z∞C ′
2

Z∞ = (I − γ−2Y∞X∞)−1Y∞.

Solution 8.8.

1. Substitution into
A′X∞ +X∞A−X∞BB′X∞ = 0

gives

0 =

[
1 0
1 1

] [
x1 x2

x2 x3

]
+

[
x1 x2

x2 x3

] [
1 1
0 1

]

−
[

x1 x2

x2 x3

] [
0 0
0 1

] [
x1 x2

x2 x3

]

=

[
2x1 − x2

2 x1 + 2x2 − x2x3

x1 + 2x2 − x2x3 2(x2 + x3)− x2
3

]

Consider x3 = x2 and x1 = 2x2. This gives

0 =

[
4x2 − x2

2 4x2 − x2
2

4x2 − x2
2 4x2 − x2

2

]
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and therefore x2 = 0 or x2 = 4. It is clear that X∞ = 0 is not stabilizing,
while x2 = 4 gives

X∞ = 4

[
2 1
1 1

]
,

which is both positive definite and stabilizing. A parallel set of arguments
leads to

Y∞ = 4

[
1 1
1 2

]
.

2. To find the optimal value of γ, we solve the equation

γ2
opt = ρ(X∞Y∞)

= 16ρ

([
3 4
2 3

])
.

The eigenvalues of

[
3 4
2 3

]
are given by the roots of λ2 − 6λ+ 1 = 0. That

is

λ =
6±

√
36− 4

2

= 3± 2
√
2.

Thus

γopt = 4

√
3 + 2

√
2.

Solution 8.9.

1. This requires the facts

Fℓ

([
0 G

I G

]
,K

)
= GK(I −GK)−1

and [
0 G

I G

]
s
=




A 0 B
C 0 D
C I D


 .

2. (A,B2, C2) stabilizable and detectable requires (A,B,C) stabilizable and de-
tectable. [

A− jωI B2

C1 D12

]
full column rank
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requires A−BD−1C − jωI full rank, since

[
A− jωI B

C D

] [
I 0

−D−1C I

]
=

[
A−BD−1C − jωI B

0 D

]
.

Finally [
A− jωI B1

C2 D21

]
full row rank

requires A− jωI full rank.

3. After scaling we get

P̃
s
=




A 0 BD−1

C 0 I
C I I


 ,

and then direct substitution yields:

0 = (A−BD−1C)′X +X(A−BD−1C)−X(BD−1)(BD−1)′X

0 = AY + Y A′ − Y C ′CY.

4. Substituting into the general H∞ synthesis Riccati equations gives

0 = (A−BD−1C)′X∞ +X∞(A−BD−1C)−X∞(BD−1)(BD−1)′X∞

0 = AY∞ + Y∞A′ − (1− γ−2)Y∞C ′CY∞.

Comparing terms with the LQG equations now yields X∞ = X and Y∞ =
(1− γ−2)−1Y .

5. When G is stable, K = 0 is a stabilizing controller, in which case γopt = 0.

6. When G has a right-half-plane pole, Y 6= 0. Hence γ > 1 is necessary (and
sufficient) to ensure that Y∞ exists and Y∞ ≥ 0. The spectral radius condition
gives

γ2 ≥ ρ(X∞Y∞)

= (1− γ−2)−1ρ(XY )

⇒ γ2 ≥ 1 + ρ(XY )

⇒ γ ≥
√

1 + ρ(XY ).

Since
√

1 + ρ(XY ) ≥ 1 for any X and Y , we see that all the conditions are

satisfied for any γ >
√
1 + ρ(XY ) and we conclude that γopt =

√
1 + ρ(XY ).

7. Immediate from the above result, since in this case X = 0. Note that as γ ↓ 1,
Y∞ becomes unbounded—this needs to be dealt with carefully.
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Solution 8.10.

1. This follows from

(I −GK)−1 = I +GK(I −GK)−1

= Fℓ

([
I G

I G

]
,K

)

and [
I G

I G

]
s
=




A 0 B
C I D
C I D


 .

2. We will prove this from the equivalence of the following two diagrams.

f

f

f

f

P

K

P

D

D−1

D

K

D

-

�

�� ��

�

6

6

6

6

�

�

6

�

- ?

-

-

P̃

K̃

z w

y u

z w

ỹ

ũ

−

−

u

The second of these figures yields

u = D−1(ũ− ỹ) and ỹ = y −Du.
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Therefore

ẋ = Ax+Bu

z = Cx+ w +Du

y = Cx+ w +Du

becomes

ẋ = Ax+BD−1(ũ− ỹ)

= Ax+BD−1(ũ− Cx− w)

= (A−BD−1C)x−BD−1w +BD−1ũ,

together with

z = Cx+ w + ũ− Cx− w

= ũ

ỹ = Cx+ w.

Hence

P̃ =




A−BD−1C −BD−1 BD−1

0 0 I
C I 0


 .

Also,

K̃ = I +DK(I −DK)−1

= (I −DK)−1.

3.

(A,B2) stabilizable ⇒ (A−BD−1C,BD−1) stabilizable

⇒ (A,B) stabilizable.

(A,C2) detectable ⇒ (A−BD−1C,C) detectable

⇒ (A,C) detectable.

[
A− jωI B2

C1 D12

]
full column rank

⇒
[

A−BD−1C − jωI BD−1

0 I

]
full column rank

⇒ A−BD−1C − jωI full rank.
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[
A− jωI B1

C2 D21

]
full row rank

⇒
[

A−BD−1C − jωI −BD−1

C I

]
full row rank

⇒ A− jωI full rank (take Schur complements).

4. By direct substitution into the general formulas we get

0 = (A−BD−1C)′X +X(A−BD−1C)−X(BD−1)(BD−1)′X

0 = AY + Y A′ − Y C ′CY.

5. Again, direct substitution into the general formulas yields

0 = (A−BD−1C)′X∞ +X∞(A−BD−1C)

− (1− γ−2)X∞(BD−1)(BD−1)′X∞

0 = AY∞ + Y∞A′ − Y∞C ′CY∞.

Comparing terms yields X∞ = (1 − γ−2)−1X and Y∞ = Y . It is easy to see
that these are the stabilizing solutions.

6. When G−1 ∈ RH∞, we have Reλi(A − BD−1C) < 0 ⇒ X∞ = 0. This
together with ρ(X∞Y∞) = γ2

opt implies that γopt = 0, offering one explana-

tion. Alternatively, if G−1 ∈ RH∞, we can use an infinitely high, stabiliz-
ing feedback gain to reduce the sensitivity. This together with the fact that
limk→∞(I − kG)−1 = 0 provides a second explanation. (Remember G(∞) is
nonsingular.)

7.

ρ(X∞Y∞) = γ2
opt

⇒ (1− γ−2
opt)

−1ρ(XY ) = γ2
opt

⇒ ρ(XY ) = γ2
opt − 1 provided γopt 6= 0

⇒ γopt =
√
1 + ρ(XY ).

Solution 8.11.

1. The four given Riccati equations follow by substitution into their general
counterparts.
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2. Problem 3.23 implies that X is nonsingular if and only if −Ã is asymptotically
stable.

Suppose we add
ÃX−1 +X−1Ã′ −B2B

′
2 = 0

and
−γ−2ÃW − γ−2WÃ′ + γ−2B1B

′
1 = 0

to get

Ã(X−1 − γ−2W ) + (X−1 − γ−2W )Ã′ − (B2B
′
2 − γ−2B1B

′
1) = 0.

Now if ρ(XW ) < γ2, (X−1 − γ−2W )−1 exists, is nonnegative definite and
satisfies

0 = Ã′(X−1 − γ−2W )−1 + (X−1 − γ−2W )−1Ã

− (X−1 − γ−2W )−1(B2B
′
2 − γ−2B1B

′
1)(X

−1 − γ−2W )−1.

Since

−(X−1−γ−2W )Ã′(X−1−γ−2W ) = A−(B2B
′
2−γ−2B1B

′
1)(X

−1−γ−2W )−1,

this solution is stabilizing. We may therefore set X∞ = (X−1 − γ−2W )−1. A
parallel set of arguments leads to Y∞ = (Y −1 − γ−2V )−1.

3. We know from the general theory that a stabilizing controller exists if and
only if X∞ ≥ 0, Y∞ ≥ 0 and ρ(X∞Y∞) ≤ γ2. Since X∞ > 0 ⇔ X−1

∞ > 0,
Y∞ > 0 ⇔ Y −1

∞ > 0 and ρ(X∞Y∞) ≤ γ2 ⇔ Y −1
∞ − γ−2X∞ ≥ 0, we can check

these three necessary and sufficient conditions via the positivity of

Π(γ) =

[
Y −1 − γ−2V γ−1I

γ−1I X−1 − γ−2W

]
.

It is now easy to verify that

[
γ2 −γX
0 γX

]
Π(γ)

[
Y 0
0 γI

]
= γ2

[
I 0
0 I

]
−
[

V Y +XY −XW
−XY XW

]
.

This means that the smallest value of γ for which a solution exists is the
largest value of γ for which Π(γ) is singular, or in other words the largest

eigenvalue of

[
V Y +XY −XW

−XY XW

]
.
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Solution 8.12.

1. Since

y =
[
G I G

]



w
v
u


 ,

we conclude that the generalized plant for this problem is given by



[

y
u

]

y


 =




[
G I
0 0

] [
G

I

]

[
G I

]
G





[

w
v

]

u


 .

It follows from the diagram in the question that

y = v +GKy +Gw

⇒ y = (I −GK)−1
[
G I

] [ w
v

]
.

Similarly,

u = K(v +Gw +Gu)

⇒ u = K(I −GK)−1
[
G I

] [ w
v

]
.

Combining these equations yields
[

y
u

]
=

[
I
K

]
(I −GK)−1

[
G I

] [ w
v

]
.

Substituting G = C(sI − A)−1B yields the realization of this generalized
plant:




[
G I
0 0

] [
G

I

]

[
G I

]
G


 s
=




A
[
B 0

]
B

[
C
0

] [
0 I
0 0

] [
0
I

]

C
[
0 I

]
0


 .

2.
[

0 I
0 0

]
+

[
0
I

]
K
[
0 I

]
=

[
0 I
0 K

]
.

Therefore ‖Fℓ(P ,K)(∞)‖ ≥ 1, which shows that ‖Fℓ(P ,K)‖∞ ≥ 1. We also
see that ‖Fℓ(P ,K)‖2 = ∞, since Fℓ(P ,K) is not strictly proper.

3.
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Step 1: Since ‖D11‖ = 1, D̂12 =

[
I
0

]
and

‖D̂′
12D11‖ = ‖

[
I 0

]
‖

= 1,

we set F = 0 because the norm of D̄11 cannot be reduce further (by feedback).

Step 2: From the definition of Θ in (4.6.5) we get

Θ11 =

[
0 γ−2I
0 0

]

Θ12 =

[
γ−1(1− γ−2)1/2I 0

0 γ−1I

]

Θ21 =

[
−γ−1I 0

0 −γ−1(1− γ−2)1/2I

]

Θ22 =

[
0 0

γ−2I 0

]
.

Now

B1Θ22 =
[
B 0

] [ 0 0
γ−2I 0

]
= 0.

Next, we observe that

(I −Θ22D11)
−1 =

([
I 0
0 I

]
−
[

0 0
γ−2I 0

] [
0 I
0 0

])−1

=

[
I 0
0 1

1−γ−2 I

]

(I −D11Θ22)
−1 =

([
I 0
0 I

]
−
[

0 I
0 0

] [
0 0

γ−2I 0

])−1

=

[ 1
1−γ−2 I 0

0 I

]
,

which results in

Â = A, since B1 = 0

B̂1 = B1(I −Θ22D11)
−1Θ21

=
[
B 0

] [ I 0
0 1

1−γ−2 I

] [ −γ−1I 0

0 −γ−1
√
1− γ−2I

]

=
[
−γ−1B 0

]

B̂2 = B2 = B since B1 = 0.
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In much the same way:

Ĉ1 = Θ12(I −D11Θ22)
−1C1

= γ−1

[ √
1− γ−2I 0

0 I

] [ 1
1−γ−2 I 0

0 I

] [
C
0

]

=

[
γ−1√
1−γ−2

C

0

]
,

Ĉ2 = C2 +D21Θ22(I −D11Θ22)
−1C1

= C +
[
0 I

] [ 0 0
γ−2I 0

] [ 1
1−γ−2 I 0

0 I

] [
C
0

]

= C +
γ−2C

1− γ−2

=
1

1− γ−2
C.

The whole point of the construction is to ensure D̂11 = 0. It only remains for
us to evaluate the remaining partitions of the D̂ matrix.

D̂12 = Θ12(I −D11Θ22)
−1D12

= γ−1

[ √
1− γ−2I 0

0 I

] [ 1
1−γ−2 I 0

0 I

] [
0
1

]

=

[
0

γ−1I

]

D̂21 = D21(I −Θ22D11)
−1Θ21

=
[
0 I

] [ I 0
0 1

1−γ−2 I

] [ −γ−1I 0

0 −γ−1
√
1− γ−2I

]

=
[
0 − γ−1√

1−γ−2
I
]

D̂22 = D22 +D21Θ22(I −D11Θ22)
−1D21

=
[
0 I

] [ 0 0
γ−2I 0

] [ 1
1−γ−2 I 0

0 I

] [
0
I

]

= 0

Combining these results now yields:

P̂
s
=




A −γ−1B 0 B
γ−1√
1−γ−2

C 0 0 0

0 0 0 γ−1I
1

1−γ−2C 0 − γ−1√
1−γ−2

I 0



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Since ‖Fℓ(P ,K)‖∞ ≤ γ ⇔ ‖Fℓ(P̂ ,K)‖∞ ≤ γ−1, we can rescale P̂ so that

‖Fℓ(P̂ ,K)‖∞ ≤ γ with

P̂
s
=




A −B 0 B
1√

1−γ−2
C 0 0 0

0 0 0 I
1

1−γ−2C 0 − 1√
1−γ−2

I 0




Step 3: Scale D12 and D21. D12 requires no scaling, while scaling D21 yields

P̂
s
=




A −B 0 B
1√

1−γ−2
C 0 0 0

0 0 0 I
1√

1−γ−2
C 0 −I 0




4. Since (A,C2) must be detectable, we require (A,C) detectable. To establish
that this condition suffices for one of the imaginary axis conditions we argue
as follows:

[
jωI −A B2

C1 D12

] [
w1

w2

]
= 0

⇔




jωI −A B
1√

1−γ−2
C 0

0 I



[

w1

w2

]
= 0

⇔ w2 = 0 and

[
jωI −A

C

]
w1 = 0

It is clear that the second condition is equivalent to (A,C) having no unob-
servable modes on the imaginary axis and this is implied by the detectability of
(A,C). A dual argument may be used to establish the required stabilizability
of (A,B).

Note that there is no cross coupling in the generalized plant P̂ . It is immediate
that the X∞ and Y∞ Riccati equations are as stated in the question.

5. The generalized plant for this problem is given by



[

ξ
u

]

y


 =




[
G 0
0 0

] [
G

I

]

[
G I

]
G





[

w
v

]

u


 .
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The realization of this generalized plant is




[
G 0
0 0

] [
G

I

]

[
G I

]
G


 s
=




A
[
B 0

]
B

[
C
0

] [
0 0
0 0

] [
0
I

]

C
[
0 I

]
0


 .

Substituting into the general formulas now gives

A′X +XA−XBB′X + C ′C = 0

AY + Y A′ − Y C ′CY +BB′ = 0.

6. Substituting X∞ = (1− γ−2)−1X into the X∞ Riccati equation gives

A′X +XA−XBB′X + C ′C = 0

which shows that X∞ = (1 − γ−2)−1X is indeed a solution. If A − BB′X is
stable, then so is A−BB′(1− γ−2)X∞. It is clear that X∞ ≥ 0 for all γ > 1.
The fact that Y∞ = Y is trivial.

