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PROBLEMS FOR
DIGITAL SPECTRAL
ANALYSIS, 2nd Ed

Chapter 2

1. Prove that δ(at) = δ(t)/|a|, that is,∫ ∞
−∞

δ(at)φ(t) dt =
1

|a|

∫ ∞
−∞

δ(t)φ(t/a) dt .

2. Prove that the complex output of the complex demodulation of a real
signal need only be sampled at half the rate of the original real signal.

3. Suppose that only the first N/2 of the N transform output values are
needed from the FFT algorithm. Show how pruning may be incorporated
to reduce the computational complexity of the program. What is the
amount of computational reduction?

4. Show that

↑↑↑(ax) =
1

|a|

∞∑
n=−∞

δ(x− n

a
)

and
1

τ
f(x)↑↑↑(x/τ) =

∞∑
n=−∞

f(nτ)δ(x− nτ) .

5. A factorization problem: given the function g(t) with a transform G(f)
which is non-negative, find a causal function f(t) such that g(t) = f(t) ?
f∗(t), which implies that G(f) = |f(f)|2.
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6. A TBP problem: define the one-sided exponential

x[n] =

{
A exp(−αnT ) for n ≥ 0

0 for n < 0

where T is the sample interval and α is a positive constant. Find Te, Be,
T̃e, and B̃e and the respective TBPs for this function. Which TBP is
smaller? Why?

7. Find the equivalent time width and equivalent bandwidth of the windows
defined in Table 5.1.

8. Define the function

x(t) =

{
exp(−.1t) + exp(−.5t) 0 ≤ t ≤ 10 sec

0 otherwise

Compute the CTFT energy E of this function using Eq. (2.30). If x(t)
is sampled at intervals of T seconds starting at t = 0, what value of T
is required so that the DTFT energy equation (2.51) approximates the
CTFT energy within 1%? What value of T is required if the match is to
be within .01%?

9. Let x[n] = A exp(−j2πnk/N). Show that Eq. (2.63) will yield the power
of the complex sinusoid x[n].

10. Prove the energy theorem (2.55) for the discrete-time Fourier series.

Chapter 3

1. Prove that a matrix that is both symmetric and persymmetric is also
centrosymmetric, but the converse is not true. Construct such a matrix.
Also prove that a matrix that possesses any two of the symmetric, persym-
metric, centrosymmetric properties will also have the remaining property.

2. Prove that (AB)H = BHAH .

3. Define the inner product relationship for block vectors.

4. If H is a Hankel matrix, show that JH or HJ are Toeplitz matrices.

5. Prove that (AB)−1 = B−1A−1 if A, B, and AB are nonsingular.

6. Prove that the inverse of a diagonal matrix is a diagonal matrix with main
diagonal elements 1/d[i ].
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7. If A is a square matrix of size n×n and x is a column vector of size n×1,
then show that xHAx is a non-negative scalar.

8. Prove that (AH)−1 = (A−1)H .

9. Prove that if A is symmetric, then A−1 is symmetric (if inverse exists).
Prove that if A is persymmetric, then A−1 is persymmetric. Prove that
if A is Toeplitz, then A−1 is persymmetric. Prove that if A is Hankel,
then A−1 is symmetric. Prove that if A is centrosymmetric, then A−1 is
centrosymmetric.

10. Show that an upper triangular matrix A with nonzero diagonal elements
has linearly independent column vectors, and is, therefore, nonsingular.

11. Show that if A has rank n, then the rank of AH is also n.

12. Show that the determinant of the square Vandermonde matrix

V =


1 . . . 1
x1 . . . xn
...

...
xn−11 . . . xn−1n


is given by

det V =
∏
i6=j

(xj − xi) .

13. An n× n symmetric tridiagonal Toeplitz matrix has the banded form

b a 0 . . . 0

a b a
. . .

...

0 a
. . .

. . . 0
...

. . .
. . .

. . . a
0 . . . 0 a b


.

Show that it has eigenvalues λk = a+ 2b cos(kπ/n+ 1) for k = 1 to n and
corresponding eigenvectors

vk =

√
2

n+ 1

 sin(kπ/n+ 1)
...

sin(knπ/n+ 1)

 .
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14. Show how the solution x to the linear equation Cx = b, in which C is
circulant, can be obtained with three FFT operations. How does the use
of left- or right-circulant matrices change whether forward or inverse FFTs
are used?

