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EXERCISES 1

No.1.

In the inertial frame O

Xy, the pola i §

are (r, 8+p) and the polar reso]utes’of thg quag?ggdgga;giig: gﬂe particie
e

afr - r(8)2] = f, mlr(r)) + 2r(34d)] = oo

The polar components of ; .
are (v, ponents of the particle's velocity relative to the frame 0x“y

v,) = {r, v8). H . . gy
the fofm ° ( ) ence, the above equations can be rearranged into

e B2y = . .
mir ~ rd*) = F+ Zmovg + wro®, m{rd + 2 o .
: - 2may,, - TR,
Since
a., = 1 8% o B Yt €T, Y = wCOsds VS = VS:‘“@J:
these are the equations of motion asked for.

A force ¢ perpendicular to the direction of v in the sense shown
jnp the diagram, will have radial and transverse components csing. -CC0S$,
respectively. Taking C = 20V, this inertial force will accordingly yieid
the second terws in the right-hand wembers of the gquations of motions the
two remaining terms in these members ave supptied by a force mrw? acting
along OP and a force mrw acting transversely in the clockwise sense.

Thus, the motion of the particle relative To the pon-inertial
frame Dx7y” will be correctly predicted by Newton's second law if the
three inertial forces are taken to act upon it, in addition to the "real'
force f.

fNo.2. Lot Ry % (%, > %) b the coordinates of .the two ends of the
bar in 5, so that its length in this Frame is L = %Xy - %.. Suppose the pos-
itions of the two ends of the bar on the x-~axis are estaélished to have
coordinates Xg. X, @t instants which are simuitaneous in 5 with time T
Then, these events have space-time coordinates {x ,t,)and (xg,t,)in S and
space-time coordinates (%, ,¥) and_{¥%,5%) ins (N.B, £ and T, witl differ,
since the events will not be simultanecus in §). App%ication of the

inverse Lorentz equations now leads to the relationships

Xy = 8%y + ut}, x, = B(Xy T ut)

and subtraction gives the result X, = Xq 7 gf., Thus, 3T % = %y is accepted
as thg_iength o of the bar in S (ﬁncornect]y, of course), then g is greater
than T by the factor B.
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Let X be the x-coordinate of the fi i
e fixed point on -y %
S:Eggzetéhe front end of the bar passes this pointpat t, anghih: ?égi 2:3
g—fra ? p§1nt at the later time t;, both times being measured by the
me clock Tocated at X which has been synchronized with the master

at 0, In the S-frame, these two events h i i
at 0. In the S-frame, s have space-time coordinates (X,t,)
2 agdail) e S-frame, the same events will take place at the poiﬂ%s

{respectively} on the ¥-axi {
N S | _the x~axis and will have space-ti dinat
Cﬁﬁ;ig)tand (X%, Empgﬁjng the Lorentz transformat?on'f lm§(§?3€)1to =
relate the space-time coordinates in the two frames, we find

Y;. = B{x - ut;)! .;{-2 = B(X - Utz)o
Subtraction yields

2 = ;2 = ..).(_1 = BU(_ti - tz) = BUTu

Accepting that &
g = g1 = uP/c?)t,

i

uT, this leads to the Fitzgerald contraction formula

This analysis confirms our intuition that th

. 1 e two methods of
measuring the Tength of a moving bar {viz. {i} by fixing the positions of
its ends at simultaneous instants and (i) by measuring the time it takes

to pass a fixed point) lead to the s i
: ame resutlt. ean +h= 3
it wonld have bean nesescayy t0 raz=le —g: wwrmiey _Hgd,E*l‘,s.??t}?a LS v,fh‘lusse'

of these two procedures definad the length of a moving body.

No.&. Although the chalk marks fixing the positions of the two ends of
the bar on the x-axis are made simultaneously at time t in the S-frame,
according to the 5 clocks, these marks are made at different times T,, T,.
Applying the inverse Lorentz transformation t = g(T + uX/c?) to these two
events, we get B _

t = 8(E+ ux, /%) = B(T, + UX,/c*}.

Whence - L .
€, -F, = u(- Ry)/c? = uRfch.

This means that the 5 observer will calculate that the mark fixing the X,
end of the bar is made a time uz/c® before the mark fixing the X, end,

Thus, according to observations made from S, a mark B first

appears on the x-axis opposite the X, end and this then moves with the
c-axis in the negative X sense for 2 time ug/c? at speed u before the
second mark A appears opposite the X end. At this instant T, in 5,
therefore, B has moved a distance uzijcz and the situation as it appears
inS is as below: = % X,

14
¥

U et

We deduce that, for S, AB =% - uiT/c? = (1 - u¥/c*)T. The
observer employing the frame & is now observed from S to measure the
distance AB between the marks using a measuring rod of lengib (1 - u?/c
which he takes to be of unit Tength. Hence, according go S, the resulf S
will record for this measurement will be AB/(1 - ur/c”)? = (1 - u?/c?) 2T,
This is in agreement with equation (6.3) and there s N0 inconsistency.
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A frequent source of confusion should here be remarked. If we
wish to be precise, we should always clearly distinguish between a physical
event and our observation of the event. Thus, a nova outburst on a star
distant 100 1ight years from the earth may be observed in our telescopes
today, but the event itself will have occurred a century ago by terrestrial
time. Nevertheless, in these circumstances it is normal to say that, in
a terrestrial reference frame, the nova outburst’'was observed to occur'

a century ago. Thus, when using a particular reference frame, observations
will always be assumed to be made by local observers who are present at the
events in question and who are equipped with standard instruments at rest
in the frame, the clocks having already been synchronized with the master
at the origin. Unless otherwise stated, no correction will be made for

any time delay which may occur while 1ight travels from an event to the

eye of some particular observer in the frame. The direct visual impression
which such an individual observer receives when he studies a sequence of
phenomena through his telescope is of no fundamental importance and does
hot count for our purposes as the description of the phenomena relative to
his reference frame. This description must always be couched in terms of
space-time coordinates and other physical quantities defined locally at

the events involved, For exampie, in the earlier argument, it was stated
that "for 5, AB = ¢ - u®%/c®"; however, if the segment AB of the moving
x-axis were observed through a telescope fixed at some point of 5, the
Tength seen would need correction to allow for the different times it

takes light to reach the instrument from the two ends; such a correction
would depend upon the position of the telescope and clearly has no funda-
mental significance - it is therefore ignored. In future, therefore, a
phrase of the type 'as seen from S ...' must be interpreted as introducing
a description of physical phenomena in terms of physical quantities defined
in the frame S, local to the events involved, Once this description has
been calculated, the view which an individual observer in the frame bhas
when he turns his telescope on to the phenomena, can then be determined

if needed.

No.5. X,

Since the bar is stationary on the x-axis, the world-iines of

its particles will all be parallel to the x,-axis as shown in the diagram.
Taking a section AB of this band of world-lines by a perpendicular to the
x,-2xis, we obtain a representation of the bar at some instant in the S-frame;
thus AB = 8. Similarly, taking a section AC by a perpendicular to the x,-axis,
a representation of the bar at some instant in the S-frame is obtained;
thus AC =%, From the diagram it follows that

% = gseca = &(1 - u2/c2)%.

This is the Fitzgerald contraction formula.

No.6. Defining a by the equation tanho =_g/c (o will be real sinceé
{uf < c), it follows that cosha = (1 - u*/c*)"%, sinha = u/c(l - u%/c?)z,
Equations (5.8) are now seen to be equivalent to the equations given in
the exercise,
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Since cosho + sinhg = eat_posha - sinha = e"a, by subtracting
and adding the equations for X and ct, we find

X-ct = (x-ct)e® X+ = (x+ctle ™™,

Multiplying these equations, we then get
X2 - ¥ = x? - c*iE,

j.e. the quadratic form x? - c2t® has the same value in both frames and
so is an invariant. This is clearly a special case of the invariant which
has been used to define the proper time in section 7.

Consider the S clock as it passes through the point (x,y,z) of
S at time t in this Tatter frame, The S coordinates (X.,y,z) of this clock
and the time T it indicates are all given by the transformation formulae;
in particular

¢t = ctcosha - xsinho.
If T = t, this equation gives
ct{cosha - 1) = xsinha.

Using half angle identities, we find x = cttanhia, defining a plane parallel
to the yz-plane on which all the S clocks dndicate t at this instant in

the S-frame (i.e. the S and S clocks happen to be in synchrony in this plane).
Clearly, this plane moves with velocity ctanhio as t increases in S.

No.7. By choosing t = 0 to be the instant in S when the rearwards
pulse passes through 0, the equations of motion of the puises can be written
x = ct, ¥ = ¢t + d.
Translating to the S-language by the inverse transformation equations
x = g(Xx + uf), t = B(T + uX/c?}),
after some manipulation these equations become
X = ct, X = ¢t + &/ (ctu)/(c-u)].

These S equations of motion imply that the pulses move with velocity ¢
(as expected) along the x-axis, a distance dv[(c+u}/(c-u)] apart.

Y ¥
B
No.8.
< s
A (i
w
) g x

///f |
R =

Choose axes in the two frames to be parallel and so that U moves
along the x-axis of S with speed u. Then AP is paraliel to Ox; denote
the angle BAP in S by a. Also choose the axes so that, in S, the plane
BAP is paraliel to Oxy.



-5 -

In 5, the events at A and B can he taken to have coordinates
(Xps¥psZpoty) and (xptdcosa,y,+dsing,z,,t,+T) respectively.

_ Let £, Ty be the times of these events according to the clocks
of S. Then, usiﬁg a Lorentz transformation equation, we deduce that

T, = Bty - uXAXCZ), i5 = B[tA + T - u(xy + deosa)/c*].
But fﬁ = TB; hence AP = u = c2Tseca/d.

Constructing PN perpendicular to AB (in frame S), we now find
AN = APcosa = ¢®T/d. Thus P lies in the plane stated.

No.9. The band of world-1ines of particies of the rod Tying in the
X, X ~plane in Minkowski space-time is shown in the diagram.
Nl x
% * ,f!'f IQ
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By taking sections of the band parallel to the x,, X, axes, we
obtain the lengths a, a. The rest lTength a, is the right-section of the band.

Equations {5.7) give coso = B, sina = fug/c. Hence, using the
cosine rule on AMBC, we get
BC = v(a% + &% - 2pad).

The sine rule applied to the same triangle shows that

apu/c
{(ZRa@ ~ a* -~ az) °

sing = %% sina =
Since a, = asing, the result now foliows.
No. 10, Assume First that the axes of the inertial frames S and S are
as shown in Fig.2 of Chap.1. Then u = (~u,0,0). Thus, Usr = - ux.
The three components of the first equation are therefore
X - u[— %(3—1) + Bﬂ = B{x - ut)

vy = ¥ zZ = Z.

X

The second equation reduces to
T = gt - ux/c?).

These equations are known to be valid and thus the stated equations have
been justified with this choice of axes.

Being tensor equations in the &(t and T are invariants relative
toe rotations of axes in this space), the stated equations will remain valid
when the axes of § and T are rotated in any manner which retains parallelism,
Thus, lorentz transformation equations valid for two paraliel inertial
frames, whose relative motion is not necessarily along common x and X axes,
have been obtained
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No.T1, In the wife's frame, the car is subject to a Fitzgerald contrac-
tion factor of v(1 - 42/5%) = 3/5 and is accordingly 3m long. She can
therefore slam the doors just before the car is brought to rest., When

the car comes to rest, it attempts to resume its rest length (in her

frame) and thus, provided the garage wall and doors do not collapse, the
car will crumple to fit the garage.

In the driver's frame, the car is stationary with Tength 5m
and the garage is subject to the contraction factor of 3/5, which reduces
its length to /5 m. As explained in the solution to problem 4 (earlier),
to say that the driver 'sees' the garage to have this length, is to speak
loosely - this is the Tength he will arrive at from his visual observ-
ations after he has allowed for the time 1ight takes to travel from the
parts of the garage to his eye and which, even in classical physics, would
be accepted as the garage length appropriate to his frame,

Take S to be the wife's frame and S the driver's frame,
choosing axes as indicated in the diagram. lLet X, X+3 he the x-coordinates

__e%c_
_ < GARAGE
Ny S

/— CAR

[<} R+s X
O X xX+3 X

|
{
|
i
i
i
i

i

of the front and rear of the garage and Tet X, X+b be the X-coordinates of
the rear and front of the car respectively. Consider the two events:

{i) front of car meets rear wall of garage and (i1) garage doors are
slammed. In S, these events have coordinates (i) (X+3,t), {i1) (X,t)
(i.e. the events are simultaneous). In S, the events have coordinates

(1) (Re5,E,), (i) (X,T,). The transformation equation t = B{¥ + ux/c?)
applied to these events yields

t = BT, +4(T45)/5¢] = 8(T, + 4¥X/5¢).
We deduce that T, =7¢; + 4/c.

In the driver's frame, therefore, the garage approaches at speed
Ac/5 and its back wall sirikes the front of the car at time T,. The car
then begins to crumpie as the garage continues to advance and, during the
time 4/c seconds, the garage moves a distance 16/5 m, thereby reducing
the length of the car to 5 - 16/5 = 9/6 m, i.e. to the length of the
garage. The doors now clase and the remainder of the car is brought to rest.

Thus, although the driver and his wife 'see' the sequence of
events differently, there is no inconsistency between their two accounts of

the process and the final state, when both are using the same frame S,
is the same for both.

No.12, This is similar to probiem 7, In the S frame, the equations of
motion are
X = vt x = vt +d,
Transforming to the S-language using the transformation equations
x = B(X + ul), t = g(T + ux/c?),

the equations become



v - d(1 - u?/c?)?

— V—u_.
X T - uv}czt + T - uv/c# '

R uv?czt’

The results asked for now follow immediately.

=|

Note that the transformed velocity also follows from the first
of equations (15.11) derived in Chap.3.
No.13., The point's equation of motion in S is
X = ct*/2+.
Transforming to the S-language by the Lorentz equations
X = Y2(x - ct/¥2), T = /2t - x//2c),
this equation takes the form
2 - 2/2c(t ¥ Tix v 2c2t{(t + 1) = O.
Solving this quadratic for x, we find
X = ﬁcﬂt+r)tv&@-+rﬂ.
At the instant the point Teaves U, C and 0 coincide and the clocks fixed to
these points are synchronized to zero. Hence, x = 0 at t = 0 and the

negative sign must be taken in the Tast equation.

If t/T is small, then
i

/2cT[T £1 - [%t“ + 1)1

_ t t? 2,8

= ‘/2(;'[-2-_?+~8-1:2 +G(t /T )
S+ t/40)

if terms of order t3/t% are neglected.

§
.
o x

Ky e
Let the two events (i) A fires, (11) B fires, have coordinates
(x,+d.t), (x5,%), respectively in S. In S, the first event will have
coord1nates

X

i

No. 14,

Xy = B(xg.+d-ut), T, = B[t - u(x,+d)/c?]
and the second event coordinates
Xg = 8(x, - ut), Ty = 8t - ux,/c?)

Since fé - TA = gud/c?, this shows that, in §, A fires a time pud/c?
before B,
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In S, A fires from the point RA in the negative X sense towards B.

During the time Bud/c?, his light pulse will travel a distance Bud/c and
will then be at the point P, where

Xp = iﬁ - Bud/c = B{x, + d - ut - ud/c).

At the instant the pulse arrives at P, B fires from the point EB; thus, the

pulse's distance from B is then.
L

— —_ — 2
o = X = Bd(1 - u/c) = d[%-rg_]

It should be noted that, for all possible values of u, this
distance is positive, i.e. X, > EE, so that A's pulse is still to the
right of B and has not reachgd B.” Thus, in no frame can it be observed that
A's missile strikes B before the latter has time to fire. If this were not
the case, in some frames A could kill B without himself being harmed and
inconsistency would arise.

No.15. Substituting from the transfermation equations
x = g(x+uw¥), y =y, t = g(T+ux/c?),

the equation describing the wave is found to take the form
y = a sin2nfg{l - u/w)(f _-lW::E%KE?gj.

This describes a wave having frequency ¥ = f8{} - u/w) and wave velocity
W = {w-u}/{1-uw/c?).

In the special case u = w, the transformed equation is

y = a sin{2wfx/Bu), i.e. a standing wave, since the frame then moves with
the wave,

No.16. If « is the proper time interval between the events and D is
their distance apart in S, then, by equation (7.4),
2 - _ Vo oz 1w
T = CgD = T CZD -

Thus, D = ¥/{D* + ¢2T%).

It is helpful to note that the distance between events is
dependent upon the frame being used even in classical theory. For example,
the two events of entering and ieaving a room are separated by zero
distance in a terrestrial frame, but are separated by many miles in a
frame fixed in the sun for which the earth is a moving body.

Taking axes S and § in the usual directions (see diagram), if
the events take place at A and B in S, their coordinates can be assumed
to be (xA,t) and (xA+Dcose,t) respectively. In S, let (XA’t) and {xB,t+T)

be the coordinates of the events. Employing the transformation equation
T = g{t -ux/c?), we obtain the equations



T = p(t - uxA/cz), T+T = B[jt - u(xA + Dcose)fc%]u

Subtraction leads to
T = - guDcoso/c?.

Since B = (1 - uzfcz)_%, this equation can be solved for u to give the
result stated.

No.17. If © is the proper time interval between the events and D is
the distance between them in S, then equation (7.4) gives

o= Ly - 2oLy
Thus, D = D.

Let the coordinates of the events in S be A(x,t) B(x+D £4T),
and in S be A(xA,t), B(xB;E-T). The transformation equatxon = Bt~ ux{cz}

vields the eguations
T o= B(t - ux/c?), T-T = g[t+ T~ ulx+D)/c*].

Subtracting, we find
T

B(-T + uD/c*).

Squaring and solving for u, we get u = 2c2DT/(D? + c*T2), If this value
of u is substituted back into the previocus equation, it will be found
that it satisfies the equation with positive B only provided D > cT,

No.18. In S, the particle's trajectory lies in the xy-plane and is
determined by the equations
x = 2ct, y = ict - igti.

The transformation eguations to S are

K o= EEACE, y = V.t = (T2,

Substituting in the first of the trajectory equations, we get X = 2ct/5.
Putting this result in the third transformation equation, it follows that
atong the trajectory, t = 4v/3%/5. Substitution in the second trajectory
equation then gives . 2/3 . 24

y o= et - gt

Thus, at € = 0 when the particle is first projected, dx/dt = 2c¢/5

and dy/dt = 2/3c/5; these X and ¥ components of ve]oc1ty correspond to a
direction of projection making an angle tan™ 2(v3) = 60% with the X-axis.

There is zero acceleration in the X direction and d%y/dt> = -48g/25 gives
the acceleration paraliel to the y-axis.

No.19. At time t in S5, all the clocks stationary in this frame
register the time t. Thus,-C registers t. At this instant, the c1ock'U
registering T passes C. The coordinates of this event in S are £)s
the coordinates of the same event in S are (0,T). The transfcrmat?on
equation t = 8(%t + ux/c El1ed to this event accordingly gives the
result t =8 or T=+V(1 -u Thus, as 0 moves along the line of S-
clocks on the x-axis, 1t runs sTow by comparison with these clocks,

We now observe the situwation from the S-frame. In this frame,
at the instant T, suppose the clock at 0 registers t . This event has
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coordinates (O,to) in S and coordinates (ih,f) in 5. Using the transforma-
tion T = a{t - ux/c®*), we find T = Bt,. But we have proved that t = gT,

Hence t = R=%t = t - u*t/c®; i.e, as seen from T at the instant T, the
clock C7is u?t/c? ahead of the clock at 0.