The spectral radius condition gives:

γ2 ≥ ρ(X∞Y∞)

= (1− γ−2)−1ρ(XY )

⇒ γ ≥
√
1 + ρ(XY ).

Hence γ >
√
1 + ρ(XY ) implies that all the conditions are met and we con-

clude that γopt =
√
1 + ρ(XY ).

7. Substitution into the various definitions in the text gives:

F∞ = B′X∞ = (1− γ−2)−1B′X

C2z =
1√

1− γ−2
C

Z∞ = (I − γ−2Y∞X∞)−1Y∞ = γ2(1− γ−2)W−1Y.

From (8.3.11) we obtain the central controller K̂
s
= (Ak, Bk1, Ck1) for the

scaled system P̂ :

Bk1 = Z∞C ′
2z = γ2

√
1− γ−2W−1Y C ′

Ck1 = −(1− γ−2)−1B′X

Ak = A+ γ−2BB′X∞ −BB′X∞ − Z∞

1√
1− γ−2

C ′ 1√
1− γ−2

C

= A−BB′X − γ2W−1Y C ′C.
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Recalling the D21-scaling, which means K̂ = 1√
1−γ−2

K, we set

K =
√

1− γ−2K̂

by multiplying Bk1 by
√
1− γ−2. This gives the controller

˙̃x = (A−BB′X − γ2W−1Y C ′C)x̃+ (γ2 − 1)W−1Y C ′y

u = −(1− γ−2)−1B′Xx̃.

Defining x̂ = (1− γ−2)−1x̃ yields

˙̂x = (A−BB′X − γ2W−1Y C ′C)x̂+ γ2W−1Y C ′y

u = −B′Xx̂.

Finally, multiplying by W yields

W ˙̂x =
(
W (A−BB′X)− γ2Y C ′C

)
x̂+ γ2Y C ′y

u = −B′Xx̂,

which is the desired controller.

Notice that for suboptimal γ, W is nonsingular and we have

˙̂x = Ax̂+Bu+ γ2W−1Y C ′(y − Cx̂)

u = −B′Xx̂,

which is an observer and state-estimate feedback. The LQG optimal controller
for the problem in Part 5 is

˙̂xLQG = Ax̂LQG +Bu+ Y C ′(y − Cx̂LQG)

u = −B′Xx̂LQG.

The H∞ controller therefore uses a different observer gain matrix, but the
same feedback gain matrix.

8. Using

g
s
=

[
0 1
1 0

]
,

we obtain X = 1 and Y = 1. Therefore γopt =
√
1 + ρ(XY ) =

√
2.

Setting k = −1 gives a closed-loop transfer function matrix of
[

1
k

]
(1− gk)−1

[
g 1

]
=

[
1
−1

]
1

s+ 1

[
1 s

]

=
1

s+ 1

[
1 s
−1 −s

]
.
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The singular values of this matrix are the square roots of the eigenvalues of

1

jω + 1

[
1 jω
−1 −jω

]
1

−jω + 1

[
1 −1

−jω jω

]
=

[
1 −1
−1 1

]
.

Now

[
1 −1
−1 1

]
has eigenvalues 2 and 0, and so σ1 =

√
2 and σ2 = 0.

(It is instructive to examine the general controller formula for this case. We
have X = 1 and Y = 1, so W = γ2 − 2. Substitution into the controller
formulas give

u = − γ2

(γ2 − 2)s+ 2(γ2 − 1)
y.

For γ2 = 2, this gives the optimal controller u = −y. The LQG controller is
− 1

s+2 .)

Solution 8.13. We show how the optimal controllers given in Examples 8.4 and
2.4.2 may be obtained using The Robust Control Toolbox and Matlab, version 4.0.1

Note that Chiang and Safonov, authors of the Robust Control Toolbox [35], consider
the synthesis problem ‖γ−1Fℓ(P ,K)‖∞ < 1.

Servomechanism of Section 8.4:

>> J1=1;

>> J2=2;

>> D1=.01;

>> D2=.02;

>> K=30;

>> A=[-D1/J1,0,-K/J1;0,-D2/J2,K/J2;1,-1,0];

>> B=[40/J1;0;0];

>> C=[0,1,0];

>> D=0;

>> B1=[B, zeros(3,1)];

>> B2=-B;

>> C1=[zeros(1,3);C];

>> C2=C;

>> D11=[1,0;D,1];

>> D12=[-1;D];

>> D21=[D,1];

>> D22=-D;

>> genplant=mksys(A,B1,B2,C1,C2,D11,D12,D21,D22,’tss’);

1MATLAB is a registered trademark of The MathWorks, Inc.
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>> GOPT=[1;2];

>> aux=[1e-12,1/4,1/3];

>> [gopt,ss_cp,ss_cl]=hinfopt(genplant,GOPT,aux);

<< H-Infinity Optimal Control Synthesis >>

Information about H∞ optimization displayed.

>> 1/gopt

ans =

3.8856

>> [Ak,Bk,Ck,Dk]=branch(ss_cp);

>> [NUMk,DENk]=ss2tf(Ak,Bk,Ck,Dk)

NUMk =

3.6283 6.8528 88.0362

DENk =

1.0000 25.3218 343.0775

Example 2.4.2:

Additive robustness problem

>> num=1;

>> den=[1,-2,1];

>> [A,B,C,D]=tf2ss(num,den);

>> genplant=mksys(A,zeros(2,1),B,zeros(1,2),C,0,1,1,0,’tss’);

>> gamopt=4*sqrt(3+2*sqrt(2))

gamopt =

9.6569

>> aux=[1e-12,1/9,1/10];

>> GOPT=1;

>> [gopt,ss_cp,ss_cl]=hinfopt(genplant,GOPT,aux);
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<< H-Infinity Optimal Control Synthesis >>

Information about H∞ optimization displayed.

>> 1/gopt

ans =

9.6569

>> [Ak,Bk,Ck,Dk]=branch(ss_cp);

>> [NUMk,DENk]=ss2tf(Ak,Bk,Ck,Dk)

NUMk =

-9.6569 4.0000

DENk =

1.0000 4.4142

The combined additive/multiplicative problem

>> num=1; den=[1,-2,1];

>> [A,B,C,D]=tf2ss(num,den);

>> Z12=zeros(1,2);

>> Z21=zeros(2,1);

>> genplant=mksys(A,Z21,B,[C;Z12],C,Z21,[D;1/10],1,D,’tss’);

>> GOPT=[1;2];

>> aux=[1e-12,1/2,1/3];

>> [gopt,ss_cp,ss_cl]=hinfopt(genplant,GOPT,aux);

<< H-Infinity Optimal Control Synthesis >>

Information about H∞ optimization displayed.

>> 1/gopt

ans =

2.3818
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>> [Ak,Bk,Ck,Dk]=branch(ss_cp);

>> [NUMk,DENk]=ss2tf(Ak,Bk,Ck,Dk)

NUMk =

-23.8181 4.8560

DENk =

1.0000 6.9049

Solution 8.14. Suppose

P
s
=




A B1 B2

C1 D11 D12

C2 D21 D22


 .

Since (A,B2) is stabilizable, there exists an F such that the eigenvalues of A−B2F
are not on the imaginary axis. Similarly, since (A,C2) is detectable, there exists an
H such that the eigenvalues of A−HC2 are not on the imaginary axis.

Now consider the dilated plant

P a
s
=




A
[
B1 ǫH

]
B2[

C1

ǫF

] [
D11 0
0 0

] [
D12

ǫI

]

C2

[
D21 ǫI

]
D22


 .

Firstly, we show that

rank




A− jωI B2

C1 D12

ǫF ǫI


 = m+ n

for any ǫ 6= 0.
This follows since



I 0 −ǫ−1B2

0 I −ǫ−1D12

0 0 I






A− jωI B2

C1 D12

ǫF ǫI


 =




A−B2F − jωI 0
C1 −D12F 0

ǫF ǫI




in which A−B2F may be chosen with no eigenvalues on the imaginary axis.
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A parallel argument proves that

rank

[
A− jωI B1 ǫH

C2 D21 ǫI

]
= q + n.

To prove the first direction suppose we select K such that Fℓ(P a,K) is inter-
nally stable and such that ‖Fℓ(P a,K)‖∞ < γ. Since the dilation process has no
effect on internal stability, Fℓ(P a,K) is stable. In addition, ‖Fℓ(P ,K)‖∞ < γ
since removing the dilation must be norm non-increasing.

Conversely, if K is stabilizing and satisfies ‖Fℓ(P ,K)‖∞ < γ, the closed loop

mapping from w to
[
x′ u′

]′
has finite norm. Thus there exists an ǫ > 0 such

that ‖Fℓ(P a,K)‖∞ < γ.



Solutions to Problems in

Chapter 9

Solution 9.1.

1. Let C have SVD C = U1ΣV
∗
1 , in which

Σ =

[
Σ1 0
0 0

]
, det(Σ1) 6= 0.

Then BB∗ = C∗C = V1Σ
2V ∗

1 , so B has SVD

B = V1Σ̄U
∗
2 , Σ̄ =

[
Σ1 0
0 0

]
.

(Σ̄ has fewer columns and Σ.) Therefore,

B = V1ΣU
∗
1U1

[
U∗
2

0

]

= −C∗U/σ

in which

U = −σU1

[
U∗
2

0

]
.

2. The point here is that C is no longer assumed to have at least as many rows
as B has columns. To overcome this, augment C with zero rows:

C̃ =

[
C
0

]
,

with the number of zero rows of C̃ chosen so that C̃ has at least as many
rows as B has columns. Therefore, there exists a Ũ such that Ũ∗Ũ = σ2I and
σB + C̃∗Ũ = 0. Partition Ũ conformably with C̃:

Ũ =

[
U
U2

]
.

121
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Then U∗U = σ2I − U∗
2U2 ≤ σ2I and σB + C∗U = 0. Furthermore, U has

SVD
U =

[
σI 0

]
(Ũ/σ),

so the singular values of U are either σ or zero.

Solution 9.2. In order for

Σ =

[
Σ1 0
0 Σ2

]

to be the controllability/observability gramian of the combined system, we require
that A21 and A12 satisfy

A12Σ2 +Σ1A
′
21 +B1B

′
2 = 0

Σ1A12 +A′
21Σ2 + C ′

1C2 = 0.

Hence

A12Σ
2
2 +Σ1A

′
21Σ2 +B1B

′
2Σ2 = 0

Σ2
1A12 +Σ1A

′
21Σ2 +Σ1C

′
1C2 = 0,

giving
Σ2

1A12 −A12Σ
2
2 +Σ1C

′
1C2 −B1B

′
2Σ2 = 0, (9.1)

which has a unique solution A12 provided that no eigenvalue of Σ1 is also an eigen-
value of Σ2. This is a standard result from the theory of linear matrix equations.
To prove it, let

[
Σ2

1 Σ1C
′
1C2 −B1B

′
2Σ2

0 Σ2
2

] [
V1

V2

]
=

[
V1

V2

]
Σ2

2 (9.2)

in which
[
V ′
1 V ′

2

]′
has full column rank. (This can be obtained from an eigen-

value decomposition.) Provided V2 is nonsingular, it is easy to check that A12 =
V1V

−1
2 is a solution to (9.1). To show that V2 is nonsingular, suppose that V2x = 0.

Multiplying (9.2) by x, we see that V2Σ
2
2x = 0 and we conclude that there exists

a y such that V2y = 0 and Σ2
2y = σ2y. Now multiplying (9.2) by y we obtain

Σ2
1V1y = σ2V1y. Since Σ1 and Σ2 have no eigenvalues in common, we conclude that

V1y = 0. Thus
[
V ′
1 V ′

2

]′
y = 0, which implies y = 0 and we conclude that V2 is

nonsingular. Conversely, if A12 is a solution to (9.1), then V1 = A12 and V2 = I is
a solution to (9.2). Thus, V1, V2 satisfy (9.2) if and only if

[
V1

V2

]
=

[
A12

I

]
V2, detV2 6= 0.
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Since the eigenvalue decomposition ensures that we can always find a V1 and V2 to
satisfy (9.2), we conclude that A12 = V1V

−1
2 exists and is unique.

The matrix A21 may be similarly obtained as the unique solution to the linear
equation

A21Σ
2
1 − Σ2

2A21 +B2B
′
1Σ1 − Σ2C

′
2C1 = 0.

Solution 9.3. Pick any ω and let A = Ã(jω), B = B̃(jω) and C = C̃(jω).
Suppose Ax = λx, x 6= 0. From σ(A+A∗) +BB∗ = 0, we conclude that σx∗x(λ+
λ̄) + ‖B∗x‖2 = 0. Since σx∗x 6= 0, we have that (λ+ λ̄) ≤ 0. Equality cannot hold
(by assumption) and hence A is asymptotically stable. The bounded real lemma
says that ‖C(sI −A)−1B‖∞ < γ if and only if there exists a P ≥ 0 such that

PA+A∗P + γ−2PBB∗P + C∗C = 0,

with A + γ−2BB∗P is asymptotically stable. If we hypothesize a solution of the
form P = µI and substitute for C∗C and BB∗, we see that P = µI is a solution
provided µ satisfies the quadratic equation

σµ2/γ2 − µ+ σ = 0.

The condition for a real solution is γ ≥ 2σ. In this case, both the solutions are
nonnegative. It remains to show that one of these solution is stabilizing (i.e., A +
γ−2BB∗µ asymptotically stable). Assume that γ > 2σ, let µ1 be the smaller of the
two solutions, and let µ2 be the larger of the two solutions. Note that both P = µ1I
and P = µ2I are solutions of the Riccati equation. Subtracting these two Riccati
equations and re-arranging terms yields

(µ2 − µ1)(A+ γ−2BB∗µ1) + (A+ γ−2BB∗µ1)
∗(µ2 − µ1) + γ−2(µ2 − µ1)

2BB∗ = 0

and it follows that (A+γ−2BB∗µ1) is asymptotically stable. Thus, for any γ > 2σ,
there exists a stabilizing nonnegative definite solution to the bounded real lemma
Riccati equation and we conclude that ‖C(sI − A)−1B‖∞ < γ for any γ > 2σ. In
particular, we have σ

(
C̃(jω)(jωI − Ã(jω))−1B̃(jω)

)
< γ for any γ > 2σ. Since ω

was arbitrary, we conclude that

sup
ω

σ
(
C̃(jω)(jωI − Ã(jω))−1B̃(jω)

)
≤ 2σ.

Solution 9.4. Since α > 0 and α 6= 1, the poles are obviously simple and located
at s = −αi < 0. To see that the zeros lie between the poles, consider any term
ti = αi/(s+αi) in the sum. As s moves out along the negative real axis, ti increases
monotonically from 1 (at s = 0) to ∞ (at s = −αi); it then becomes negative and
decreases in magnitude to zero at s = −∞. Thus the function gn(s), which is
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continuous except at the poles, moves from −∞ to ∞ as s moves from pole to pole.
It must therefore have a zero between every pole. This accounts for the n− 1 zeros
and we conclude they are each simple and are located between each of the poles.

Considering the basic facts concerning Bode phase diagrams, we conclude from
the interlacing property that the phase of gn(jω) always lies between 0◦ and −90◦.
This means that gn is positive real, and it is there the impedance function of a
passive circuit.

Solution 9.5. The balanced truncation reduced-order model is given by the re-
alization (L′AM,L′B,CM,D), in which L′ is the matrix consisting of the first r
rows of T and M is the matrix consisting of the first r columns of T−1, in which
T is as defined in Lemma 9.3.1. That is, T = Σ

1
2U ′R−1, in which P = RR′ and

R′QR = UΣ2U ′. We need to verify that L and M are given by the alternative
expressions stated in the problem.

Since P = RR′ = UPSPU
′
P , we see that R = UPS

1
2

P . Thus

R′QR = (S
1
2

QU
′
QUPS

1
2

P )
′(S

1
2

QU
′
QUPS

1
2

P )

= (V ΣU ′)′(V ΣU ′)

= UΣ2U ′.