15. Show that if C is centrosymmetric, then JC = CJ.

16. Prove Eq. (3.160). Hint: Use the partitions

TM =

(
t[0] sT

M

rM TM−1

)

T−1M = UM =

(
h gT

F E

)
and then make use of the matrix inversion lemma, Eq. (3.52). Note that
h = u[0, 0] = 1/ρM .

17. Investigate the properties of polynomial roots when a matrix is Hermi-
tian Toeplitz. Show, for example, that the eigenpolynomial has complex
conjugate symmetry and that the roots are of unit modulus.

18. The Levinson algorithm was shown to solve the equations

TM

(
JbM

1

)
=

(
0M
ρM

)

TM

(
1

aM

)
=

(
ρM
0M

)
.

Using Eq. (3.139), show that the following relations hold

t[0] + sT

MaM = t[0] + rT

MbM = ρM

rM + TM−1aM = JsM + TM−1JbM = 0M .

Chapter 4

1. Let x[n] = A sin(2πfnT + θ) be a sinusoid process. Using Eq. (4.56),
determine the temporal autocorrelation in the limit as M → ∞. Is the
sinusoid an ergodic process, i.e., does the temporal autocorrelation yield
the same result given by Eq. (4.49)?

2. Show that a wide-sense stationary process has a complex conjugate even
autocorrelation, rxx(τ) = r∗xx(−τ).
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3. For x(t) and y(t) real-valued processes, prove that Pxx(z) = Pxx(1/z),Pxy(z) =
P∗yx(1/z∗).

4. For a deterministic signal as described in Chap. 2, show that the energy
spectral densities (ESDs) of the input and output y(t) of a linear filter are
related by

|Y (f)|2 = |X(f)|2|H(f)|2 .

Use this result and the direct definition (4.58) of the power spectral den-
sity to show that the input and output power spectral densities have the
relationship

Pyy(f) = Pxx(f)|H(f)|2.
This is an alternative proof of relationship (4.43).

5. Prove that power spectral density Pxx(f) is a real, even, positive function
if r[m] is real-valued.

6. Prove the relationships given by Eq. (4.41).

7. Let the real L sinusoid-plus-noise process be

x[n] =

L∑
l=1

Al sin(2πflnT + θl) + w[n] ,

where the initial phases are all uniformly-distributed independent random
variables on the interval 0 to 2π and w[n] is a white noise process of
variance ρw. Compute the statistical autocorrelation sequence. Is this
random process ergodic?

8. Show that the autocorrelation matrix for the signal described in previous
problem can be expressed as

Rxx =

L∑
l=1

A2
l

4

[
eM (fl)e

H

M (fl) + e∗M (fl)e
T

M (fl)
]

+ ρwI.

Chapter 5

1. Show that the Bartlett periodogram estimator [Eq. (5.35)] can be ex-
pressed in the matrix form

P̂ B(f) =
T

DP
eH

D(f)

(
P∑
p=0

x(p)x(p)H

)
eD(f) ,

in which eD(f) is a complex sinusoid vector [see definition (3.21)] and

x(p) =
(
x[pD] x[pD + 1] . . . x[pD + D − 1]

)T

is the vector of data

samples for the pth segment.
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2. Prove the bias result shown in the text for Eq. (5.44).

3. Show that the matrix (5.25) of the biased autocorrelation estimate may
alternatively be written as

ŘL =
1

N

N−1∑
k=0

xL[k]xL[k]H ,

in which xL[k] =
(
x[k] x[k − 1] . . . x[k − L]

)T

is a data vector. As-

sume x[n] = 0 for n < 0 or n > N − 1.

4. Show that for real r̂xx[m] that

P̂ BT(f) = T r̂xx[0] + 2T

M∑
m=1

r̂xx[m] cos(2πfmT ) .

5. Derive the Bs and Be bandwidths for the windows of Table 5.1, normalized
to an FFT bin of 1/NT Hz. What is the ratio α = Bs/Be for each window?

6. What is the quality ratio Q for the sample spectrum of Section 4.7? What
is the QTeBs product for the sample spectrum?