We now follow the situation as it develops in § and, whilst
making allowance for C running siow in this frame, show that nevertheless
€ is ahead of the clock at U when they meet. Thus, at time T =0 in 5,

0 and 0 coincide. Subsequently, O recedes from 0, whilst C approaches,
both with speed u; hence, the rates of clocks O and C remain equai but

are slowed by a factor v{1 - u®/c?*}. At time T after 0 leaves U, the clock
0 therefore registers V(1 - u*/c2)t = (1 - u?*/c®)t, and C arrives at 0.
Since C is ahead of 0 by u®t/c*, on arrival at U, C registers t. The
paradox has now disappeared. When C meets T, C registers t and O

registers T, where T = /{1 - u*/c®)t, i.e. € is ahead of U as calculated

in the frame S.

No.20. At time t in S

x = 2c(t-1), y = ge(t=1).

To transform to the S-language, we use the transformation equations

1

x = 3(5X + 3ci), y y, ct = 4(3x + 5ct).

Upon substitution and solution for X, y in terms of £, it is found that

- ] — 1
X = Tgc(7f - 20), y = qgc(8t - 10).
_ If d is the particle's distance from U as measured in S at time
t, then
d8 = R 4T = mc?(113E2 - 440T + 500).

d s a minimum when 226T = 440, which is the result stated.

No.21. The event 0 passes O occurs at ¢ =0 in S and € = 0 in S,

In S, the coordinates of the event (ii) are (a,tA)‘ In 5, the
coordinates of the same event are (a,fﬁ). The transformation equations
X = B{x - ut), x = g{x + ut) applied %o this event show that

a = ga- UtA), a = Bla+ u-fA)-

Clearly, )
ty -, = T = a(l-8 /v,
If T = a/3c, this gives 1T - /{1 - u?/c?) = u/3c. Solving for u,
we find u = 3¢/5.



EXERCISES 2

No.1. If rectangular axes Oxy are rotated about 0 in their plane
through an angle 6 to give axes Oxy, it follows by simple trigonometry
that a point having coordinates (x,y) in the first frame has coordinates
(x,¥) in the rotated frame, where

X = xco0s8 + ysing, ¥ = - xsinP + ycosé.
The matrix A of this orthogonal transformation is therefore as stated.

If the sense of the y-axis is reversed, so that the transform-
ation relates two frames which cannot be brought inte coincidence by a
simple rotation, the second of these equations must be replaced by

y = xsing -ycos®

and the matrix A amended accordingly.

In the first case, |A] = cos®9 + sin®@ = 1, but in the second
case |A] = - cos®e - sin?s = -1. This verifies equation (8.10).

Solving for x and y in terms of X and ¥, we Tind in the first
case that _ . _
X = Xcos® - ysing, y = Xsiné + ycos®.
The matrix of this inverse transformation is A™! and thus
At o= [fose -sine] = A’.
sing £os6

That A! = A" may be verified similarly in the second case.

The transformation equations for Tij are

T = 48474y = T,,€08%8 + T,,c0805in6 + T,,c0885in8 + T,,sin®p
Tha = y3223Ty; = ~Tyyc0s8siné+ T,,€05%0 - T,,sin®6 + T,,cos6sing
Toy = 354234745 = ~Tyycos8sing - Ty25i0%0 + T, c08%0 + T,,c05851nd
Too = 8558,5T45 = T,,8i0%8 = T,,c0s8sino- T,,cos6s7n6+ T,,c0s20

It follows that B
Too = Tyy + Tpp = (Tyy + Tyy){cos?8 + 5in%6) = Tyy+ T,, = Tos

ii i1
i.e, Tii is an jnvariant. (The second case is dealt with similarly.)
No.2. Since A and B are orthogonal, AA' = BB' = I, It follows that
BA(BA)' = BA(A'B') = BIB* = BB' = I.

Thus, BA is orthogonal.

In subscript notation, if as. and bi' are elements of A and B
respectively, then J J

j bijxj’ xj = ajkxk'

Eliminating ij, we find

|
I

i0% PiEa T Sk

||
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where cik = b are the coefficients of the resultant transformation.

i35k
Since T.. is a tensor with respect to the transformations with
matrices B and A, ten

T.. = b, b, = .
i3 ° PipPiaTpe® Tpa T Pprigs’rs
Eliminating qu, we find
-Tij i bipaprquaqSTrs - CircjsTrs’
proving that Ti' transforms 1ike a tensor with respect te the resultant
transformatiomJ
Ne. 3. Since Ai and Bi are vectors, their transformation equations

for the change of frame represented by the orthogonal transformation

X: = @ X, b bi’ are

1 1] J E_ = a_,A. E. = a.-B-

i 13737 L i3
The inverse transformation equations (11.4) show that
= t = i = Iv3
Since XiinBj is an<invariant.

Substituting for Ar and BS from the inverse transformation eguations,
this gives

Since the components A. and E} can take arbitrary values, we can
equate the coefficients of the tefms in ﬁ}ﬁ. on the two sides of this
equation to yield J

?}j - airajsxrs,
proving that xij transforms as a tensor.
No.4. It is easily verified that the matrix A of the transform-

ation satisfies the condition AA' = I and is therefore orthogonal,
Using the inverse transformation, it is found that

A = X = (R - 2R, +2K,)?

Faci I
1

= (143, - 5%, * 2%,)

Ry = E = (2%, - 10%, - 11%)?

A, = X

Also, since A. is a vector 1
! Ky = qp(BA; - 184, + 2R,

e
=3
1

- Yean, 4 a, v 2ny)

P
N

TE(10A, + 2R, - 11A,)

These two sets of equations now permit the A; to be expressed in terms of
the x..
i

In the x-frame,
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divh = A, ., = 2(x

T.1 1

+ x, + ga).
In the X-frame,

divA = AE/0%, = (- 1% - 50K, + 2K,).
Substituting for the X, in this last expression from the original

transformation equations, it can "be shown that it reduces to the form
2(xy + Xy + Xg), thus verifying the finvariance of divA.

No.b5. The vector Aiji has components
'q'il'i = AIH Ay, t Ay, =]
Riag = Ppan + Ay ¥ Ay, = |
Aiai = Ay P Ay TA = 0

If A is the matrix of the given transformation equations, it is
easily verified that AA' = I and hence that the transformation is orthog-
onal. Then,

A

12 = A%z 52y 5
= By 8yp8g A g T Byp85,85,R0,, F 81,8, 85,A,1,

having omitted the zerc terms in the sum. Substituting in this expression,

we find ﬁiza = 120/ 343,

The matrix of the inverse transformation is the transpose A',

Thus, the equations are 1 . _ _

Xy = (= 3% = 2%, + 6Xy)

X, = (- 6%, + 3%, - 2%,)
1 — — —

Xy = (- 2%, - 6%, - 3Xy)

Since Bij is a tensor,

—- i 1
Bij - a1‘r‘ast-r's’
where a;j are the coefficients of the inverse transformation. Thus,
812 = airaggﬁrs = a;xaésﬁla = (-3/7)(-2/7)1 = 6/49,
No.b. Taking transposes
A = (I' B')“(I‘ -B'y = (I - B)~*(I + B).
Hence,

A'A

i

(I - BY"™I +B)(I -B)(I +B)?
(I = BY %I - B*)(I +B)°!
(1 -~ B)"YI - BY(I +B)(I +B)™*

= 1
proving that A is orthogonal,

If B is the 3x3 matrix given, then



1+8 =1 2 2|, (+B)F = gfh 2 2
2 1 0 2 5 -4
2 0 1] 2 -4 5
Thus
A= 212 22 i = Ly o 4
9 ]
2 1 ollz 5 -a 4 1 -8
2 0 1j{z -4 5 4 -8 1

and the transformation eguations are

%y = lm Txg - A% - dx,)
Xy = ‘%(Qxl + X, = 8Xy)

Ry = glaxg - 8x, * X,)

Since C.. is skew-symmetric, C,y = Cy; = -1 and the remaining
components vanish, Thus,

Cye = aliaszij = By38,,0,, ta5,8,,0,, +8,8,;0,; +8.58,,04y
omitting the zero terms. Substituting the values of the 3 and Ci" we
find T,y = 1. ! J

The coefficients of the inverse transformation are a%« = B
Thus, __ J J

Dann = 1Pk 7 2?51l

ay18,335301py + 8313518930505 * 8313518510125

omitting the zero terms, Substitution of given values now yields the result
Dy = -980/729.

In the x-frame, the vector Dijj = E; (say) has components
Ey o= Dyy5 = Dygyp * Dpap * Dy = 2
E, = -D_z\j‘]‘ = Dyyy +Dppp + Dy =0
E, = 'ﬁsjj = D,y + D55, + Dypg =0

Thus, in the x-frame, this vector has components

By o= ey o= e By o= e Ep o= -4/
E, = aéitﬁ = ay,E, = a,,E, = -8/9
E, = a;iE% = ap B, = aF, = -8/9

In the X-frame, the vector CijDijk = Fk has components
Foom Gylign = Gl = )
?2 = ‘Eijﬁ%jz = ‘ngﬁizz = 2
F, = tijﬁijﬁ Cp2Dyzs = 5
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Thus, . _ _ _
Fo o= aiiFi = a,,F, +a,F, +a,F, = 35/9
Foo= g Fe = a, F o+ a2;?2 +a,,F, = -34/9
Fa = a;i?f = A Fy taF, vaF, o= -7/9
No.7. By substitution of the given Xs values, we find
Apy = Agp = Ayy =Ry = A =0, Ay, =R = A, = A, =1

If aij are the coefficients of the orthogonal transformation

Ry = Arg214R55 = B12850R0n T A5,855R55 F By480R, T A48, 5R 5

1J
where we have omitted the zero terms, Substitution of the calculated
values of the Aij at P, we ﬁ‘nd'ﬁ11 = 64/49,

2
o%

This verifies A.. . = 4x; in the case 1 = 1, The equation may be verified
similarly for thd*tases 1 = 2,3, Then

We have 3 (

= 0 g2 8
Asg = ax ) g () +

1 Xy (sza) = 4y,

Aij,ij = (Aij,j),i = (4xﬁ),i = 44444 = 12,

No.8.

o
As OP is rotated, the point P describes an arc of a circle with

centre N on the axis of rotation, arriving ultimately at G. Thus, the
triangie PNQ is isosceles with angle 6 at the vertex N, Construct QM
perpendicuiar to PN. Then QM = QNsin® = PNsin® = xsinasind, where o
is the angle shown in the figure. The vector x x u has magnitude xsina
and direction parallel to MQ. Hence, M) = x X usind. Also, NM = NQcos®
= NPcos®; hence, NM = NPcoso. Since ON = xcgsau = {x-u)u, then NP =
OP - ON = x - (x»uju. "Tt follows thaT WM = {x = (x.u)ulcoss. Thus

= (x-u)u + {x - (x-u)ulcosd + x x usin®
which is equivalent to the result stated,

If the Cartesian frame is kept fixed and the position vector
of the point with coordinates x; is rotated about the stated axis through
an angle 8 = -sin~*(4/5), the 'new coordinates of the point will be X,.
Hence, the X, can be expressed in terms of the x, by putting @ = -sin“*(&fS)
in the equat}on just obtained. The unit vector 310ng the axis of rotation
has components {1/3,2/3,2/3); hence, we get
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SER - 3 2
{(Xy:%p%g) = 13-(xl,xz,xa_} % ET%(xl +2X, + 2x,)(1,2,2)

After rearrangement and separation into three component equations, this
leads to the transformation stated.

No.9. The only non-zero components of A,. are A,, = A, = 1,
. 1]
A,y = Ayy = -1, Thus
Rio = 23485505 = Bup8,R0, * a8,,A0 + 83,8, R + 35,3,,Ay,
= 1/3.
Using the transposed matrix for the inverse transformation,
we have _
- 1 1 1 - . T
Byay = azialjalkﬁﬁjk = 853838138551 T R518,18,3850, F 253853843815,
= 188/729
In the x-frame, the vector Bijj = C, has components
C, = szj = Byyy t By, tBygy = 2
C, = Eﬁjj = By * g-:alzz + B2 0
c, = Eﬁjj = Byyy * Byzp * Bygg = 0

In the x-frame, therefore, its components are

C, = aiiti = a,C, = 2/9
C, = AT, & oay,l = -16/9
C;, = aéﬁE} a;5C; = 8/9
In the X-frame, the vector AijBijk = Dk has compeonents
b, = ﬁéjﬁﬁj; = R Byp = -1/3
D, = Kijgﬁjz = ﬁizgzzz = 2/3
D, = ﬁijgija = 'K1£§123 « 5/3
In the x-frame, its componenis are
Dy = a0, a,,0, +a,,0, +a5,D, = 47/27
b, = aéiDi = 2,0, +a,,0, +a,0 = 11/27
b, = a;iDi = a,.0, +a,D +a,.0 = -10/27

No.1G, The vector A.

ijf = Bj has components

= = = OyZ 2 2
BIL = Aili A:xx + Azxz + Asia 8x1 + 2% o+ 2x3
= = = 9y2 2 4 92
B, Aizi A:zi + A222 + Aszs 2x1 * sz 2x3
- - _ oyl 2 2z
Ba - Aisi . A131 + Azsz + Asaa - le + sz + 8xa
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Its divergence is therefore Bi = 16x, + 16x, + 16x,.

o1

The vector Aijj = Ci has components

¢, = Aljj = Appt A, v A= Bxd 4 3+ 3
C, = Azjj = A,y T AL, A= 3 4 exE + 3
Cs = Ryss = Ay * Ry + Agy0= 33 + 3x% + axi

Its curl has xy-component C, , - C, , = 6X, = 6x;. The x,- and x,-components
are, similarly, 6(x,- x,) > and ° 6(x;- x,) respectively.

No.it. The components of Aijj = Ci in the x-frame are
Cy = ijj = Ayyy v AL, A 6
C, = Azjj = Apqn tAra P A= 10
Cy = Asjj' = Aggy PRy t Ay = 0
In the X-frame, therefore, 1
T, = p(5C, - 140, +2C) = -12
T, = - 4(26, + €, +2C,) = -9

T, = s(l0c, + 2¢, - 11c,) = 6

Ryzs = aliazjaskAijk

a,, A +a,,a,.,a,.A + a,. a, .a, A

ag,A + 527222 ii722"32 122 12723788 233

sty TR0,
-1386/225

818,y

Using the inverse transformation,

Byy = aiia;jgfj = ay,3,,B,, +a,8,B,, = -2/3

The first equation of the inverse transformation is

X, = (%, - 2%, + 2K,)

and, hence, 1. . .

The components of ¥V in the x-frame are accordingly

/X, = S(X, - 2, + 2%,) = 2
V/OX, = - g%, - X, + 2%,) = -4

/X, = (%, - X, +2%,) = 4

Na. 12, = a2 (A, = +
0.1 ﬁxz a11323A1J ax1a22A12 axzazlAzl

= cos?o + sin%a = 1
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No.13. Taking i = 1,
Alj,j = BA /X + aAizlaxz + oA, /Ox, = Ax, + 2x, + 2x3

which verifies {a) for this value of i. Similarly, (a) can be verified for
i=2,3, It now follows that

A, ., = 13 J/ax + aA /ax2 + A

0545 /3%, = 4 + 4+ 4 =12

83,J

No. 14, ﬁﬁxr = aaiazja1kAijk = a“aua”A123 + aszaualzh222 = -192/25

Using the inverse transformation

Bi2 = 1Ja2EE3k jiakzgsk = ajiaasza =0

0.

B

since &,

No.15. (i) Taking transposes,
At = I' - [2xx')' = T - 2xx'

Thus
AR

i

(I~ 2xx")(Y - 2xx') = 1 = dxx' + &x(x'x)x’

I - 4xx' + dxx' = 1

#

and A must be orthogonal, therefore.
For the given x',
x'x = wf(1.-2,3){ 1
-2
3

0212 + 2% + 3%} = l4g?

Thus, x'x = 1 provided o = 1//14, Then

2 1e=
A =11 o o - b 1(1,-2,3) = 6 2 -3
0 1 0 -2

0 £ 1 L3
Using this transformation matrix,

Broasy = 32i%23 zka1g813kg 8,18,18,983381133 * 3518228249158 542

72/48

B.... is an invariant. Hence
1133 S &

Efijj = Biijj = B ,,, T 2Zero terms = -20
find that [A] = -1. Hence
Ala, & = - 7(6C, +2G - 3C)
|
lAlarﬁa i 7(aei + 3G GC%)

afa G = - 2(-3C +6G - ()

1}
i1
i

fw]

n
1
-

fl

N R F



- 18 -

|
o=

{1i) The non-zero components of Ai are A, = = A =

J %2 53
Thus, the non-zero components of Aij K are Apy 2 =By, 5 =l , =2x,.
Since A, . is & tensor, » ’ : *
13.k
A = A .8, -
A?.I,!. 11alJalkA1J,k
TSI L P SO AL PPC PPL I PL PRI PPL PRL PPY. PP
= A4x,/7

Using the inverse transformation,

X, = W2, + K, +6%,) = 2
Hence, ﬁ&i,x = 8/7.
Ne.16. K. = a,.a LA, = A_+a_.a A, = 6

32 8i%2371 4 8319211 32822722

Using the inverse transformation,

- E] 1 [} —_ _— 1=}
Byir = 3042 nkBigk = 241%5:%sBisk T f21%s1%21Bzae

The determinant of the orthogonal transformation is [A]
Hence —

1

il

(5;2 = [A!aliaz}EQj = Ao 8,5, = -2
No.17. Since A is skew-symmetric, A' = -A. Thus

(A%} = (AA)' = A'Af (-A)(-A) = A%,
showing that A% is symmetric, If, also, A® = -A, then

BB' = {I + 2A®)(I + 2A%)" = (I + 2A*)(I + 2A%)

I + 4A% + 4A*

14
fi

I + 4A% + 4A(A%)
1

I + 4A% - 4p%

i

Thus B is orthogonal.

By multiplication of A by itself, we find

A' = (a% + b2+ )0 -a -b
a 0 -¢
b ¢ 0

Thus, if a® + b? 4+ ¢® = 1, then A} = -A.

Ifa=1/3, b=c=2/3, then a® + b%2 + ¢* =1 and

_ 2 e . 1. 1+
B = 0O 0] + 3 F -4 2| = g 1 8 14
0 -1 0 -4 -5 -2 -8 -1 -4
0 o 1 2 -2 -8 4 -4 -7
Thus,
T =b.b ... = b b _+b b +etc, =91/8]

23 21 8371] 2% 3% 2] 32
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Since x¥ + xZ + x% is the square of the distance of a point
from the origin 0% the x-frame and the origins of the two frames coincide,
the transformation must be such that

Hence 1
- vy
- = _ Bow | =2, =
R, = byihy = by = - g(X) X+ XY)
- = - 4 Vo s yd
In the x-frame, the divergence of the vector field is
A1’1 + Az’z + As’sl = Aa,; = 2xl
In the x-frame, the divergence is
oo _ _
ﬁi,; + ﬁé;z +'H3’8 = g{— X, = 8x, + 4x)
The first of the equations defining the inverse coordinate transformation is
1, - . -
Xg = g{— X - BX, + 4%,

This estabiishes that the two expressions for the divergence are identical.