Hence

T = Σ
1
2U ′R−1

= Σ
1
2U ′S

− 1
2

P U ′
P (9.3)

= Σ
1
2U ′UΣ−1V ′S

1
2

QU
′
Q

= Σ− 1
2V ′S

1
2

QU
′
Q.

In the above, the fact that UΣ−1V ′ = (S
1
2

QU
′
QUPS

1
2

P )
−1 has been used. From the

partions of V and Σ, it is now easily seen that L′, the first r rows of T , is given by

L′ = Σ
− 1

2

1 V ′
1S

1
2

QU
′
Q as required.

Now take the inverse of the formula (9.3) for T to give T−1 = UPS
1
2

PUΣ− 1
2 , and

from the partitions of U and Σ we see that M , the first r columns of T−1, is given

by M = UPS
1
2

PU1Σ
− 1

2

1 .

Solution 9.6.

1. Proof is identical to that of Lemma 9.3.1

2. From the (1, 1)-block of the observability gramian equation, we have

A′
11Σ1A11 − Σ1 +A′

21Σ2A21 + C ′
1C1 = 0.
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Suppose A11x = λx. Then

x∗Σ1x(|λ|2 − 1) + x∗(A′
21Σ2A21 + C ′

1C1)x = 0.

Since Σ1 > 0 and Σ2 > 0, we conclude that either (a) |λ| < 1, or that (b)
A21x = 0, C1x = 0. If case (b) holds, we have

[
A11 A12

A21 A22

] [
x
0

]
= λ

[
x
0

]

which implies that |λ| < 1 or x = 0, since A is asymptotically stable. Thus
A11x = λx implies that |λ| < 1 or x = 0, which means that A11 is asymptoti-
cally stable.

3. Follows by direct calculation. Let Ψ = ejθ − A11, so that Ã(θ) = A22 +
A21Ψ

−1A12. The calculations required to show

Ã(θ)Σ2Ã
∗
(θ)− Σ2 + B̃(θ)B̃

∗
(θ) = 0

are facilitated by the identities

A12Σ2A
′
12 = Σ1 −A11Σ1A

′
11 −B1B

′
1

= ΨΣ1Ψ
∗ +A11Σ1Ψ

∗ +ΨΣ1A
′
11 −B1B

′
1

and
A11Σ1A

′
21 +A12Σ2A

′
22 +B1B

′
2 = 0.

Similarly, the identities

A′
21Σ2A21 = Σ1 −A′

11Σ1A11 − C ′
1C1

= Ψ∗Σ1Ψ+A′
11Σ1Ψ+Ψ∗Σ1A11 − C ′

1C1

and
A′

11Σ1A12 +A′
21Σ2A22 + C1C

′
2 = 0

may be used to establish

Ã
∗
(θ)Σ2Ã(θ)− Σ2 + C̃

∗
(θ)C̃(θ) = 0.

4. Since A is asymptotically stable and BB′ = I − AA′, B has full row rank.
Similarly, C has full column rank. Therefore, by introducing unitary changes
of coordinates to the input and output spaces B and C may be written as

B =
[
B̄ 0

]
, C =

[
C̄
0

]

in which B̄ and C̄ are nonsingular. Now define D̄ = −C̄ ′−1
A′B̄ and

U =

[
A B̄
C̄ D̄

]
.
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A calculation shows that U ′U = I, so U is orthogonal. We therefore have

B̄′(e−jθI −A′)−1C̄ ′C̄(ejθI −A)−1B̄

= B̄′(e−jθI −A′)−1(I −A′A)(ejθI −A)−1B̄

= B̄′(e−jθI −A′)−1
(
(e−jθI −A′)(ejθI −A)

+(e−jθI −A′)A+A′(ejθI −A)
)
(ejθI −A)−1B̄

= B̄′
(
I + (e−jθI −A′)−1A′ +A(ejθI −A)−1

)
B̄.

By direct calculation, A′B̄ + C̄ ′D̄ = 0 and D̄′D̄ + B̄′B̄ = I, we see that

(
D̄ + C̄(ejθI −A)−1B̄

)∗(
D̄ + C̄(ejθI −A)−1B̄

)
= I.

Since B̄ is nonsingular, it follows from U ′U = I that that ‖D̄‖ < 1. Hence

σ
(
C(ejθI −A)B

)
= σ

(
C̄(ejθI −A)B̄

)

= σ
(
D̄ + C̄(ejθI −A)B̄ − D̄

)

≤ σ
(
D̄ + C̄(ejθI −A)B̄

)
+ ‖D̄‖

< 1 + 1 = 2.

5. Obvious from

A11Σ1A
′
11 − Σ1 +A12Σ2A

′
12 +B1B

′
1 = 0

A′
11Σ1A11 − Σ1 +A′

21Σ2A21 + C ′
1C1 = 0.

6. Delete the states associated with σm to give G1, with error E1 = C̃(θ)
(
ejθI−

Ã(θ)
)−1

B̃(θ), in which

σm(Ã(θ)Ã
∗
(θ)− I) + B̃(θ)B̃

∗
(θ) = 0

σm(Ã
∗
(θ)Ã(θ)− I) + C̃

∗
(θ)C̃(θ) = 0.

Thus σ
(
Ei

)
< 2σn. Now consider

Ĝ1 =

[
0 0
0 D

]
+

[
A21mΣ

1
2

2m

C1m

]
(zI −A11m)−1

[
Σ

1
2

2mA12m B1m

]

in which A11m, A21m, A12m, B1m C1m and Σ2m come from the partitioning
that is associated with the truncation of the states associated with σm.

Now truncate this realization of Ĝ1, incur an error bounded by 2σm−1 and
embed in a still larger system which is a balanced realization. Continue this
process until the desired rth-order truncated model is sitting in the bottom-
right-hand corner. The final bound follows from the triangle inequality, to-
gether with the fact that the infinity norm of a submatrix can never exceed
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the norm of the matrix it forms part of. (Each step i incurs an augmented
error that is less than 2σm−i; the error we are actually interested in is the
(2, 2)-corner of the augmented error, which must also be less than 2σm−i.

This proof generalizes that given in [5], which is limited to the case when the
σi deleted are each of unit multiplicity.

When the state(s) associated with one σi are truncated in discrete-time, the
actual error is strictly smaller that 2σi, whereas in the continuous-time case,
equality holds. This effect is compounded as further states are removed. For
this reason, the discrete-time algorithm offers superior performance (and the
bound is correspondingly weaker) than its continuous-time counterpart.

Solution 9.7.

1. The dynamics are

[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u.

Replacing ẋ2 with αx2 yields

x2 = (αI −A22)
−1(A21x1 +B2u).

Replacing x2 in the dynamical equation for x1 and in the output equation
yields the GSPA approximant.

2. Use the Schur decomposition

αI −A =

[
I −A12(αI −A22)

−1

0 I

] [
αI − Â 0

0 αI −A22

]

×
[

I 0
−(αI −A22)

−1A21 I

]
,

in which Â = A11 −A12(αI −A22)
−1A21.

3. Problem 4.10 gives a formula for the realization of a system obtained via an ar-
bitrary linear fractional transformation of the complex variable. Substitution
into this formula gives the result. Alternatively, let

F (z) = G

(
α(z − 1)

z + 1

)
= D̃ + C̃(zI − Ã)−1B̃
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denote the discrete-time equivalent transfer function matrix. Now re-arrange

(α(z−1)
z+1 I −A)−1 as follows:

(
α(z − 1)

z + 1
I −A

)−1

= (z + 1)
(
α(z − 1)I − (z + 1)A

)−1

= (z + 1)
(
z(αI −A)− (αI +A)

)−1

= (αI −A)−1
(
zI − (αI +A)(αI −A)−1

)−1
(z + 1).

(Note that αI − A is nonsingular for α > 0, since A has no eigenvalue in the
closed-right-half plane.) Define Ã = (αI +A)(αI −A)−1 and note that

(z + 1)I = zI − Ã+ 2α(αI −A)−1,

from which we see that

(
α(z − 1)

z + 1
I −A

)−1

= (αI −A)−1 + 2α(αI −A)−1(zI − Ã)−1(αI −A)−1.

Therefore, we have that

Ã = (αI +A)(αI −A)−1 = (αI −A)−1(αI +A)

B̃ =
√
2α(αI −A)−1B

C̃ =
√
2αC(αI −A)−1

D̃ = D + C(αI −A)−1B,

is the realization of F (z).

We now show that this realization is a balanced discrete-time realization. Sup-
pose Σ is the controllability/observability gramian of the balanced realization
(A,B,C,D). Then

Ã′ΣÃ− Σ+ C̃ ′C̃

= (αI −A′)−1
(
(αI +A′)Σ(αI +A)− (αI −A′)Σ(αI −A)

+ 2αC ′C
)
(αI −A)−1

= 2α(αI −A′)−1
(
ΣA+A′Σ+ C ′C

)
(αI −A)−1

= 0.

Similarly, we have
ÃΣÃ′ − Σ+ B̃B̃′ = 0.

It remains to show that Ã has all its eigenvalues inside the unit circle—there
are several ways of doing this. One possibility is to suppose that Ãx = λx

and show that this implies Ax = α(λ−1)
λ+1 x. Since A is asymptotically stable,
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we must have Re
α(λ−1)
λ+1 < 0 and we conclude from this that |λ| < 1. An

alternative is to suppose that Ãx = λx and use the discrete-time observability
gramian equation to obtain

x∗Σx(|λ|2 − 1) + ‖C̃x‖ = 0.

Since Σ > 0, this shows that either: (a) |λ| < 1 or (b) C̃x = 0. If case (b)

holds, we see that Ax = α(λ−1)
λ+1 x and Cx = 0, which implies x = 0 because

(A,C) is observable.

4. Use the Schur decomposition

αI −A =

[
I −A12(αI −A22)

−1

0 I

] [
αI − Â 0

0 αI −A22

]

×
[

I 0
−(αI −A22)

−1A21 I

]

to obtain

(αI −A)−1 =

[
I 0

(αI −A22)
−1A21 I

] [
(αI − Â)−1 0

0 (αI −A22)
−1

]

×
[

I A12(αI −A22)
−1

0 I

]

It is now easy to see that

Ã11 = (αI + Â)(αI − Â)−1

B̃1 =
√
2α(αI − Â)−1B̂

C̃1 =
√
2αĈ(αI − Â)−1

D̃ = D̂ + Ĉ(αI − Â)−1B̂,

which shows that (Ã11, B̃1, C̃1, D̃) is indeed the discrete-time equivalent of the
GSPA approximant.

5. For α = ∞, the GSPA approximant is the balanced truncation approximant.
For α = 0, the GSPA approximant is the SPA approximant. Both these
algorithms have already been shown to preserve stability and to satisfy the
twice-the-sum-of-the-tail error bound. For the case 0 < α < ∞, we use the
discrete-time balanced truncation results of Problem 9.6 and the facts proved
in this problem. Since Ã11 has all its eigenvalues inside the unit circle, Â
has all its eigenvalues in the open-left-half plane, and since the unit circle is

mapped to the imaginary axis by s = α(z−1)
z+1 , the unit circle infinity norm

bound for the discrete-time truncation provides and infinity norm bound for
the GSPA algorithm.
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As a final remark, we not that α = 0 gives exact matching at steady-state
(s = 0), α = ∞ gives exact matching at infinite frequency. For α between 0
and ∞, exact matching occurs at the point s = α on the positive real axis.
Varying α can be used to adjust the emphasis the reduction procedure gives
to high and low frequencies. A low value of α emphasizes low frequencies and
a high value of α emphasizes high frequencies.



Solutions to Problems in

Chapter 10

Solution 10.1.

1. Let w ∈ H−
2 and z = Fw. Then z is analytic in Re(s) < 0 and

‖z‖22 =
1

2π

∫ ∞

−∞

z(jω)∗z(jω) dω

=
1

2π

∫ ∞

−∞

w(jω)∗F (jω)∗F (jω)w(jω) dω

≤ sup
ω

σ[F (jω)]2
1

2π

∫ ∞

−∞

w(jω)∗w(jω) dω

= ‖F ‖2∞‖w‖22.

Hence z ∈ H−
2 .

By the Paley-Wiener theorem, FL2(−∞, 0] ⊂ L2(−∞, 0], which, since F is
time-invariant, implies that F is anticausal.

2. Suppose G = G++G− with G+ ∈ RH∞ and G− ∈ RH−
∞ (conceptually, this

may be done by considering partial fraction expansions of the entries of G,
or alternatively we may use the state-space algorithm below). By the Paley-
Wiener theorem, the inverse Laplace transform of G+ is a function G+(t)
that is zero for t < 0 and the inverse Laplace transform of G− is a function
G−(t) that is zero for t > 0. Hence the system G, which is represented by the
convolution

y(t) =

∫ ∞

−∞

G(t− τ)u(τ) dτ

may be decomposed as

y(t) =

∫ ∞

−∞

G+(t− τ)u(τ) dτ +

∫ ∞

−∞

G−(t− τ)u(τ) dτ

=

∫ t

−∞

G+(t− τ)u(τ) dτ +

∫ ∞

t

G−(t− τ)u(τ) dτ,

131
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which is a causal/anticausal decomposition.

The converse follows similarly by using the Paley-Wiener theorem.

3. Start with a realization (A,B,C,D) of G. Produce, via an eigenvalue decom-
position for example, a realization of the form

A =




A− 0 0
0 A+ 0
0 0 A0


 , B =




B−

B+

B0




C =
[
C− C+ C0

]

in which Re[λ(A−)] > 0, Re[λ(A+)] < 0, Re[λ(A0)] = 0. The assumption
G ∈ RL∞ implies that C0(sI − A0)

−1B0 = 0. Therefore, (A+, B+, C+, D) is
a realization for the stable or causal part and G+ and (A−, B−, C−, 0) is a
realization for the antistable or anticausal part G−.

Solution 10.2. Sufficiency follows from Theorem 3.2.1, or by direct calculation
as follows:

G∼G = D′D +D′C(sI −A)−1B +B′(−sI −A′)−1C ′D

+B′(−sI −A′)−1C ′C(sI −A)−1B

= I +B′(sI −A′)−1
(
−Q(sI −A)− (−sI −A′)Q+ C ′C

)
(sI −A)−1B

= I.

Conversely, suppose G∼G = I. Since G is square, this implies that G∼ = G−1.
Now G∼ has realization

G∼ s
=

[
−A′ −C ′

B′ D′

]
,

which is easily seen to be minimal. Also,

G−1 s
=

[
A−BD−1C BD−1

−D−1C D−1

]
,

which is also minimal. From G∼ = G−1 and the uniqueness of minimal realizations,
we conclude that D′ = D−1 and that there exists a nonsingular matrix Q such that

B′Q = −D−1C

−Q−1A′Q = A−BD−1C.

Elementary manipulations now yield the desired equations.
Let P = Q−1 and note that

AP + PA′ +BB′ = 0.
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Therefore P is the controllability gramian of G. If G is stable, the Hankel singular
values of G are given by λi(PQ) = 1 for all i. This means that approximating
a stable allpass system is a fruitless exercise—one can never do better than ap-
proximating it by the zero system, since this gives an infinity norm error of one.

Solution 10.3.

Ea
s
=

[
Ae Be

Ce De

]

V a
s
=

1
√
σr+1

[
A′ M
B′

a 0

]

W a
s
=

1
√
σr+1

[
A M
Ca 0

]
,

in which

M =

[
0
Il

]

with l being the multiplicity of σr+1.

