1.

Introduction

1.1

The radiation of the sun in which the planet is incessantly plunged, pene-
trates the air, the earth, and the waters; its elements are divided, change
direction in every way, and, penetrating the mass of the globe, would raise
its temperature more and more, if the heat acquired were not exactly
balanced by that which escapes in rays from all points of the surface and
expands through the sky. The Analytical Theory of Heat, ). Fourier

Heat transfer

People have always understood that something flows from hot objects to
cold ones. We call that flow heat. In the eighteenth and early nineteenth
centuries, scientists imagined that all bodies contained an invisible fluid
which they called caloric. Caloric was assigned a variety of properties,
some of which proved to be inconsistent with nature (e.g., it had weight
and it could not be created nor destroyed). But its most important feature
was that it flowed from hot bodies into cold ones. It was a very useful
way to think about heat. Later we shall explain the flow of heat in terms
more satisfactory to the modern ear; however, it will seldom be wrong to
imagine caloric flowing from a hot body to a cold one.

The flow of heat is all-pervasive. It is active to some degree or another
in everything. Heat flows constantly from your bloodstream to the air
around you. The warmed air buoys off your body to warm the room you
are in. If you leave the room, some small buoyancy-driven (or convective)
motion of the air will continue because the walls can never be perfectly
isothermal. Such processes go on in all plant and animal life and in the
air around us. They occur throughout the earth, which is hot at its core
and cooled around its surface. The only conceivable domain free from
heat flow would have to be isothermal and totally isolated from any other
region. It would be “dead” in the fullest sense of the word — devoid of
any process of any kind.
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The overall driving force for these heat flow processes is the cooling
(or leveling) of the thermal gradients within our universe. The heat flows
that result from the cooling of the sun are the primary processes that we
experience naturally. The conductive cooling of Earth’s center and the ra-
diative cooling of the other stars are processes of secondary importance
in our lives.

The life forms on our planet have necessarily evolved to match the
magnitude of these energy flows. But while most animals are in balance
with these heat flows, we humans have used our minds, our backs, and
our wills to harness to harness and control energy flows that are far more
intense than those we experience naturally!. To emphasize this point we
suggest that the reader make an experiment.

Experiment 1.1

Generate as much power as you can, in some way that permits you to
measure your own work output. You might lift a weight, or run your own
weight up a stairwell, against a stopwatch. Express the result in watts (W).
Perhaps you might collect the results in your class. They should generally
be less than 1 kW or even 1 horsepower (746 W). How much less might
be surprising.

Thus, when we do so small a thing as turning on a 150 W light bulb,
we are manipulating a quantity of energy substantially greater than a
human being could produce in sustained effort. The power consumed
by an oven, toaster, or hot water heater is an order of magnitude beyond
our capacity. The power consumed by an automobile can easily be three
orders of magnitude greater. If all the people in the United States worked
continuously like galley slaves, they could barely equal the output of even
a single city power plant.

Our voracious appetite for energy has steadily driven the intensity
of actual heat transfer processes upward until they are far greater than
those normally involved with life forms on earth. Until the middle of the
thirteenth century, the energy we use was drawn indirectly from the sun

1Some anthropologists think that the term Homo technologicus (those who use tech-
nology) serves to define human beings, as apart from animals, better than the older
term Homo sapiens (those who are wise). We may not be as much wiser than the animals
as we think we are, but only we do serious sustained tool making.
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using comparatively gentle processes — animal power, wind and water
power, and the combustion of wood. Then population growth and defor-
estation drove the English to using coal. By the end of the seventeenth
century, England had almost completely converted to coal in place of
wood. At the turn of the eighteenth century, the first commercial steam
engines were developed, and that set the stage for enormously increased
consumption of coal. Europe and America followed England in these
developments.

The development of fossil energy sources has been a bit like Jules
Verne’s description in Around the World in Eighty Days in which, to win
arace, a crew burns the inside of a ship to power the steam engine. The
combustion of nonrenewable fossil energy sources (and, more recently,
the fission of uranium) has led to remarkably intense energy releases in
power-generating equipment. The energy transferred as heat in a nuclear
reactor is on the order of one million watts per square meter.

A complex system of heat and work transfer processes is invariably
needed to bring these concentrations of energy back down to human pro-
portions. We must understand and control the processes that divide and
diffuse intense heat flows down to the level on which we can interact with
them. To see how this works, consider a specific situation. Suppose we
live in a town where coal is processed into fuel-gas and coke. Such power
supplies used to be common, and they may return if natural gas supplies
ever dwindle. Let us list a few of the process heat transfer problems that
must be solved before we can drink a glass of iced tea.

e Avariety of high-intensity heat transfer processes are involved with
combustion and chemical reaction in the gasifier unit itself.

e The gas goes through various cleanup and pipe-delivery processes
to get to our stoves. The heat transfer processes involved in these
stages are generally less intense.

o The gas is burned in the stove. Heat is transferred from the flame to
the bottom of the teakettle. While this process is small, it is intense
because boiling is a very efficient way to remove heat.

e The coke is burned in a steam power plant. The heat transfer rates
from the combustion chamber to the boiler, and from the wall of
the boiler to the water inside, are very intense.
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¢ The steam passes through a turbine where it is involved with many
heat transfer processes, including some condensation in the last
stages. The spent steam is then condensed in any of a variety of
heat transfer devices.

¢ Cooling must be provided in each stage of the electrical supply sys-
tem: the winding and bearings of the generator, the transformers,
the switches, the power lines, and the wiring in our houses.

o The ice cubes for our tea are made in an electrical refrigerator. It
involves three major heat exchange processes and several lesser
ones. The major ones are the condensation of refrigerant at room
temperature to reject heat, the absorption of heat from within the
refrigerator by evaporating the refrigerant, and the balancing heat
leakage from the room to the inside.

¢ Let’s drink our iced tea quickly because heat transfer from the room
to the water and from the water to the ice will first dilute, and then
warm, our tea if we linger.