7. The correlogram-based spectral estimator of Fig. 5.4 possessed negative
PSD lobes. Choose or design a window that will yield only a positive PSD
for all frequencies for the test data case. Insert this window in MATLAB
function correlogram psd.m. Plot the resultant spectral estimate. How
does this estimate compare with the estimate of Fig. 5.4?

8. Assuming N data samples x[0], . . . , x[N − 1], show that the Blackman-
Tukey PSD estimator

P̌xx(f) = T

N−1∑
m=−(N−1)

řxx[m] exp(−j2πfmT ) ,

that uses the biased autocorrelation estimator for the maximum number
of possible lags, and the sample spectrum

P̃xx(f) =
T

N

∣∣∣∣∣
N−1∑
n=0

x[n] exp(−j2πfnT )

∣∣∣∣∣
2

are identical.
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Chapter 6

1. Find an explicit relationship for rxx[m] in terms of a[1] and b[1] assuming
an ARMA(1,1) process.

2. Take the inverse z-transform of Eq. (6.7) to prove the validity of Eq. (6.29).

3. Using Eq. (6.24), find matrix expressions comparable to Eqs. (6.18) and
(6.19) to relate the MA(∞) parameters to the ARMA(p, q) parameters.

4. Let A(z) = 1+.7z−1+.2z−2 represent the z-transform of an AR(2) process.
Approximate this AR(2) by an MA(2), an MA(4), and an MA(10). Plot
the results. How good is the MA approximation?

5. Prove that the autocorrelation matrix of the AR Yule-Walker equations
(6.32) is positive semidefinite.

6. Suppose a stable ARMA(p, q) filter is approximated by an AR(p + q)
using the Pade approximation. Show that the AR approximation is not
guaranteed to be stable.

7. Show that if zi is a root of A(z), the polynomial defined by Eq. (6.4), then
(1/zi)

∗ is a root of A∗(1/z∗).

Chapter 7

1. Show that any set of numbers {ρp, k1, . . . , kp} such that ρp > 0 and |ki| < 1
will uniquely determine a valid autocorrelation sequence.

2. Assume that {rxx[0], . . . , rxx[m]} is a valid autocorrelation sequence. Show
that the Toeplitz autocorrelation matrices are related by

det Rm+1 = −(det Rm−1)r2[m+ 1] + βrxx[m+ 1] + α ,

where β and α are functions of det Rm−1 and
∑
am[i]rxx[m+1− i]. Show

that as a function of r[m+1], for given {rxx[0], . . . , rxx[m]}, det Rm+1 has
a single maximum and, therefore, that the admissible amplitude range of
rxx[m+ 1] is 2ρfm, which is a non-increasing function of m. Show that by
choosing rxx[m+ 1] as the midpoint of the admissible range

rxx[m+ 1] = −
m∑
i=1

am[i]rxx[m+ 1− i]

yields km+1 = 0 and ρfm+1 = ρfm. Show that this maximizes det Rm+1.
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3. Prove that |km| ≤ 1 using Eq. (7.22).

4. Prove the recursive order relationship between the forward and backward
linear prediction errors given by Eqs. (7.26) and (7.27).

5. Use Eq. (7.36) to prove Eq. (7.37).

6. Find the mapping from the autoregressive parameter sequence to the au-
tocorrelation sequence, as shown on Fig. 7.3.

7. The Levinson recursion Eq. (7.17) can be viewed as a mapping of a set of
p reflection coefficients ki into a set of p linear prediction filter coefficients
a[i].

(a) Prove that such a mapping is one-to-one.

(b) Derive the descending-order (step-down) Levinson recursion that maps
a set of linear prediction filter coefficients into a set of reflection co-
efficients.

(c) State a stability test for all-pole filters in terms of the reflection coeffi-
cients based on the stability test for the linear prediction coefficients.

(d) Is the filter

H(z) =
1

1− 2z−1 − 6z−2 + z−3 − 2z−4

stable?

8. Show that the lattice filter is an orthogonalizing filter by proving that
the backward linear prediction errors are orthogonal to each other in the
lattice, i.e.,

E{eb[m]eb ∗[n]} = ρwδ[m− n] .

Hint: use Eq. (7.27).