E∼
a W a

s
=

1
√
σr+1

[
−A′

e C ′
e

−B′
e D′

e

] [
A M
Ca 0

]

s
=

1
√
σr+1




−A′
e C ′

eCa 0
0 A M

−B′
e D′

eCa 0


 . (10.1)

Now from (10.3.4) and (10.3.5), we have

A′
e

[
Q
N ′

]
+

[
Q
N ′

]
A+ C ′

eCa = 0

D′
eCa +B′

e

[
Q
N ′

]
= 0

in which N ′ =
[
−E′

1 0
]
. Also, from (10.4.2),

[
Q
N ′

]
M = σr+1

[
M
0

]
.

Applying the state transformation


 I

[
Q
N ′

]

0 I



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to the realization in (10.1), we see that

E∼
a W a

s
=

√
σr+1


 −A′

e

[
M
0

]

−Be 0




s
=

√
σr+1

[
−A′ M
−B′

a 0

]

= −√
σr+1B

′
a(sI +A′)−1M

= σr+1V a(−s)

The dual identity Ea(s)V a(−s) = σr+1W a(s) follows using as similar approach.

Solution 10.4. Let q ∈ RH−
∞(r) satisfy ‖g − q‖∞ = σr+1. (Such a q ex-

ists by Theorem 10.4.2.) By Lemma 10.4.3 we have that (g − q)(s)vr+1(−s) =
σr+1wr+1(s). Hence

q(s) = g(s)− σr+1
wr+1(s)

vr+1(−s)
.

Solution 10.5.

1. See Theorem A.4.4; by Lemma A.4.5, the T ij ’s have realization

[
T 11 T 12

T 21 0

]
s
=




A−B2F HC2 H B2

0 A−HC2 B1 −H 0
C1 − F C1 0 I

0 C2 I 0


 .

2. The assumption that A − B2C1 and A − B1C2 have no eigenvalues on the
imaginary axis is necessary and sufficient for the existence of stabilizing so-
lutions X and Y to the given Riccati equations (see Chapter 5). That is,
A − B2C1 − B2B

′
2X = A − B2F and A − B1C2 − Y C ′

2C2 = A − HC2 are
asymptotically stable. Now T 12 has realization

T 12
s
=

[
A−B2F B2

C1 − F I

]
.

Obviously, T12 is square. Elementary algebra shows that

X(A−B2F ) + (A−B2F )′X + (C1 − F )′(C1 − F ) = 0

(C1 − F ) +B′
2X = 0

and we conclude that T∼
12T 12 = I from Theorem 3.2.1. The assertion that

T 21 is square and allpass may be established similarly.
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Since T 12 and T 21 are square and allpass, we have

‖Fℓ(P ,K)‖∞ = ‖T 11 + T 12QT 21‖∞
= ‖T∼

12(T 11 + T 12QT 21)T
∼
21‖∞

= ‖T∼
12T 11T

∼
21 +Q‖∞

= ‖R+Q‖∞.

3. Note that

‖R+Q‖∞ = ‖R∼ +Q∼‖∞
= ‖(R∼)+ + ((R∼)− +Q∼)‖∞

Now (R∼)+ ∈ RH∞ and ((R∼)− +Q∼) is an arbitrary element of RH−
∞, so

by Nehari’s theorem the infimal norm is indeed the Hankel norm of (R∼)+.

We now compute a realization of R. Since

T 11
s
=




A−B2F HC2 H
0 A−HC2 B1 −H

C1 − F C1 0


 ,

we have

T 11T
∼
21

s
=




A−B2F HC2 H
0 A−HC2 B1 −H

C1 − F C1 0



[

−(A−HC2)
′ −C ′

2

(B1 −H)′ I

]

s
=




A−B2F HC2 H(B1 −H)′ H
0 A−HC2 (B1 −H)(B1 −H)′ B1 −H
0 0 −(A−HC2)

′ −C ′
2

C1 − F C1 0 0




s
=




A−B2F HC2 0 H
0 A−HC2 0 0
0 0 −(A−HC2)

′ −C ′
2

C1 − F C1 C1Y 0




s
=




A−B2F 0 H
0 −(A−HC2)

′ −C ′
2

C1 − F C1Y 0


 .

In the above calculation, we made use of the state transformation




I 0 0
0 I Y
0 0 I


 ,
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the identity B1−H+Y C ′
2 = 0 and the identity (A−HC2)Y +Y (A−HC2)

′+
(B1 −H)(B1 −H)′ = 0.

R = T∼
12T 12T

∼
21

s
=

[
−(A−B2F )′ (C1 − F )′

−B′
2 I

]


A−B2F 0 H
0 −(A−HC2)

′ −C ′
2

C1 − F C1Y 0




s
=




−(A−B2F )′ (C1 − F )′(C1 − F ) (C1 − F )′C1Y 0
0 A−B2F 0 H
0 0 −(A−HC2)

′ −C ′
2

−B′
2 C1 − F C1Y 0




s
=




−(A−B2F )′ 0 (C1 − F )′C1Y XH
0 A−B2F 0 H
0 0 −(A−HC2)

′ −C ′
2

−B′
2 0 C1Y 0




s
=




−(A−B2F )′ (C1 − F )′C1Y XH
0 −(A−HC2)

′ −C ′
2

−B′
2 C1Y 0


 .

Thus

R∼ s
=




A−B2F 0 B2

Y C ′
1(C1 − F ) A−HC2 −Y C ′

1

H ′X −C2 0


 .

Since A − B2F and A −HC2 are asymptotically stable, R∼ ∈ RH∞, so we
may take (R∼)+ = R∼.

4. Use Theorem 10.4.6 to obtain all optimal Nehari extensions of R∼. This will
have the linear fractional form −Q∼ = Fℓ(Q

∼
a ,U

∼), in which Q∼
a constructed

from R∼ following the steps in Section 10.4.1 and U∼ ∈ RH−
∞, ‖U‖∞ ≤

‖R∼‖−1
H . Thus Q = Fℓ(−Qa,U), in which U ∈ RH∞ and ‖U‖∞ ≤ ‖R∼‖−1

H .
From the parametrization of all stabilizing controllers, we have

K = Fℓ(Ks,Q)

= Fℓ(Ks,Fℓ(−Qa,U))

= Fℓ(Cℓ(Ks,−Qa),U)

= Fℓ(Ka,U)

in which Ka = Cℓ(Ks,−Qa) is the composition of the two linear fractional
transformations Ks and −Qa and U ∈ RH∞ with ‖U‖∞ ≤ ‖R∼‖−1

H .
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Solution 10.6.

1. If Ĝ ∈ RH−
∞ has (strictly) fewer poles that G, then

‖G− Ĝ‖∞ = ‖G∼ − Ĝ
∼‖∞ ≥ σmin[G

∼] = ǫ0.

Conversely, if ǫ ≥ ǫ0, let Ĝ
∼
be the optimal Hankel norm approximant to G∼

of degree n − l, in which n is the degree of G∼ and l is the multiplicity of
σmin[G

∼]. Then Ĝ
∼ ∈ RH−

∞, so Ĝ ∈ RH∞ is of strictly lower degree than

G and ‖G− Ĝ‖∞ = ǫ0 ≤ ǫ.

Now suppose that ǫ > ǫ0, let Ĝ be the optimal Hankel norm approximant as
discussed above and consider the family of plants

G+∆ = Ĝ+
δM

(s− 1)l
.

Then

‖∆‖∞ = ‖Ĝ−G+
δM

(s− 1)l
‖∞

≤ ‖Ĝ−G‖∞ + ‖ δM

(s− 1)l
‖∞

≤ ǫ0 + δ‖M‖
< ǫ.

Furthermore, for and δ > 0, Ĝ+ δM
(s−1)l

has n− l + l = n unstable poles, the

same number as G.

Suppose, to obtain a contradiction, that K stabilizes the familily of plants
G + ∆ as given above. For δ 6= 0, G + ∆ has n unstable poles. Since K

stabilizes G+∆, the Nyquist diagram of det
(
I − (G+∆)K(s)

)
must make

n+ k encirclements of the origin as s traverses the Nyquist contour, in which
k is the number of right-half-plane poles of K. Since K must also stabilize
Ĝ, the Nyquist diagram of det

(
I−ĜK(s)

)
must make n− l+k encirclements

of the origin as s traverses the Nyquist contour, since Ĝ has only n− l right-
half-plane poles. But the Nyquist diagram of det

(
I−GK(s)

)
is a continuous

function of δ, and therefore there exists a δ0 such that the Nyquist diagram

of det
(
I − (Ĝ + δ0M

(s−1)l
)K(s)

)
crosses the origin. This plant is therefore not

stabilized by K. We conclude that no controller can stabilize the the familily
of plants G+∆ as given above.

2. Write G = G+ +G−. Then

K(I −GK)−1 = K̂(I +G+K̂)−1[I − (G+ +G−)K̂(I +G+K̂)−1]−1

= K̂[I +G+K̂ − (G+ +G−)K̂]−1

= K̂(I −G−K̂)−1.
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Note that

[
I −K

−G I

]
=

[
I 0

−G+ I

] [
I −K̂

−G− I

] [
I 0

0 I +G+K̂

]−1

,

and that I +G+K̂ = (I −G+K)−1.

Suppose K̂ stabilizes G−. Define K = K̂(I +G+K̂)−1 and note that

[
I −K

−G I

]−1

=

[
I 0

0 I +G+K̂

] [
I −K̂

−G− I

]−1 [
I 0

G+ I

]

The last two matrices on the right-hand side of this identity are in H∞, since

G+ ∈ H∞ and K̂ stabilizes G−. The only poles that I+G+K̂ can have in the

right-half plane are the right-half-plane poles of K̂, which must be cancelled

by the zeros of

[
I −K̂

−G− I

]−1

. Hence the matrix on the left-hand side is

in RH∞, which means that K stabilizes G. Conversely, suppose K stabilizes

G. Define K̂ = K(I −G+K)−1 and note that

[
I −K̂

−G− I

]−1

=

[
I 0
0 I −G+K

] [
I −K

−G I

]−1 [
I 0

−G+ I

]
.

Arguing as before, we conclude that K̂ stabilizes G−.

Hence infK ‖K(I −GK−1‖∞ = inf
K̂

‖K̂(I −G−K̂)−1‖∞ = 1/σmin[G
∼
−].

Thus the optimal (maximum) stability margin for additive uncertainties is
σmin[G

∼
−], which means that the easier the unstable part is to approximate,

the harder it is to robustly stablize. This counter-intuitive result stems from
the requirement of the additive robustness theorem that all the (G + ∆)’s
must have the same number of unstable poles. If the unstable part is easy
to approximate, there is a system that is close to G that has fewer unstable
poles. Thus, we cannot allow very large ‖∆‖∞.

3. Comparing K(I −GK)−1 with Fℓ(P ,K) = P 11 +P 12K(I −P 22K)−1P 21,
we see that P 11 = 0, P 12 = I, P 21 = I and P 22 = G. Hence we need

[
P 11 P 12

P 21 P 22

]
=

[
0 I
I G

]

s
=




A 0 B
0 0 I
C I 0


 .

We can assume that G(∞) = 0, without loss of generality; the system G can
be replaced by G−G(∞) by using the controller K̃ = K(I −G(∞)K)−1.
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Before beginning the detailed analysis, we present a brief plausibility argu-

ment. If K̂ is invertible,

K̂(I −G−K̂)−1 = (K̂
−1

−G−)
−1.

Now let (K̂
∼
)−1 be an (n− l)th order Hankel approximation of G∼

−, so that

K̂
−1

−G− is allpass, completely unstable and with ‖K̂
−1

−G−‖∞ = σn(G
∼
−).

This means that K̂(I −G−K̂)−1 will be stable and ‖K̂(I −G−K̂)−1‖∞ =
1

σn(G
∼

−
)
.

Assume, without loss of generality, that

A =

[
A+ 0
0 A−

]
, B =

[
B+

B−

]
, C =

[
C+ C−

]
,

in which Re[λ(A+)] < 0 and Re[λ(A−)] > 0. Thus G+ = C+(sI − A+)
−1B+

and G− = C−(sI − A−)
−1B−. Hence G∼

− = −B′
−(sI + A′)−1C ′

− and the
controllability and observability gramians of this realization of G∼

− satisfy

−A′
−Q− −Q−A− + C ′

−C− = 0

−P−A
′
− −A−P− +B−B

′
− = 0.

Thus the Hankel singular values of G∼
− are equal to

√
λi(Q−P−).

According to the solution of Problem 10.5, we need to find R∼. To do this,
we need to find the stabilizing solutions to the Riccati equations

XA+A′X −XBB′X = 0

AY + Y A′ − Y C ′CY = 0,

which exist provided A has no eigenvalue on the imaginary axis. Assume now,
without loss of generality, that (A−, B−, C−) is minimal, so Q− and P− are
nonsingular. Then A− − B−B

′
−P

−1
− = −P−A

′
−P

−1
− , which is asymptotically

stable, and A− − Q−1
− C ′

−C− = −Q−1
− A′

−Q−, which is also asymptotically
stable. Therefore, the stabilizing solutions to the Riccati equations are

X =

[
0 0
0 P−1

−

]
; Y =

[
0 0
0 Q−1

−

]

The system R∼ is therefore given by

R∼ s
=




A−BF 0 B
0 A−HC 0

H ′X −C 0




s
=

[
A−BF B
H ′X 0

]
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in which F = B′X and H = Y C ′. Noting that

H ′X = CY X =
[
0 C−Q

−1
− P−1

−

]
,

we eliminate the unobservable modes to obtain the realization

R∼ s
=

[
A− −B−B

′
−P

−1
− B−

C−Q
−1
− P−1

− 0

]

s
=

[
−P−A

′
−P

−1
− B−

C−Q
−1
− P−1

− 0

]

s
=

[
−A′

− P−1
− B−

C−Q
−1
− 0

]
.

The controllability and observability gramians of this realization are easily
seen to be P−1

− and Q−1
− respectively. Hence

‖R∼‖H =
√

λmax(P
−1
− Q−1

− )

=
1√

λmin(Q−P−)

=
1

σmin(G
∼
−)

.

Solution 10.7.

1. If the future input is zero, i.e., uk = 0 for k ≥ 1, then the future output is

yn =
0∑

k=−∞

hn−kuk, n = 1, 2 . . .

=

∞∑

m=0

hn+mu−m, n = 1, 2 . . .

=

∞∑

m=1

hn+m−1vm, n = 1, 2 . . .

in which vm = u1−m is the reflection of the past input. This may be written
as the semi-infinite vector equation




y1
y2
y3
...


 =




h1 h2 h3 . . .
h2 h3 h4 . . .
h3 h4 h5 . . .
...

...
...

. . .







v1
v2
v3
...


 .
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2. Note that

1

2π

∫ 2π

0

j(θ − π)ejkθ dθ =

[
(θ − π)ejkθ

2πk

]2π

0

−
∫ 2π

0

1

2πk
ejkθ dθ

=
1

k
.

Therefore, by Nehari’s theorem, ‖ΓH‖ ≤ supθ∈[0,2π) |j(θ − π)| = π. Hilbert’s

inequality is immediate, noting that v∗ΓHu ≤ ‖ΓH‖‖v‖2‖u‖2 ≤ π‖v‖2‖u‖2.

3. This is a direct application of Nehari’s theorem. The idea is that eN =
zN−1(f − f̂) is an extension of the “tail” function tN .

Solution 10.8. That OC = Γ is obvious. To find the Hankel singular values, note
that

λ(Γ′Γ) = λ(C′O′OC)
= λ(CC′O′O)

= λ(PQ).

Alternatively, consider the equations Γvi = σiwi and Γ′wi = σivi. If v = C′P−1x0,
then Γv = OCC′P−1x0 = Ox0. And if w = Ox0, then Γ′w = C′O′Ox0 = C′Qx0.
Therefore Γ′Γv = σ2w if Qx0 = σ2P−1x0, from which we conclude that σ2 must
be an eigenvalue of PQ.

Solution 10.9.