No.i8, (i) The orthogonality conditions are

az 1 82 + 42

81, 4a + 8b + 28 = 0,

4% + p® + 7%

33

81, 8a +8+4c = 0,

1

82 + 12 + ¢? 81, 32 +b+7c = 0,
A1l these equations are satisfied ifa=1,b = -4, ¢ = ~4,

We have, with the usual notation,

'Ksl = aSianAij = aagalsA23 = 4/9,
(11) Putting Bjk = Aijki’ we have
B = Rijki = 2rfisfktivtrstu = Sru?jsktPrstu
ajsaktArstr = ajsaktBst
Eazéggog?ed the orthogorality condition 8:.85, = aru‘ This proves Bjk is
For the component values given
Biy = Ajasg = Pupsr tAzpne thypes = 9
822 B Aiazi = Alzzz + Azzzz N Aﬁzza = 18

A1l other components of Bjk vanish in the x-frame. Thus

B.. +a,.a,.8 . = 44/3,

Byy = 11%13013 12%12%22

v 7 Bty ¢

1]
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No, 3. - aliaZjaakﬁijk = Byy8,33,,A,, = #32/3125
If Cj = Biji’ then
Cy = E}xi = Byay t Byyy ¥ By, = 3
tz = §121‘ - I‘3"121 +§222+ E-aza =4
Cy = Bigi = Bysy # By +Byyy = 0

Thus, using the inverse transformation

- I = _
y = aliti = ailti = 3
— H o T o=
C, = azif} = a;,0; 0
- ] - e
No.20. By use of the identity cos?g + sin®a = 1, it is easy to verify

that all the orthogonality conditions are satisfied. It is also easy to
check that the transformation is the resultant of the pair of transformations

Y = 1 - | 3 To_ .

X1 = xlccsa x351nu X1 = X1COSB + xzs1nB
v = 1 1 _ - *

X, = X, Xy = X Sng + x,c0sB
N — | ] ] | S

Xz = X;sinha + X,c050 Xg ® Xy

The right-hand member of this pair represents a rotation of the x-frame through
an angie 8 about the x,-axis to generate the x'-frame. The ieft~hand
transformation represents a further rotation of the x'-frame about the xj-axis,
through an angle a{in the negative sense}, to generate the x-frame.

If « = B = 4w, the transformation equations become

1 1 1
X=X Yo% T %
X, = -7]?(- X+ X,)

- 1 1 1
Xa = *2-)(1 + 7}(2 + -‘72-}(3

1

With this transformation

Aigas = aliaijazkasRAijkg = By8y38,,858R508T 8422122480 0P008
= 0
No.21, Taking the transpose of AB,
(AB)' = B'A' = BlA™* = (AB)7?

which is the condition for AB to be orthogonal.
Giving A, B the values stated, we find
_ 1
C = A = 12 20 12
-12 15 -i6
-20 0 15

Thus ,
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Kszi b Csiczjczkﬂijk - Caaczzcnhzz; * CéxczzczzA;zz
= -48/5
Wr“iﬁng D£ = AijkB'ijksl’ we have
D= RisBijkn = PaaaBagny = 98
D, = RisBiske = FuniBasss = -6
D, = I\uijk]a-'i\]'k.s = Iszzgszis = 144

Transforming this vector to the x-frame,

Ciiﬁl +c¢..D + C, D 4464 /25

"
1l

D = Cl -E- = C_i lﬁ,i

1 117 212 1738
D, = ¢,;D; = 105 = €0 + Gy, T + ¢y, Uy = -96/5
0, = C;iﬁi = Cisﬁi = c“ﬁl + cmﬁz + ¢, D, = -48/25
No.22, Relative to an orthogonal transformation 3?1. = Ay Xs t b'i’ we
have transformation equations J
2Lij - lAlair‘ajsmrs’ 3‘81' T ]A[aifﬁc’ Ej = ajuEu'
Thus, — .
U BT = [APepa50,0, 0 BE,
= L : 2 .
= 6rtssu‘urﬁEu’ since |A]? =1
- ﬁr@rEs
proving ﬂi#iiEj is an invariant,
No.23. At x, =%, =X, = ivm,
(curlp), = Aa,z - Az,s = xxsecz(xlxz) + x,sin(x,x, )
= /(1 + 1/2/2)
(curlh), = Ax,z - As_,l = X,C08(X,Xg) = X,5eC{X;%,)
= = vr (1 - 1/2v2)
(curlh), = ‘ﬂ‘z,:. - Ax,z = = X,51n{X,X;) - Xyc08(x,X,)
= = J/(n/2)

The transformation to the X-frame is determined by the equations

X, = = Xys o Xy = X

A = X 5 P

1 i z

In matrix notation, X = Ax, where B4 = "8,, T Ay 1, all other elements

of A being zero. Clearly, |A| = -1,

Since curlp =(¥ is a pseudovector, in the X-frame its components
are
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n
I

G, = 8, G = -G = - A0+ 120
G = e, & =C, = - 40 -1/20
G

z
-G = vwe)

LIERE

No.z24. The orthogenaiity conditions require that

ot{a? + 2% +5%) = 1, a+2b+10 = 0,

RA(12 + b2 + 2%) 1, 2 -11b+2c = 0,
v2(2%* + 112 + ¢*) = 1, 2a-22+5c = 0,
Selving, we find a = -14, b =2, ¢ =10, ¢ = 1/15, 8 = 1/3, ¥ = 1/15.
If x = Ax represents the transformation, then
alal aaiazjazkaszijkg R PPL PPN FPL P PY. SRR AL PPL UL PO POV PP
= 2/5

In the X-frame, the vector C‘,j = AiBij has components

T, = _ﬂ}ﬁ%l = KB, +AB,, +AB,, = 0

C, = ﬁgﬁgz = R,By, + KB, + BBy, = 3

T, = 1(1‘31.5 = AB,, +AB,, +AB, = 15
Transforming to the x-frame,

C, = a0 = aiifi = a,,0, +3,,C, +a,Cy = 3

C, = a;{ﬁi = aifci = a,,C, +a,,C, +a,C, = -9

C, = a;{ﬁi = aisﬁf = a,C +a,0C +a,0C = 12
No.25. We are given A' = -A, A® = -A, Thus

B' = I - A+ A2
and
BB' = (T 4+ A+ M) -A+A%) =1 +A%2 +A* =1 + A2 +AAY) =1

Thus, B is orthogonal.

The given matrix A is cleariy anti-symmetric and, by repeated
multiplication of A by itself, we find

2 1 N _ > ] g _ | P - -

A = g & 4 21 . A = 3 W 1 Z

-4 .5 .7 1 0 -2

2 -2 -g] 2 2 o

Thus, A¥ = <A, We now find that

B = |1 0 D+ 3 0 1 pa +-§ -5 -4 2
0 1 0 -1 0 2 -4 -5 -2
0 0 1 2 2 o |2 -2 -8
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-7 4 4
-4 -8 1
Thus,
Ao = R I T T T
Byzy = bs1b23bik ijk = b b, Py By, = 7128
No.26. Considering the ith component
{curl gradV)i = G%jk(gradV)k,j = e%jkv’kj 0

since terms in which j, k are the same vanish, and other terms cancel in

pairs, e.g.
6’112‘-",12 +'¢1‘z;"’,21 = 0.
Also

div curlA = ({curih),

. =0
1,1

@Ciikhe,i),i ™ G, s
since terms in which i, J are the same vanish, and other terms cancel in pairs
as before,

No.27. (i) There are four cases to consider:

Case I: The pair {k,2} is not identical with the pair (m,n),
Then, each term in the left-hand member must contain an e-factor, two of
whose suffices are equal; this member is accerdingly zero. Also, each term
in the right-hand member must contain a §-factor whose suffices are different;
this member is also zero therefore. The identity-is thus verified in this case.

Case II: k =m, & =n, but kK # £. Then one term in the left-hand
member will be non-zero, this being the term for which (ik&) and (imn) are
the same permutations of (123); this term has the value +i. Since Spm =
ng =1, 5kn = 5£m = 0, the identity is again verified.

Case II1: k=n, & =m, but kK # &. Again, one term in the left-
hand member will be non-zero, this being the term for which (ik:)} and (imn)
are permutations of (123); however, one of these permutations will be even
and one odd and the value of the member will bg —] In t@e r1ght -hand
member, 6km = ng = 0, Gkn = ng = 1, thus verifying the identity.

Case IV: k = 2 =m =n., All terms in the Teft-hand member are
clearly zera, Since Sem = Sen = Skn = 8o © 1, the right-hand member is

also zero and the identity is verified.

3§, -8 = 28

() G = %udom ™ Skolak = 3am = Sam o
No.2B, By definition of divergence
div gradv = (gradV); ; = (V) ;= V= 5§§%§;
No.29. By definition of curi, the ith component of the left-hand member is

&ijk(cuHA)k’J = eljk(ws 5, " . ekmﬁkrs S,rj

(61r635 B 61563r)A

s,rj
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= A o s
AT;JJ

_ g2
v Ai

3,13 7
(A

LR
(divh) ; - (VA);

This is the ith component of the right-hand member and the identity has
therefore been established,

No. 30, (i) Taking the ith component
[ax (BxC)]; = G A(Bx%C)
% kP GersBrCs

H

ekijeLrSAjBrcs

(Girﬁjs " Gisﬁjr)AjBrCs

(A-C)Bi - (A-B)Ci

e

i

which is the ith component of the right-hand member.

(1) A-(BX C) = Ay(Bx )y = A&, BC = & ABIC,

This Tast expression is the expansion of the determinant and so verifies
the identity.

+ V =V divAh + A-WY

TR

No. 31, div(VA) = (VA;) ; = VA,

A,
s11
No.32. (1) {cur® VA}, = Cﬂ%jk(vnk),j = eijkwl‘k,j

= V(curiA)i + (gradV x A)i

(AxB)i i = (G35 AB)

€kt 18+ GakPsB, i

(11} div{A X B)

= CiihyL 18 T G, it
(cur‘iA)kBk - (cur]B)jAj
B.-curlf - A-curlB

i3

(ii1) The jth component of the operator v is a/axj. Thus,
the formal scalar product of A and V yields the operator A.¥ = Aja/axj.

Hence, the ith component of (A-V)B is (A-V)Bi = ;f-‘\‘].B_i 3 Thus
curl(AX B) , = e%jk(h x‘B)k,j = é%jk(eirsArBs),j
ekijeirs(Ar,jBS ¥ ArBsaj)
= (8,8, - 6.6:)(A. B +AB_ .)

ir-js is jr' r,i s rs,J
. .B. B. . - A. .B, - A.B. .
A'lsJBJ ¥ A1BJ;J AJ:JB? AJ 1.l
(B-v)Ai + AidivB - BidivA - (A-v)Bi

n

verifying the identity,
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5

. . = s 8. = 8. 8. .
ei13‘krsAJBs,r (61r638 61SGJP)AJBS,P

(iv) (A x curld); - = &J.kﬁj(cur']B)k = e{jkﬂjéirsBs,r

= Ay AL
Similarly
x N = He =~ Y = TP
(B cur'lA)1 B‘}AJ’1 83A1,J
Adding
A x 1B + B x A, = A.B., . +B.A, . - A,B. . - B.A. .
( cur curid), AJ Jsi JAJH JB1,J BJAT %
= (Aij),'i - (A'V)B-i = (B'V)A-]

n

[orad(A-B) - (A-7)B - (B-V)A]i

which is equivalent to the identity required.

No.33, Transforming to an X-frame by the orthogonal transformation
X: = 8..4X: + b,, we find
i 1377 i
Bis = Byi = 3l = 255358,

showing that Bij transforms as a tensor.

It now follows that Aij = Aji = Bij is a tensor equation and

hence s valid in all frames if it is true in one.

This result is easily generalised: Thus, if Aijk is a tensor

and B.,, = A i3 then B.,, is a tensor; i.e. the components of a tensor can
be re&#bangeﬁ to providéJéomponents of 8 new tensor.

No.34. Since Gijaik = a5 follows from the properties of the Kronecker
delta, the first identity follows by putting I Gik'

If {ijk) are all different and (#nn) s an even permutation of
{(ijk), then {2mn)} is obtained from (ijk) by an even number of transpositions
and hence {%jk and éﬁmn have the same sign and their product is +1. If

(zmn) is an odd permutation of {ijk), the number of transpesitions is odd
and eijk and éimn have opposite signs and their product is ~1. 1In all other

cases, one of the triads contains repeated values and one of &,. . & is
Zero ijk Lmm

Suppose (ijk) are all different and {Zmn) is an even permutation
of (ijk). Then one of the three even permutations of (fmn} will be (ijk)}.
Hence, one of the first three terms of the right-hand member of the next
identity toc be proved will be a product of three delta symbols, each with an
identical pair of suffices and this term will have value +1. The remaining
five terms of this member must each contain at Teast cne delta symbol with
non-identical suffices and so must all be zero. Since the left-hand member
has already been proved to equal +1 in this case, the identity is verified.

If (ijk) are all different and (2mn) is an odd permutation of
(1jk), it will be one of the last three terms of the right-hand member which
is non-zero with value -1, all other terms in this member vanishing. In
this case, the teft-hand member has been shown to be -1 and again the
identity is verified.
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If (#mn) is not a permutation of (ijk), then at least one pair
of {&mn} or one pair of (ijk} are the same and both sides of the identity
vanish.

Next, suppose {Zmn) is a permutation of (ijk), but a pair of
indices are equal in each case. The left-hand member vanishes. In the
right~hand member, cone only of the first three terms will be non-vanishing,
with the value +1. By transpesition in this term of the pair of egual
indices in the group (&mn), one of the last three terms will be generated;
this term will accordingly contribute -1 to the member and cause it to
vanish. Again, the identity 1s verified.

Finally, suppose (fmnijk) are all equal. Both members of
the identity then clearly vanish and the identity is verified,

Contracting by putting & = i, the identity gives

Ciaxcim = 851830 * Siadindki * Sind5i%km
" Sin%antii T %4i%ntkm T Binlyi%kn
36jmﬁkﬁ * kaéjn * 6jnakrn
- Gknﬁjm - 3‘Sjnakm_" 5jmskn
S5mdkn = S3ndkm
No. 35, (1) (axb)-(cxd) = (axb)(cxd) = é}jkajbkéﬁrscrds
- (ﬁjrﬁks B stakr)ajbkcrds
ajbkcjdk - ajbkckdj

n

(a-c){b.d}) -~ {a-d)(b-c)
(i1) [a x b) x (e x d)]; = € (axb)s(cxd)y
eijké:jrsarbsekmncmfin

(8845 ™ Sksdir) GhanrPs S
ek Endn®s = (CkmnPndn)?y
bcﬂbi- @cﬂai

having used the result in No.30(i1) above. The alternative identity can be
established by associating a different pair of e-symbols together in a
contracted product.



EXERCISES 3

No.T. The successive space-time points occupied by a moving particle
have coordinates in the two frames S, S which are related by the equations
(5.8). Differentiating these equations, we find

dx
dt = g{dt - udx/c?), dz = dz.

"

B(dX - Udt)a dy = dy:

Thus,
V. - U
- = _ dx - udt = X
Yy 7 dx/dt = dt = udx/c =~ T - uvx7cz
since Vy = dx/dt. Also
v N dy 3 Yy
vy T W s sy Tuagery TR w /e
since vy = dy/dt. Vi is obtained similarly.
No.2, Differentiating the equation for v obtained in the last exercise,
we get . X '
— 1 - v2/c?
dv, = (T - uvx/c2)7dvx
Since

dt = (1 - uvx/cz)dt

also folilows from the previous exercise, division of this pair of equations
leads to the stated equation for a, = dvx/dt.

) Differentiating the eguation for V& from the previous exercise,
gives
dv uvy/c2

+ dy

dv g{1 - qu/02)2 b3

= ¥
y B(1 - uvx/cz)

Again, division of the last two equations provides the equation for E& = dV&fdf.
The equation for E% follows similarly.

Clearly, if a_, a_, a_ are all constant, in general a_, a_, Ei
will not be constant, sincd thise 6uantities will vary with the veToci%y

camponents Vs vy, V-

No. 3. Take the nucleus at the origin of the S-frame. In this frame,
we can assume the electron to move in the xy-plane with velocity components

Vx = 3¢/7, V& = 3/3¢/7. Taking S to be the stationary frame, the velocity

transformation equations give for the electron's velocity components in S

3
, - Tty .o (- /e
X 1+ ;uc ? y T + 3uc/¥ :

where u is the velocity of S and the nucieus. Hence

_ 0 _ {1 - uz/cz)%3/3c
1/¥/3 = tan30” = vy/vx = T

Squaring this equation and solving for u, we find u = 3c¢/5 or -129[13. The
second root is spurious, since it fails to satisfy the last equation.
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No.4. Take S to be the frame of the stationary observer and 5 the
frame moving with the nucleus. In 5, take the velocity components of the

R-particle to be V_ = 0, Vv = 3c/4, V£ = 0. Sjnce u = 3¢/5, the transform-
atjon equations giﬁe

Ve = 3c/5, vy = 3¢/5, v, = 0.
Thus, in S, v = 3/2¢c/5 and the direction of motion makes 457 with the
direction of motion of the nucleus.

In the second case, let 6 be the angle in § between the line
of motion of the B-particle and the x-axis. Then, we can take V. = 3c cos6/4,
v = 3csing/4, Thus 3 3 X
Y € €088 + £C gesine
v = v =

g —
X 1 4 Eﬁcose ? Y T+ zﬁcoss

Since v_ = 0, the first equation shows that cose = -4/5, i.e. 6 is obtuse.

The secBnd equation then gives v = 9¢/16; this is the velocity of the #-
particle in S. Y

No.5. The square of the magnitude of a vector is defined by equation
(12.4). In the case of the 4-velocity, its magnitude V is given by

VE s VY= VW= (1 - v2/e?) Ry, i) (v,ic)

(1 - v¥/c2) 1 (v® - ¢?) = -¢*

Hence, V = ic

No.6. Consider a photon in the light beam. Its velocity components
in S along the x- and y-axes are ¢ cosa, csino respectively. In'S, the
corresponding velocity components are ¢ cosa, csina. The velocity trans-
formation equations show that

- - 2 e2Yped
c cosg = LC.G03% - U ceing = V(1 - u*/c*)csing

1 - uc cosa® 1 - uc cosc

Division now yields the equation stated.

_ Clearly, if u is small, o and o are approximately equal.
Writing o = a + Ao, where Aa is small, a Taylor expansion shows that

coty = cot{o + Aa) = cota - Ancosec?y

approximateiy. Further, an approximation to the right-hand member to order
(u/c) is clearly cota - (u/c)coseca. Substituting these approximations for
the two members of the aberration formula just found, we deduce that

Mg = {u/c)sina.

No.7. The first result is obtained by differentiating out the right-
hand member of the equation

¥ d m,y
- @ {;1 - vz/.c?‘)5

If the acceleration is parallel to v, it is directed along the
tangent . to the particle’s trajectory and the component of the acceleration
along the principal normal to the trajectory (viz. wv?) vapishes. Thus,
the component of the acceleration along the tangent (viz. v) gives the
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magnitude of the acceleration. The unit vector along the tangent is v/v
and, hence, dv/dt = vv/v. Substituting vv = vdv/dt into the second term
of the expression for f now gives the second equation.

[f the acceleration is perpendicular to v, the tangential
component must vanish and so v = 0. The first expression for f therefore
reduces to the Tast equation.

In these two special cases, the force can be expressed in the
Newtonian form: mass acceleration. In the first case, the mass is
my(1 - v*/c®)"*® and is sometimes termed the longitudinal mass. In the second
case, the mass is my(1 - v2/¢?)™ ¥ and is sometimes called the transverse
mass.

No.8. The velocities of the particles in S are
_ v, = u _ v, - u _
V.= 7 uv,/c% B =TI/ (1)

Elimination of v leads to the equation
{vy + v 0u? = 2(vyv, + c?)u+ (v, +v,)c? = 0
Sclving this quadratic for u, we cobtain

¢? +v,v, - (c* - vf)%(cz - vi)%

u =
vy t v,

The negative sign must be taken before the root since (c - vi){c - v,) > 0
implies that c¢* + vyv, > c{vy + v,) and u would therefore exceed c if the
positive sign were taken. '

To obtain v, it is simpiest to eliminate u between the equations
(i} to give the equation

(vy = v )Vv® = 2(c® = vy, )V + c*(v, - v,) = O

Solving this quadratic for vV gives the result stated.