A society based on power technology teems with heat transfer prob-
lems. Our aim is to learn the principles of heat transfer so we can solve
these problems and design the equipment needed to transfer thermal
energy from one substance to another. In a broad sense, all these prob-
lems resolve themselves into collecting and focusing large quantities of
energy for the use of people, and then distributing and interfacing this
energy with people in such a way that they can use it on their own puny
level.

We begin our study by recollecting how heat transfer was treated in
the study of thermodynamics and by seeing why thermodynamics is not
adequate to the task of solving heat transfer problems.

1.2 Relation of heat transfer to thermodynamics
The First Law with work equal to zero

The subject of thermodynamics, as taught in engineering programs, makes
constant reference to the heat transfer between systems. The First Law
of Thermodynamics for a closed system takes the following form on a
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du
Q=Wk +—
dt

system

a) The general case b) No work transfer

Figure 1.1 The First Law of Thermodynamics for a closed system.

rate basis:
au
Q - Wk — (1.1)
f— J “ J \ dt J
positive toward positive away positive when
the system from the system the system’s

energy increases

where Q is the heat transfer rate and Wk is the work transfer rate. They
may be expressed in joules per second (J/s) or watts (W). The derivative
dUydt is the rate of change of internal thermal energy, U, with time, t.
This interaction is sketched schematically in Fig. 1.1a.

The analysis of heat transfer processes can generally be done with-
out reference to any work processes, although heat transfer might sub-
sequently be combined with work in the analysis of real systems. If p dV
work is the only work that occurs, then eqgn. (1.1) is

av du
=p—+— 1.
Q=pr o+ (1.2a)
This equation has two well-known special cases:
Constant volume process: Q= tji_ltj = Mmcy i—f (1.2b)
Constant pressure process: Q= iidi:— = mcp Z—{ (1.2¢)

where H = U + pV is the enthalpy, and ¢, and c, are the specific heat

capacities at constant volume and constant pressure, respectively.
When the substance undergoing the process is incompressible (so that

V is constant for any pressure variation), the two specific heats are equal:
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¢y = cp = c¢. The proper form of eqn. (1.2a) is then

au mc ar (1.3)

Q="T7r =™t

Since solids and liquids can frequently be approximated as being incom-
pressible, we shall often make use of eqn. (1.3).
If the heat transfer were reversible, then eqn. (1.2a) would become?

s dv du
at “Par tar (1.4
Qrev Wkrev

That might seem to suggest that Q can be evaluated independently for in-
clusion in either eqn. (1.1) or (1.3). However, it cannot be evaluated using
T dS, because real heat transfer processes are all irreversible and S is not
defined as a function of T in an irreversible process. The reader will recall
that engineering thermodynamics might better be named thermostatics,
because it only describes the equilibrium states on either side of irre-
versible processes.

Since the rate of heat transfer cannot be predicted using T dS, how
can it be determined? If U (t) were known, then (when Wk = 0) eqn. (1.3)
would give Q, but U(t) is seldom known a priori.

The answer is that a new set of physical principles must be introduced
to predict Q. The principles are transport laws, which are not a part of
the subject of thermodynamics. They include Fourier’s law, Newton’s law
of cooling, and the Stefan-Boltzmann law. We introduce these laws later
in the chapter. The important thing to remember is that a description
of heat transfer requires that additional principles be combined with the
First Law of Thermodynamics.

Reversible heat transfer as the temperature gradient vanishes

Consider a wall connecting two thermal reservoirs as shown in Fig. 1.2.
As long as T} > T, heat will flow spontaneously and irreversibly from 1
to 2. In accordance with our understanding of the Second Law of Ther-
modynamics, we expect the entropy of the universe to increase as a con-
sequence of this process. If T» — Tj, the process will approach being
quasistatic and reversible. But the rate of heat transfer will also approach

2T = absolute temperature, S = entropy, V = volume, p = pressure, and “rev” denotes
a reversible process.
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zero if there is no temperature difference to drive it. Thus all real heat
transfer processes generate entropy.

Now we come to a dilemma: If the irreversible process occurs at
steady state, the properties of the wall do not vary with time. We know
that the entropy of the wall depends on its state and must therefore be
constant. How, then, does the entropy of the universe increase? We turn
to this question next.

Entropy production

The entropy increase of the universe as the result of a process is the sum
of the entropy changes of all elements that are involved in that process.
The rate of entropy production of the universe, Syn, resulting from the
preceding heat transfer process through a wall is

Sun = Sres 1 + Swall +Sres 2 (1.5)
—’_/

= 0, since Swan
must be constant

where the dots denote time derivatives (i.e., x = dx/dt). Since the reser-
voir temperatures are constant,

e = —= .6

Sres Tres (1 )

Now Qres1 is negative and equal in magnitude to Qres2, SO eqn. (1.5)
becomes ) 1

SUn = ‘Qresl (T—Z - 'ﬂ) . (1.7)
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The term in parentheses is positive, so Sy, > 0. This agrees with Clau-
sius’s statement of the Second Law of Thermodynamics.

Notice an odd fact here: The rate of heat transfer, Q, and hence Syn,
is determined by the wall’s resistance to heat flow. Although the wall
is the agent that causes the entropy of the universe to increase, its own
entropy does not change. Only the entropies of the reservoirs change.

1.3 Modes of heat transfer

Figure 1.3 shows an analogy that might be useful in fixing the concepts
of heat conduction, convection, and radiation as we proceed to look at
each in some detail.

Heat conduction

Fourier’s law. Joseph Fourier (see Fig. 1.4) published his remarkable
book Théorie Analytique de la Chaleur in 1822. In it he formulated a
very complete exposition of the theory of heat conduction.

He began his treatise by stating the empirical law that bears his name:
the heat flux,3 g (W/m?), resulting from thermal conduction is proportional
to the magnitude of the temperature gradient and opposite to it in sign. If
we call the constant of proportionality, k, then

ar
q= -k dx (1.8)
The constant, k, is called the thermal conductivity. It obviously must have
the dimensions W/m-K, or J/m-s-K, or Btu/h-ft-°F if eqn. (1.8) is to be
dimensionally correct.