1. Choosing r = n − 1 and γ = σn in the construction of the optimal allpass
embedding yields a Qa ∈ RH∞ of McMillan degree n − l, since no Hankel
singular value of G is strictly smaller than σn and exactly n − l are strictly
larger than σn. Now ‖Ga − Qa‖∞ = σn, so set Ĝ equal to the (1,1)-block

of Qa. (We may also choose Ĝ by using any constant U in Theorem 10.4.5.

Hence ‖G−Ĝ‖∞ ≤ σn, and in fact equality must hold because σn is a lower
bound on the infinity norm error incurred in approximating G by a stable
system of degree less than or equal to n− 1.

2. Suppose, without loss of generality, that G is given by a balanced realization
(A,B,C,D) partitioned as

Σ =

[
Σ1 0
0 σnIl

]
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with

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]

C =
[
C1 C2

]
.

Then Ĝ, the (1, 1)-block of Qa, is given by

Ĝa11 = D̃ + C̃(sI − Ã)−1B̃

in which

Ã = E−1
1 (σ2

r+1A
′
11 +Σ1A11Σ1 + σnC

′
1UB′

1)

B̃ = E−1
1 (Σ1B1 − σr+1UC1)

C̃ = C1Σ1 −B′
1σr+1U

D̃ = D + σnU

in which UU ′ ≤ I and B2 = C ′
2U . Direct calculations show that the control-

lability gramian of this realization is Σ1E
−1
1 and the observability gramian of

this realization is Σ1E1 and we conclude that the Hankel singular values of Ĝ
are the diagonal entries of Σ1.

3. Iteration and the triangle inequality show the result.

4. The optimal allpass embedding is constructed so that σ−1
n (Ga−Qa) is allpass.

Deleting the states corresponding to σn from Ga gives G̃a and an examination
of the equations (10.3.4) to (10.3.6) and (10.4.3) shows that corresponding
equations for the truncated error system can be obtained merely by truncating
the rows and columns associated with γ = σn from Pe and Qe in (10.4.3), the
product of which remains σnI. We conclude that σ−1

n (G̃a −Qa) is allpass by
invoking Theorem 3.2.1.

To conclude the error bound, we note that

‖Ga − G̃a‖∞ ≤ ‖Ga −Qa‖+ ‖Qa − G̃a‖∞
= σn + σn = 2σn.

Taking the (1, 1)-block, we obtain the desired inequality ‖G− G̃‖∞ ≤ 2σn.



Solutions to Problems in

Chapter 11

Solution 11.1. Consider

[
A B

]
WW−1

[
C
D

]
= 0

where

W =

[
I 0

−B−1A I

]
.

This gives
[
0 B

] [ C
D +B−1AC

]
= 0.

Since B is nonsingular, D + B−1AC = 0. Because C is square and of full column
rank it must be nonsingular.

Solution 11.2. By direct computation

X∗X =

[
X∗

11 X∗
21

X∗
12 X∗

22

] [
X11 X12

X21 X22

]

=

[
X∗

11X11 +X∗
21X21 X∗

11X12 +X∗
21X22

X∗
12X11 +X∗

22X21 X∗
12X12 +X∗

22X22

]
,

therefore

trace(X∗X) = trace(X∗
11X11) + trace(X∗

21X21) + trace(X∗
12X12) + trace(X∗

22X22).

Since each term is nonnegative,

inf
X22

∥∥∥∥
[

X11 X12

X21 X22

]∥∥∥∥
2

=

∥∥∥∥
[

X11 X12

X21 0

]∥∥∥∥
2

= trace(X∗
11X11) + trace(X∗

21X21) + trace(X∗
12X12).

143
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Solution 11.3. Substituting for Â and B̂aa gives

= ÂY (Z−1)′ + Z−1Y Â′ + B̂aaB̂
′
aa

= (−A′ − Z−1(Y Baa + C ′
aaDaa)B

′
aa)Y (Z−1)′

+ Z−1Y (−A−Baa(B
′
aaY +D′

aaCaa)(Z
−1)′)

+ Z−1(Y Baa + C ′
aaDaa)(B

′
aaY +D′

aaCaa)(Z
−1)′

= −A′Y (Z−1)′ − Z−1Y A− Z−1Y BaaB
′
aaY (Z−1)′ + Z−1C ′

aaCaa(Z
−1)′

= Z−1
(
−ZA′Y − Y AZ ′ − Y BaaB

′
aaY + C ′

aaCaa

)
(Z−1)′

= Z−1
(
−(Y X − I)A′Y − Y A(XY − I) + Y (AX +XA′)Y −A′Y − Y A

)
Z−1

= 0

Solution 11.4. From



D11 D12 D13 0
D21 D22 D23 D24

D31 D32 D33 D34

0 D42 D43 0







D′
11 D′

21 D′
31 0

D′
12 D′

22 D′
32 D′

42

D′
13 D′

23 D′
33 D′

43

0 D′
24 D′

34 0


 = I

it follows that

D42D
′
12 +D43D

′
13 = 0

⇒ D−1
42 D43 = −D′

12(D
−1
13 )

′.

In the same way, we may conclude from D′
aaDaa = I, that

D′
21D24 +D′

31D34 = 0

⇒ D34D
−1
24 = −(D−1

31 )
′D′

21.

Solution 11.5. From the (1, 2)-partition of

0 =

[
A′ 0

0 Â′

] [
Y −Z

−Z ′ XZ

]
+

[
Y −Z

−Z ′ XZ

] [
A 0

0 Â

]

+

[
C ′

aa

−Ĉ ′
aa

] [
Caa −Ĉaa

]
,

we conclude that

0 = A′Z + ZÂ+ C ′
aaĈaa

⇒ Â = −Z−1(A′Z + C ′
aaĈaa)
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which establishes the first part.
Substituting for Caa, Ĉaa and B̂4 gives

Â− B̂4D
−1
24 Ĉ2 = −Z−1

(
A′Z + C ′

2Ĉ2 + C ′
3Ĉ3 − (C ′

2D24 + C ′
3D34)D

−1
24 Ĉ2

)

= −Z−1
(
A′Z + C ′

3Ĉ3 − C ′
3D34D

−1
24 Ĉ2

)

= −Z−1
(
A′Z + C ′

3(Ĉ3 + (D−1
31 )

′D′
21Ĉ2)

)
.

This proves the second part.
By direct calculation

Ĉ3 + (D−1
31 )

′D′
21Ĉ2 = (D−1

31 )
′
[
D′

21 D′
31

]
[

Ĉ2

Ĉ3

]

= (D−1
31 )

′
[
I 0 0 0

]
D′

aaĈaa

= (D−1
31 )

′
[
I 0 0 0

]
D′

aa(CaaX +DaaB
′
aa)

= (D−1
31 )

′(
[
I 0 0 0

]
(D′

aaCaaX +B′
1)

= (D−1
31 )

′([D′
11C1 +D′

21C2]X +D′
31C3X +B′

1)

= (D−1
31 )

′(−B′
1Y X +B′

1)

= −(D−1
31 )

′B′
1Z

which proves part three.
From parts one, two and three we have

Â− B̂4D
−1
24 Ĉ2 = −Z−1

(
A′Z + C ′

3(Ĉ3 + (D−1
31 )

′D′
21Ĉ2)

)

= −Z−1
(
A′Z − C ′

3(D
−1
31 )

′B′
1Z
)

= −Z−1
(
A−B1D

−1
31 C3

)′
Z

as required.

Solution 11.6. Let us suppose that the generator of all controllers given in
(8.3.11) is described by

ẋ = Akx+Bk1y +Bk2r

u = Ck1x+ r

s = Ck2x+ y.

Multiplying the first equation on the left by Y ′
∞1(I − γ−2Y∞X∞) and replacing x

with X∞1q gives

Y ′
∞1(I − γ−2Y∞X∞)X∞1q̇ = Y ′

∞1(I − γ−2Y∞X∞)AkX∞1q

+ Y ′
∞1(I − γ−2Y∞X∞)[Bk1y +Bk2r]

u = Ck1X∞1q + r

s = Ck2X∞1q + y.
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Since Y∞ = (Y ′
∞1)

−1Y ′
∞2 and X∞ = X∞2X

−1
∞1, we get

Ek = Y ′
∞1X∞1 − γ−2Y ′

∞2X∞2.

In the same way we get

Ck1 = −F∞X∞1

= −(D′
12C1X∞1 +B′

2X∞2)

and

Ck2 = −(C2 + γ−2D21B
′
1X∞)X∞1

= −(C2X∞1 + γ−2D21B
′
1X∞2).

The formulae for the Bki’s are just a little more complicated, but direct calculation
gives

Bk1 = Y ′
∞1(I − γ−2Y∞X∞)B1D

′
21 + Y ′

∞1Y∞(C ′
2 + γ−2X∞B1D

′
21)

= Y ′
∞1B1D

′
21 + Y ′

∞2C
′
2

and

Bk2 = Y ′
∞1(I − γ−2Y∞X∞)(B2 + γ−2Z∞F ′

∞)

= Y ′
∞1(I − γ−2Y∞X∞)B2 + γ−2Y ′

∞1Y∞(C ′
1D12 +X∞B2)

= Y ′
∞1B2 + γ−2Y ′

∞2C
′
1D12.

Finally, the equation for Ak comes from expanding

Y ′
∞1(I − γ−2Y∞X∞)

(
A+ γ−2B1B

′
1X∞ −B2F∞

−(B1D
′
21 + Z∞C ′

2z)(C2 + γ−2D21B
′
1X∞)

)
X∞1,

in which

C2z = C2 + γ−2D21B
′
1X∞

F∞ = D′
12C1 +B′

2X∞.

This gives

Ak = (Y ′
∞1X∞1 − γ−2Y ′

∞2X∞2)X
−1
∞1

(
AX∞1 + γ−2B1B

′
1X∞2

−B2(D
′
12C1X∞1 +B′

2X∞2)
)

−
(
−Y ′

∞1(I − γ−2Y∞X∞)B1D
′
21

+ Y ′
∞2(C

′
2 + γ−2X∞B1D21)

)
(C2X∞1 + γ−2D21B

′
1X∞2).

The first Hamiltonian expression in Theorem 11.5.1 gives

(A−B2D
′
12C1)X∞1 − (B2B

′
2 − γ−2B1B

′
1)X∞2 = X∞1TX .
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Substituting and re-arranging gives

Ak = (Y ′
∞1X∞1 − γ−2Y ′

∞2X∞2)TX

− (Y ′
∞1B1D

′
21 + Y ′

∞2C
′
2)(C2X∞1 + γ−2D21B

′
1X∞2)

= EkTX +Bk1Ck2.

Solution 11.7.

1. Since (I −GK)−1 = I +GK(I −GK)−1, we get

Fℓ(P ,K) =

[
GK(I −GK)−1

(I −GK)−1

]

=

[
0
I

]
+

[
G

G

]
K(I −GK)−1I

=

[
GK(I −GK)−1

(I −GK)−1

]
,

since I +GK(I −GK)−1 = (I −GK)−1. That P has the realization given
is straight forward.

2. Replacing u with (
√
2D)−1u gives

P̃
s
=




A 0 B(
√
2D)−1

[
C
C

] [
0
I

] [
(
√
2)−1I

(
√
2)−1I

]

C I (
√
2)−1I


 .

Since
[
(
√
2)−1I (

√
2)−1I

] [ (
√
2)−1I

(
√
2)−1I

]
= I,

D12 has been orthogonalized as required.

3. It is easy to check that

(
√
2)−1

[
I −I
I I

]

is orthogonal.

4. Direct substitution into the LQG Riccati equations given in Chapter 5 yields

0 = (A−BD−1C)′X +X(A−BD−1C)− 1

2
XB(D′D)−1B′X

and
AY + Y A′ − Y C ′CY.
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5. There are at least two ways of deriving the Riccati equations we require.
One method uses the loop-shifting transformations given in Chapter 4, while
an alternative technique employs the following H∞ Riccati equations which
where derived to deal with the case that D11 6= 0. They are:

0 = (A+ (B1D
′
11D̂12D̂

′
12 − γ2B2D

′
12)(γ

2I −D11D
′
11D̂12D̂

′
12)

−1C1)
′X∞

+X∞(A+ (B1D
′
11D̂12D̂

′
12 − γ2B2D

′
12)(γ

2I −D11D
′
11D̂12D̂

′
12)

−1C1)

−X∞(B2B
′
2 − (B1 −B2D

′
12D11)R

−1(B1 −B2D
′
12D11)

′)X∞

+C ′
1D̂12(I − γ−2D̂′

12D11D
′
11D̂12)

−1D̂′
12C1,

in which
R = (γ2I −D′

11D̂12D̂
′
12D11)

and

0 = (A+B1(γ
2I − D̂′

21D̂21D
′
11D11)

−1(D̂′
21D̂21D

′
11C1 − γ2D′

21C2))Y∞

+Y∞(A+B1(γ
2I − D̂′

21D̂21D
′
11D11)

−1(D̂′
21D̂21D

′
11C1 − γ2D′

21C2))
′

−Y∞(C ′
2C2 − (C1 −D11D

′
21C2)

′R̂−1(C1 −D11D
′
21C2))Y∞

+B1D̂
′
21(I − γ−2D̂21D

′
11D11D̂

′
21)

−1D̂21B
′
1,

in which
R̂ = (γ2I −D11D̂

′
21D̂21D

′
11).

Evaluating the linear term in the first equation gives

(A− γ2

2
BD−1

[
I I

] [ γ−2I 0

−γ−2

2 (γ2 − 1
2 )

−1I (γ2 − 1
2 )

−1I

] [
C
C

]
)X∞

= (A−BD−1
[
I I

]
[

1
2I
1
2I

]
C)X∞.

The constant term is zero because D∗
⊥C1 = 0. The coefficient of the quadratic

term is given by

1

2
B(D′D)−1B′(1− 1

2
(γ2 − 1

2
)−1)

=
1

2
B(D′D)−1B′ γ

2 − 1

γ2 − 1
2

.

Combining these yields

0 = (A−BD−1C)′X∞ +X∞(A−BD−1C)− γ2 − 1

2γ2 − 1
X∞B(D′D)−1B′X∞.
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Turning to the second equation we see that the constant term is zero since
B1 = 0. The linear terms are given by AY∞ + Y∞A′. The coefficient of the
quadratic term is

C ′C − γ−2

([
C
C

]
−
[

0
I

]
C

)′([
C
C

]
−
[

0
I

]
C

)
= (1− γ−2)C ′C.

Collecting terms then gives

AY∞ + Y∞A′ − (1− γ−2)Y∞C ′CY∞.

6. By referring to the LQG equations, it is east to check that

X∞ =
γ2 − 1

2

γ2 − 1
X and Y∞ = (1− γ−2)−1Y

solve the H∞ Riccati equations. Check that they are the stabilizing solutions.

7. If G is stable, Y = 0 and X ′
∞2X∞1 is nonnegative when γ ≥ 1. When G

is minimum phase X = 0 and Y ′
∞2Y∞1 is nonnegative when γ ≥ 1 (these

conditions come from Theorem 11.5.1). If G is stable and nonminimum phase
we see that Y = 0, X 6= 0, γopt = 1 and

X∞ = lim
γ↓1

γ2 − 1
2

γ2 − 1
X

which is unbounded. A parallel argument may be used for Y∞.

8. If G is stable and minimum phase, −ρG−1 is a stabilizing controller because
no right-half-plane cancellations occur between the plant and controller when
forming GK and the resulting transfer function is constant. Next, we see
that [

GK(I −GK)−1

(I −GK)−1

]
=

[
ρ(1 + ρ)−1

(1 + ρ)−1

]
,

which gives

∥∥∥∥
[

GK(I −GK)−1

(I −GK)−1

]∥∥∥∥
∞

=

√(
ρ

1 + ρ

)2

+

(
1

1 + ρ

)2

=

√
ρ2 + 1

1 + ρ
.