¥ 4
No.2.
C %
A 1
o \ c
l:! \\\\\"\ P
-\\ *\\ e VORI
.,\\ *«.‘\
-
'\\ ~.
] ’\\
Y A \‘ B
[m?ﬁfiiiiﬁﬁj& X

Suppose the bullet AB is attached to the x-axis of S as shown.
The camera is placed at C on the y-axis of S. The fixed scale is the x-axis.

Suppose the light entering { at the instant the shutter is
opened leaves A at time T and B at time t as measured by the clocks of S,
At time T, let A have x-coordinate Xp and at time t let B have x-coordinate Xp

Then the difference in the distances travelled by the 1ight from A and B is
(xB - xA)cosa {assuming the length of the bullet is small compared with the

distance of the camera from the bullet). Since the light from A and from B
must enter the camera at the same instant, we must have
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T-1t = (xB - xA)cosafc {i)

Consider the event of the Tight téeaving A. In S, the coord-
inates of this event are (xA,T). In 5§, let the coardinates be (xA,T).
Then

Xy = B(xA - vT),
where ¢ = {1 - szcz)'%_ Similarly, if the X-coordinate of B is ?h, then
?é = B{xg - vt)
Subtracting, we get .
d = ig - ih = B(xB - XA) + (T - t}
Substituting for (T - t) from (i}, we find that

Xg = Xy = (V- VZ/CZ)%d/{l + veosa/c)

Since x,, X, are the coordinates of the points on the x-axis {fixed scale)
from wh%ch %he Tight leaves to enter the camera, this will give the apparent
length on the photograph,

No.10. If S is attached to the table and § to the rth cart, the
velocity of § relative to S is CV,.e The velocity of the (r+1)th cart in

S s ¢v_ . and in 5 is kc. Using the velocity transformation equation, we

have P
kc + v,
Yes1 TOTF Evr
The last eguation is equivalent to the recurrence relationship
u = 1ok
r+1 T+k “r
where u. = (1 - Vr)/(] + Vr)' By repeated application of this relationship,
we find

-1
1 -k . {1 - &Y
Un - T_E+ un_] - R = ( + U'l
But vy = k and, hence, Uy = (1 - k)/(1 + k}, Thus,

1 -\
y - (W)

{1 - un)/(1 + un), this leads immediately to the resull stated.

i

Since Vn

Since 0 < {1 - k)/(1 +k) <1, Uy + 0 as n+wx, It follows
that v. =~ 1 as n + =,

n s

y Y

i
No.11. Y 14 y
! JI NS %
v € 3V
'3 _,‘f‘!
A x -] M

$ is the laboratory frame, S is a frame moving with A and S" is
a frame moving with B as indicated in the diagram.
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In S, B's velocity is v, = ¥ and §' has velocity -¥.” Hence,
in §' B's velocity is

vx Y rall

Vi T T W, 7¢* = Y F VI A

In S', the electron's velocity has components vg =0, v; =V

and S" has velocity u.= 2V/(1 + ¥*/c®), Hence, in $" the electron’s
velocity has components
oo x4 2y
X - uvy c? + V2
- n2/02yE
o= (1 u ,fC ) Vy . 1 - \"2/02
y T uv%/bz I+ VL/¢”

C

Thus tano = v;/(—v“) = (1 - V¥/c?). The magnitude of the electron's velocity

in 5 is * 2 2 2y573 2.2
vtk vit) = V4 + (1 - VE2eR)E]3/(1 - vE/cy
No.12, B
D) W B S
= O  —
P -y —_—v+3r S
-

— e
— -

At time t, Tet v be the rocket velocity in §; at time t + §t,
the velocity has increased to v + év. At time t in S, S' is an inertial
frame reiative to which the rocket is 1nstantane0us1y at rest, i.e. S' has
velocity v relative to S and is the crew's natural inertial frame. When
the rocket has velocity v + 8v in S, let §v' be its velocity in S'. In S',
as the rocket velocity increases From 0 to &v', suppose its rest mass
decreases from m, to m, + om, (&m, < 0); Tet Am, be the rest mass of the
particles eJected w1th velocity w into the jet stream during this change.
Then, conservation of inertial mass requires that

m, + &mg Ay

M = T =8vE7ery bt oyTTwErer)
and conservation of Tlinear momentum that
(m, + 8mgy)8v' Amyw

YT = 8v'27¢Ey ~ V(1 = w&/cZ)

Approximating to the first order in all small quantities, these eguations
reduce to
émy + Am /(1 - w*/c?) = 0

#

mySv' wAm, /V(1 - w?/c?)

We now deduce that

1t

mydv’ - wémg {1)

Transforming the velocity v + 8v in § dinto 8v' in $', we obtain

T v+ 8y -V _ Sv ‘s
A viv¥svy/cE ~vIj¢ (1)

to the first order in év. Equations (i) and (i1) now yield in the limit
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dv dm,

= - W —

- v</C Mg

Integration over the range from v =v_ to v = v, gives

ic 109‘.(0+V yie-v ] = w logR,

c=vy) [CHv,
where R = My, /My, = mass ratio. Solving for R, we get the result stated,
)¢ + eV ag ¢ 4 , we calculate that
R+[e2(v1—v0]:|1/2w = exp[{vy-vy) /W]

This is the well-known classical formula for the mass ratio,

Since {1 + v/c

If the jet is a stream of photons, then w = c¢c. (This wouid be
the case if the propellants were electrons and positrons which mutually
annihilate to generate photons.) Then, setting vy, = 0, vy = v, we find
R =/[{c+v)/{c=v)]. If R = 6, this gives v = 35c/37.

No.13. Equation (5.6) shows that
tana = iu/c, tang = iv/c, tany = iw/c,

where w is the velocity of S" relative to S. Thus

tano + tanB

is equivalent to
_ u -+ v
W = fuv/ct -
R d _ dv dm
No.14. f- -af(mV) T et

The result stated now foilows by use of equation (17.7).

No.15. The force acting on'the charge due to the field is of magnitude
ef and along the x-axis. The equation of motion is accordingly

d
af‘l:m -mﬂg/cz)}

eE

Since v = 0 at t = 0, integration leads to the result

v -
T TVETCEY T kt
Solving for v, we get
I kt
V= 8 + k2tz/c2y

Integrating again with the initial condition x = 0 at t = 0, the result stated
is derived.

If ¢ is taken to be large by comparison with kt, the binomial
theorem shows that
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2
X = }% [T+ K*t?/2c® + O(k*t*/c*) - 1] » 3kt?

as c=+eo, According to classicai theory, the partlc]e is subjected to a
constant acceleration eE/m, = k and this result is accordingly consistent
with such motion.

If kt is large compared with c, the relativistic equation can
be approximated by taking v{1 + k®t?/c?) = kt/c. Then x = c(t - c/k);
i.e. when a long time has elapsed, the particle will appear to move
unifaormly with the velocity of light.

No. 16, Take A and B to be at the origins of the frames S and §
respectively, these frames being related as in section 5,

Suppose B receives the tachyon from A at time T by the §
clocks and at time t by the S clocks, Then this event has coordinates
(d t) in S and coordinates (0,t) in 5, The transformation equations

= B(x + ut) and X = R(x - ut) now show that T = d/Ru and t = d/u.
It now follows that the tachyon must leave A at time t = d/u - d/v.

Consider the motion of the tachyon transmitted back towards
from B. It moves along the negative x-axis with speed v, starting from
a =

d/Bu. 1ts equation of motion in S is accordingly
X = - ¥(T - d/pu)

Transforming this equation to the S5-frame, it yields

x(1 -~ uv/c?) = - (v - u)t + vd/g%u

as the equation of motion in this frame. Thus, the tachyon arrives at A
(x = 0) at time

t = vd _ovd(1 - u?/c?)
T OBTa{v - uy ulv - uj

Thus, the S time elapsing between the first tachyon Teaving
A and the second tachyon arriving back at A is

vd(1 - u*/c®) d , d _ d L w2y se?
u{v - u} TR e s AR R A A

This time is negative, and reception by A occurs before trans-
mission from A, provided
uv* - 2¢*v + ctu > 0

The quadratic equation for v: uv? - 2¢®v + ¢?u = 0, has roots
v = %Ed:ﬂcz—uzﬂ.

By consideration of the parabolic graph of uv® - 2c%v + c?u for varying v,
it is clear that the above inequality will be satisfied provided

v <-§[p - /{2 - ut)] orv >-§[; + ¥{c* - u?)]

The first ineguality is equivalent to

< U
v T+ /(T = 0z/ct)

i.e. v < u and the tachyon's speed is less than ¢; moreover, in this case,
the particle transmitted by A would not overtake B. The second inequality
is the only possibility, therefore,
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Differentiation of equation (15.6) yields
A = dV/dt [: {1 - v3/c®)"%® (v, ic) + (1 ~ v¥/c?) ¥ (dv/dt, 0']

Using equation (15.1), this leads to the result
A = (1 - v¥/c®)™* (1 - vi/c*)a + vuv/c?, ivw/c]

Thus

x=
1
=
| x=
I

(1= v2/c2)™[(1 - vi/c*)%a® + 2vi(1 - v¥/c?)a.v/c?
+ v/ - vBv2/c?]

(1 - v2/e2) 3 [(1 - v®/c?)a® + 2warv/c? - v2v3/cE]

which is equivalent to the result stated.

No.18. We imagine the mirror to be fixed to the S-frame which is
moving with velocity v re1at1ve to the laboratory frame S as indicated in
the diagram,

< v
P e
c
e —
X
x

In the frame S, the mirror is stationary, and the angles of
incidence and reflection will be equal (say «). Thus, photons in the
incident and reflected beams will have X velocity components ¢ cosa, -¢ COsu
respectively. These same photons observed from S will bave x velocity
components ¢ cos®, -c¢ cosd. The velocity transformation equation requires
that

_ CccosB - v _ -C COS$ - v

¢ Lose = vy yggsae ¢~ © O5% T T voose/c

Eliminating coso between these equations and solving for cos¢,
we ohtain the result stated.

Ne. 19, The classical result is T = L/U.

Using the relativistic ve]oc1ty transformation, the approach
velocity of one train as seen by the other is 2U/(1 + U*/¢%}. Thus, allowing
for the Fitzgerald contraction, the length of this approaching train as
seen by the driver of the other is

_ 1 - U2/¢c?
LJ[T - 42 /c% (1 + Uz/cz)zj = L TF /e

Working in the driver's frame, in order to compliete the passage
the approaching train must move through its own length together with the
length of the driver's train, i.e. a total length of

1 - U%/c* 2L

Lo bysmerer = vvoyes

At the speed 2U/(1 + U*/c?), this will take a time L/U =
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No.?20. The equations should first be corrected to read

A P e Y (4)

Q = 1/(1 - u-v/c?)
uw*gV = Q[(1-Blux{yxu) + pu(v-u)] (i)
Vi o= fw)? - (ea)?/el] (1)

In the independent &, we can take v = (Vx’vy’vz}’
V= (?ﬁ,ﬁ&,ﬁé),_ﬁ = (u,0,0). Then Q = 1/{1 - uvx/cz). Hence, the first
component of eguation (i) gives Vﬁ = Q(_vx - u}, which is the first of
equations (15.11). The second and third components of (i) give the
remaining velocity transformation equations. This verifies equation {i).

Since ux{vxu) = u®v - (u.v}u, equation (ii) is equivalent to (i}.

To obtain equation (iii}, we square {ii), noting that

(a) [ux(vxu)]? = u*{vxu)?

o

o

K _

f Is
b3

<

f Ig
=

i

I

o]

No.21. In the S-frame, a ray of 1ight from a point on the edge of the
disc to U makes an angle o with the x-axis, where tanag = a/X. In the S-frame,
this ray will be observed to make an angle o with the x-axis, where

coto =~ {u/c)cosecy

coto T
(1 - u?/c*)2

(This equation follows from the result quoted in No.6 above by writing down
the inverse transformation (i.e, exchange a, o and replace u by -u) and then
substituting m+a, m+a for a, o respectively to allow for the reversal in the
sense of the Tight ray.)

If x» a, we can approximate coseca = cote = x/a and this then
leads to the stated result.

No.22. By the velocity transformation equations (15.11}
v = v - u
TOTT v/

Differentiating with respect to T, we get

3 dv dv dv ¢t _ 1 - u?/c? dt

T § Wdt gy T Tmuwer t

Differentiating the Lorentz transformation equation T = g(t - ux/c?), gives
dt/dt = {1 - uv/c*). The first resuit stated now follows immediately.

At some instant t in S, take %‘to be the frame in which the
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particle is instantaneously at rest. Then u = v and, hence, & = a/(1 - VZ/cz)“h.
Thus, if a = «,

- y2/czy-dy
(1 - .v</c*} TE

This is equivalent to the second stated result.

Integration ¢f the equation of motion now proceeds as explained
in the solution to No.,15 earlier,

It is helpful to imagine the particle to be & space rocket
accelerating away from the solar system. o will then be the acceleration
experienced by the crew; thus, if o = g, conditions in the ship will be
simitar to gravity on the surface of the earth.

No.23. InS, S has velocity (0,v,01. Using the inverse of the velocity
transformation equations (15.11), the velocity of S as seen from S is found
to have components

i
. - _ z 2 -
Ve = Us vy = (1 - u%/c*)%v, v, = 0

Hence,
- o Vyq o o220
tang = vy/vx = G{l uc/ce) e,
The velocity transformation equations relating S and T can be

derived from equations (15.11) by exchanging the roles of the x- and y-axes
and replacing u by v; they are

(1 - vzfcz)%ﬁ% _ Vy <V - (- vz/cz)%VE
v, = vV, &F @ —_—— ., ¥_ =
X CuD /2 ¥ - z 1 - vv /c?
1 vvy/c 1 vvyfc vvy/c
In'S, S has velocity (-u,0,0). Substituting V% = -y, v = Vé = 0 in these
transformation equations, we obtain y
= _ Lyl e2nE S = - Y =
Ve = {1 - v¥/c*)u, vy VoV, 0

for the components of the velocity of S as seen from'f. Thus, if ¢ is the
angle made by this velocity with the x-axis, then

- = o - V =
tang = VA, = 31 - v/

If u and v are small compared with ¢, the binomial theorem shows

that

tang = (1 - u/2c?), tang = {1 + vi/2c?)
approximately, Hence

tan(s - 0) < BRINE -yt

to the second order of small guantities.

No.?24. % =21 - u2/c*)t is derived as in section 6.

Let v be the velocity of §' as seen from S. Then -v is the
velocity of S along the x'-axis of S'.

The velocity of S as seen from $' follows from the first of
equations (15.11) to be {u - v)/(1 - uv/c?). This must equal v, thus leading
to the equation
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uv? - 2¢tv + c*u = O

Solving this quadratic for v and rejecting the roct » ¢, we now find
c? .
v o= 2 [1-0- uzfcz)%] (1)

Two applications of the Fitzgerald contraction formula yield
the eguations _ ! 3
2 = B(1 - u?/c?)E, L = &(1 - v¥/c*)

Thus, equation (i) s egquivaient to

@ -1 - — 20 - /)
(2% - 2%)
Salving for L, the stated result follows.
No.25, It follows from the symmetry of the situation that the combined

particle’s direction of motion bisects the right angle between the velocities
of the colliding particles, Thus, if v is the speed of the combined particle
and Mo is its rest mass, momentum is conserved provided

2m Mov

0 _
=172y 26 costvh) = ey
Since energy (or inertial mass) is also conserved, we must have

Zmo A Mo

VT ="T172zy — /U - vZ/c?)
Bividing these equafions, we find v = ¢/2v/2. Thus MO = /(14}3)m0.

No.26. Since momentum is conserved, the particle M must follow the
same 1ine of motion as m . Thus, if M has speed u, conservatijon of momentum

requires that
m, v _ Mu ,
V(T - vZ/cZy V{1 -"u%/c?) (1)

Conservation of inertial mass is expressed by the equation

m _ M ‘s
—irre oMy = rTTgEreEy (i1)
Division of equation (i) by (i) gives a formula for u.

Dividing both sides of (i) by ¢, squaring and subtracting from
the square of (ii), we obtain the equation

m2(1 - v¥/c¢%)
TV

2mym Loz o ME(T - uR/c)
T=EgeEy e T Yoy

+

This is equivalent to the result asked for.

Note that M? > m§ + w3 + 2mym, and, hence, M > my + m,. The
increase in rest mass corresponds to the mass of the heat generated by the
collision,

No.27. Choose an inertial frame S whose velocity relative to.the
taboratory frame S is w in a direction parallel to the Tine of motion of
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the first mentioned particle. Choose w so that in S the two particles have
equal and opposite velocities before collision., .Then, as in No.23 above, we

can show that 2
wos S0-q- W /c2) 2

Then, in S, both particlies must have the same speed w.

Appealing to the symmetry of the particles’ motions in 5, it
is clear that after collision they will be moving apart with equal and
opposite velocities along another 1ine of motion, Since inertial mass is
canserved, these velocities will still have magnitude w. Let o be the angle
made by the new line of motion with the original line of motion (as measured
in 5).

Choosing paraliel axes in S and § in the usual way and assuming
the motion occurs in the xy-plane and is along the x-axis before collision,
after collision the first particle will have velocity components {wcosa,
wsina,0) in S; hence,

i
(1 - w?/c?)2using

a = =
tand VX weoso + W

v
yf
by use of the velocity transformation equations. The second particle has
velocity components (-wcosa,-wsina,0) in S after collision and it follows
similariy that
i

(1 - w?/c*)2usina

- Wcoso + w

tang = - vyfvx =

(assuming ¢ is measured from the YTine of motion in the opposite sense to 8).

a;LA

ool

,%T
N

w
Hence 2 /Yy in?
_ (1 ~ wo/c® wsina w2 e2
tanotang = W1 - c0s%a) = 1 - w/c
. 2
R
No.Z28. Since momentum is conserved, the two parts will have equal and

opposite momenta of magnitude p. Using egquation {19.1),
E, = co/(p® +Mic?), E, = o/{p® + Mic?)

Thus .
E7 - B2 = (M} - MD)c (i)

Energy is conserved and therefore
E, +E, = Mc? {i1)
Dividing (i1) into (i), we deduce

E, - E, = c*(M - M3)/M {i11)
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Equations (ii) and (i11) now yield the results required.

No.29. Take m; to be moving along the x-axis of S, m, to be moving
along a Tine mak1ng an angle o with this axis and the comb1ned particle m to
move along a line making an angle B with the x-axis.

Since momentum 1is conserved, by resolving along and perpend-
icular to the x-axis, we get the equations

MUy m,u, _ muy
AT w7y 7T ugzeEy ©0% T T uazeryeosh
M, u . _ m .
R 7 I  a vy R

where u is the speed of m. Squaring and adding, we find

miug mZu3 2My My U, U, COSQL _ mPy? .
Towrer Y T ager o AT T wen(f - ugze)y T Toweger ()

Since 1inertial mass is conserved,

My + My - [i]
{1 - ug/ct) V(T =~ u3/ce) (1 - u?/cZ)

which after squaring yields

my g 2my iy m?

rougzer Y oTewer oo uen T = wreny - Towrre (1)

Multiplying (i) through by 1/c? and subtracting from (ii), we
now obtain the result required,

We can assume u;, u, to be positive and therefore
(c? - uguycosal)® > {c® - uguy)® > (c® - uf) (¢ - uf)
the second 1nequa11ty being justified since ui + u2 > 2uqu,. It now follows

that m? > m1 +mi o+ 2mgm,, i.e. m>my + my. The increase in rest mass is
due to the inertia of the heat generated in the collision.