9. The analysis of an AR(p) spectrum of a process consisting of M complex
sinusoids in additive white noise may be simplified whenever p > M by
creating a reduced-order equation set [Satorius and Zeidler, 1978; Kay,
1987]. Using the analytic expression, Eq. (4.52), for the autocorrelation
function of M complex sinusoids in additive white noise, show that the
autoregressive parameters satisfy the relationship

ap[k] =

M∑
i=1

γi exp(j2πfi[k − 1]T )

for 1 ≤ k ≤ p and p > M , where

γm +

M∑
n=1
n6=m

cmnγn = − Pm
pPm + ρw

exp(j2πfmT )
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and

cmn =
Pm

pPm + ρw

(
1− exp(j2π[fn − fm]pT )

1− exp(j2π[fn − fm]T )

)
.

Also show that

ρp = ρw

[
1−

M∑
i=1

γi exp(−j2πfiT )

]
.

[Hint: Substitute the vector form of the autocorrelation sequence into
the Yule-Walker equations.] This procedure replaces the p Yule-Walker
equations with a smaller set of M equations in the γi coefficients.

10. Find the step-down recursion that relates the variance ρm−1 and AR pa-
rameters am−1[k] at order m − 1 to the order m variance ρm and AR
parameters am[k].

11. Prove relationships (7.26) and (7.27) by showing that the z-transform
between input and output of each stage of the lattice filter satisfies

Efm(z) = Efm−1(z) + kmz
−1Ebm−1(z)

Ebm(z) = k∗mE
f
m−1(z) + z−1Ebm−1(z)

in which Efm(z) = Z{efm[n]}, Ebm(z) = Z{ebm[n]}, and Ef0 (z) = Eb0(z) =
X(z).

Chapter 8

1. Incorporate the FPE order selection criterion into the four autoregressive
estimation algorithms shown in Fig. 8.1. Run the 64-point test sequence
and note the order selected by each algorithm. How do these compare?
Why are there differences? Now incorporate the CAT order selection
criterion. What orders are selected by the CAT?

2. Derive a descending-order recursion for the Burg algorithm; that is, given
the order p solution of the AR coefficients, find the order p− 1 solution.

3. Show how to incorporate a correlation lag estimate within the Burg order-
recursive algorithm. Hint: Use Eq. (8.3).

4. Rewrite the Burg algorithm within Matlab function lattice.m to save
only the reflection coefficients and omitting the AR parameters. From the
FPE criteria, find the best order. Then run the Levinson recursion to get
the AR parameters for the best order. Show that this can be done in two
steps without additional computational cost.
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5. Prove Eq. (8.3).

6. Given the reflection coefficient sequence, find the recursion that yields the
correlation sequence.

7. In the Burg algorithm implementation in Matlab function lattice.m,
why is the statement DEN=P*2 used, rather than DEN=P?

8. In the covariance algorithm, prove the following:

ρfp = aH

p Rpap = ρf ′p−1(1− ap[p]bp[p])

ρbp = bH

p Rpbp = ρb′′p−1(1− b[p]ap[p])

[efp(p+ 1)]∗ = −rH

p d′′p−1 + x∗(p+ 1)

[ebp(N)]∗ = −sH

p c′p−1 + x∗(N − p) .

9. Prove that ∇p = ∆∗p in the covariance linear prediction algorithm.

10. Show that δp, γp → 0 with increasing order p in the covariance algorithm.

11. Both the Burg and the modified covariance algorithms use the sum of the
forward and backward linear prediction squared errors. In what sense is
the Burg algorithm a constrained least squares problem and the modified
covariance method an unconstrained least squares problem?

12. Use Eqs. (8.60) and (8.112) to prove that the Rp matrices of the covariance
and modified covariance methods are positive semidefinite.

13. Prove Eq. (8.16).

14. Express Rp of Eq. (8.28) in terms of Tp, Lp, and Up.

15. Prove that matrix Rp in Eq. (8.28) for the autocorrelation method is
positive semidefinite.

Chapter 9

1. Prove Eq. (9.29).

2. Prove that prewindowed method yields a stable filter, as long as Rp,N is
invertible.
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3. Prove that 0 ≤ γp,N ≤ 1 in the fast RLS algorithm, and that γp,N is real.
Also show that similar results hold for γp,N−1 and γp−1,N+1.