Now
d

dρ

∥∥∥∥
[

GK(I −GK)−1

(I −GK)−1

]∥∥∥∥
∞

=
ρ− 1

(1 + ρ)2
√
ρ2 + 1
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which vanishes at ρ = 1. This means that
∥∥∥∥
[

GK(I −GK)−1

(I −GK)−1

]∥∥∥∥
∞

has a minimum at ρ = 1. Thus

inf
K

∥∥∥∥
[

GK(I −GK)−1

(I −GK)−1

]∥∥∥∥
∞

=

(√
ρ2 + 1

1 + ρ

)∣∣∣∣∣
ρ=1

=
1√
2
.

Solution 11.8. It follows from (10.2.9) that

∥∥∥∥
[

D

N

]∣∣∣∣
H

≤
∥∥∥∥
[

D

N

]∥∥∥∥
∞

= 1.

Now suppose that ‖
[

D

N

]
‖H = 1. In this case there exists f , g ∈ RH2 such that

[
D(−s)
N(−s)

]
g(s) = f(−s).

Since D,N ∈ RH∞ are coprime, there exist U ,V ∈ RH∞ such that

V D +UN = I

⇒ V (−s)D(−s) +U(−s)N(−s) = I.

This gives

g(s) =

[
V (−s)
U(−s)

]
f(−s) 6∈ RH2

which is a contradiction. We therefore conclude that

‖
[

D

N

]
‖H < 1.

Solution 11.9. We follow the construction given in Section 11.2.

Step 1: Construct D13 such that

[
D12 D13

] [ D′
12

D′
13

]
= I.
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Step 2: Construct D31 such that

[
D′

21 D′
31

] [ D21

D31

]
= I.

Step 3: Find
[
D42 D43

]
such that

[
D12 D13

] [ D′
42

D′
43

]
= 0.

Step 4: Find
[
D′

24 D′
34

]
such that

[
D′

24 D′
34

] [ D21

D31

]
= 0.

Step 5: We can now complete the construction with

[
D22 D23

D32 D33

]
= −

[
D′

21 D′
31

D′
24 D′

34

]−1 [
D′

11 0
0 0

] [
D12 D13

D42 D43

]

=

[
0 0
0 0

]

since D11 = 0.

Solution 11.10. The first expression comes from the (2, 2)-partition of:

0 =




A′
1 0 0
0 A′

2 0
0 0 A′






Y11 0 ǫY13

0 Y22 0
ǫY ′

13 0 ǫ2Y33




+




Y11 0 ǫY13

0 Y22 0
ǫY ′

13 0 ǫ2Y33






A1 0 0
0 A2 0
0 0 A




+




0 C ′
1 C ′

31

C ′
2 0 0
0 ǫC ′ ǫC ′

33






0 C2 0
C1 0 ǫC
C31 0 ǫC33


 ,

which defines the observability gramian of




0 R12 R13

R21 γ−1
r+1R22 R23

R31 R32 R33


 .
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The controllability gramian is defined by

0 =




A1 0 0
0 A2 0
0 0 A






X11 0 0
0 X22 ǫX23

0 X ′
23 ǫ2X33




+




X11 0 0
0 X22 ǫX23

0 X ′
23 ǫ2X33






A′
1 0 0
0 A′

2 0
0 0 A′




+




B1 0 0
0 B2 B32

0 ǫB ǫB33






B′
1 0 0
0 B′

2 ǫB′

0 B′
32 ǫB′

33


 .

The (2, 2)-partition yields

A2X22 +X22A
′
2 +B2B

′
2 +B32B

′
32 = 0.

To establish the spectral radius condition, we consider

[
R12 R13

] s
=

[
A2 B2 B32

C2 D12 D13

]
.

Since
R12R

∼
12 +R13R

∼
13 = I

and since
[
R12 R13

]
has a stable right inverse, (R12,R13) are a normalized

left coprime pair. This means that ‖
[
R12 R13

]
‖H < 1 and therefore that

ρ(X22Y22) < 1.

Solution 11.11. The realization in Theorem 11.3.3 is given by

ẋ = Âx+
[
B̂2 B̂4

] [ w
u

]

[
z
y

]
=

[
Ĉ2

Ĉ4

]
x+

[
D22 D24

D42 0

] [
w
u

]
.

Multiplying the first equation on the left by Z gives

Zẋ = ZÂx+ Z
[
B̂2 B̂4

] [
w
u

]

[
z
y

]
=

[
Ĉ2

Ĉ4

]
x+

[
D22 D24

D42 0

] [
w
u

]
.

Carrying out the calculations gives:

Zẋ = (A′ + Y AX − C ′
aaDaaB

′
aa)x

+


[ Y B2 0

]
+
[
C ′

1 C ′
2 C ′

3

]



D12 0
D22 D24

D32 D34





[

w
u

]
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which completes the verification since the second equation remains uneffected.





Solutions to Problems in

Appendix A

Solution A.1. Since ND−1 = N cD
−1
c , it follows that W = D−1

c D. To show
that W ∈ RH∞, let X and Y be RH∞ transfer function matrices such that
XN c + Y Dc = I, which exist because N c and Dc are right coprime. Multiplying
on the right by W = D−1

c D, we see that W = XN + Y D ∈ RH∞.

Solution A.2. LetX and Y beRH∞ transfer function matrices such that XN+
Y D = I, which exist because N and D are right coprime. Now write the Bezout
identity as

[
X Y

] [ N

D

]
= I

For any s in the closed-right-half plane (including infinity),
[
X N

]
(s) is a finite

complex matrix, and
[
X Y

]
(s)

[
N

D

]
(s) = I

implies that [
N

D

]
(s)

is a complex matrix with full column rank.
Now write GD = N . If s0 is a pole of G in the CRHP, it must be a zero of

detD(s0), since N ∈ RH∞. If s0 is a zero of detD(s), there exists an x 6= 0 such
that

f = D
x

s− s0
∈ RH∞.

Hence
Gf = N

x

s− s0
,

which implies that G has a pole at s0, since f ∈ RH∞ and N(s0)x 6= 0, due to
coprimeness.
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Solution A.3. The verification of (A.2.3) is a routine application of the state-
space system interconnection (or inversion) results of Problem 3.6. Since

[
Dr

N r

]
s
=




A−BF B
−F I

C −DF D




a direct application of Problem 3.6, part 4, yieldsN rD
−1
r = D+C(sI−A)−1B = G.

The identity D−1
l N l = N rD

−1
r follows from the (2, 1)-block of (A.2.3).

Now note that

[
V r U r

] s
=

[
A−HC B −HD H

F I 0

]
.

Application of a dual version of Problem 3.6, part 4, yields

−V −1
r U r

s
=

[
A−HC − (B −HD)F H

−F 0

]
,

which we may write out as

˙̂x = (A−HC − (B −HD)F )x̂+Hy

u = −F x̂.

Replacing −F x̂ with u in the ˙̂x equation yields (A.2.6).

Solution A.4. Let
[

D

N

]
s
=




Â B̂

Ĉ1 D̂1

Ĉ2 D̂2




be a minimal realization. Since N and D are in RH∞, Â is asymptotically stable.
Also, since N , D are r.c., 


Â− sI B̂

Ĉ1 D̂1

Ĉ2 D̂2




has full column rank for all s in the closed-right-half plane.
Using Problem 3.6, part 4, yields

G = ND−1 s
=

[
Â− B̂D̂−1

1 Ĉ1 B̂D̂−1
1

Ĉ2 − D̂2D̂
−1
1 Ĉ1 D̂2D̂

−1
1

]
.
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Define

A = Â− B̂D̂−1
1 Ĉ1

B = B̂D̂−1
1

C = Ĉ2 − D̂2D̂
−1
1 Ĉ1

D = D̂2D̂
−1
1

W = D̂−1
1

F = −D̂−1
1 Ĉ1.

Then

BW−1 = B̂

A−BW−1F = Â− B̂D̂−1
1 Ĉ1 + B̂D̂−1

1 Ĉ1 = Â

−W−1F = Ĉ1

W−1 = D̂1

C −DW−1F = Ĉ2 − D̂2D̂
−1
1 Ĉ1 + D̂2D̂

−1
1 Ĉ1 = Ĉ2

DW−1 = D̂2.

Since A− B(W−1F ) = Â is asymptotically stable, (A,B) is stabilizable. To prove
the detectability of (A,C), note that if

[
A− sI

C

]
x = 0 ⇔

[
Â− sI B̂

Ĉ2 D̂2

] [
I

−D̂−1
1 Ĉ1

]
x = 0

⇔




Â− sI B̂

Ĉ1 D̂1

Ĉ2 D̂2



[

I

−D̂−1
1 Ĉ1

]
x = 0.

Thus, if Re(s) ≥ 0, then

[
I

−D̂−1
1 Ĉ1

]
x = 0, implying x = 0, and we conclude that

(A,C) is detectable. Thus (A,B,C,D) is a stabilizable and detectable realization
of G such that N , D has state-space realization as given in the problem statement,
for suitable W and F .

Solution A.5. The (1, 1)-block was verified in the solution to Problem A.3. The
(1, 2)- and (2, 1)-blocks are direct applications of the formula for inverting a state-
space realization—see Problem 3.6. The (2, 2)-block is a direct application of Prob-
lem 3.6, part 4.

Solution A.6. Since G is assumed stable, every stabilizing controller is given by
K = Q(I +GQ)−1. Now

y = (I −GK)−1v
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= (I +GQ)v.

Therefore, for perfect steady-state accuracy in response to step inputs, we need
(I +GQ)(0) = 0 (by the final value theorem of the Laplace transform). Hence all
the desired controllers have the form

K = Q(I +GQ)−1, Q ∈ RH∞, Q(0) = −G−1(0).

As an example, consider g(s) = 1
s+1 . Then

k = − (s+ 1)q

s+ 1− q
, q ∈ RH∞, q(0) = 1.

Solution A.7. Let (A,B,C,D) be any stabilizable and detectable realization of
G, and suppose D and N are given by

[
D

N

]
s
=




A−BW−1F BW−1

−W−1F W−1

C −DW−1F DW−1


 .

We aim to choose F and W such that the allpass equations of Theorem 3.2.1 are
satisfied and A − BW−1F is asymptotically stable. If we can do this, then the
coprime factorization satisfies the equation

[
D∼ N∼

] [ D

N

]
= I,

which defines the normalized coprime factorization. The allpass equations obtained
from Theorem 3.2.1 yield

0 = X(A−BW−1F ) + (A−BW−1F )′X + (W−1F )′(W−1F )

+ (C −DW−1F )′(C −DW−1F )

0 = (W ′)−1
(
−W−1F +D′(C −DW−1F ) +B′X

)

I = (W ′)−1(I +D′D)W−1.

Thus

W ′W = I +D′D

F = (W ′)−1(D′C +B′X).

It remains to determine X. Substitution F and W into into the observability
gramian equation, we obtain (after some manipulation) the Riccati equation

X(A−BS−1D′C) + (A−BS−1D′C)′X −XBS−1B′X + C ′S̃−1C = 0
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in which S = I + D′D and S̃ = I + DD′. (Note that I − DS−1D′ = S̃−1). By
the results of Chapter 5, this Riccati equation has a stabilizing solution provided
(A − BS−1D′C,BS− 1

2 ) is stabilizable (which is true, since (A,B) is stabilizable)

and provided (A − BS−1D′C, S̃− 1
2C) has no unobservable modes on the imagi-

nary axis (which is also true, since (A,C) is detectable). The fact that the required
assumptions hold follow immediately from the Popov-Belevitch-Hautus test for con-
trollability/observability.

Thus, if X is the stabilizing solution to the above Riccati equation, and F and
W are defined from X as above, the allpass equations are satisfied and A−BW−1F
is asymptotically stable. We conclude that N , D defined by the given state-space
realization is a normalized right coprime factorization of G.

To interpret this in the context of LQ control, consider the case D = 0. We then
have

XA+A′X −XBB′X + C ′C = 0

F = B′X

W = I.

This is exactly the same as the situation that arises in minimizing

J =

∫ ∞

0

(x′C ′Cx+ u′u) dt.

For D 6= 0, the Riccati equation is that which we need to minimize

J = ‖z‖22 =

∫ ∞

0

z′z dt.

Now

z =

[
G

I

]
u

=

[
N

D

]
D−1u.

Since

[
N

D

]
is allpass, minimizing ‖z‖22 is the same as minimizing ‖D−1u‖22. Thus

we choose D−1u = 0. Now

D−1 s
=

[
A B
F W

]
,

so setting D−1u = 0 means

ẋ = Ax+Bu

0 = Fx+Wu.

That is, u = −W−1Fx. Thus, computing a normalized right coprime factorization
is the frequency-domain equivalent of completing the square.
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Solution A.8. From Lemma A.4.5,

T 12
s
=

[
A−B2F B2

C1 −D12F D12

]
.

From Theorem 3.2.1, T∼
12T 12 = I if

0 = X(A−B2F ) + (A−B2F )′X + (C1 −D12F )′(C1 −D12F )

0 = D′
12(C1 −D12F ) +B′

2X

I = D′
12D12.

Since D′
12D12 = I holds by assumption, we require

0 = X(A−B2D
′
12C1) + (A−B2D

′
12C1)

′X −XB2B
′
2X

+ C ′
1(I −D12D

′
12)C1

F = D′
12C1 +B′

2X,

which is precisely the F from the (cross-coupled) LQ problem. Similarly for T 21.

Solution A.9.
[
T̂ 12 T 12

]
is clearly square—its D-matrix is square, since D̂12

is an orthogonal completion of D12. From Theorem 3.2.1,
[
T̂ 12 T 12

]
is allpass

provided

X(A−B2F ) + (A−B2F )′X + (C1 −D12F )′(C1 −D12F ) = 0[
D̂′

12 D′
12

]
(C1 −D12F ) +

[
B̂′ B′

2

]
X = 0.

By construction, the first equation is satisfied, and the (2, 1)-block of the second
equation is also satisfied. We therefore need to confirm the (1, 1)-block of the second
equation. Now

D̂′
12(C1 −D12F ) + B̂′X = D̂′

12C1(I −X#X).

The right-hand side is zero if ker(X) ⊂ ker(D̂′
12C1). To show this, suppose Xx = 0.

Then (C1 − D12F )x = 0 and consequently 0 = D̂′
12(C1 − D12F )x = D̂′

12C1x.

Thus Xx = 0 implies D̂′
12C1x, so ker(X) ⊂ ker(D̂′

12C1) and we conclude that

D̂′
12(C1 −D12F ) + B̂′X = 0.

The reasoning for

[
T̂ 21

T 21

]
is analogous.

Solution A.10. Choose
[
T̂ 12 T 12

]
and

[
T̂ 21

T 21

]
as in the previous problem.



INTERNAL STABILITY THEORY 161

1.

‖Fℓ(P ,K)‖2,∞ =

∥∥∥∥
[

T̂
∼

12

T∼
12

]
T 11

[
T̂

∼

21 T∼
21

]
+

[
0 0
0 Q

]∥∥∥∥
2,∞

=

∥∥∥∥
[

R11 R12

R21 R22 +Q

]∥∥∥∥
2,∞

.

2. R is given by the realization

R
s
=

[
AR BR

CR DR

]
,

in which

AR

=

[
−(A−B2F )′ XHD21(B1 −HD21)

′ + (C1 −D12F )′C1Y +XHC2Y
0 −(A−HC2)

′

]

and

BR =

[
−XB̂D̂′

21 −XB1D
′
21

Ĉ ′ C ′
2

]

CR =

[
B̂′ 0
B′

2 0

]

DR =

[
0 0
0 0

]
.

Since A−B2F and A−HC2 are asymptotically stable, we see that R ∈ RH−
∞.

3. Using the result of Problem 11.2, we have

trace(X∗X) = trace(X∗
11X11) + trace(X∗

12X12)

+trace(X∗
21X21) + trace(X∗

22X22),

for any partitioned matrix

X =

[
X11 X12

X21 X22

]
.