No. 30. Let p be the momentum given to the electron and suppose its dir-
ection makes an angle o with the original direction of motion of the photon.
B
before collision after collision

Then, since momentum is conserved, by resolving along and per-
pendicular to the 1line of motion of the incident photon, we get

E E' _
T + "C-' cos0 = pcoso.
%-51n9 = psinag

Squaring and adding these equations, we find
E2 + E'2 + 2EE‘cos® = c¢2p?

Since energy is conserved
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E o+ mocz = E' + co/(p® + mic?)
Etimination of p between the last two equations now gives the result stated,
It is well-known that the frequency v of a photon is related to
its energy £ by Einstein's formula € = hy. Since Av = c, we deduce that A = hc/E
and the result just obtained ‘is therefore equivalent to

m.c
—p—(x* = 3) = 1-cose = 2sin*3s

Since AA = A' - A, this now yields the second result.
No. 31. Let P be the original momentum of P and p, q, the momenta of
P and Q respectively after the collision. Since momentum is conserved in
the direction of the original iine of motion ¢f P and perpendicular to
this direction, we must have 0 o
P = pcos30” + acos30
psin30® = q 5in30°
Hence, P = Af3p and'p = q.
Conservation of energy requires that
c/(P?+ 4mgc2) +me? = c/(p® + mic?) + c/(g® + mgcz)
Solving these equations, we find that p = q = /15moc, P = 3/5moc.
Then, if v is the original velocity of P, 2m v//(1 - vZ/c*) =
p = 3J5m0c. Hence, v = 3vbe/7.

No.3Z. Resolving momenta 1in directions perpendicular to the lines of
motion of the photons and using the principle of momentum conservation,
we derive the equations

%2sin(a+s),

1

v
"o sina
V{1 = vE/cZ)
m.v

0 o
Y(1 - vﬂl/c’z)"mB

%lsin(a+8],

m_being the rest mass of the original particle. Conservation of energy
rgquires that

moc2
= B +E,

Eliminating £;, E,, from these equations, we find that

¢ _ sino + sing _ 2sini(o+B)cosi{a-8)
v

sin{o+8} Z2sini{a+R)cosi{o+B)

cosiacos3p + sinkosinif _ 1 + taniotanig

cossncosEiR - sinfasinip T - taniotanip

This is equivalent to the result stated.

In the special case when the original particie is a photon,
v = ¢ and taniatanip = 0. Only a = 8 = 0 permits conservation of both
agnergy and momenium in this case.
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Ne. 33, Since momentum must be conserved in a direction perpendicular to
the neutrinc's Tline of motion, the Tines of motion of the particles m, must

be equally inclined at an angle @ to the 1ine of motion of the neutrino and
all Tines of motion must Tie in a plane.
Then, if p is the momentum of each particle M, and E is the

energy of the neutrino, momentum is conserved along the Tine of the neutrinc's
motion if

Efc = 2pcos® = 2p/3.
For conservation of energy, we reguire

3mc® = E+ 2c/(p® + mic?)
Solving these equations for E and p, we find p = 3m0cf4 and E = imc.

1f v is the speed of either of the particles m s then

m_v
0 = = 2
- v%/c = b= alc
Hence v = 3¢/5.
No. 34. Let ¢ be the angle through which the line of motion of the part-

icle is deflected and et p be its new momentum, A1l lines of motion must
lie in a piane. The original momentum of the particle 4s §m.c. Momentum
is conserved along and perpendicular to the original Tine of motion provided

%moc = pcosg + %mOCCDSGUO, psing = %mocsinSD0
Tt foilows that p = V7m0c/4, tand = v3/5.

The original energy of the particlie is 5m c?/4. If my is the
new rest mass of the particle, energy is conserved if
gmoc2 %m + of/(p* + m'2 c*)

Substituting for p and solving for mo, we find mo = %mo.

If v is the final speed of the particle,

mty
0

_ 7
-~ VZJC = P = ghyc
Thus, v = V/7¢/4,
No. 35, Let p, p' be the magnitudes of the momenta of the proton and

electron respectively and Tet E be the energy of the neutrino. The equations
of conservation of momentum and energy are )

p = p' +E/c {1)
2 + (T + mpe?) + (T' + mee?) (i1)

where T, T' are the kinetic energies of the proton and electron respectively.
Thus

n

ITINC

2
T+mpc

1 2
T + meC

c/{p?+ mﬁcz) (i11)

o/(p'? + m%cz) {iv)

i
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Eliminating E between (i) and {ii), we find

= p-p'H %~ +mec (v}

ol

(mN - mp)c -
Solving (ii1) for p gives p = /(ZmPT + T?/¢?) and, hence, eguation (v) is

equivalent to
c(p' +k) = T' +m.c?

E
Using (iv), this can be written
p' 4k = v(p'? + mcH)

Squaring and solving for p', we get

p'o= {mic® - k%)/2k
Substitution for p' in (iv) now yields
T = c{me - k)%/2k
No.36. Let 26 be the angle between the photon tracks and let p be the

momentum of the recoiling particle, Since each photon has momentum %moc,
momentum js conserved provided
p = %mec cose

For energy to be conserved, it is necessary that

2 - 2 2 2pn2
m,ct = dmoct o+ cY(p® + mec /16)

Hence, p = fﬁmoc/4 and, thus, cose = V3/2, i.e. § = 30°.

If v is the velocity of recoil,
im v

0 _ _ .
—TTE = p ¢3moc/4

1t follows that v = v3¢/2.

, Take S to be the laboratory frame and S the frame moving with
the recoiling particle, such that the x- and x-axes are in the opposite o
direction to the particle's motion. For one of the photons, v, = C cos30

= /3c/2,'7x = ¢ coso. Hence, by equations (15.11) with u = -¥3¢/2,

c cosa = nggg
&

i.e. cosa = 4¥3/7. This is equivalent to sina = 1/7.

No.37. The rest mass of the nucleus after emission of the photon is
M- Eofc and the magnitude of its momentum must equal that of the photon’,

viz. E/c. For conservation of energy, it is necessary that

2 . 2 3
Mc? = F + (:[—_E--2 + (M - Eo] cﬂ
c o2

Sotving for E, we get the result stated.

No.38. Let p be the momentum of m before it absorbs the photon and P
be its momentum afterwards, Then, if o is the angle through which the line
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of motion of m_is deflected by the photon, resolving along the original
lines of motioR of particle and photon, we find that momentum and energy
are conserved provided

p = Pcosa, E/c = Psina, E+EFE = c/{P* + Mgcz]
Also, E = co/{p* + mgcz).

Eliminating p, P, o and solving for M _, we now get the result
stated, ©

No,39. Let o be the angle made by the final Tine of motion of the
particle with the x-axis and let p be the magnitude of its momentum.
Momentum is conserved in the x and y directions provided

E/c = pcosa, E/c = psing
Thus, « = 45° and p = v2E/c.
Conservation of energy requires that
E+mec? = E+ c/(p? + Mic?),
where M_ is the final rest mass of the particle. Solving for Mo, we now

get theresult stated.
Ld
AA

No.40.

Let v be the speed of each fragment in the laboratory frame S
{see figure). Momentum is clearly conserved. Inertial mass is conserved
provided
3m /v(1 - vZ/c?) = 3m, (i)

S is a frame moving with one of the fragments (see figure).
The components of A's velocity in 5 are given by

v veosh0%4 v 3v/2

x ~ T ¥V cose0'/cz T T F VIR

7 V(1 - v2/c?yvsinb0® _ V(1 - v¥/c?)v3v/2
y T + vZcosb00/c® T +v2]2c?

L}

Thus, if o is the angle made by the Tine of motion of A with the X-axis as seen
from $, then .
cota = 'Vx/vy = /3/V{1 - v¥/c?) = V3

by equation {i). This is the result asked for,

No.4%. Let E,, E, be the energies of the photons, E, referring to the
photon whose motion is in the same direction as that of the positron. The
energy and momentum of the positron are 5mc®/4 and 3mc/4 respectively. Hence,
energy and momentum are conserved provided
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E, + E, = mc? + 5mc?/4, E, ~ E; = 3mc*/4

These equations now give the values for E, and E, stated.

No.42, For momentum to be conserved along & Tine at right angles to
the positron's motion, it is necessary that the photons should have equal
momenta and energies; Tlet E denote the common energy. Then, momentum is
conserved along the line of the photon's motion if p = 2Ecosc/c.

For conservation of energy, we reguire that
c/(p® + m*c?) + me? = 2F

Eliminating E between these equations and solving for p, we find
psinatang = Zmc,

If o = 600, then p = 4mc/3. Thus v = 4¢/5 is the positron's
velocity.

No.43. Let p be the momentum of the moving particle before collision
and let g be its momentum afterwards. Let r be the momentum generated in
the stationary particle and let ¢ be the angle made by its Tine of motion
with the line of motion of the incident particle. Then, momentum is
conserved provided

p = Qqcosd + rcose, 0 = qsing - rsind
Elimination of ¢ yields
r* = p? + g* - 2pgcosh (i)
The KE of the incident particle before and after collision is
Q'I'V@n by 2 2.2 z 2 2.2 2
_ - T - -
T = co/(p* + mc } m,c* s T c/(q? + mec ) m,<

It foltows from these equations that
p* o= 2m T+ 7%/, g* = am Tt 4 T'E/cE (1)
For conservat{on of energy, we require that
T+ moc2 =T = o/r* 4+ mgcz). {i11)
Squaring {iii) and eliminating p, q, r, by use of {i) and (ii),
e get THT + 2mc*) = JOTYT + 2m0c2)(T' + 2m,c*) eose
Cancelling the factor /{T'(T + 2m_c*}}, squaring and solving for T', we now
obtain the result quoted. °
Ne.44. Defining the momenta p, q, r., as in the previous exercise,
equation (i) can be derived as before. Energy is conserved provided
E+me? - B = o/(r® +mjch)

Squaring this equation and eliminating p, g, r, by equation (i) and the
equations

CZPZ - EZ - mick, CZqZ = El2 _Imicﬁ-

we are led to the result stated.
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Let 6 be the angle asked for, E the energy of the neutrino
and p the momentum of the muon. For conservation of momentum and energy,
it is necessary that
m,c/3 = pcos8, E/c = psine, 5m0c2/3 = o/(p%+ ngczfg) +E
Thus, p? = 16mgc2/9 + E%2/c? and substitution in the last equation gives
Sm,c®/3 - E = J(E? + 20mc*/9)

Squaring and solving for E, we find E = m0c2/6. Hence, tan® = 3Ef4m0c2 = 1/8.

No.46. To conserve momentum, the fragments must have the same speed v
in a laboratory frame S. To conserve inertial mass, it is required that
I lmo
0 - vZ/c

This gives v = ¢/(1 - A%).

Taking S to be a frame moving with one of the fragments and
using the velocity transformation equations (15.11), we calculate the speed
of the other fragment in S to be

2v 2e/(1 - 2%)

T +v*/cr ~ 2 = A%

If X is small, the binomial theorem permits us to approximate

c(l - %ﬁz - %&“ (1 + %Az + %&" + ...)

this speed by
= o1 - R
8
to 0{x"); i.e. speed is less than c by a fraction A%/8,
No.47. Let p be the momentum of the positron and E;, E, the energies
of the photons associated with the angles 30° and 90° respectively.
The equations of conservation of energy and momentum are:

cv(p® + mécz) + moc2 = E, + Ep,

p = E,c0s30%/c, E,/c = Eysin30?/c.
Eliminating p and E,, we find

V(3EZ + m;c“) + moc2 = %Ex
Thus, E;, = 2m ¢*. This gives E, = m ¢* and p = /3m c. To have momentum

/3m0c, the pogitron's velocity must Be +3c/2.

No.438. The photons must have the same energy E for momentum to be
conserved. Then, if p is the positron's momentum, equations of conservation
of enerqgy and momentum are

cv(p® + mgcz) + moc2 = 2B, p = 2Ecos60%c = E/c

Eliminating p and solving for E, we get E = 4m0c2/3.
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Let o be the angle through which the nucleus velocity is
deflected and let p be the momentum after deflection. Before emission of
the photon, the nucleus has energy 5m0c2/3 and momen tum 4m0c/3. If My is its

rest mass after the emission, energy and momentum are conserved provided

5. 5 Z 2.2 1 2
et = cv/(p® + e ) 4+ M, ¢
%moc = %moc cos60° + pcosa

0 = %moc sin60° - psina

The last two equations show that tano = v3/7 and p = J13m0cf3.
The first equation then gives N, = mof/3.

N If the frame S moves with the nucleus before deflection, its
x-axis being in the direction of motion, let 6 be the angle made by the
photon's track with the x-axis. $ is the parallel laboratory frame. Then,

for the photon, V= ¢ cosb0? = ic, Ve S ¢ cosfB. Since u = 4c/b is the
velocity of S relative to S,

1 4
ccoss = 2875 = -3c
-5
Hence, 8 = 120°.
No.50. Equations of conservation of energy and momentum are:
cv(p? + mgcz) = E+E'y pcosa = E/c, psina = E'/c
Thus,
/(p? + mgci) = p{coso + sina)

Squaring and solving for p, we get the result stated. The results for E and
E' then follow immediately.

MNo.bt. If p is the original and P is the final momentum of the particle,
equations of conservation of energy and momentum are:

c/{p? + mgcz) + —%moc2 = ¢/ (P? + 4m;c2)

p+ %moc cosa = Pcosg, %moc sing = Psing.

Squaring and adding the Tast pair of equations, we get

9
2 42 2.2
P< = p° + m,CP + 70,¢

Substituting for P?* in the first equation and solving for p, we obtain p = %moc.

Thus, the original velocity of the particie was 3c/5. The value of tang now
follows from the above equations to be 4/2/5.

No.52, The work done by the force as the particle moves from O to a
point with coordinate x is

X 2 2

[ e o - M

0
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Equating this to the increase in the particie's energy, we obtain

2 _ 2 z _
mc m, < Zmc x/{a - x)

where m = m_//{1 - v?/c*Y 1§ the particle's inertial mass and v is its
velocity. Sotving for v, we get

dx 2c(ax)%
dt & + X
It now fellows that

2atct = J(ax'%'+ x%)dx = 2axt + %x&”

the constant of integration being zero since t = 0 when x = 0. This s
equivalent to the result stated.

No.53. Resolving the equation of motion (17.7) along the x- and y-axes,
we get
dp,/dt = 0,  dp /dt = f

Integrating under the initial conditions Py = Ry py =0 at t = 0, these give

movx movy _

Py = FT=wEreEy T Por Py T ooy -t (1)

Squaring and adding, these lead to
m%y2 m?¢?
0 - 0 e m2p2 = 2 242
T-vZfcz ~ T - vZ/c? Mo© Po * =t

which is equivalent te the eguation
moc2 2 2242
m'—_—vw)-”/(wo+fct)
Equations (i) can now be rewritten in the form

2
v = .g.)i = poc v = d'y = fcz t
X dt L S R dt 7ng + f2¢Zt?)

Integrating under the initial conditions x =y = 0 at t = {0, we now get

p.c
X = oo sinhTH{fct/u ),y = H/E ¢ £262t2) - W)

Elimination of t between these eguations now gives the result stated.

No.bd, The particie's equation of motion can be written
d mov - 2 .0y-32 GV _
”a‘fh/(] - szcz)j - m0(1 - ¥ /C ) ‘a{' = "moV/k
or
dv ~
W)—ﬂz = ‘dt/k

Integration {change the variable by 1 - v?/¢% = u?) under the initial condition
v = 4¢/5 at t = 0 now yields
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E' o %JogE%{?{%%~:~%a§%za - Tog2 - (1 - v*/c?) : +,g

Putting v = 3c¢/b into this equation, gives the result stated.

No,55. In moving from the point x = 2 to a point with coordinate x,
the applied force does work mocz(fo - 1). Hence, the egquation of work is

mct(1 = V2SN - met = moct(2/x - 1)

Solving for v, we obtain
vi = 1c%(4 - x*)

This is the equation for simple harmonic motion of amplitude 2 and period
dr/c. Since the particle’s inertial mass becomes infinite at x = 0, a
complete oscillation couid not, in practice, be accomplished,

No. 56. Using the equation of motion derived in No.22 above, we obtain
d
'a-f( Bv } = = G.Vz

X
where B = (1 - v3/c2)"2, 1If y is the distance moved by the ship, then dy/dt = v
and the eguation of motion can be written in the form

d
W(BV) = = Y, or WTﬁS:'CT)—gl = - Ot'.dy
Putting x = (1 - vz/cz)%, the Tast equation transforms to
dx .
(T %y ¢ ooy
Integration now yields the result stated.
No.57. Since P and V are 4-vectors, all the expressions quoted are

invariants and have the same values in all inertial frames.

_ Take S to be an inertial frame in which the observer is at rest.
Then ¥V = (0,0,0,ic) and, hence,

-P.V = -PY = ~dicP, = E
since P, = iE/c, where £ is the energy of the particle in S. This proves (i).
Since P = (p,iE/c), then P? = §* - E?/c®. It now follows that
/PR + (BT =

proving (i1).

Also,
/11 + 2P2/{(P.1)2} = /11 + (c?p® - B*)/E*} = o%p/E

But § = WV and T = mc?, so this expression finally reduces to v, proving (iii).

No.58. The work done by the force as the particle moves from 0 to a
point x is

X 3,2 i )
) f (c< ~m&ga€f idirxﬂz)m = mnCs‘f(C2 - w*a? + w?x?) B (c? - w?a?) %}
0
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Equating this 1o the energy increase, viz.

m_c> _ m, ¢?
YT -Yvz/cz) V(T - w2az/cz)

and solving for v, we derive the equation v? = w%{a® - x%). This indjc-
ates that the particle's motion is simple harmonic with centre 0 and amp-
Titude a.

No. 59, As the particle moves from 0 to x, the force does work

fx m, c*dx e L x} -1

lo {1+ 2xP) ’ (1 + 2x2)%
(Change the variable by u =1 ¢ ZX%.) Equating this to the energy increase,
viz.
myc{1 - v*{pz)_% - m,c?

and solving for the velocity v, we obtain

1
v = dX = .._._c_‘.xii_
a T+ x2

Taking the reciprocal of both sides of this equation and integrating with
respect to X, we then get !
ct = 2x® + X

the integration constant,being zero since x = 0 at t = 0. This is a
quadratic equation for x2 whose positive root is
X2 = Y{1 + ¢k} -1

Squaring, we find the equation stated,

No.60. If v is the particle's speed, since v2 = r? + r282, equation
{20.4) shows that the Lagrangian for the system is
- » 1
L = - m0c2{1 - {r? + r282)/c2}% - ¥

(r,8) are the generalised coordinates of the particle and {r,8) are the
generalised components aof its velocity. Thus, its lLagrange eguations of

motion are
dBL _.?L:[} d_%j—___%L:O
dtter ar : LEAEL 36

Substituting for L, we obtain the equations stated.

Since the energy E = m0c2(1 - vzfcz)'% = moczy, there is an

energy integral
moczy +Y¥ = C (1)

Also, integrating the second Lagrange equation, we get

yr?h = h (i1)
Thus, using (i), ] 0 o
s drs r. _hdy
A A I [

n

where u = §/r. Hence : 1
] - h? dul® | ¥ e
Y fﬁ@i’ da
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and it fellows that

h{[ﬁ‘%}z + uE\ = 2yt - 1)

making use of eguation {(i).