The heat flux is a vector quantity. Equation (1.8) tells us that if temper-
ature decreases with x, g will be positive—it will flow in the x-direction.
If T increases with x, g will be negative—it will flow opposite the x-
direction. In either case, g will flow from higher temperatures to lower
temperatures. Equation (1.8) is the one-dimensional form of Fourier’s
law. We develop its three-dimensional form in Chapter 2, namely:

G=-kvVT

3The heat flux, g, is a heat rate per unit area and can be expressed as Q/A, where A
is an appropriate area.
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5.6 Transient heat conduction to a semi-infinite
region
Introduction

Bronowksi’s classic television series, The Ascent of Man [5.9], included
a brilliant reenactment of the ancient ceremonial procedure by which
the Japanese forged Samurai swords (see Fig. 5.13). The metal is heated,
folded, beaten, and formed, over and over, to create a blade of remarkable
toughness and flexibility. When the blade is formed to its final configu-
ration, a tapered sheath of clay is baked on the outside of it, so the cross
section is as shown in Fig. 5.13. The red-hot blade with the clay sheath is
then subjected to a rapid quenching, which cools the uninsulated cutting
edge quickly and the back part of the blade very slowly. The result is a
layer of case-hardening that is hardest at the edge and less hard at points
farther from the edge.

Clay-coated blade before quench Case-hardened blade

Figure 5.13 The ceremonial case-hardening of a Samurai sword.
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Figure 5.14 The initial cooling of a thin
sword blade. Prior to t = t4, the blade
might as well be infinitely thick insofar as
¢ of blade cooling is concerned.

The blade is then tough and ductile, so it will not break, but has a fine
hard outer shell that can be honed to sharpness. We need only look a
little way up the side of the clay sheath to find a cross section that was
thick enough to prevent the blade from experiencing the sudden effects
of the cooling quench. The success of the process actually relies on the
failure of the cooling to penetrate the clay very deeply in a short time.

Now we ask how we can say whether or not the influence of a heating
or cooling process is restricted to the surface of a body. Or if we turn
the question around: “Under what conditions can we view the depth of a
body as infinite with respect to the thickness of the region that has felt
the heat transfer process?”

Consider next the cooling process within the blade in the absence of
the clay retardant and when h is very large. Actually, our considerations
will apply initially to any finite body whose boundary suddenly changes
temperature. The temperature distribution, in this case, is sketched in
Fig. 5.14 for four sequential times. Only the fourth curve—that for which

= t4—Iis noticeably influenced by the opposite wall. Up to that time,
the wall might as well have infinite depth.

Since any body subjected to a sudden change of temperature is in-
finitely large in comparison with the initial region of temperature change,
we must learn how to treat heat transfer in this period.

Solution aided by dimensional analysis

The calculation of the temperature distribution in a semi-infinite region
poses a difficulty: we can impose a definite b.c. at only one position—the
exposed boundary. We get around that difficulty in a nice way with the
help of dimensional analysis.
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When the one boundary of a semi-infinite region, initially at T = T;,
is suddenly cooled (or heated) to a new temperature, T, as in Fig. 5.14,
the dimensional function equation is

T-Tw=f(t,x, 0, (Ti — To)]

where there is no characteristic length or time. Since there are five vari-
ables in °C, s, and m, we should look for two dimensional groups.

T-Tw X
7}—Im_fn(J&f) 49
4
0)

The very important thing that we learn from this exercise in dimen-
sional analysis is that position and time collapse into one independent
variable. This means that the heat conduction equation and its b.c.s must
transform from a partial differential equation into a simpler ordinary dif-
ferential equation in the single variable, T = x/+/at. Thus, we transform

each side of
02T 10T

ox2 " wot

as follows, where we call T; — T = AT:

oT _ o 90 _ 0007 _ pggpg
ot (Ti=Tw) 5 = AT oC ot =AT 2tJat) 0T’
T ,..0093C AT 90,

ox " dCox Jat oC’
9T AT 920 3C _ AT 920

and S = VXt 9T2 ax ot 3C%

Substituting the first and last of these derivatives in the heat conduction
equation, we get the ordinary differential equation
0 _ T de

d—Cz =-5 ac (5.45)

Notice that we changed from partial to total derivative notation since
© now depends solely on . The i.c. for eqn. (5.45) is

Tt=0)=T; or ©(C— o) =1 (5.46)
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and the one known b.c. is
T(x=0)=Ts or ©@(C=0)=0 (5.47)

If we call d®/dT = ¥, then eqn. (5.45) becomes the first-order equa-
tion

ax T
dc =~ 2%
which can be integrated once to get
doe 2
== = -C°/4
X = Az Cre (5.48)
and we integrate this a second time to get
L
0=C J e S/tdg +  9(0) (5.49)
0 —_—
= 0 according
to the b.c.

The b.c. is now satisfied, and we need only substitute eqn. (5.49) in the
i.c., eqn. (5.46), to solve for C;:

1=0C J e‘Cz/“dC
0
This particular definite integral is given by integral tables as /1T, so
C = \/_ﬁ

Thus the solution to the problem of conduction in a semi-infinite region,
subject to a b.c. of the first kind is

z z/2
0= %ﬁ JO e T4 gr = % jo e ds = erf(Z/2) (5.50)

The second integral in eqn. (5.50), obtained by a change of variables,
is called the error function (erf). Its name arises from its relationship to
certain statistical problems related to the Gaussian distribution, which
describes random errors. In Table 5.3, we list values of the error function
and the complementary error function, erfc(x) = 1 — erf(x). Equation
(5.50) is also plotted in Fig. 5.15.
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Table 5.3 Error function and complementary error function.