Hence
∥∥∥∥
[

R11 R12

R21 R22 +Q

]∥∥∥∥
2

2

= (terms independent of Q) + ‖R22 +Q‖22.

Hence, we need to choose Q ∈ RH∞ to minimize ‖R22 +Q‖22. Now ‖R22 +Q‖2 is
finite if and only if Q(∞) = −R22(∞) = 0. In this case,

‖R22 +Q‖22 = ‖R22‖22 + ‖Q‖22,
since RH−

∞ and RH∞ are orthogonal in the 2-norm. Thus the minimum norm is
achieved by setting Q(∞) = −R22(∞) = 0, and the minimum norm is ‖R‖2.
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Solutions to Problems in

Appendix B

Solution B.1.

1. Since Q(N + 1) = 0,

N∑

k=0

x′
k+1Q(k + 1)xk+1 − x′

kQ(k)xk = −x′
0Q(k)x0.

Now

N∑

k=0

z′kzk + x′
k+1Q(k + 1)xk+1 − x′

kQ(k)xk

=
N∑

k=0

x′
k

(
C ′(k)C(k) +A′(k)Q(k + 1)A(k)−Q(k)

)
xk

= 0.

Hence
N∑

k=0

z′kzk = x′
0Q(0)x0.

2.

(i)⇒(ii) Immediate from zk = CAkx0.

(ii)⇒(iii) If AW = WJ , in which J is a Jordan block corresponding to an
eigenvalue λ with |λ| ≥ 1, then CAkW = CWJk. Hence CAkW → 0 as k →
∞ implies CW = 0. That is, every observable eigenspace is asymptotically
stable.

(iii)⇒(iv) Uniform boundedness follows from

Q(k) =

N∑

i=k

(A′)N−iC ′CAN−i

163
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and the asymptotic stability of every observable mode. Note that Q(k) is
monotonic. The convergence result is a consequence of monotonicity and
uniform boundedness.

(iv)⇒(v) Set Q = limk→−∞ Q(k).

(v)⇒(i) X(k) = Q − Q(k) satisfies X(k) = A′X(k + 1)A, X(N + 1) = Q.
Therefore

X(k) = AN+1−kQAN+1−k ≥ 0.

Thus 0 ≤ Q(k) ≤ Q, which establishes that limk→−∞ Q(k) is indeed the
smallest solution, and

‖z‖22,[0,N ] = x′
0Q(0)x0 ≤ x′

0Qx0.

Since this is a uniform bound on ‖z‖22,[0,N ], we conclude that z ∈ ℓ2[0,∞).

Solution B.2. The system L that maps w to w−w∗ when the input is u∗, which
is introduced in the proof of Theorem B.2.1, has realization

[
xk+1

wk − w∗
k

]
=

[
A−B2R

−1
3 L2 B1 −B2R

−1
3 R2

∇−1L∇ I

]
(k)

[
xk

wk

]
.

This is causally invertible, since its inverse is
[

xk+1

wk

]
=

[
A−BR−1L B1 −B2R

−1
3 R2

−∇−1L∇ I

]
(k)

[
xk

wk − w∗
k

]
.

‖L−1‖[0,N ] ≥ 1 because the response to w0 − w∗
0 = e1, the first standard basis

vector, for k = 0 and wk − w∗
k = 0 for all k 6= 0 has two-norm at least unity. (The

response is w0 = e1, w1 = −∇−1L∇(B1 −B2R
−1
3 R2)e1, . . ..)

Solution B.3. Suppose there exists a strictly proper controller such that (B.2.10)
holds (when x0 = 0). Consider the input wi = 0 for i ≤ k − 1. The strictly proper
nature of the state dynamics and the controller implies that ui = 0 and xi = 0 for
i ≤ k. Hence R1(k) ≤ −ǫI. Therefore, the stated Schur decomposition in the hint
exits and

z′kzk − γ2w′
kwk + x′

k+1X∞(k + 1)xk

= x′
kX∞(k)xk + (wk − w∗

k)
′R1(wk − w∗

k) + (uk − u∗
k)

′∇(uk − u∗
k)

in which ∇(k) = (R3 −R2R
−1
1 R′

2)(k) and

[
w∗

k

u∗
k

]
= −

[
R−1

1 L1 R−1
1 R′

2

∇−1(L2 −R2R
−1
1 L1) 0

] [
xk

uk

]
.
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The Riccati equation follows as before (note that R3 ≥ 0 as before, so R3−R2R
−1
1 R′

2

is nonsingular, implying R is nonsingular). Furthermore, by choosing u = u∗
k and

wk = 0 we see that X∞(k) ≥ 0, as before. The rest of the iterative argument is
identical to that presented in the text.

Solution B.4. By completing the square using X∞ and X∞, we obtain

‖z‖22,[k,N ] − γ2‖w‖22,[k,N ] + x′
N+1∆xN+1 = ‖r‖22,[k,N ] − γ2‖s‖22,[k,N ]

+ x′
kX∞(k)xk

‖z‖22,[k,N ] − γ2‖w‖22,[k,N ] + x′
N+1∆xN+1 = ‖r‖22,[k,N ] − γ2‖s‖22,[k,N ]

+ x′
kX∞(k)xk.

Setting ui = u∗
i and wi = w∗

i for i = k, . . . , N gives ri = 0 and si = 0 for i =
k, . . . , N . Therefore

xk

(
X∞(k)−X∞(k)

)
xk = x′

N+1(∆−∆)xN+1 + ‖r‖22,[k,N ] + γ2‖s‖22,[k,N ]

≥ x′
N+1(∆−∆)xN+1.

Since xk may be regarded as an arbitrary initial condition, ∆ ≥ ∆ implies that
X∞(k) ≥ X∞(k).

Solution B.5.

1. Substitute for xk+1 from the dynamics and use the equation defining zk.

2. Elementary algebra verifies the “completion of square” identity. The con-
clusion that X2(k) ≥ 0 follows from the fact that the left-hand side of the
completion of squares identity is nonnegative for any uk and xk—in particu-
lar, for uk = u∗

k.

3. X2(N + 1) ≥ 0 implies R−1(N) exists, which implies X2(N) is well defined
and nonnegative definite. Hence R−1(N − 1) exists, which implies X2(N − 1)
is well defined and nonnegative definite . . . .

From the completion of squares identity in Part 2, we obtain

N∑

k=0

z′kzk + x′
k+1X2(k + 1)xk+1 − x′

kX2(k)xk =

N∑

k=0

(uk − u∗
k)

′R(k)(uk − u∗
k).

Since

N∑

k=0

x′
k+1X2(k + 1)xk+1 − x′

kX(k)xk = x′
N+1X2(N + 1)xN+1 − x′

0X2(0)x0
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and X2(N + 1) = ∆), we obtain

N∑

k=0

z′kzk + x′
k+1∆xk+1 = x′

0X2(0)x0 +

N∑

k=0

(uk − u∗
k)

′R(k)(uk − u∗
k).

4. That the optimal control is u∗
k = −R(k)−1L(k)xk is immediate from the

preceding identity. The optimal control is unique because R(k) > 0 for all k.

Solution B.6. Note that

L(k)−R(k)(D′
12D12)

−1D′
12C1

= B′
2X2(k + 1)A−B′

2X2(k + 1)B2(D
′
12D12)

−1D′
12C1

= B′
2X2(k + 1)Ã. (B.1)

The time-dependence of the matrices A, B2, C1, D12, Ã and C̃ will be suppressed.
Using the Riccati equation from Problem B.5, we have

[
A B2

C1 D12

]′ [
X2(k + 1) 0

0 I

] [
A B2

C1 D12

]

=

[
X2(k) 0

0 0

]
+

[
L′(k)
R(k)

]
R−1(k)

[
L(k) R(k)

]
.

Multiply on the right by

[
I 0

−(D′
12D12)

−1D′
12C1 I

]
and on the left by the trans-

pose of this matrix to obtain

[
Ã B2

C̃ D12

]′ [
X2(k + 1) 0

0 I

] [
Ã B2

C̃ D12

]

=

[
Ã′X2(k + 1)B2R

−1(k)B′
2X2(k + 1)Ã Ã′X2(k + 1)B2

B′
2X2(k + 1)Ã R(k)

]

+

[
X2(k) 0

0 0

]
.

The (1, 1)-block is the desired Riccati equation.
Using (B.1), we obtain

Ã−B2R
−1(k)B′

2X2(k + 1)Ã = Ã−B2R
−1(k)(L(k)−R(k)(D′

12D12)
−1D′

12C1)

= A−B2R
−1(k)L(k).
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Solution B.7.

1.

(A−B2K)′P (A−B2K) + (C1 −D12K)′(C1 −D12K)

= A′PA+ C ′
1C1 − L′

PR
−1
P LP

+(K −R−1
P LP )

′RP (K −R−1
P LP )

in which RP = D′
12D12 + B′

2PB2 and LP = D′
12C1 + B′

2PA. Substituting
this into (B.6.5), we obtain the inequality (B.6.3), with ∆ = P .

Now suppose 


A− λI B2

C1 D12

P 0



[

x
u

]
=




0
0
0




Multiplying (B.6.5) on the left by x∗ and on the right by x results in

0 = ‖P 1
2 (A−B2K)x‖+ ‖(C1 −D12F )x‖.

Hence (C1 − D12K)x = 0, since both terms on the right-hand side are non-
negative. Since C1x = −D12u, we have D12(u + Kx) = 0 and D′

12D12 > 0
implies that u = −Kx. Hence

0 = (A− λI)x+B2u

= (A−B2K − λI)x,

which implies that |λ| < 1 or x = 0, since A− B2K is asymptotically stable.
Thus 


A− λI B2

C1 D12

P 0



[

x
u

]
=




0
0
0




implies either |λ| < 1 or x = 0, u = 0 and we conclude that



A− λI B2

C1 D12

P 0




has full column rank for all |λ| ≥ 1.

2. Define u∗
k = −R(k)−1L(k)xk. Then

x′
kX2(k)xk + ‖R 1

2 (u− u∗)‖22,[k,N ]

= ‖z‖22,[k,N ] + x′
N+1∆xN+1

= ‖z‖22,[k,N−1] + x′
N∆xN + x′

N (A′∆A+ C ′
1C1 −∆)xN , if uN = 0,

≤ ‖z‖22,[k,N−1] + x′
N∆xN

= x′
kX2(k + 1)xk + ‖R 1

2 (u− u◦)‖22,[k,N−1]
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in which u◦
k = −R(k + 1)−1L(k + 1)xk, which is the optimal control for

the time-horizon [k,N − 1]. (Remember that we are dealing with the time-
invariant case, so X2(k,N − 1,∆) = X2(k + 1, N,∆).) Setting u = u◦ on
[k,N − 1] and uN = 0, we obtain

x′
k

(
X2(k + 1)−X2(k)

)
xk ≥ ‖R 1

2 (u− u∗)‖22,[k,N−1]

and since xk may be regarded as an arbitrary initial condition, we conclude
that X2(k) ≤ X2(k + 1).

3. X2(k) is monotonic, bounded above (by ∆) and bounded below (by 0). Hence
X2 = limk→−∞ X2(k) exists and satisfies the algebraic Riccati equation. The
completion of squares identify is immediate from the corresponding finite hori-
zon identity, since limN→∞ x′

N+1∆xN+1 = 0 for any stabilizing controller.

4. Let XM = X2(N + 1 − M) and ΓM = X2(N + 1 − M) − X2(N − M) and
RM = R(N−M). We use the “fake algebraic Riccati technique”, to determine
stability. Write the Riccati equation as

XM = (A−B2FM )′XM (A−B2FM )

+ (C1 −D12FM )′(C1 −D12FM ) + ΓM . (B.2)

We need to show that |λi(A−B2FM )| < 1. Let x 6= 0 and λ satisfy

(A−B2FM )x = λx.

Then x∗(B.2)x yields

(|λ|2 − 1)x∗XMx+ ‖(C1 −D12FM )x‖2 + ‖Γ
1
2

Mx‖2 = 0.) (B.3)

Since XM ≥ 0, we must have either

(a) |λ| < 1 or

(b) (C1 −D12FM )x = 0 and ΓMx = 0.

Case (a) is what we want, so it remains to see what happens in case (b).

Claim: Case (b) implies XMx = 0. Suppose case (b) holds. From (B.3),
if |λ| 6= 1, we have XMx = 0. On the other hand, if |λ| = 1, use (B.2) to
obtain

[
A B2

C1 D12

]′ [
XM 0
0 I

] [
A B2

C1 D12

]

=

[
XM − ΓM 0

0 0

]
+

[
F ′
M

I

]
RM

[
FM I

]
.
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Since (A−B2FM )x = λx, (C1 −D12FM )x = 0 and ΓMx = 0, multiplying on

the right by

[
I

−FM

]
x results in

λ

[
A′

B′
2

]
XMx =

[
XMx
0

]
.

Therefore, since (A,B2) is stabilizable, |λ| = 1 implies that XMx = 0. Thus
case (b) implies XMx = 0 and the claim is established.

Claim: Case (b) implies |λ| < 1. Suppose case (b) holds. Then XMx =
0. We now consider the implications of this fact.

If M = 0 (i.e., the horizon length is zero), we have




A B2

C1 D12

∆ 0



[

I
−FM

]
x =




λx
0
0


 .

Since x 6= 0, we conclude that |λ| < 1 from the assumption that (B.6.4) has
full column rank for all |λ| ≥ 1.

If M ≥ 1, consider the system

[
xk+1

zk

]
=

[
A B2

C1 D12

] [
xk

uk

]
, xN+1−M = x.

Then, by completing the square,

N∑

k=N+1−M

z′kzk + xN+1∆xN+1

= x′XMx+

N∑

k=N+1−M

(uk − u∗
k)R(k)(uk − u∗

k)

=

N∑

k=N+1−M

(uk − u∗
k)R(k)(uk − u∗

k).

Therefore, the control strategy uk = u∗
k = −R(k)−1L(k)xk results in zk = 0

for k = N + 1 − M, . . . , N and ∆xN+1 = 0, since the left-hand side of the
above identity is nonnegative and the right-hand side is zero when u = u∗.
Since (A − B2FM )x = λx and (C1 − D12FM )x = 0, the control strategy
uk = −FMxk also results in zk = 0. Since D′

12D12 > 0, this implies that
the controls uk = −FMxk and uk = u∗

k are identical. Consequently, the
state trajectories with uk = −FMxk and uk = u∗

k are identical. Since the
state trajectory resulting from uk = −FMxk is λk+M−N−1x and the state
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trajectory associated with uk = u∗
k satisfies ∆xN+1 = 0, we conclude that

∆λMx = 0. We now have


A B2

C1 D12

∆ 0



[

I
−FM

]
λMx = λ




λMx
0
0


 .

Invoking assumption that (B.6.4) has full column rank for all |λ| ≥ 1, we
conclude that |λ| < 1 or λMx = 0, which implies λ = 0 since x 6= 0.

This completes the proof that A−B2FM is asymptotically stable.

The cost of the control law FM is

‖z‖22 = x′
0PMx0 − ‖Γ

1
2

Mx0‖22
≤ x′

0PMx0.

5. Since FM → F = R−1L as M → ∞ and |λi(A − B2FM )| < 1 for all i and
all M , we must have that |λi(A − B2F )| ≤ 1 for all i. To prove that strict
inequality holds, we must show that (A−B2F )x = ejθx implies x = 0.

Suppose (A−B2F )x = ejθx. Write the Riccati equation as

X2 = (A−B2F )′X2(A−B2F ) + (C1 −D12F )′(C1 −D12F ).

Multiplying on the left by x∗ and on the right by x we conclude that (C1 −
D12F )x = 0. Hence

[
A− ejθI B2

C1 D12

] [
I

−F

]
x =

[
0
0

]
.

Consequently, if (B.6.7) has full column rank for all θ, we must have x = 0.
Thus A−B2F is asymptotically stable.