I
=
o
O
i
g

Differentiating the Tast equation with respect to 6 and cancelling
a factor 2du/de, we now get the second equation stated. (Note: V' = dV/dr,)

If V = ~u/r, the equation determining the orhit takes the form

du + n?y = uC/m*h2c?
gz v nd = WL,

By appropriate choice of the iine 6 = 0, the general solution of this
equation can always be expressed in the form

u = Acosng + uC/(méhzcznz}

where A is a constant of integration. This last equation can then be written
fy = T 4+ ecosnd

where & = mghzcznzfuc, e = AL.

If n = 1, the 1ast equation is the polar eguaticn of an ellipse
with eccentricity e and semi-latus rectum 2. If n is just less than unity,
the orbit will be approximately an ellipse, but will not ‘ciose’ exactly, i.e.
the periapse at 6 = 2m/n will not coincide with the periapse at 6 = 0.

Since 2n/n = 2w + nuzf(mghzci) approximately, the major axis for a second

revolution of the orbjt will have rotated through an angle szf(m;hzcz)
relative to the major axis for the first revolution.

It is shown in texts devoted to Newtonian mechanics, that the
orbit for a particle moving under a central force of attraction f per unit
mass is determined by the equation

2
hzuz[ggg + u} = f

It follows that the special relativistic equation is the same as the
classical equation if we take f = (C-V)V'/m?c®, In the inverse square law
case, ¥ = ~u/r, this gives f = o/r* + g/r’,” where o, B are positive
constants, i.e. the relativistic effect is to supplement the inverse square
law attraction by a small inverse cube perturbing attraction.

In section 53, it is shown that general relativity theory
leads, in similar circumstances, to a supplementary inverse fourth power
term. This, also, causes the elliptical orbit to rotate, but through an
angle 6m®/m?h*c® per revolution, i.e. six times the special relativistic
effect. Neellless to say, it is the general relativistic effect which is
confirmed by observation of Mercury's orbit,

No.61. The equation of work is

2
d MyC _ _
EE%:/U - VZ/CZJ = fv = mke?

Integration under the initial condition v = 0 at € = 0 yields

(1 - vz/cz)"% = 1 +kt = sece
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Whence, v = ¢sind,

Differentiating seco = 1 + kt, we find

secd tang & = k

Thus , dx X

¢sing = v = a€ - -aga = kcos§ cote-gg

This Teads tc the equation .
dx/d6 = Etanze = -E(secze - 1)

Integrating this equation under the initial condition x = 0 at ¢ = 0 (i.e.
t = 0), we obtain the equation quoted.

No.62. . The first result follows from differentiation of the identity
Vev = VA,

Also, differentiating the product gv, we get
ey = Letviv + gi

and, hence, d 1 . . .
Veap(BY) = BV 4 gv.v = g% W

using v.y= wv.

Multiplying this identity by m, and using mp = m, we obtain

d - T 2
vegglmv) = mgivw = mc

Since f = d{mv)/dt, this is the equation of work.

No.63. The work done by the attractive force as the particie moves
from x = a to the origin is

0
- [ mw?x dx = Im w?a®
5 © 0

Equating this to the increase in the particle's kinetic energy, we are led
to the equation

207 - y2re23y"E _ 2 2.2
m,c {V - v*/c*) m,C im wa®,

where v is the speed of arrival at 0. Solving for v, we get the result stated,

No.64. If f is directed along & nermal, f and v will be perpendicular
and, hence, f+v = 0, From the equation of work we deéduce that m = 0 and,
therefore, v is constant.

The equation of motion of the particle is d(mv)/dt = f and,
since m is constant, this is equivalent to

md.! = _‘!‘:

dt
Resolving this equation along the normal {we are assuming plane motion), we
get mev® = f as stated.
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In the case of circular motion, « = 1/a and the equation of motion
gives
m_v2

0 _
VT =VZJcEy T~ fa

Solving for v3, we obtain the result stated.

No.&5, Take S to be the stationary frame and S a parallel frame moving
with the nucleus. Suppose the nucleus moves ajong the x-axis of S with
speed u and that the electron moves in the xy—p1an8. Then, the velocit
components of the electron in S are Vy = ic cos 607 = 3¢, Vy = ic sin6D” =

v3c/4. Hence, in S, the electron has velocity components

- ¢ =y — /(1 - u¥/c*)¥3c
Yy Tt © Vy 7 Ic - u c

Since we are given Vi + V; = c*, an equation for u can now be constructed
and its selution proves to be u = 8¢/17.

Ng.66. The work done by f as the particle moves from 0 to a point x is

X
dx
1 2 = 2 -
zmoc fo m TrIOC {‘/(] + X) ]}
Equating this to the increase in kinetic energy, we get

2
m.C
0 2 _

2 -
VT = vE7cey - m,c* = mc A1 + x) -1}

Salving for v, we find

V —4 dx = _,_._}_(...%.__I.. C
a oyt

An dntegration then yields

ct

[x'%(l + x)édx = [(1 + cosh26)de

1

8 + isinhZ6

since t = O when 8 = 0 (i.e. x = 0). This is equivalent to the result stated.

No.67, The particle's eguation of motion is
d [ m,v . am?
it -~ VZjC - T =vZ]cE
which is equivalent to the equation
(1 - v¥/c?)Edy = - omdt

Integrating over the interval from v = 3c to v = 0, we calculate for the time

taken
amot = wg¢/6

No.68. In an inertial frame in which the fluid at the point under
consideration is at rest, V = (0,ic) and equations (22.19) reduce to
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TuB = Togo T 4a = 0, T44 - CZHOO' It is now easy to verify, by

direct substitut1on that the equation Tijvj =~ g uoov1 is valid in this

frame at the point. Being a tensor equation, this is sufficient to estab-
lish its validity in all inertial frames.

Expressing the equation Ta.V. = = Cz“oova in terms of three-
dimensional quantities usinw aapations (15.4Y and (22.19), after cancell-
ation of a factor {1 - vZ/c®)" % we get

1 1 . 2
2Ty vyvg)v + 1c(uv + szTBu)1C = ~Ctu v

+
(wvyvg + Ty + % ¢ a

Since vgvp = vZ, this last equation is equivalent to
Y . - 1
(1 - v*/c }(uvu + E?vBTBu) = HooVa * 2 Tap's
Equation {22.16) now Teads to the first result required.

Similarly, the equation quvj = - 0V4 can be written

2, _ .2
g Vg - CH = oo

giving the second result,

The stated formula for T

ag 18 equivalent to

T&B {1 - VZ/CZ)—IMOOVQVB * Tye

1 2 1
+ EZ(T vi/c2yT TwmevB

9oVp * Tup
having used the equation for 9, just derived. This is the first of equations
{22.19}.

The stated formula for Tch may be written

Tod (1 - vz/cz)'iuoovaic + {1 - v¥/c?)? gV BTC/C

= icgDL

which is the second of equations (22.19).

Finally, the stated formula for T44 implies

_ 1
T44 = (1~ v®/c2)Y (- czuoo - CZTQBVQVB)

But, equation {22.16) shows that
TagVg¥y = Tu¥e TV F Al - -y
Hence, T,, = - c*u, which is the third of equations (22.19).
44 q

Thus, the stated equations are equivalent to equations (22.19}.

No.69, The components of the energy-momentum tensor for an ideal fluid
are given by equation (22.21). Taking axes through O, since the flow is
radial, the components of the 3-velocity fiow vector are given by v, = VX /r.
Thus, the first of equations (21.20) can be written o
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«%1{(1100 *p/eE)(V - vE/eh)TIERE /P + p) % {lugg * p/c?) (1 = V3 /c®)Thv2x, X, /r?}

0

i

+-§%3{(u00 + p/e?){1 - v3/c?) XX,/ 1}

Since Hog® P and v are functions of r alone and ar/dx, = X /v, ete., this
equation is equivalent to

a_{( + p/e®) (1 - vB/eR)TIE/PEY 4+ ra- 4(n Bog *+ p/e2) (1 =~ v2/c2) 4y2 = @

having cancelled a factor xy/r’. The cases i = 2,3 of equation (21.20) lead
to the same result,

Introducing X as defined, the last equation can be written
au(kv/r) + na_ + dxvr = 0

which is equivalent to the first of the stated equations.

Taking 1 = 4 in equation (21.20), we find
rgé%{(uoo + /ey - V¥t hv/rd) 4 iy p/c*y (1 - vi/c2)ly = D

or
di _
s + 3A =0

The 1ast equation is easily salived to give
Ar' = constant (i)

It follows from the other equation of motion that
dp (Uoocz + p)v
&y TN T T Ta T

This equation 1s alsc readibly integrabie and leads to
“0002 +p = Ac* - v?), {i1)
A being a constant of integration. Thus,

Acv
rv(cZ - V

and it foliows from (i) that
v -3 (331)
where B is constant, Clearly, v =+ 0 as r + «,

The stated boundary conditions inserted ito equations (ii) and
(i11) now permit A and B to be caiculated and the results stated obtained.

No. 70. Since the rod is at rest in the first frame S, equations
(22.19) give



= = - = B 2
(Tyg) = (1y8) = [FF/A 0 0f, T4 =0, Ty = -mc*/A
0 g 0
0 0 0
This verifies that (Ti') is a diagonal matrix with the diagonal elements
stated. 3

If § is a parallel frame moving with the observer, the Minkowski
coordinates in the two frames are related by the orthogonal transformation

?é = a..Xs, where

13 (aij) = |cosw 0 0O sina
o 1 0 0
g0 0 1 0

=sino. 0 0 <coso

and tano = fu/c. Thus,

u?F/c® - mc?

AT =Ty

_Suppose m is the inertial mass per unit length of the rod as
observed in S, The cross-section in S will still be A, since the Fitzgerald
contraction is Tongitudinal only. Hence, the mass density in S is m/A and,
thus, T44 = -c*m/A, It follows that

= . M= ufF/ct
i - u2?cz

m must be positive and this requires F < mc*/u®., Since this
inequality must be valid for all possible values of u, i.e. [u] < c, we
deduce that F < mc2.

No.71. The special Lorentz transformation referred to is given by the
equations

X, = aanB + bu,
The first of these eguations corresponds to a rotation of the frame 0x,x,X,
and a shift of origin,without relative motion; the second confirms that the
clocks fixed in the two frames advance at the same rate.

-E = t+b4-

With respect to this special Lorentz transformation,

Tog = %i%3T15 = Zay®ss’ys
Tod = 3,i%5745 = 2ap'as
Tag = 2425755 = Tag

Fguations (21.14) show that these equations are equivalent to

Yp * aaya85976’ % T %aupIp>
proving that guB’ 9 and u transform as 3-tensors with respect to a simple

[Tt

rotation of axes.



- 7 -

No.72. In SO, the fluid is stationary and the components of the energy-
momentum tensor are given by equations (22.19) to be

o _ .0 0 _ 40 o _ _ .2

T = Topr Tas T Tag T 0 Taa = 7 Yy

Since T?j is symmetric, these equations show that T;B is symmetric,

Minkowski coordinates in the frames S and S° are related by

. . _ 0 _ _ _
the transformation equation x, = 855%50 where a;q = 8, = COSQ, dyy = -dgy =

sino, 8,, = 854 = 1 and tana = fu/c (non-listed a5 all vanish}. Thus, the
components of the energy-momentum tensor in S are given by

0

iJ

) 2
T F g

T T -ug ez
T = aq.8,.T0., = T9,cos
12 7 *4%35'43 T letteo

- o o 0 <2

\=2 0
(1 = u2/c2) 58,

H

Jif

T?3c05a = {1 - uzlcz)_%wg3

2
11 * oo 1y

0 0 0 \eq _
Tij = (T4 - T44)s1nac05a = TTWIE T T

i 0
T3 = 9483574

T = 274345
_ o _ L0 _ 227750
Tor = Aggdiylyy = Tppeese = (1 - ueh P,

0 ] 4}
i3T5 = T2 T T2

N 0 b _ 0
Tog = 4835755 = To3 = Tp3

0 I 0 2/7.2y"%.0 &
i;121.a4‘_]T1.j = Tyisina (1 - u/c%} 1211u/c

T

i
——
—_
1

o . 0 2,.2y"5.0
a31.a1j i = T3-|COSOL u-/c ) T3'1

0 - y) . o
32 33855755 ® T3 = T3

n ] 0 o~ 0
Taz = 33833755 = T33 = T33

I

- G - o _. - 27.2v"5 0 .
Ty = aSiadjTij = Taysina {1 - u*/c*) 1311ufc

» 0 0 1.2 Q 2
T44 = a4ia4jTij T1}s1n o + T44cos o
0 ,2,.2 2
114 jct + ¢ Hoo
T - uz/c2

Since Tij is symmetric, the expressions for T i, Tyo, Ty are identical with
those for T14, T24, T34.

In S, the components Ti are given by equations (22.19) to be

3
T = w? + (1 + uz/c2)111, Tip = T2

T3 = Ty3
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- 2 2 _ -
Toy = Ty FUTTR/CT, Ton = Tpps T3z = Ty

— : —_ z 2

Tp = T3p» T3z = 7335 T3y = durgs/c,
- _ 2

T44 = ceu

Comparing these expressions with those already found, the remaining stated
equations all follow without difficulty.



EXERCISES 4

No.1l. The orthogonal transformation relating the Minkowski coordinates
in the frames S and S is given by equations (5.1), where tana = iu/c. Thus,
the corresponding transformation equations for the 4-vector J are:

Jy = Jycosa + Jysina, T, = J,,

\]1' = - Jisina + JH_COSO'-, :Tg = Jg-

= _ T T og— e 1T 270217 E  cinn o=
1 ydzaien)s d= (3,,3,,7,,7e0), cosa= (T - u?/c%) =, sina =
(1 - u?/c?) %iu/c, substitution now yields the equations required.

Since J = (J .

No.2. Differentiating the Maxwell equation with respect to Xy We get

Modii T Py 7O
since the terms of the sum are either zero (e.g. Fyy 4 = 0) or cancel in
pairs (e.g. F12‘21 + Fa1,12 = 0) due to the anti-symmetry of Fij‘

N0.3a If F_ij = Qj’.i - Q‘i,j’ then
F.. . = s oas = Qe L. = R
1343 93’13 QTsJJ (QJsJ}:1 91533
= Hody

by equations (26,12).

Also
Fisok T Fa,i * FiaLg
= 05 a7 %kt Wi T Bkt TG T ki T O
since Qj,ik = Qj,ki’ etc.,

No.4. {i) FosFas is the sum of the squares of the elements of the
4 x & matrix (26.532 viz,

2 . A2 L R2Y _ OfE2 4 E? 4 £2Y7-2 o op2 _ ofp2j.2
2(BX + By + B8]} - 2(EX + Ey + E)/c 28 2E*/c

Since B = uOH and ¢® = T/eouo, this is equivalent to the result stated.
Also, since FijFij is an invariant, the deduction indicated follows.

(i1) The summation is to be carried out over the 24 permutations
of {1234). Since both Fij and é%jkg are anti-symmetric with respect to all
pairs of indices, the 8 permutations (1234), (2134), (1243}, {2143), {3412),
{3421), (4312) and (43271) make the same contributions to the sum. Thus, we
need only calculate the contributions of the permutations (1234}, (1324),

(1423) and multiply each by 8 to give
ei.]'kRFiijﬂ, = B(etzsuFizFau + e;sztsFlaFaw + G‘;uzaFqus)

- 81‘(BZEZ + ByEy + BXEX)/C = - 8iL-B/c

. ﬁ . ¥ .
Since ‘ﬁijFiijR is a pseudoinvariant, we now deduce that
E-B is also one.
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50.5. If o is the angle between E and H, then [S| = [E x H| = EHsinc.
ence
§2 = $* = E*H%sin®a = EZH* - E2H2cos?a

- E2H2 - (E'E)z
Using equation (29.16), we now find

y2 . §2/C2 - %(EOEZ + U'OHZ)Z - EOHOLEZHZ - (._E_'_l-_l)z.]
_ 2 2y2 R)2
= (g B* = u H*)® + (E-B) = /u,

But, in the previous exercise, it was shown that pOH2 - eOE2 is an

invariant and E-B is a pseudginvariant. It foilows that (E.B)? is an
invariant and, hence, U* - $%/c® is an invariant.

No.6. Let S and S be the frames of 0 and 0, with the origin of S
moving along the x-axis of S with velocity V. In S, E = {0,E,0) and

B = (0,0,0). Thus, equations (27.3) and (27.4) show that in S the field
has components

In) - - - - 2
BX = E& = {, Eé = BVE/c®,
?% = E2 = 0, E& = BE,
-1 —
where B = (1 - V¥/c®)"2, Since ¥ = (V,0,0), thus ¥ x £ = {0,0,BVE).
Hence ¥ x E = - ¢*B. This is a 3-vector equation and so is valid for all

paralle] right-handed frames moving with 0 and O.

No.7. Using equation {29.5), we find
HoSii = FarFik 7 3%4iFefkey = O
since 61i = 4,
No. 8, Substitution of the components of E and B into eguations (27.3)
and (27.4), we obtain
F& = B{1 - u/c)a sinw(t - x/c} = 2Aa sinw{t - x/c)
B, = g(l- u/c)% sine(t - x/c) = x% sinw(t - x/c)

a11 other components being zero.
Using equations (5.8), we find
T -X/c = B(1 +ufc){t - x/c) = (t - xfc)/A
Thus, (t - x/c} = A(T - X/c) and the results stated now follow.
Thus, an observer moving in the direction of propagation

experiences a reduction in amplitude and freguency by a factor A.

No.9. We can write
H = C{(Pa " ef-\u)(n& B EAQ;] + mgcz}% +ep = cR+ed

and then Hamilton's equations are
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- - —l - .

Xy cR (pOc eAa), (i}

p, = ecR"‘(pB - EAB}AB,m -0, (i1)
From (i), we deduce that
2 _ 2 - ) _ - = 2 - m2A2 /08
Vo= x X, = CR (pa eAu)(pOL eAa) (1 m ¢ /R*)

where v is the particle’s speed. Seclving for R, we get

m c
_ 0 ‘s
R = ATV {ii1)
Putting ia =V, in (i) and eliminating Py between equations (1)

and (ii}, yields
d {R W -
'Hf(EVu] + eAa,BxB = eVBAB,u e¢’m
Using (iii), this can be written

d MoVa
dt - VZ/C

It

ev, (A - A ,B) - ed

B.a o S0
= e(v % curld - gradep)u
= e(vxB +E)

which is the x&—component of the valid equation of metion

Limv) = e(vxB +E)

No. 10, For the proposed solution
o kX _
ﬂi,i = TAikie p*p = 0
0. Also

provided Aikﬁ

kg
2 s = ™ ALK aK s p:
91,33 A1kaJe p 0

1t

provided kjkj 0. Thus, equations (26.12) are satisfied with Ji =,

It is clear that the 4-vector property of Q; can only be
ensured by requiring that Ai behave as a 4-vector and kpxp as an invariant,

Then, provided we restrict ourselves to transformations of Minkowski frames
with no shift of origin, x_ will behave as a vector and, to ensure the

invariance of kpxp, it will be necessary for kp to behave as a vector,
In the case of the wave cited
ky = Z2mycosa/c, Kk, = Zmvsina/c, kK, = 0, Kk, = 2imv/c

and it can be verified that k k= 0. The Minkowski transformation relating

the twe frames S ans § is given by equations (5.1) (replace o by B8, where
tang = ju/c). Thus,

2wy coso - u/cC

Ky = kycosg + k,sing = =2 S ARERTTI(53
k, = - k;sing + k,cosp = Zif“./}i‘_uﬁgﬁggg
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Since ky = 2wvcosa/c, k, = 2imv/c, we now derive the results stated immediately.

No.il. By eqguation (28.6), the force acting on the particle is gv x B
and the equation of work {is accordingly -7

mc? = gy x B)v = 0

Thus, m js constant and this implies v is constant.