C/2 erf(Z/2) erfc(C/2) z/2 erf(C/2) erfc(C/2)
0.00 0.00000 1.00000 1.10 0.88021 0.11980
0.05 0.05637 0.94363 1.20 0.91031 0.08969
0.10 0.11246 0.88754 1.30 0.93401 0.06599
0.15 0.16800 0.83200 1.40 0.95229 0.04771
0.20 0.22270 0.77730 1.50 0.96611 0.03389
0.30 0.32863 0.67137 1.60 0.97635 0.02365
0.40 0.42839 0.57161 1.70 0.98379 0.01621
0.50 0.52050 0.47950 1.80 0.98909 0.01091
0.60 0.60386 0.39614 1.8214 0.99000 0.01000
0.70 0.67780 0.32220 1.90 0.99279 0.00721
0.80 0.74210 0.25790 2.00 0.99532 0.00468
0.90 0.79691 0.20309 2.50 0.99959 0.00041
1.00 0.84270 0.15730 3.00 0.99998 0.00002

In Fig. 5.15 we see that the early-time curves shown in Fig. 5.14 have
collapsed into a single curve. This was accomplished by the similarity
transformation, as we call it>: £/2 = x/2+/at. From the figure or from
Table 5.3, we see that ® = 0.99 when

(4 X - /
2 = 1. = 3. 51
NG >1.8214 or x = 899 = 3.64Vaxt (5.51)

In other words, the local value of (T — T ) is more than 99% of (T; — Tw)
for positions in the slab beyond farther from the surface than dg99 =

3.64\/«at.

Example 5.4

For what maximum time can a samurai sword be analyzed as a semi-
infinite region after it is quenched, if it has no clay coating and hexternal
=~ 00?

SOLUTION. First, we must guess the half-thickness of the sword (say,
3 mm) and its material (probably wrought iron with an average «

5The transformation is based upon the “similarity” of spatial an temporal changes
in this problem.
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1.0;_ T T ]
T-T, L .
0.5— erf({/2) —
(] l | 4
o 1 2 s Figure 5.15 Temperature distribution in
$/12=x/2/at a semi-infinite region.

around 1.5 x 107°> m?/s). The sword will be semi-infinite until 599
equals the half-thickness. Inverting egn. (5.51), we find
834 (0.003 m)?
< = = 0.04
3.642a ~ 13.3(1.5)(10) 5 mejs _ 0% S

Thus the quench would be felt at the centerline of the sword within
only 1/20 s. The thermal diffusivity of clay is smaller than that of steel
by a factor of about 30, so the quench time of the coated steel must
continue for over 1 s before the temperature of the steel is affected
at all, if the clay and the sword thicknesses are comparable. |

Equation (5.51) provides an interesting foretaste of the notion of a
fluid boundary layer. In the context of Fig. 1.9 and Fig. 1.10, we ob-
serve that free stream flow around an object is disturbed in a thick layer
near the object because the fluid adheres to it. It turns out that the
thickness of this boundary layer of altered flow velocity increases in the
downstream direction. For flow over a flat plate, this thickness is ap-
proximately 4.92/vt, where t is the time required for an element of the
stream fluid to move from the leading edge of the plate to a point of inter-
est. This is quite similar to eqn. (5.51), except that the thermal diffusivity,
«, has been replaced by its counterpart, the kinematic viscosity, v, and
the constant is a bit larger. The velocity profile will resemble Fig. 5.15.

If we repeated the problem with a boundary condition of the third
kind, we would expect to get ® = ©(Bi, L), except that there is no length,
L, upon which to build a Biot number. Therefore, we must replace L with
J«t, which has the dimension of length, so

0-0 (g, Wk&?) - 0T, B) (5.52)
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The term B = h/«t/k is like the product: Biv/Fo. The solution of this
problem (see, e.g., [5.6], §2.7) can be conveniently written in terms of the
complementary error function, erfc(x) = 1 — erf(x):

0= erf% + exp (B§ + BZ) [erfc (% + B)] (5.53)

We offer our own original graph of this result in Fig. 5.16.

Example 5.5

Most of us have passed our finger through an 800°C candle flame and
know that if we limit exposure to about 1/4 s we will not be burned.
Why not?

SOLUTION. The short exposure to the flame causes only a very su-
perficial heating, so we consider the finger to be a semi-infinite re-
gion and go to eqn. (5.53) to calculate (Tourn — Tfiame)/(T; — Thame)- It
turns out that the burn threshold of human skin, Tyyrn, is about 65°C.
(That is why 140°F or 60°C tap water is considered to be “scalding.”)
Therefore, we shall calculate how long it will take for the surface tem-
perature of the finger to rise from body temperature (37°C) to 65°C,
when it is protected by an assumed 7 = 100 W/m?2K. We shall assume
that the thermal conductivity of human flesh equals that of its major
component—water—and that the thermal diffusivity is equal to the
known value for beef. Then

_ 65 -800

6= 37 — 800

=0.963

BT = Eki =0 since x = 0 at the surface

_ Rat _ 1002(0.135 x 1075)¢

2 =
B =" - o = 0.0034(t s)

The situation is quite far into the corner of Fig. 5.16. We read ° =
0.001, which corresponds with t = 0.3 s. For greater accuracy, we
must go to eqn. (5.53):

0.963 = erf 0 +0.0034¢ [erfc (0 ++0.0034%)|
=0
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By trial and error, we get t = 0.33 s. In fact, it can be shown that
@)(C—OB)zl—ﬁ for B <1 [ ]
=0,8) = N

which can be solved directly for B = (1 — 0.963)./7/2 = 0.03279,
leading to the same answer.

Thus, it would require about 1/3 s to bring the skin to the burn
point if we have chosen a correct value of the heat transfer coefficient.

Experiment 5.1

Immerse your hand in the subfreezing air in the freezer compartment
of your refrigerator. Next immerse your finger in a mixture of ice cubes
and water, but do not move it. Then, immerse your finger in a mixture of
ice cubes and water , swirling it around as you do so. Describe your initial
sensation in each case, and explain the differences in terms of Fig. 5.16.
What variable has changed from one case to another?

Heat transfer

Heat will be removed from the exposed surface of a semi-infinite region,
with a b.c. of either the first or the third kind, in accordance with Fourier’s

law:
— _ ?I _ k(Too - Tl) _dg
1= x0T T VRt A,
Differentiating ©® as given by eqn. (5.50), we obtain, for the b.c. of the
first kind,
k(Too - Tl) ( 1 _C2/4) k(Too - Tl)
_ L LA == U .54
Jat ﬁe =0 ot (5-54)

Thus, g decreases with increasing time, as t~1/2. When the temperature
of the surface is first changed, the heat removal rate is enormous. Then
it drops off rapidly.