4. Prove that

γp,N+1 =
det Rp,N+1

det Rp,N
, ρfp,N+1 =

det Rp+1,N+1

det Rp,N
, ρbp,N+1 =

det Rp+1,N+1

det Rp,N+1
.

This means γ,ρf ,ρb > 0 guarantee the invertibility of Rp,N .

5. Define ψp,N = γ−1p,N . Then show that alternative updates to Eqs. (9.58)
and (9.60) have the form

ψp,N+1 =

(
ωρfp,N

ρfp,N+1

)
ψp−1,N

ψp−1,N+1 = ψp,N+1

(
1− ψp,N+1cp,N+1[p]ebp,N [N + 1]

)−1
= ψp,N+1

(
2− ρbp,N+1

ωρb
p,N

)
.

Show how to change the implementation of Matlab function fastrls.m

to use PSI rather than GAMMA.

Chapter 10

1. Prove Eq. (10.6).

2. How is a MA PSD estimator like the correlogram method PSD estimator
of Chap. 5?

3. Show by counterexample that the modified Yule-Walker equations do not
generally produce minimum phase AR parameter sequences, even when
the ACS is exactly known.

4. Compute the AIC[p, q] for 0 ≤ p, q ≤ 20 using Matlab function arma psd.m

and the test sequence test1987.dat. Where is the AIC minimum? Plot
the ARMA spectrum for the orders (p, q) at the minimum.

5. Substitute Matlab function covariance lp.m for Matlab function yule walker.m

in function ma.m. Compute and plot an MA(15) PSD estimate using the
test1987.dat. What differences are found between the spectral estimate
of Fig. 10.2 and the plot made using covariance lp.m in function ma.m?
Why are there differences?
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Chapter 11

1. Prove that ZHZ in Eq. (11.26) is positive semidefinite.

2. If a multiple zero is encountered when factoring the polynomial, this gives
rise to the product of a polynomial with the exponential. How can the
Prony method be adjusted to handle this?

3. Show that the AR and ARMA processes have autocorrelation sequences
that are representable as sums of damped exponentials. Show how to apply
Prony’s method to the autocorrelation sequence (not the data sequence)
to get the MA and AR coefficients.

4. Prove that the sum of p exponentials may also be generated using back-
ward linear prediction if the time direction is reversed. How do the roots
of the characteristic polynomial relate to the exponents of the p exponen-
tials?

5. Define the exponential signal x[n] = exp(−.2nT ) sin(2π.05nT ). Let T = 1.
and choose 20 samples for 0 ≤ n ≤ 19. Compute the least squares Prony
estimate of the damping. Now let T = .5 and choose 40 samples for
0 ≤ n ≤ 39. Recompute the Prony estimate. How do the two estimates
differ? Why? (see Kulp [1981] for more details of the effect of sampling
rate on the accuracy of Prony’s method).

6. Using Eq. (11.49), show that the inverse transform of X̂1(z) is an ARMA
model with order p = q.

7. Prove matrix expression (11.44).

8. Let x̂[n] = a exp[sn] be a single-exponential approximation for a real a
and a real s = αT , such that α < 0, and defined over the index range 0
to N − 1. Form e[n] = x[n]− x̂[n]. Minimize

N−1∑
n=0

e2[n]

by setting the derivative with respect to a and s to zero. Find an analytic
solution for both a and s. (This example shows how nonlinear and difficult
the general minimization problem is, even for a real data case.)

9. Show that for real data, Eq. (11.91) reduces to two linear equations in two
real unknowns α2 and α3. Find explicit solutions for α2 and α3.

10. In this problem, the periodogram method of spectral estimation will be
viewed as a special case of the Prony method in which a harmonic model
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of preselected frequencies is used to fit to the data. Assume that the
time-series model is

x̂(nT ) = x̂[n] =

M−1∑
m=0

am exp(j2πfmnT )

for the data samples n = 0, . . . , N − 1, such that M < N . Using the
preselected harmonic frequencies fm = m/NT for 0 ≤ m ≤ M − 1 and
Eq. (11.26), show that the least squares solution for the complex sinusoidal
amplitudes am is given by

am =
1

N

N−1∑
n=0

x[n] exp(−j2πmn/N)

for m = 0, . . . ,M − 1. This, of course, is the usual discrete-time Fourier
series when M = N and T = 1.