Resolving the equation of motion (17.1) along the axes, we
obtain the equations | . .
Py = BY, Py = - v, p, = 0O
Since the particle moves in the xy-plane, the last of these equations is
automatically satisfied. Putting v. = x, p_ = mx, etc., the remaining
equations reduce %o X X

X = wy, ¥ o= o~ wX.

These equations integrate to

X =y, y o= = X

assuming that the origin of the xy-plane is chosen so as to eliminate any
constants of integration,

ETiminating y between the last pair of equations, we find
X +w®x = 0 and it then follows that
X = Rsinwt

where R is a constant of integration and the othar constant is suppressed
by appropriate choice of the instant £ = 0. We now find

y = Rcoswt
and the particle therefore moves in a c¢ircle of radius R.

Further,

V2 = XE + 5,2 - szz

and, thus, R = v/w gives the radius of the orbit for a given speed.

This result provides the basis for the design of an instrument
called the synchrotron, in which electrified particies (usually protons)
circuiate around an evacuated torus under the control of an intense magnetic
field acting in a direction perpendicular to the plane of motion, Impulses
are applied to the particies by local electric fields and these result in
increases in speed which transfer them fo orbits of steadily increasing
radius., Eventually, the particles Teave the torus by a tangential exit
channel, their speed then being close to ¢, and the high energy beam is
used in experiments relating to nuclear interactions,

InS, E=20andB = (0,0,B). FEquations (27.3) and (27.4) show

that in S, by 21~}
= _ - } 1
Bx = E& = 0, Ei (1 - u%/c*) B:
= = = - - nu2/p2yTE
Fg = Ei = 0, E& {1 - u*/c?) 2uB.
To generate the required field in S, we must choose u and B so that
B, = (1-uw/et)ls, £ = -(1-u/e®) h,

Hence u = -E /B and B = fKBg - ES/CZ). Clearly, it is necessary that
Byl > [E,|/c.
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Using the Lorentz transformation equations (5.8), for the
particle motion observed from S,

X

T o= (1 - w2/ - uc?) = (1 - u2/et) Rt - uRsinet/c?)

(0 - w2/c?) 3(x - ut) = (1 - u%/c?) E(Rsinwt - ut)

The average velocity along the X-axis is therefore

—= _ Rsinwt - ut
N N G

+ -y as t o,

since t, T tend to infinity together. Thus, the average velocity is EDXBO.

No.12. Transforming from the frame S to the frame S by means of
equations (27.3) and (27.4), we find

E% = 0, E& = 0, Ei = B(B -~ uE/c?),

Eg = 0, E& B(E ~ uB), Eé = 0.

In 5, the electric field is clearly null if u = E/B. With this
vatue of u, B8 = B//(B® - E?/c?) and B, = v(B* - E*/c?). Since 8, = E& = 0,

the magnetic field is directed along the zZ-axis.

No.13. Since the Lorentz force acting upon the particle is always
perpendicular to its metioh, the equation of work gives m = 0 (see Ex.1l
above) and the inertial mass is accordingly constant, The particle's
speed must therefore have the constant value u.

The force acting upon the particle as it meves through the
magnetic field is q(v x B). If{x,y.,z) are the particle’s coordinates at
time t after entering the field at 0, then v = {x,y.z), B = {0,0,B), and
the force has components (qBy, -gBx,0); since the z-component vanishes, the
particle moves in the plane z = 0. The x- and y-components of the equation

of motion are
d - - d - -,
Feimx) = By, gglmy) = -8,

where m = m_//(1 - u?/c?). Defining k as stated in the question, these
equations cdn be written . .
kX =uy, k¥ = - ux,

Integrating under the initial conditions x =y = 0, X =u, y = 0,
we calculate that ] .
kx = uly + k), ky = - ux,
from which, by division, we find

G

x dx + {y + k)dy

A further integration under the stated initial conditions, leads to the
equation
X2y + K = K

for the trajectory. This is equivalent toc the result quoted,

The trajectory in the magnetic field is a circie of radius k
and centre (0,-k}. Thus, the particle can complete a semi-circle, as
indicated in the diagram below, without leaving the field, provided k < a;
it then finally moves parallel to the x-axis and has been turned back by
the field. If k > a, the particle enters the region x > a and is only



deflected by the field. ﬁ//
e A= g—%x
No.14. If the x and y axes are rgtated through an angle 8 in their

plane to give coordinates x' and y', it is easy to verify that the field
components in the new frame are:

E' = (0,AX,0), B' = (0,0,A%/c),

where X = sin2nf(t - x'/c). Maxwell's equations in vacuo are satisfied by
E' and B' and represent a wave of frequency f being propagated along the
x'-axis with speed c¢c. The given equations accordingly specify a wave
being propagated in a direction parallel to the xy-plane and making an
angle dwith the x-axis, as stated.

Transforming to the frame S by equations {27.3) and (27.4),
we find that

B = {0, 0, BAX(c - ucosB)/c*}, E = {-AXsine, BAX{c cos® - u)/c, O}
Hence, if u = ¢ cosd, then 8 = cosecd and
B = (0,0, AXsine/c), E = (-AXsing, 0, 0).

Also, the inverse Lorentz transformation equaticns show that

t - (xcos® + ysing)/c = BT + ux/c?) —-%(I + UT)cosa - %sine

(T ~ y/c)sind

Thus, L
X = sin{2rfsine(T - y/c)} = X,

completing the calculation of the wave's components in 5.

L The electric and magnetic fields in S take a fixed vajue when
t - y/c is constant., This defines a plane perpendicular to the y-axis,
which advances along this axis with speed c¢c. It foliows that the wave
propagates parallel to the v-axis in S, The frequency is obviously fsin®.

No.15. Choose an inertial frame in which the conducting medium is
inztantaneously at rest at the point under consideration. In this frame,
¥ = (0,0,0,ic) and the components Ji’ Fij are given by eguations (24.7),

(26.5) respectively (N.B. V is not the 4-velocity of charge flow). The
four components of the stated equation will now be found to be

j. = oE,, dcp - dcp = 0.

j. = ok, J. = ot 7 2

X X ¥ y?

The equation is accordingly valid in the selected frame. But, being a
d-tensor equation, this ensures its validity in all inertial frames,

No.16. Referring to equation (26.5), we find that F,, = -F,, = B,
all other cgmponents of the field tensor vanishing., It follows that
F.FL, = 2B*.

ke ke
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Substitution in equation (29.5) now gives
= " = = - ip?
MoSgy = HgSan = 82, HoSas = MoSuy = L

all other components of the energy-momentum tensor vanishing.

No.17. In a frame S with the charge at its origin, the field at (X.y¥.z}
due to the charge is determined by

E = —2_(%y2, B = (0,0,0),

where ¥ = X% +y

The Lorentz transformation equations relating coordinates and
times in S and § are

X = X, ¥ =y, Z = pl{z -vt}, T = g{t - vz/c*},

where B = 1/V(1 - v*/c®). Thus, at t = 0 in S and at the point with
spherical polar coordinates (r,8,$)}, we have

X = % = rsincos¢, y = y = rsinésing, Z = Bz = Brcoss.
It then follows that
o= g1 - v¥sin®8/c?).

The transformation equations jnverse to (27.4) (after exchanging
the roles of the x- and z-axes) show that

EX = Bf&, Ey = BEy’ Ez = FZ'

Whence
E o= i1 - v2/e?) (1 - Visin®e/c?) ® (x,y,2),
0

proving that the electric field in S at t = 0 is radial and of the magnitude
stated.

The equations inverse to {27.3) give

= 2 = 2 =
Bx = Bva/c . By BVEX/C , B 0.

Whence

|z

e (1 = V/CH) (1 - visin?e/ct) % (y,x,0)
¢]

“162(! X E_)s

since v = {0,0,v).



EXERCISES 5

No.t. The transformation law for Bij can be calculated from that for
A.., thus:
" B = T, = X a0, _ oada
iJ Ji ) Bii rs 3?4 ahj sr °’

showing that Bij transforms as & covariant fensor.

The equation Aij = Aji may be written Aij = Bij' This is a

tensor equation and hence is valid in all frames if it is valid in the x-frame.

Similariy, Aij = "Aji is valid in all frames, if it is true in cre.

No.?Z.

2
The relevant transformation equations are

X = rsinfcose ro= /(x2 +y* +2%)
y = rsinfsing ¢~ and inversely 6 = tan" {/{x* + y*)/z}
Z = rcosé o = tan"*{y/x)

Since A is a contravariant vector

roo_ Brax . dr,y . ar,z

Al = BxA + §§A + §EA

8 _ 98,x | 98,y , 30,2

AT = ettt

A¢ = gﬁﬁx + Eﬁﬂy + §9AZ
oX ay o7

The partial derivatives are easily calculable from the inverse
transformation equations, but are best expressed in terms of the spherical
polar coordinates. For example,

28 1 b4 XZ 1

X T F R T REWYEY T TE/(xEHy = e0s6cosd
3¢ ] (-y/x2) = - d - - Sine
X | + yZ/x%" J XZ + y2 rs$ing

and so on. Substitytion then yields the equations

Ar = Axsinecos¢ + Aysinesin¢ + A%coss
rAe = Axcosecos¢ + Aycosesin¢ - A%sing
rsinBAqIJ = - Axsin¢ + Aycos¢

Since (A%,AY,A%) and (A!,A%,A%) are components relative to rect-
angular Cartesian axes, we can relate them by elementary procedures. Thus,
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A% directed atong Ox can be further resolved into Axcos¢ along ON (see
diagram) and -Axsin¢ along 03. Then, Axcos¢ along ON resolves into
Axcos¢cose along 02 and Axcos¢sin8 along D1. Similarly, we first resolve AY
along Oy into Aycos¢ along 03 and Aysin¢ along ON; the latter component

then resolves into Aysin¢c058 aleng 02 and Aysin¢sin8 along 0t. Finally,

A% aiong 0z resolves into Afcoss along 01 and -A%sine along 02, Then,
collecting together the various components along the three axes 01, 02, 03,
we find that

i
H

AY A cosgsing + AYsindsing + AZcoss A"

rAe

A® ARcospcoss + AYsingcosd - AZsing

i

A® - Msing + AWcoseé = rsinoa®

using the earlier equations.

This exercise demons;ratgs tgat, in the notation of tensor
calculus, the polar components A", s , of a contravariant vector are
not identical with the Cartesian components AY, A%, A® 1in the Cartesian
poTar frame 0123, However, the reader is warned that, in elementary textbooks,
the Cartesian components A', A%, A®, are often referred to as the polar
components of the vector,

No.3, Making use of equation {33.2), we find that
X . - K. . = axﬁ ax* 8Ak - Bxk BxR Ay
15 LU el ol ax”
_ o (A, , - A )
3X1 a‘;( Kyl E;,k

having exchanged the dummy indices k, & in the second term of the right-
hand member of the first equation. This proves that Ai i Aj 3 is a

tensor. *
If A = V¢, then Ai = ¢’1. Thus, Ai,j - Aj,i = ¢,1j - ¢,j1 = 0.
No.4, Differentiating the transformation equation
oo ax
1] BE-‘ 3")'("] rs
partially with respect to’?k, we find
T A W S AT P (L S
i3,k 550 a0 ax< Test Kank o TS ax xRk S

Cyclically permuting the free indices 1, j, k, and, at the same
time, in the first term of the right-hand member cyclically permuting the
dummies r, s, t, in the same way, we obtain two further equations, viz.

T ax th r . 82y §§§ Eér 82 S
Jk,1 SxJ Bxk Bx st,r 9% a?k rs a?J Bx“Bx rs
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t 2 T s roo.2.5
dx Bx ax X ax X a°x
ﬂ' . . = A + ——-—.A + — --—'-—r-—---rf A
kid 7 gk ot wxd s T R W oRE adlad TS

Adding the Tast three equations, we find that the terms involving
second order partial derivatives cancel in pairs, thus:

2" o, LA %’ _oa o, ax p2x" _ 5
e R L= = e R G o e I e R
since Ars + Asr = 0. We conclude that
t
ﬁij,k +.H j +?(kuJ = gfl zi 3§k (Ars t Fhsg T Atr,s)
and hence that A13,k + AJk i Aki,j is a covariant tensor of rank three.

Such a tensor arises in Maxwell's equations for an electromag-
netic field in the presence of a gravitational field (see equation (56.5)).

No.5. The 'chain' rule for partial differentiation requires that
§Zj o X N
od ok axk K

It follows from the rule for mu1t1p}1cation of matrices that, if P is the
matrix whose ijth element is 3% /oxY and Q is the matrix whose jkth eliement

is BxJ/ax then PQ = I, where I is the unit matrix. Taking determinants,
we conclude that [P|. |Q[ = 1, which is the result to be proved.

We have the transformation eguation
. —i 5
Ay o= 2 AT
J ax X
If A denotes the matrix whose rsth element is A;, the matrix multipiication

rule shows that A = PAQ. Taking determinants, we find

Al = pl.]AL.Jo] = [A].

Thus [A;[ is an invariant.

No.6. Since the difference of two affinities is a tensor (see equation
(34,9)), TEj is a tensor.

We have

k r r
Gissk = 995573 7 Tidps = Ty

Cyclically permuting the indices i, j, k, we are led to the further equations
- i_er S o
Oksi = 99 % Tyipk T TeiOgp
- J_ g o
Wisi = 2%/ T T FiiSkr

Adding the first and third equations and subtracting the second,
we prove that
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- - r
gij;k * gk1';j Jk i ZEﬂ(Tj Jk + Tkj}gir + 2Tk1ng * 2TJ1gkr

Assuming that the covariant derivative of 95 i is identically
zero, it is necessary that

R r r
ML+ Teey, = [kl + Tae Tl

Raising the index i (as s) by mu1tip]1cation through by g5i, we then deduce

that
r r \<5 _
%{ij + ij)ﬁr - {s k}'+ 9 k1 jr * TJ1gkr)
or .
S S - 5 si,.r r
5+ g = g o e+ Thi)
But AFEJ = érgk - T§k’ so that the resuit stated follows immediately (with

some changes of indices).

The tensor T}k can be chosen arbitrarily except that 1t must
clearly be skew-symmetric. Then, the formula for F g1ves T ik as the

skew-symmetric part of the affinity and the rema1n1ng terms constitute the
symmetric part. If the affinity is to be symmetric (as in the text), then we
must choose T1k = 0 and the affinity becomes identical with Christoffel's symbol.

I+ may now be verified that, with this choice of affinity, the
covariant derivative of g . does indeed vanish; for

_ - s
ik T 9.k grj[{i b Tt g (TR ¢ Tktgsi)]
rr r rt,.s s
gir‘[{j k} it 8 (T8 + T tgs;]]
' : . . r S
g'ij,k - [1k:3] - [Jks'lj' gY‘jT'ik = Tijgsk - Tkjgsi

S
- T3 Tki93

g

- 9.

ir Jk J1gsk

which cancels to zero in view of the skew-symmetry of T}k.

= e
= -l
T T

Subtracting, the terms involving the affinity cancel when

ro_.r _ - .
No. 8. Taking the covariant derivative of the second rank tensor Ai‘J

with respect to xk, we get

_ k r r
Af;jk - Bﬂi;jfax i I11'k4'3'1r';j B TjkAi;r‘
_ 0 I T _ _
- 'gzk(Ai,j PijAs) I(1"k('&r,' TPJAS) T'\]k’ﬂH ;P
S S r r'
Aiajk ) Fijﬁsak ) I1'1\]',kp‘s " FikAr,J 1kFFJAS Jkni;r

Exchanging the indices j, k, we obtain
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= - S - S = r _ r‘
A3k A,k Tikhs,3 7 Tk, afs™ Tighege P I'rk'u\s Peilisr
Subtracting these equations, we find
- = s _ =S Y - Y‘ roo_o.r
Asgk ~ Aisks = iigg ™ Tiggk  Talng = TigTrds * (i = Ty,

§ r _.r
which is equivalent to the result stated.

. r o . s
Since FkJ - Jk is a tensor, the last equation shows that BijkAs

is a tensor for arbitrary covariant vectors ﬁ It follows by the guotient
rule that BSJk is a tensor.

If BS i3k vanishes identically and Tk =t ik then clearly A,
and covariant differentiations commute,

i3dk ©
13kj

A similar analysis can be applied to the contravariant vector A,
The result is

T _ 4l . _opl ogr R
Ak = Ak © 7 B g - Tadhyy
No.9. The calculation proceeds as in section 36. The successive

equations need amendment as follows:

= k

(36.2) A, = kAjdg
J J 2

(36.3) Ty, + Tik, a8

(36.4) A + rngrg

(36.5) A, = [.1kA + (AJ fe t rJ Jg ) gi]dg
(36.6} &Ai = Tgk J{ dg + (T krﬂg + Fik 2) %C Rdg
(36.11) oA, = (F1kr + P1k R)ﬂ ok
(36.18) ah, = (r] rrk ¥ rﬂﬁ WLy oK
(36.19) ah, = 3(rfrd, - ol,rd, 4 T e :rﬁiﬂ’k);n\ja'“l
T %B1k£ j o*
which is equivalent to the result stated.
No.10, Let the coordinates of P' be xi + &x?. Then, to the first order

of small quantities using Tay]or's.theorem, if A} denotes the fieid value at

P, the field value at P' will be A} + A} kﬂxk.

) The f1e1d value after parallel displacement from P to P' is
AL - A Axk + 0 A Axk. Thus, to the first order,

J rk Jk'r
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It now foI]ows_that

AR k . k
i AxD _ a1 dx
Tim T Tim A kBT - Aj;k at
Ne.11. Differentiating the transformation equation for gjk’ viz,
- _ ax Bx
Ik ~ _:k Ips
partially with respect to ?m, we obtain
Ok _ oax" ax® axt s 32 Lt er o2
ox" o axk ax™ axt W oxk e 2 axkat TS

Cyclically permuting the indices 3, k, m, we get the further

equations
U _ ox" ax® ax st A Y R o'
5% 53 ax€ ax" ax” X g TS axXC axyd TS
Umi o ax® axt M and a® IS e S
A% 5 axC o ax’ xR oxd TS 5T el axk TS

having, at the same time, cyclically permuted the dummies in the first term
of the right-hand member.

Adding the last two equations and subtracting the criginal
equation, we arrive at the result

. ax" ax® 32x"  ax
Hk,m = 22 - E@ t] + LA 2
TS a?m s ax® gt To

having appealed to the symmetry of Ipg* This is the transformation equation
for the Christoffel symbol of the first kind.

To raise the index m in this transformation, we multiply
by the transformation

Eﬂm - Bx ax gpq

axP axd
to give
—'. 'i z T
X Pq 9-X Pa
Pfrs,t] + 25 22 6% oM
{ } Bx‘] Bxk q Bxp %993 k 9 rs
since §5 Eﬁ- = Gt. This equation immediately reduces to
st oaxd
{_1}= ' ax ax{ ]_+ X a?-'"
3k axP o axk U sk o gl
since 6ngqgr5 = gpsgrs = SE. This shows that Christoffel's symbol of the
second kind transforms 1ike an affinity (equation (34.8)).
No.12. A.. = A... -thoa.-tha = & S LA S LA
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No.13. ~ In the general case, when the affjnity is not symmetric, the
only relationship between the components of Bjkz arises from the tensor's

skew-symmetry with respect to the indices k and &. If k = &, the component
is zero. Thus, for each choice of values of i and j, the number of indep-
endent components is equal to the number of ways we can choose two differ-

ent integers from the set (1,2,...,N), viz. g' = 3N(N-1). The number of

possible pairs (i,j) is N?, since each can take N values. Thus, the number
of independent components is iN*(N-1).