Conversely, suppose
[

A− ejθI B2

C1 D12

] [
x
u

]
=

[
0
0

]
(B.4)

for some θ and some x, u not both zero. Write the Riccati equation as
[

A B2

C1 D12

]′ [
X2 0
0 I

] [
A B2

C1 D12

]

=

[
X2 0
0 0

]
+

[
L′R−1

I

]
R
[
R−1L I

]
.

Multiplying on the left by
[
x∗ u∗

]
and on the right by

[
x
u

]
, we see that

x∗X2x = x∗X2x+ (R−1Lx+ u)∗R(R−1Lx+ u)

and hence u = −R−1Lx. Substituting into (B.4) gives (A−BR−1L)x = ejθx,
and we conclude that A−BR−1L has an imaginary axis eigenvalue.
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6. By completing the square with X2, the cost associated with any stabilizing
controller satisfies

‖z‖22 = x′
0X2x0 + ‖R 1

2 (u+R−1Lx)‖22

Hence ‖z‖22 ≥ x′
0X2x0 for any stabilizing controller. The lower bound x′

0X2x0

can only be achieved by the controller u = −R−1Lx, which is stabilizing if
and only if (B.6.7) has full column rank for all real θ.

Solution B.8.

1. Complete the square with X2 and with X2(k,N + 1,∆) to obtain

N∑

0

z′kzk + x′
N+1X2xN+1 = x′

0X2x0 +

N∑

0

(uk − u∗
k)

′R(uk − u∗
k)

N∑

0

z′kzk + x′
N+1∆xN+1 =

N∑

0

(uk − u◦
k)

′R(uk − u◦
k)

+ x′
0X2(0, N + 1,∆)x0.

Subtracting these gives the stated identity (B.6.8).

The minimization of the left-hand side of (B.6.8) is an LQ problem, although
the terminal penalty matrix may or may not be nonnegative definite and
consequently we do not know that a solution to such problems exists in general.
In this particular case, a solution does exist, because the right-hand side of
(B.6.8) shows that uk = u◦

k is the optimal control and the optimal cost is
x′
0(X2(0, N + 1,∆) −X2)x0. The objective function and state dynamics for

the problem of minimizing the left-hand side of (B.6.8) can be written as

[
xk+1

R
1
2 (uk − u∗

k)

]
=

[
A−B2F B2

0 R
1
2

] [
xk

uk − u∗
k

]
,

in which F = R−1L is the optimal feedback gain, (i.e., u∗
k = −Fxk). Hence,

the the Riccati equation associated with the minimization of the left-hand side
of (B.6.8) is (B.6.9) and the minimum cost is x′

0Γ(0)x0. Since we concluded
from the right-hand side of (B.6.8) that the minimum cost is x′

0(X2(0, N +
1,∆)−X2)x0, it follows that Γ(0) = X2(0, N+1,∆)−X2, since x0 is arbitrary.
By time invariance, Γ(k) = X2(k,N + 1,∆)−X2.

2. This can be quite tricky if you take a brute force approach, which is one reason
why the preceding argument is so delightful. It also gives a clue about the
manipulations, since the argument above is about optimizing something you
already know the optimal control for.
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Write the two Riccati equations as

[
A B2

C1 D12

]′ [
X2(k + 1) 0

0 I

] [
A B2

C1 D12

]

=

[
X2(k) 0

0 0

]
+

[
L′(k)
R(k)

]
R−1(k)

[
L(k) R(k)

]

and

[
A B2

C1 D12

]′ [
X2 0
0 I

] [
A B2

C1 D12

]

=

[
X2 0
0 0

]
+

[
L′

R

]
R−1

[
L R

]
.

Subtract them to obtain

[
A B2

C1 D12

]′ [
Γ(k + 1) 0

0 0

] [
A B2

C1 D12

]

=

[
Γ(k) 0
0 0

]
−
[

L′

R

]
R−1

[
L′

R

]′
+

[
L′(k)
R(k)

]
R−1(k)

[
L′(k)
R(k)

]′
.

Multiply on the right by

[
I 0

−R−1L I

]
and by its transpose on the left to

obtain

[
A−BR−1L B2

C1 −D12R
−1L D12

]′ [
Γ(k + 1) 0

0 0

] [
A−BR−1L B2

C1 −D12R
−1L D12

]

=

[
L′(k)− L′R−1R(k)

R(k)

]
R−1(k)

[
L′(k)− L′R−1R(k)

R(k)

]′

+

[
Γ(k) 0
0 R

]
. (B.5)

Now R(k) = R+B′
2Γ(k + 1)B2 and

L(k)−R(k)R−1L = L+B′
2Γ(k + 1)A− (R+B2Γ(k + 1)B2)R

−1L

= B′
2Γ(k + 1)(A−B2R

−1L).

Therefore, the (1, 1)-block of (B.5) is the desired Riccati equation for Γ(k).

Solution B.9. As in the previous problem, the calculations can become horren-
dous if a brute force approach is adopted. The technique of the previous problem
provides the remedy (which is why that problem is there).
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1. Use the Schur decomposition (B.2.7) to write the Riccati equation for X∞ as

X∞ = A′X∞A+ C ′
1C1 − L′

2R
−1
3 L2 − L′

∇∇−1L∇,

in which L∇ = L1 −R′
2R

−1
3 L2 as before. Combining this with the definitions

of L and R, we may write
[

A B2

C1 D12

]′ [
X∞ 0
0 I

] [
A B2

C1 D12

]

=

[
X∞ + L′

∇∇−1L∇ 0
0 0

]
+

[
L′
2

R3

]
R−1

3

[
L2 R3

]
.

We also have for the X2 Riccati equation
[

A B2

C1 D12

]′ [
X2 0
0 I

] [
A B2

C1 D12

]

=

[
X2 0
0 0

]
+

[
L̂′

R̂

]
R̂−1

[
L̂ R̂

]
,

in which R̂ = D′
12D12+B′

2X2B2 and L̂ = D′
12C1+B′

2X2A. Subtracting these
gives
[

A B2

C1 D12

]′ [
Γ 0
0 0

] [
A B2

C1 D12

]

=

[
Γ + L′

∇∇−1L∇ 0
0 0

]
+

[
L′
2

R3

]
R−1

3

[
L′
2

R3

]′
−
[

L̂′

R̂

]
R̂−1

[
L̂′

R̂

]′
.

Multiply by

[
I 0

−R−1
3 L2 I

]
on the right, and by its transpose on the left,

to obtain
[

A−B2R
−1
3 L2 B2

C1 −D12R
−1
3 L2 D12

]′ [
Γ 0
0 0

] [
A−B2R

−1
3 L2 B2

C1 −D12R
−1
3 L2 D12

]

=

[
L̂′ − L′

2R
−1
3 R̂

R̂

]
R̂−1

[
L̂′ − L′

2R
−1
3 R̂

R̂

]′

+

[
Γ + L′

∇∇−1L∇ 0
0 R3

]
. (B.6)

Now R̂ = R3 −B′
2ΓB2 and L̂ = L2 −B′

2ΓA. Therefore

L̂− R̂R−1
3 L2 = L2 −B′

2ΓA− (R3 −B′
2ΓB2)R

−1
3 L2

= −B′
2Γ(A−B2R

−1
3 L2).

Therefore, the (1, 1)-block of (B.6) is the desired Riccati equation.
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2. Recall, from the monotonicity property of the solution X∞(k,N+1, X2), that
X∞ ≥ X2. Therefore, Γ ≥ 0. Also, from (B.2.33), (A− B2R

−1
3 L2, L∇) is de-

tectable. Hence, since∇ < 0, we conclude that A−B2R
−1
3 L2 is asymptotically

stable from the equation established in Part 1.

3. If Γx = 0, then the equation established in Part 1 gives L∇x = 0. From
(B.2.33), we therefore conclude that (A−BR−1L)x = (A−B2R

−1
3 L2)x. (Use

equation (B.2.33).)

Solution B.10.

1. Write the two Riccati equations as

[
A B
C D

]′ [
X∞(k + 1) 0

0 J

] [
A B
C D

]

=

[
X∞(k) 0

0 0

]
+

[
L′(k)
R(k)

]
R−1(k)

[
L(k) R(k)

]

and

[
A B
C D

]′ [
X∞ 0
0 J

] [
A B
C D

]

=

[
X∞ 0
0 0

]
+

[
L′

R

]
R−1

[
L R

]
.

Subtract them to obtain

[
A B
C D

]′ [
Γ(k + 1) 0

0 0

] [
A B
C D

]

=

[
Γ(k) 0
0 0

]
+

[
L′

R

]
R−1

[
L′

R

]′
−
[

L′(k)
R(k)

]
R−1(k)

[
L′(k)
R(k)

]′

Multiply on the right by

[
I 0

−R−1L I

]
and by its transpose on the left to

obtain

[
A−BR−1L B2

C −DR−1L D

]′ [
Γ(k + 1) 0

0 0

] [
A−BR−1L B
C −DR−1L D

]

= −
[

L′(k)− L′R−1R(k)
R(k)

]
R−1(k)

[
L′(k)− L′R−1R(k)

R(k)

]′

+

[
Γ(k) 0
0 R

]
. (B.7)
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Now R(k) = R−B′Γ(k + 1)B and

L(k)−R(k)R−1L = L−B′Γ(k + 1)A− (R−BΓ(k + 1)B)R−1L

= −B′Γ(k + 1)(A−BR−1L).

Therefore, the (1, 1)-block of (B.7) is the desired Riccati equation for Γ

2. This is an intricate argument similar to that used in the solution of Prob-
lem B.7. It involves figuring out what happens at the terminal time N + 1
from something that happens at time k and using the properties of the ter-
minal condition.

Suppose x 6= 0 and (X∞ −X(k,N + 1, X2))x = 0. That is, Γ(k)x = 0. Let
the initial condition for the dynamics be xk = x. Complete the square with
X∞ to obtain

‖z‖22,[k,N ] − γ2‖w‖22,[k,N ] + xN+1X∞xN+1 = ‖r‖22,[k,N ] − γ2‖s‖22,[k,N ]

+ x′X∞x.

Also, complete the square with X∞(k,N + 1, X2) to obtain

‖z‖22,[k,N ] − γ2‖w‖22,[k,N ] + xN+1X2xN+1 = ‖r‖22,[k,N ] − γ2‖s‖22,[k,N ]

+ x′X(k,N + 1, X2)x.

Now subtract to obtain

xN+1(X∞ −X2)xN+1 = ‖r‖22,[k,N ] + γ2‖s‖22,[k,N ] − γ2‖s‖22,[k,N ] − ‖r‖22,[k,N ].

If we choose u such that r = 0 (i.e., u = u∗ for the infinite-horizon problem)
and w such that s = 0 (i.e., w = w∗

[k,N ], the worst w for the finite-horizon

problem), then we have

xN+1(X∞ −X2)xN+1 = −γ2‖s‖22,[k,N ] − ‖r‖22,[k,N ].

Since X∞ − X2 ≥ 0, we must have r = 0 and s = 0. This implies that the
optimal controls for the finite- and infinite-horizon problems are identical on
[k,N ]. We also see that (X∞ −X2)xN+1 = 0. Since u = u∗ and w = w∗, the
state dynamics reduce to

xi+1 = (A−BR−1L)xi, xk = x.

Multiplying the equation for X∞ −X2, which is given in (B.2.39), on the left
by x′

N+1 and on the right by xN+1 we conclude that (A−B2R
−1
3 L2)xN+1 is

also in the kernel of X∞ −X2 and that L∇xN+1 = 0, because the terms on
the right-hand side are all nonnegative and the left-hand side is zero. From
(B.2.33), we see that (A−B2R

−1
3 L2)xN+1 = (A−BR−1L)xN+1. Therefore,
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there is an eigenvalue of A−BR−1L in the kernel of X∞−X2. This eigenvalue
must be asymptotically stable because A−B2R

−1
3 L2 is.

Conclusion: If x ∈ ker
(
X∞−X∞(k,N+1, X2)

)
, the application of the dynam-

ics A−BR−1L leads to xN+1 being in an invariant subspace of ker(X∞−X2)
after a finite number of steps. This invariant subspace is asymptotically sta-
ble by the stability of A − B2R

−1
3 L2. Hence the subspace corresponding to

ker
(
X∞ −X∞(k,N + 1, X2)

)
is asymptotically stable.

It follows that if

X∞ −X2 =

[
Γ1 0
0 0

]

in which Γ1 is nonsingular, then

X∞ −X∞(k,N + 1, X2) =

[
Γ1(k) 0
0 0

]

in which Γ1(k) is nonsingular for all k. Furthermore,

A−BR−1L =

[
Â11 0

Â21 Â22

]
.

The argument of the text shows that Â11 is asymptotically stable, while Â22

is asymptotically stable due to the stabilizing properties of X2.

Solution B.11. The ℓ2[0, N ] adjoint of G is the system G∼ that has the property
〈u,Gw〉 = 〈G∼u,w〉 for all w, u. The inner product is defined by

〈w, z〉 =
N∑

0

z′kwk.

Suppose z = Gw is generated by
[

xk+1

zk

]
=

[
A B
C D

]
(k)

[
xk

wk

]
, x0 = 0,

and pk is an arbitrary ℓ2[0, N ] sequence such that pN = 0. Then

〈u, z〉 =

N∑

0

z′kuk + x′
k+1pk − x′

kpk−1

=
N∑

0

[
xk+1

zk

]′ [
pk
uk

]
− x′

kpk−1

=
N∑

0

[
xk

wk

]′ [
A B
C D

]′
(k)

[
pk
uk

]
− x′

kpk−1
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Therefore, if we choose the sequence pk such that pk−1 = A′(k)pk + C ′(k)uk and
define yk by [

pk−1

yk

]
=

[
A B
C D

]′
(k)

[
pk
uk

]
, pN = 0,

then

〈u, z〉 =
N∑

0

[
xk

wk

]′ [
pk−1

yk

]
− x′

kpk−1

=
N∑

0

wk
′yk

= 〈y, w〉.

Hence y = G∼u.

Solution B.12.

xk+1 = Axk +B1w,

yk = C2xk +D21wk,

x̂k+1 = Ax̂k +H(yk − C2x̂k),

in which H = M2S
−1
3 . Subtracting these equations results in the error dynamics

x̂k+1 − xk+1 = (A−HC2)(x̂k − xk) + (HD21 −B1)wk.

By standard results on linear systems driven by white noise processes (see, for
example, [12]),

E{(x̂k+1 − xk+1)(x̂k+1 − xk+1)
′} = P (k)

in which P (k) is the solution to the linear matrix equation

P (k + 1) = (A−HC2)(k)P (k)(A−HC2)
′(k)

+ (HD21 −B1)(k)(HD21 −B1)
′(k), P (0) = 0.

(We have P (0) = 0 because the initial state is assumed to be know; otherwise, we
set P (0) to the initial error covariance.)

Now

Y∞(k + 1) = B1B
′
1 +AY∞(k)A′ −M2S

−1
3 M ′

2 −M∇∇−1M ′
∇

in which

∇(k) = S1(k)− S2(k)S
−1
3 (k)S′

2(k)

M∇(k) = M1(k)− S2(k)S
−1
3 (k)M2(k).
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Re-write the Riccati equation as

Y (k + 1) = (A−HC2)Y∞(k)(A−HC2)
′ +M2S

−1
3 M ′

2

−M∇∇−1M ′
∇ + (HD21 −B1)(HD21 −B1)

′.

Hence

Y∞(k + 1)− P (k + 1) = (A−HC2)(Y∞(k)− P (k))(A−HC2)
′

+M2S
−1
3 M ′

2 −M∇∇−1M ′
∇.

Since ∇ < 0 and Y∞(0)− P (0) = 0, we have Y∞(k)− P (k) ≥ 0 for all k. Hence

E{(x̂k+1 − xk+1)(x̂k+1 − xk+1)
′} = P (k) ≤ Y∞(k).