Chapter 12

1. Prove Eqs. (12.20) and (12.25).

2. Prove that

1

P AR(p, f)
=

1

P MV(p, f)
− 1

P MV(p− 1, f)
.

3. Substitute Matlab function yulewalker.m for function lattice.m in
Matlab function minimum variance psd.m. Compute a spectral estimate
with this modified minimum variance PSD program using the test1987.dat.
How does the resulting spectral plot compare with that of Fig. 12.2? Ac-
count for any differences.

4. Using the analytic form of the autocorrelation sequence up to lag p for a
single sinusoid in white noise [Eq. (12.12)], develop the analytic form of
the solution for (12.8) for the minimum variance filter coefficients. Plot
the filter response for the case p = 10. Note the sidelobes. How could
a weighting of the autocorrelation sequence be used to suppress the side-
lobes?

Chapter 13

1. Using the case of M noiseless complex sinusoids x[n] =
∑M
i=1 sin(2πfinT )

and an order p = M , prove that the zeros of the polynomial formed from
the prediction error filter of the modified covariance data matrix (8.48)
will be on the unit circle at the sinusoid frequencies.
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2. Show for AR of Eq. (13.34) that the signal subspace version is

ap = −
M∑
k=1

(αk/λk)vk

where αk = vH

k rp is the inner product of the eigenvector vk with rp =
[Rxx[1] . . . rxx[p]]T .

3. Prove that ρ̂w = r[0] −
∑
P̂i. This can be used as a numerical check on

the eigenvalue given by Matlab function minimum eigenvalue.m.

4. Show how the MUSIC frequency estimator can be expressed in terms of
the signal subspace, rather than the noise subspace, eigenvectors. Use
Eq. (13.17) to prove this.

Chapter 15

1. Prove Eq. (15.79), i.e., show that

∆p+1 = E{efp [n]ebp
H [n− 1]} .

2. Show that the residual covariance matrices Pp
f and Pp

b satisfy the order
update relationships

Pp
f = P

f
p−1 −

[
(P f
p−1)1/2Λp

] [
(P f
p−1)1/2Λp

]H
Pp

b = P b
p−1 −

[
(P b
p−1)1/2ΛH

p

] [
(P b
p−1)1/2ΛH

p

]H

3. Show for the multichannel case that a one-to-one correspondence exists
between {Rxx[0],Rxx[1], . . . ,Rxx[p]} and the set {Rxx[0],Λ1, . . . ,Λp}.
Either sequence constitutes a parameterization of the autoregressive se-
quence

{
Pfp ,Ap[1], . . . ,Ap[p]

}
.

4. Define the normalized residuals

ẽfp [n] = (P̂
f

p−1
1/2)−1efp [n] = ẽfp−1 −Λpẽ

b
p−1

ẽbp[n] = (P̂
b

p−1
1/2)−1ebp[n] = ẽbp−1 −ΛH

p ẽfp−1

that use the previous error covariance as normalizing weights. Show that
minimizing the arithmetic mean of the weighted residuals

tr

[
N∑

n=p+1

ẽfp [n]ẽfp
H [n] + ẽbp[n]ẽbp

H [n]

]

14



with respect to Λp+1 yields the normalized partial correlation of Eq. (15.88).

5. Prove that Eqs. (15.121) and (15.122) form a valid alternative expression
for the multichannel minimum variance spectral estimate. Hint: use the
concepts in Sec. 12.4 and relationship (15.86) for the inverse of a block-
Toeplitz matrix.

6. In the multichannel Levinson algorithm, Bp[p] 6= AH
p [p]. However, show

that
det Bp[p] = det AH

p [p]

does hold. Also show that

tr Ap[1] = tr BH

p [1]

and that

det Rp =

p∏
n=1

detPn
f =

p∏
n=1

detPn
b.

7. Develop the fast algorithm to solve the multichannel covariance linear
prediction normal equations. Use the same concepts as employed with the
single-channel covariance algorithm in Section 8.10.

8. Show that the selection of Vp = Wp = I in the Nuttall-Strand algorithm
does not guarantee a stable correlation sequence or a positive-definite spec-
tral estimate.