It often occurs that we suddenly apply a specified input heat flux,
dw, at the boundary of a semi-infinite region. In such a case, we can
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differentiate the heat diffusion equation with respect to x, so

21 _ o1
0x3  Otdx

When we substitute g = —k 0T /0x in this, we obtain

2’%q _0q
*x2 T ot
with the b.c.’s:
qx=0,t>0)=qw or w —4 =0
Aw  |x-0
a(x>0,t=0)=0 or =4 _,
AT )

What we have done here is quite elegant. We have made the problem
of predicting the local heat flux g into exactly the same form as that of
predicting the local temperature in a semi-infinite region subjected to a
step change of wall temperature. Therefore, the solution must be the

same:
Aw =9 _ orf (

dw

——~—?). (5.55)

The temperature distribution is obtained by integrating Fourier’s law. At
the wall, for example:
Tw 04
T aT = - J;: E dx
where T; = T(x — o) and T, = T(x = 0). Then
Ty =T; + gkﬂ J;) erfc(x/2Vat) dx
This becomes

m=n+%wwLem@mmc
———

=2/ym

Ty(t) = T; + 22w [&E (5.56)
k ™

SO
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;‘
Temperature distribution in
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Figure 5.17 A bubble growing in a within bubble,

superheated liquid.

T=Teat

Example 5.6 Predicting the Growth Rate of a Vapor Bubble
in an Infinite Superheated Liquid

This prediction is relevant to a large variety of processes, ranging
from nuclear thermohydraulics to direct-contact heat exchange. It
was originally presented by Max Jakob and others in the early 1930s
(see, e.g., [5.10, Chap. I]). Jakob (pronounced Yah’-kob) was an im-
portant figure in heat transfer during the 1920s and 1930s. He left
Nazi Germany in 1936 to come to the United States. We encounter
his name again later.

Figure 5.17 shows how growth occurs. When a liquid is super-
heated to a temperature somewhat above its boiling point, a small
gas or vapor cavity in that liquid will grow. (That is what happens in
the superheated water at the bottom of a teakettle.)

This bubble grows into the surrounding liquid because its bound-
ary is kept at the saturation temperature, Tsat, by the near-equilibrium
coexistence of liquid and vapor. Therefore, heat must flow from the
superheated surroundings to the interface, where evaporation occurs.
So long as the layer of cooled liquid is thin, we should not suffer too
much error by using the one-dimensional semi-infinite region solu-
tion to predict the heat flow.
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Thus, we can write the energy balance at the bubble interface:

l(_q %) (417R2 m2) = (Pghfg #) (dz‘t{ r—ns_B)

J

[«

Q into bubble rate of ene;gy increase
of the bubble

and then substitute eqn. (5.54) for g and 41R3/3 for the volume, V.

This gives
k(Tsup — Tsat) _ dR
ot Polse gy (5:57)

Integrating eqn. (5.57) from R = 0 at t = O up to R at t, we obtain

Jakob’s prediction:
2 kAT (5.58)

=————t
VT pghfg/a ]

This analysis was done without assuming the curved bubble interface
to be plane, 24 years after Jakob’s work, by Plesset and Zwick [5.11]. It
was verified in a more exact way after another 5 years by Scriven [5.12].
These calculations are more complicated, but they lead to a very similar
result:

2/3 kAT

R= NG Vt = V3 Rjakob- (5.59)
Both predictions are compared with some of the data of Dergarabe-
dian [5.13] in Fig. 5.18. The data and the exact theory match almost
perfectly. The simple theory of Jakob et al. shows the correct depen-
dence on R on all its variables, but it shows growth rates that are low
by a factor of /3. This is because the expansion of the spherical bub-
ble causes a relative motion of liquid toward the bubble surface, which
helps to thin the region of thermal influence in the radial direction. Con-
sequently, the temperature gradient and heat transfer rate are higher
than in Jakob’s model, which neglected the liquid motion. Therefore, the
temperature profile flattens out more slowly than Jakob predicts, and the

bubble grows more rapidly.

Experiment 5.2

Touch various objects in the room around you: glass, wood, cork-
board, paper, steel, and gold or diamond, if available. Rank them in
order of which feels coldest at the first instant of contact (see Problem
5.29).
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o8l (o] .!?ata [5.111‘}] for. a0 /(D/
sup — Tsat = 3.

Bubble radius, R mm

Time, t seconds

Figure 5.18 The growth of a vapor bubble—predictions and
measurements.

The more advanced theory of heat conduction (see, e.g., [5.6]) shows
that if two semi-infinite regions at uniform temperatures T; and T> are
placed together suddenly, their interface temperature, T, is given by®

T — To \(kpcp)1

-T2 \/(kpcp)l + \[(kpcp)z

If we identify one region with your body (T; =~ 37°C) and the other with
the object being touched (T> ~ 20°C), we can determine the temperature,
Ts, that the surface of your finger will reach upon contact. Compare
the ranking you obtain experimentally with the ranking given by this
equation.

Notice that your bloodstream and capillary system provide a heat
source in your finger, so the equation is valid only for a moment. Then
you start replacing heat lost to the objects. If you included a diamond

SFor semi-infinite regions, initially at uniform temperatures, T; does not vary with
time. For finite bodies, T; will eventually change. A constant value of T; means that
each of the two bodies independently behaves as a semi-infinite body whose surface
temperature has been changed to T; at time zero. Consequently, our previous results—
eqns. (5.50), (5.51), and (5.54)—apply to each of these bodies while they may be treated
as semi-infinite. We need only replace T, by T; in those equations.
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among the objects that you touched, you will notice that it warmed up
almost instantly. Most diamonds are quite small but are possessed of
the highest known value of «. Therefore, they can behave as a semi-
infinite region only for an instant. Immediately after, they feel warm to
the touch.

Conduction to a semi-infinite region with a harmonically
oscillating temperature at the boundary

Suppose that we approximate the annual variation of the ambient temper-
ature as sinusoidal; then we may ask what the influence of this variation
will be beneath the ground. We want to calculate T — T (where T is the
time-average surface temperature) as a function of: depth, x; thermal
diffusivity, «; frequency of oscillation, w; amplitude of oscillation, AT;
and time, t. There are six variables in K, m, and s, so the problem can be
represented in three dimensionless variables:

_r-T - e =5 | L
0= AT Q = wt; E=x 7

We pose the problem as follows in these variables. The heat conduc-
tion equation is

1920 00
2382 - 20 (5.60)
and the b.c.’s are
(€] £20 = cos wt and ®’§>0 = finite (5.61)

No i.c. is needed because, after the initial transient decays, the remaining
steady oscillation must be periodic.

The solution is given by Carslaw and Jaeger (see [5.6, §2.6] or work
Problem 5.16). It is

O(E,Q) =efcos(Q-E) (5.62)
This result is plotted in Fig. 5.19. It shows that the surface temperature

variation decays exponentially into the region and suffers a phase shift
as it does so.
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Figure 5.19 The temperature variation within a semi-infinite
region whose temperature varies harmonically at the boundary.

Example 5.7

How deep in the earth must we dig to find the temperature wave that
was launched by the coldest part of the last winter if it is now high
summer?

SOLUTION. w = 27 rad/yr, and Q = wt = 0 at the present. First,
we must find the depths at which the Q = 0 curve reaches its lo-
cal extrema. (We pick the Q = 0 curve because it gives the highest
temperature at t = 0.)

o =—-e%cos(0-&)+eEsin(0-§) =0
d€ |o-0
This gives
tan(0-&) =1 so §—3—TE m
= = a0

and the first minimum occurs where & = 317/4 = 2.356, as we can see
in Fig. 5.19. Thus,

E=xJw/2x =2.356

or, if we take & = 0.139x 1076 m2/s (given in [5.14] for coarse, gravelly
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earth),

21T 1
*= 2'356/\/2 (0.139 x 10-5) 365(24)(3600) _ ~ o> ™

If we dug in the earth, we would find it growing colder and colder until
it reached a maximum coldness at a depth of about 2.8 m. Farther
down, it would begin to warm up again, but not much. In midwinter
(Q = 1), the reverse would be true. |

5.7 Steady multidimensional heat conduction

Introduction

The general equation for T(#) during steady conduction in a region of
constant thermal conductivity, without heat sources, is called Laplace’s
equation:

V2T =0 (5.63)

It looks easier to solve than it is, since [recall eqn. (2.12) and eqn. (2.14)]
the Laplacian, V2T, is a sum of several second partial derivatives. We
solved one two-dimensional heat conduction problem in Example 4.1,
but this was not difficult because the boundary conditions were made to
order. Depending upon one’s mathematical background and the specific
problem, the analytical solution of multidimensional problems can be
anything from straightforward calculation to a considerable challenge.
The reader who wishes to study such analyses in depth should refer to
[5.6] or [5.15], where such calculations are discussed in detail.

Faced with a steady multidimensional problem, three routes are open
to us:

« Find out whether or not the analytical solution is already available
in a heat conduction text or in other published literature.

¢ Solve the problem.

(a) Analytically.
(b) Numerically.

¢ Obtain the solution graphically if the problem is two-dimensional.
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Figure 5.20 The two-dimensional flow
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of heat between two isothermal walls.

The last of these options is out of style as a solution method, yet it is
remarkably simple and effective. We turn to it next since anyone who
takes the trouble to master it will develop an uncommonly strong intu-
itive understanding of multidimensional heat transfer along the way.

The flux plot

The method of flux plotting will solve all steady planar problems in which
all boundaries are held at either of two temperatures or are insulated.
With a little skill, it provides accuracies of a few percent—almost always
greater than the accuracy with which the b.c.’s and k can be specified.
And it reveals the physics of the problem very clearly.

Figure 5.20 shows heat flowing from one isothermal wall to another
in a regime that does not conform to any convenient coordinate scheme.
We identify a series of channels, each which carries the same heat flow,
6Q W/m. We also include a set of equally spaced isotherms, 6T apart,
between the walls. Since the heat fluxes in all channels are the same,

lsQ| = kg—Z(SS (5.64)

Notice that if we arrange things so that §Q, 6T, and k are the same
for flow through each rectangle in the flow field, then és/dn must be the



576

Radiative heat transfer §10.6

Total emittance charts and the mean beam length provide a simple,
but crude, tool for dealing with gas radiation. Since the introduction
of these ideas in the mid-twentieth century, major advances have been
made in our knowledge of the radiative properties of gases and in the
tools available for solving gas radiation problems. In particular, band
models of gas radiation, and better measurements, have led to better
procedures for dealing with the total radiative properties of gases (see,
in particular, References [10.11] and [10.13]). Tools for dealing with ra-
diation in complex enclosures have also improved. The most versatile
of these is the previously-mentioned Monte Carlo method [10.4, 10.7],
which can deal with nongray, nondiffuse, and nonisothermal walls with
nongray, scattering, and nonisothermal gases. An extensive literature
also deals with approximate analytical techniques, many of which are
based on the idea of a “gray gas” — one for which &) and «, are inde-
pendent of wavelength. However, as we have pointed out, the gray gas
model is not even a qualitative approximation to the properties of real
gases.”

Finally, it is worth noting that gaseous radiation is frequently less
important than one might imagine. Consider, for example, two flames: a
bright orange candle flame and a “cold-blue” hydrogen flame. Both have
a great deal of water vapor in them, as a result of oxidizing H>. But the
candle will warm your hands if you place them near it and the hydrogen
flame will not. Yet the temperature in the hydrogen flame is higher. It
turns out that what is radiating both heat and light from the candle is soot
— small solid particles of almost thermally black carbon. The CO, and
H>0 in the candle flame actually contribute relatively little to radiation.