9. Analytically determine the pole and zero locations of the two-channel ex-
ample of Eq. (15.118). Find an analytic expression for the MSC. Show
that it has four poles and four zeros in the finite z-plane. What is its
maximum value?

10. Prove that filtering the X and Y channels with the same filter will yield
the same MSC for input and output.

11. Determine the computational operation count of the two algorithms in
subroutine MCAR as a function of number of channels, number of data
points, and order. How does the Nuttall-Strand algorithm compare with
the operation count provided for BURG algorithm in Chap. 8?

12. Prove Eq. (15.13).

13. Why is the matrix of Eq. (15.18) not Hermitian, except for Rxx[0]?

14. Prove Eqs. (15.22) and (15.23).
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15. Using principles from Chap. 6, show that the multichannel Yule-Walker
equations for a multichannel ARMA(p, q) are

Rxx[m] =


−
∑p
k=1 A[k]Rxx[m− k] +

∑q
k=m B[k]PwHH [k −m]

for 0 ≤ m ≤ q
−
∑p
k=1 A[k]Rxx[m− k]

for m > q .

What is the block-matrix structure of the modified Yule-Walker equations
for the multichannel ARMA case?

Chapter 16

1. A separable 2-D sequence is one that can be expressed as the product
of two independent sequences, x[m,n] = x1[m]x2[n]. Prove that the 2-D
convolution of a separable sequence is also separable.

2. Prove that the 2-D DTFS is a 2-D periodic function.

3. Show that the frequency response function for a rectangular impulse func-
tion

h[m,n] =

{
1 for |m| ≤ a/2 , |n| ≤ b/2
0 otherwise

is
H(f1, f2) = sinc(f1/a),sinc(f2/b)/ab.

4. Prove that the 2-D autocorrelation term rxx[0, 0] is real and positive, and
satisfies

rxx[0, 0] ≥ |rxx[m,n]|

for all m and n. Furthermore, show that the 2-D autocorrelation is Her-
mitian symmetric, r∗xx[m,n] = rxx[−m,−n].

5. Show that the 2-D PSD as defined by Eq. (16.26) is real and positive.
Also show that P (f1, f2) = P (−f1,−f2) if the 2-D ACS is real.

6. Suppose the following samples of a 2-D ACS are known:

rxx[0, 0] = 1

rxx[1, 0] = rxx[−1, 0] = α

rxx[0, 1] = rxx[0,−1] = β

rxx[1, 1] = rxx[1,−1] = rxx[−1, 1] = rxx[−1,−1] = 0 ,

where α and β are real-valued parameters. Compute and plot the 2-D
correlogram method PSD estimate.
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7. Using the same 2-D ACS values of Problem 6, form the 4 × 4 autocorre-
lation matrix of Eq. (16.51) and analytically determine its inverse. Form
the minimum variance spectral estimator, Eq. (16.91), and plot the PSD.

8. Using the same 2-D ACS values of Problem 6 and the autocorrelation ma-
trix of Problem 7, analytically determine the first- and second-quadrant
QP autoregressive parameters. Compute and plot the first-quadrant,
second-quadrant, and combined-quadrant AR PSD estimates [Eqs. (16.84),
(16.85), and (16.86)].

9. Explain why it requires more 2-D ACS samples than unknown 2-D AR
parameters, in contrast to the 1-D case, in which the number of ACS
samples was one more than the number of 1-D AR parameters.

10. Write the matrix expression for the Yule-Walker equations of the causal
NSHP region of support [Jain and Ranganath, 1981].

11. Develop the normal equations for the 2-D modified covariance method
of 2-D linear prediction for a first-quadrant linear prediction region of
support.

12. Show that the 2-D minimum variance spectral estimator can be expressed
in the form

P̂ MV(f1, f2) =
T1T2∑p

k=−p
∑q
l=−q α[k, l] exp(−j2π[f1kT1 + f2lT2])

.

What is the relationship of the coefficients α[k, l] to the elements of the
inverse autocorrelation matrix?

13. Derive a 2-D version of Eq. (4.53) for the 2-D block autocorrelation matrix
of M 2-D complex sinusoids in 2-D white noise. What would be the 2-
D form of the MUSIC frequency estimator of Chap. 13 that would be
suggested by this block autocorrelation matrix?

14. Prove the relationships of Eqs. (16.78) and (16.79).
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