10.6 Solar energy
The sun

The sun continually irradiates the earth at a rate of about 1.74x104 kw.
If we imagine this energy to be distributed over a circular disk with the
earth’s diameter, the solar irradiation is about 1367 W/m?, as measured

7Edwards [10.11] describes the gray gas as a “myth.” He notes, however, that spectral
variations may be overlooked for a gas containing spray droplets or particles [in a
range of sizes] or for some gases that have wide, weak absorption bands within the
spectral range of interest [10.2]. Some accommodation of molecular properties can be
achieved using the weighted sum of gray gases concept [10.12], which treats a real gas
as superposition of gray gases having different properties.
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by satellites above the atmosphere. Much of this energy reaches the
ground, where it sustains the processes of life.

The temperature of the sun varies from tens of millions of kelvin in its
core to between 4000 and 6000 K at its surface, where most of the sun’s
thermal radiation originates. The wavelength distribution of the sun’s
energy is not quite that of a black body, but it may be approximated as
such. A straightforward calculation (see Problem 10.49) shows that a
black body of the sun’s size and distance from the earth would produce
the same irradiation as the sun if its temperature were 5777 K.

The solar radiation reaching the earth’s surface is always less than
that above the atmosphere owing to atmospheric absorption and the
earth’s curvature and rotation. Solar radiation usually arrives at an angle
of less than 90° to the surface because the sun is rarely directly overhead.
We have seen that a radiant heat flux arriving at an angle less than 90°
is reduced by the cosine of that angle (Fig. 10.4). The sun’s angle varies
with latitude, time of day, and day of year. Trigonometry and data for
the earth’s rotation can be used to find the appropriate angle.

Figure 10.2 shows the reduction of solar radiation by atmospheric ab-
sorption for one particular set of atmospheric conditions. In fact, when
the sun passes through the atmosphere at a low angle (near the hori-
zon), the path of radiation through the atmosphere is longer, providing
relatively more opportunity for atmospheric absorption and scattering.
Additional moisture in the air can increase the absorption by H>0O, and,
of course, clouds can dramatically reduce the solar radiation reaching
the ground. The consequence of these various effects is that the solar
radiation received on the ground is almost never more than 1200 W/m?
and is often only a few hundred W/m?2. Extensive data are available for
estimating the ground level solar irradiation at a given location, time, and
date [10.14, 10.15].

The distribution of the Sun’s energy and atmospheric
irradiation

Figure 10.24 shows what becomes of the solar energy that impinges on
the earth if we average it over the year and the globe, taking account of
all kinds of weather. Only 45% of the sun’s energy actually reaches the
earth’s surface. The mean energy received is about 235 W/m? if averaged
over the surface and the year. The lower left-hand portion of the figure
shows how this energy is, in turn, all returned to the atmosphere and to
space.
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Figure 10.24 The approximate distribution of the flow of the
sun’s energy to and from the earth’s surface [10.16].

The solar radiation reaching the earth’s surface includes direct radi-
ation that has passed through the atmosphere and diffuse radiation that
has been scattered, but not absorbed, by the atmosphere. Atmospheric
gases also irradiate the surface. This irradiation is quite important to
maintaining the temperature of objects on the surface.

In Section 10.5, saw that the energy radiated by a gas depends upon
the depth of the gas, its temperature, and the molecules present in it.
The emittance of the atmosphere has been characterized in detail [10.16,
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10.17, 10.18]. For practical calculations, however, it is often convenient
to treat the sky as a black radiator having some appropriate temperature.
This effective sky temperature usually lies between 5 and 30 K below
the ground level air temperature. The sky temperature decreases as the
amount of water vapor in the air goes down. For cloudless skies, the sky
temperature may be estimated using the dew-point temperature, Tgp, and
the hour past midnight, t:

Teky = Tair [ 0.711 + 0.0056 Tap
1/4
+7.3x1075 T3, +0.013cos(2mt/24)|  (10.55)

where Tgky and Ty are in kelvin and Tqp is in °C. This equation applies
for dew points from —20°C to 30°C [10.19].

It is fortunate that sky temperatures are relatively warm. In the ab-
sence of an atmosphere, not only would more of the sun’s radiation reach
the ground during the day, but at night heat would radiate directly into
the bitter cold of outer space. Such conditions prevail on the Moon, where
average daytime surface temperatures are about 110°C while average
nighttime temperatures plunge to about —150°C.

Selective emitters, absorbers, and transmitters

We have noted that most of the sun’s energy lies at wavelengths near
the visible region of the electromagnetic spectrum and that most of the
radiation from objects at temperatures typical of the earth’s surface is
on much longer, infrared wavelengths (see pg. 537). One result is that
materials may be chosen or designed to be selectively good emitters or
reflectors of both solar and infrared radiation.

Table 10.4 shows the infrared emittance and solar absorptance for
several materials. Among these, we identify several particularly selective
solar absorbers and solar reflectors. The selective absorbers have a high
absorptance for solar radiation and a low emittance for infrared radia-
tion. Consequently, they do not strongly reradiate the solar energy that
they absorb. The selective solar reflectors, on the other hand, reflect so-
lar energy strongly and also radiate heat efficiently in the infrared. Solar
reflectors stay much cooler than solar absorbers in bright sunlight.

A wide range of selective coatings have been developed for solar ab-
sorbers operating in various temperature ranges. Coatings with solar
absorptance above 90% and infrared emittance below 10% are commer-
cially available. A comprehensive review of selective absorber materials
is given in [10.20].
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Table 10.4 Solar absorptance and infrared emittance for sev-
eral surfaces near 300 K [10.4, 10.14].

Surface O solar £R
Aluminum, pure 0.09 0.1
Carbon black in acrylic binder 0.94 0.83
Copper, polished 0.3 0.04
Selective Solar absorbers
Black Cr on Ni plate 0.95 0.09
CuO on Cu (Ebanol C) 0.90 0.16
Nickel black on steel 0.81 0.17
Sputtered cermet on steel 0.96 0.16
Selective Solar Reflectors
Magnesium oxide 0.14 0.7
Snow 0.2-0.35 0.82
White paint
Acrylic 0.26 0.90
Zinc Oxide 0.12-0.18  0.93

Example 10.12

In Section 10.2, we discussed white paint on a roof as a selective
solar absorber. Consider now a barn roof under a sunlit sky. The
solar radiation on the plane of the roof is 600 W/m?, the air temper-
ature is 35°C, and a light breeze produces a convective heat transfer
coefficient of h = 8 W/m2?K. The sky temperature is 18°C. Find the
temperature of the roof if it is painted with white acrylic paint, and
find it again if painted with a non-selective black paint having £ = 0.9.

SOLUTION. Heat loss from the roof to the inside of the barn will lower
the roof temperature. Since we don’t have enough information to eval-
uate that loss, we can make an upper bound on the roof temperature
by assuming that no heat is transferred to the interior. Then, an en-
ergy balance on the roof must account for radiation absorbed from
the sun and the sky and for heat lost by convection and reradiation:

Ksolardsolar + EIRO T:ky = h (Troof — Tair) + ERO Té,of
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Rearranging and substituting the given numbers,

8 [Troof — (273 +35)] + &R (5.67 x 1078) [T — (273 + 18)*]
= Oisolar (600)

For the non-selective black paint, &golar = &r = 0.90. Solving by
iteration, we find
Troof = 338 K = 65°C

For white acrylic paint, from Table 10.4, dsolar = 0.26 and &g = 0.90.
We find
Troof = 312 K= 39°C

The white painted roof is only a few degrees warmer than the air. ll

Ordinary window glass is a very selective transmitter of solar radia-
tion. Glass is nearly transparent to wavelengths below 2.7 pm or so, pass-
ing more than 90% of the incident solar energy. At longer wavelengths,
in the infrared, glass is virtually opaque to radiation. A consequence of
this fact is that solar energy passing through a window cannot pass back
out as infrared reradiation. This is precisely why we make greenhouses
out of glass. A greenhouse is a structure in which we use glass capture
solar energy in the interior of a lower temperature space. The glass al-
lows sunlight to enter the space, it stops air from flowing into the space,
and it absorbs infrared reradiation from the interior rather than letting
it pass directly back to the sky. All these factors help make the interior
warm relative to the outside.

The atmospheric greenhouse effect and global warming

The atmosphere creates a greenhouse effect on the earth’s surface that
is very similar to that caused by a pane of glass. Solar energy passes
through the atmosphere, arriving mainly on wavelengths between about
0.3 and 3 pym. The earth’s surface, having a mean temperature of 15°C
or so, radiates mainly on infrared wavelengths longer than 5 nym. Certain
atmospheric gases have strong absorption bands at these longer wave-
lengths. Those gases absorb energy radiated from the surface, and then
reemit it toward both the surface and outer space, reducing the net rate
of radiative heat loss from the surface to outer space. The result is that
the surface remains some 30 K warmer than the atmosphere. In effect,
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Figure 10.25 Global surface temperature change relative to
the mean temperature from 1950-1980 (Courtesy of the NASA
Goddard Institute for Space Studies [10.22, 10.23]).

the atmosphere functions as a radiation shield against infrared heat loss
to space.

The gases mainly responsible for the the atmospheric greenhouse ef-
fect are CO», H>O, CH4, N20, O3, and some chlorofluorcarbons [10.21]. If
the concentration of these gases rises or falls, the strength of the green-
house effect will change and the surface temperature will also rise or fall.
With the exception of the chlorofluorocarbons, each of these gases is cre-
ated, in part, by natural processes: H>O by evaporation, CO, by animal
respiration, CH4 through plant decay and digestion by livestock, and so
on. Human activities, however, have significantly increased the concen-
trations of all of the gases. Fossil fuel combustion increased the CO3
concentration by more than 30% during the twentieth century. Methane
concentrations have risen through the transportation and leakage of hy-
drocarbon fuels. Ground level ozone concentrations have risen as aresult
of photochemical interactions of other pollutants. Chlorofluorocarbons
are human-made chemicals.

In parallel to the rising concentrations of these gases, the surface
temperature of the earth has risen significantly. Over the course of the
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twentieth century, a rise of 0.6-0.7 K occurred, with 0.4-0.5 K of that
rise coming after 1950 (see Fig. 10.25). The data showing this rise are
extensive, are derived from multiple sources, and have been the subject
of detailed scrutiny: there is relatively little doubt that surface tempera-
tures have increased [10.22, 10.23, 10.24]. The question of how much of
the rise should be attributed to anthropogenic greenhouse gases, how-
ever, remains a subject of intense debate.

Many factors must be considered in examining the causes of global
warming. Carbon dioxide, for example, is present in such high concentra-
tions that adding more of it increases absorption less rapidly than might
be expected. Other gases that are present in smaller concentrations, such
as methane, have far stronger effects per additional kilogram. The con-
centration of water vapor in the atmosphere rises with increasing surface
temperature, amplifying any warming trend. Increased cloud cover has
both warming and cooling effects. The melting of polar ice caps as tem-
peratures rise reduces the planet’s reflectance, or albedo, allowing more
solar energy to be absorbed. Small temperature rises that have been ob-
served in the oceans represent enormous amounts of stored energy that
must taken into account. Atmospheric aerosols (two-thirds of which are
produced by sulfate and carbon pollution from fossil fuels) also tend to
reduce the greenhouse effect. All of these factors must be built into an
accurate climate model (see, for example, [10.25]).

The current consensus among mainstream researchers is that the
global warming seen during the last half of the twentieth century is
mainly attributable to human activity, principally through the combus-
tion of fossil fuels [10.24]. Numerical models have been used to project a
continuing temperature rise in the twenty-first century. These are based
on various scenarios of future fossil fuel use and future government poli-
cies for reducing greenhouse gas emissions. Regrettably, the outlook is
not very positive, with best estimates of twenty-first century warming
ranging from roughly 1.8-4.0 K.

The potential for solar power

One alternative to the continuing use of fossil fuels is solar energy. With
so much solar energy falling upon all parts of the world, and with the
apparent safety, reliability, and cleanliness of most schemes for utiliz-
ing solar energy, one might ask why we do not generally use solar power
already. The reason is that solar power involves many serious heat trans-
fer and thermodynamics design problems and may pose environmental
threats of its own. We shall discuss the problems qualitatively and refer