If the affinity is symmetric, the components are related by the
additional equations (41.1). To count the number of independent equations
for a given value of 1, Tirst consider the cases where (j,k.€) are all
different. Permutation of any given set of values does not lead to an
indepandent equation {thus, j = 1, k = 2, € = 3 yields the same relationship
as j =2, k=3, ¢ =1), Hence, the number of independent equations
equals the number of ways of choosing three different integers from
(142,...,N), viz, N(N-T)}{N-2}/6,

Next, consider the cases where two of the indices (j,k,2) are the
same. For example, suppose j =1 and k = 2 = 2. Equation (41.1) then yields

Bgzz + 5221 + lez = 0. Since B§22 = 0, this only reasserts the skew-symmetry
property, Hence, none of these cases need be counted,

The cases where J = k = £ reduce to 0 = 0 and may also be ignored.

Since i can take all values from 1 to N, the total number of
independent relationships {41.1) is counted to be N*(N-1)(N-2)}/6. Each
reduces the number of independent components by one. Thus, the number of
independent components is :

%N.g(N_]) - RN (2) %Nz(mi - 1).

No.14. The components of Bijk2 are related by equations (41.2), {41.5),
(41.6), (41.7), but are otherwise independent.

Only components for which i and j are different and for which
k and ¢ are different, can be non-zero. There are IN(N-1) possibilities
for the pair (i,i) and the same number of possibilities for the pair (k,R)}
--the property of skew-symmetry indicates that the order of a pair should be
ignored in our count. Hence, there are IN?*(N-1}2 distinct non-zero compon-
ents. These are related by equations (41.2) and {41.7), which we proceed
to count.

Equation (41.7) makes no further restriction if (i,j) is the
same pair as (k,2) (e.g. By,,y = Byygp @lready follows from equations
(41.5}) and (41.6)). The number of possible pairs (1,7} is aN{(N-1). With
each of these, we can associate 3N{N-1) -~ 1 pairs (k,%) to give
IN(N-TY{3N(N-1) - 1} = IN(N2-T)(N-2) effective constraints of the type
(41.7). However, each constraint appears twice, e.g. Bj,;3 = Bysy, 2150
appears as Bygy, = Bysya« Thus, the number of independent constraints is

N(N*-1)(N-2)/8,

In equation (41.2), 1f two of the indices (i,j,k,%) are the same,
the constraint is already included amongst the equations (41.5) - {41.7),
EI g.

Bioas * Byoss + Byysa =0 = Byyss = - Bigas



i

Biios ¥ Bypay *Bisyp =0 » Broyy #-Byai, = Bayys

If three or more indices are the same, the equation reduces to 0 = O.

Thus, we suppose {i,j,k,%) to be all different. A permutation
of the values of (i,j,k.2) does not Jead to a distinct constraint. For
example {2,4,3,1) gives the equation

Boksy * Baazy * Bayys =0

which, by the other constraints, is equivalent to

Byswz + Brugg + Byagy = 0

and this equation follows from i =1, j =2, k = 3, & = 4. Thus, the
number of essentially distinct constraints (41.2) is the number of ways in
which four different numbers can be chosen from (1,2,...,N}), i.e.
N{N-T}(N-2){N-3}/24.

Hence, the total number of distinct relationships {(41.2) and
%N(Nz—T)(N—Z) + é%N(N-])(N-Z)(N-3) = %Nz(N—1){N—2)
These reduce the number of independent non-zero components to

A7 - IR (N-2) = NN - 1),

The case N = 4 is, of course, of most interest. There are then
20 independent components,

(41.7) is

No.15. Differentiation of the stated identity yields
id T
A gy + 90— =0
ax ax
Multiplying through by gmk, we obtain
ij .. B89,
_ggg 6? + gmkgm #_%k - 0
X X

which immediately reduces to the result given.

It follows that

im - .
39 ijfm mjj i
3x* s {; ;}' vl {; 2}

- gm],g +(g139mk + gm3g1k)[j£,k]
= 91m’£ + 3(g g™ 4 ngg’k)(gjk,Q + O T 95

I L TCR LR L PLS TC R T

S i o
= 3™+ g9y S - 11e™ Y+ MgN)g,
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Since
ij i3 i
Tk T 9Tkt Tnd

if P}k = {31é}, the result we have proved is seen to be equivalent to g1J_k = 0.

rj + Tikgir

No.16. We have
- 7l o -
Rsk BJk1 = Tji Kk~ Tik,i ¥ M i Tr1P3k
If I‘ = {J ]— then T 3 { } iog/g), using equation
(42.5), Hence Jk k§? J 7

e (UCC R O {r ORI A U]

Since {jT?} is symmetric in j, k, and the order of partial differentiations
in the first term can be reversed and, further,

{rik}{jri} i {1'rk}{jir} i 'Fj}{kri}

(after exchanging dummies r and i), it follows that Rjk is symmetric.

Also
- gl S I ¢ o
Sk£ = Bike = Ty - Trelie * T1g k ~ Tik,e
oA
Since P F1k ?g rk {by exchange of dummies i and r} and

i . 7
T, = (1ogfh) i _ 3
ig,k axkaxg Fik,a = ;;EE;E(1OQV@),

it follows that S, , = 0.

kg

No.17.

P has colatitude 6 and Tongitude ¢. P' has coordinates (6+de,p+de).
PG is a parallel of latitude with centre N. Since PN = sin6, PQ = d¢sing,
P'Q = d6. To the second order of infinitesimals, we have

PP'2 = P'0% + PQ* or ds? = d8® + sin®ede>.

With this metric, taking x' = 8 and x> = ¢, we have

gyy =1, 9,, =sin?e, gy, = 0.



G* = sin%e, G%*2 =1, G*% =0,

Hence
gt =1, ¢2% = cosec?s, g¢'% =0,

He can now calculate the Christoffel symbois of the first kind:

01,7 = gagyy/ext =0, [12,7] = [21,7] = 39g,,/0x% = 0

[22,1] = - 33g,,/0x* = - sinocose, [11,2] = - 39g,,/8x% = 0,

[12,2] = [21,2] = 13g,,/0x* = singcose, [22,2] = 30g,,/ox2 = O,
Raising an index, we calculate that

{111} g*"[(M,r] = g**[11,1] = 0
‘{112} ) {211} = ¢t"[12,r] = g**12,7] -
{2}
$5 = I - g2 -

§o = B = o <o <o

Kol

If Bﬁjkﬂ is not to vanish, the pair (7,j) must be different and

the pair (k,%) must be different. B,,y, and the components obtained by
exchanging the first twe and/or the Tast two indices are therefore the
only possible non-vanishing ones. We have

- B =
By212 = ghr 212 911 212

91;[ r 1} 2 2} {r‘ 2}{2 1} * Bxl{z z} aaxZ{zllﬂ

singcosecots - -§~(s1necose)

1

i

H

it

g*"[22,r] = ¢**[22,1] = - sinocose

i

g2"[22,r] = ¢22[22,2] = 0

it

il

$in%6

The other three non-zero components follow immediately due to the
skew-symmetry,

For the Ricci tensor,

_nr . .rs .22 - .
Rip = Bxlr =9 BSILP "9 e T 1
- _ pt _ Ts m 12
Riz = Ryy = B:zr =9 B512r - Bzxzx =0
gl S _ - 2
Ry, = B g Bszzr 9 P e sin"e

22 22}"
It now follows that
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and, hence,

the other comgo
9¢1922934 = P

- 76 -

The metric for cylindrical polar coordinates (p.4,z) is

911

Gll

ds® =

=1, 9z2

= 992953 = P

dp? + p2de* + dz?

= pzs gy =

2

the remaining cofactors being zero. Thus,

911

= 1/g4y = 1y

= 1/9,,

1

nents of the metric tensor vanishing,
and the cofactors of its elements are

s G = gg0y, =

= ]/pz

The determinant g =

1t

], GSQ gl

as

iy

s 9

o A2
1922 = 07

/9,4 = 1,

the remaing components of the contravariant metric tenscr vanishing.

the form

givin

9

We can now substitute into equation (42.9) to show that

2y o 12
wo- R

13
p Ip

g

oV ]
DgBJ t 5%

3V 1
Bp} +

0

1 3V
¢[p 55] !
22y . 92V
29¢2 327

3.8y
)

In terms of spherical polar coordinates (r,8,¢}, the metric takes

gs? =

1,

922
g
1, ¢°

other components vanishing.

No.19.

B-i

ke

1]

Thus

13
rear

[

2 ]/rzs gsa

dr? + r2de? + r?sin®ede?

2

= %, g, = r’sin®e,

= r*sin?e,

r2sing a0

= 1/(r?sin?8),

2y - VY L 9 [ (1 8V
Vo= rzs1ne[§r résin G"F +'*§[51n9§§] * 8¢{51ne 3

E
29V 1 B f .Y
E?J + u*—ww—-*-{s1n8——

Substituting for the affinity into equation (36.21), we find
i i r r i
(6T¢,k + akw,r}(6j¢,i + 5£w,j) - (5P¢,2

3
ax

;
6J¢,k¢,£

i
90 k¥,5 "

i i i
MR LI IR LT A0 BT L e

|<[‘S @ o 5£w ] -
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If ¢ = - 1og(a1xi), then

_ Y _ %%
L Ty ST JF 'S St
? a; X ’ (a;x )*

Hence
Yk T v =0
. . i B
from which it follows that Bjki = ( and, hence, Rjk = 0,

No.Z20. putting x* = r, x* = 0, the non-zero components of the metric
tensor are
a® _ rZ

911 7 TR TTETY2r Y22 7 vroaT oo
Substitution into equation (43.19) shows that the geodesics have equations

a

dr 2+ 2y dsl - 0
azysids {rz - a%)2|ds

d i a® _dr| | 2a%r
AN GET RS B G
af vz def _ 0 ()
dsir? - az ds| 1

We reject the first of these eguations in favour of the known first
integral (43.11), viz.

2 2

- a* dri . rZ _[de} . (1)
(P2 -"aZ)2(ds} ~ r? -a% |ds
It follows from (i) that
2
;i—guaf-gg = constant = 1/c {ii1)

Eliminating ds between equations (ii) and (iii)., we arrive at the
equation

2
az[gg} +a%r? = {1 - c¥)r* = Kk%r%,
writing k2 = 1 - ¢2,

For a null-geodesic, we must replace s by the parameter A and the
right-hand member of equation (ii) by 0. Then, equation (ii) yields immediately

oLz
azt%g) + a%r? = o,
j.e. k%2 =1,

Mapping the space on to a Euclidean plane by treating (r,8) as
polar coordinates, if ¢ is the angle between the tangent to a geodesic and
the radius vector r, it is a well-known result from elementary differential
geometry that tand = rdo/dr. Hence, along a geodesic,

a*ricot?¢ + a’r? = k2
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perpendicular distance from 0 is a/k. It follows that the geodesics are
mapped by straight 1ines, In the case of null-geodesics, k = 1 and the
straight lines are tangents to the circle v = a,

No.2T. Note that g,, = 0. Thus, g = g,,9,, and g** = 1/g,,, ¢** = 1/y,,,

The only non-zero components of B

..., are B B B
1223 “21iz2? 121*
Byazy» and these only differ in sign. ijke 2 2s Baray

For the Ricci tensor

_ ni - ir _ 12 -

Ryp = B 329 9 Brxzi = ¢ lezl 0

RII 8111 g Br111 9 82112 81221/922
. ol _ dr I $1 -

Rzz - Bzz-i = g Brzzi =9 Blzzl - 81.221/911—

It now follows that
- o4 - -
R = g R'ij = guRu + 922322 = 281221/(911922)

The tensor equation Rij = #Rg, ; is now immediately verifiable,

component by component. It follows from (42.20) that Einstein's tensor
vanishes in such a space. However, the coordinate frame can always be
chosen (in an infinity of ways) in any &, so that the metric takes the
above form*, with g;, = 0. He concTude that Einstein's tensor is ident-
ically zero in any ,. A space for which the Einstein tensor vanishes
is called an Einstein Space. Thus, every{, is an Einstein space.

* If Yy, # 0, transform to fresh coordinates %', Then

3 ax o
Yo e W

Thus, the condition Gy, = O requires that the two functions x*(X*,x*), x*(X} X?)
satisfy one partial differential equation, which can be arranged in an
infinity of ways.

AN _ i i .ki L o ik
No.22. (i) A g = A i + TkiA + FkiA
i i d 1 3 .
If ij {j E}, then Ty —%g-gzk(/g) (see eguation (42.5}). Then

iJ ] ij ij 9 3 laik
A 4 @[/gﬁk i + A ;;i(/gﬂ + {1. k}ﬂ

t
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. ij _ 1 38 1J ik _ ij
(1) X5 = g Ty g - L
d x’

since {13;} is symmetric an ik is skew-symmetric in 1, k. Thus

RIS AR VAR AP LA
S R LS LA A S I (O | LT (1| Lt

132 1

3 [ 1] 3 ir
5 (VX ] + Vg). = (VgX
1y Vg o] ) /g +(v9) Vﬁlax1( gx' ")

since the affinity is symmetric and X1J.k is skew-symmetric. But
E

i

3 ijyd o_ 1 #® 1 3[1]3_ ij
2l Ziad] = g —igtedd) « A2 )

%

Further

/g o)y X T) = g ey

it now follows that X1J,1j = 0,
ij For any tensor A1J, the tensor B'Y
Hence,B i = 0, from which it follows that
ij . pdi . all
Al = Mg 7 A

Ald - a3l s skew-symmetric.

after exchange of dummies.

No.23. Writing dxX/dt = XX, Euler's condition that the integral

should be stationary with respect to variation of the curve joining A and B, is
d[ﬁf]-éﬁ - 0
LV axk

Thus, if F = /(g..%x X7}, noting that

1]
2 (g..xd) = 29,5
Bxk ij jk
we are led to the equation
L ] 3g‘. - -
Macltu[.]?g J] gﬁ—_—iJ X1J = U’ k=1!23 sN (1)
ax
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We use this equation to change the independent variable in (i) from t to s
to yield

df  dxy 1M dkldxd
Fﬁbﬁﬁ) Ty kdads T 0

After canceiling through by F, this reduces to equation (43,19},

Thus, a geodesic can be defined to be a curve joining two points,
whose length is stationary with respect to small variations. For example,
on the surface of a sphere {anf,), the great circle joining two points is
either the minimum distance between the two points (the minor arc} or the
maximum distance between the two points (the major arc, which together with
the minor arc forms a complete great circle) - in either case it is stat-
ionary with respect to small variations and so constitutes a geodesic on
the surface.

1k
No.24, T}k is certainly an affinity, since it is the sum of an affinity

and a tensor.
ri; < rzj + 5EAj + 6}Ak = r;k * 6}Ak + S;Aj - r}:
Using equation {36.21), we have
ei* ool s ala, 4 osla
iks rk r k k r
- (g, + 6A, + GQRr)(Tgk + GgAk + 5EA3)

1 i i . i _ L
ik t Sk Mk T Tikae T %Mk, T e

r r r
)(Fjg + 6jA£ + GﬁAj)

i i r i r -
Bjkg + 6k[AjA£ + rngr - Aj’g) - GR(AjAk + ijAr Aj,k)
i
+ 6j(A£,k - Ak’R)

after simplification using the characteristic property of the Kronecker
delta and cancellation of terms.

Since

we can write

r = -
AjAk + ijAr - Aj,k = AjAk Aj;k Ajk

and then
i* i i
8 = B + S A

! - - A
jk& jkg K73k

i i
Sgﬁjk 4 Gj(A k,R)
Also

Aok " Pye T Aok
Hence, finally,

TR i i,
Bivg = Bikg * Okhys ~ Sphyk ¥ 85 (A - Agy)

frmmmnn Ao A Than N - A A - A and A . e gpan to
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Exchanging j, &, we have

By, = Bl ema
213 i3 2
Since Ajg is symmetric, it follows that
i 5 gi g
Biie 7 Beig = By - Baj
No.25. Transforming from the x-frame to the X-frame, we have
ploo & e et a0 e
Jk ax” 3 oxd St ok’ awdex
Transforming from the X-frame to the X-frame, we have
T N R ol
Mo et K R e

It now foliows from this pair of equations that

?:@E@@££g+@fﬂ+ﬁﬂr
L R i T T U LIPS P S gl
But
& ¥
a5 oxK ax<
Hence _
=t o ax® axt v Xt o axK a2x” o ax" .
T = v mm o Tst ¥ 0 ow on TIF T e Emem
ax I A 9xX X X BXYau 9X X% BX
Now differentiate the identity
ax 3 | ax
%y ax" ax
partially with respect to " to give
3%’ Ezk EEJ . ggf Y _ a2 x"
Tl oxd axex! sxax
Multiplying through by 8%</ax", this leads to
A Tl U S
5x” 3" 5x" 3% aRK o% x5 ax’ ox"ax

This permits us to reduce equation (i) to the form

R a o ox_92x"
mn ax” %" xSt ax" gxax

We have now proved that the 'product' of two affinity trans-
formations is also an infinity transformation.



-~ 82 -

we must put X' = x' in the last equation, which thereupon reduces to the
product transformation

=0 LSt N

T = Sp0mdnTsg ¥ 0 = Ty
which is the identity {or unit) transformation. This shows that the product
of inverses is the identity. Thus, the transformations satisfy all the

requirements for a group.

No.26.  We have (94)% = V-¥5 = g4 .4 . by equations (38.4) and (38.5).
Whence »175)

3 2 . 1
Bxk(v¢) = g ,k‘b’iﬁb

after exchanging the dummies (1,j) in the middle term of the right-hand member.
Choosing the frame to be geodesic at the point under consideration, then g]J K = 0
and equation {i) reduces to ’

3 2 N 5 1]
“E;;k{vq)) = 29 ¢,'5¢,J'k_29 ¢,1’¢;jk

ij ij _ ij ij .
Ji + g ¢,'ik¢,j + g ¢,i¢,jk = ¢ “i(g ,k‘I’,j + 29 ¢,jk) (1}

3

since ¢ ik = (9 j) K = (cf),j),k = ¢'jk in a geodesic frame. This proves the
2 a 1) A 2 )

result in this frame. However, the result to be established is a tensor

equation and, if valid in one frame, is true in all.

Alternatively, we can continue to work in a general frame and
proceed as follows: We have

bk = gl = 0

r _ L oPSEL o
sk “Tyd e = g -9 Likesle

»Jk
so that _ - »
g% o0 = 970 10 o - 9 hikes]e 0 o (61)
Differentiating the identity
i o st
with respect to xk gives
1] ij -
S D ER
MuTtiplying through by g'°, this becomes
ij .r ii rs -
TS T 9T Yysk = 0

ir ~ ij.rs _ 13.rs, T
or 9" = m 997y =~ 9e ([dkes] + [sk.d])
after using the identity (42.3). Thus
i ij . ij : id rsp.
e EIGURTINEE L i 7 ER IR S Fid FIE TR

after exchanging the dummies {(i,r) and the dummies (j,s) in the second term
of the right-hand member,

Equation (if) can now be written in the form

it i . i 1 9 nivo
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No.27. We have g = ¢%g.., so that g = eNUg, Gij = e(N'1)Ugij and'§ij =
-0 1d R
e g
It then follows that
kol = 2G50 0 + Gp g ™ Ty,
= 3e%g, L4 -Gy tG 0L +Q O .- go0 )
Jjr.k kr,J Jk,r jr .k kro L, Jjk-,r
_ o, r.
= 3e( Gk, + PRI I gjkg’r)
and thus
=1 _ =irp, N 1r _
ij = 8 I_.]k,l“] = 39 LJk I":] + ng. .k + gkrg,j gjkd,r)

i i i . ir
Py * 2859 *+ Spary = 97 9549 )

n

oA i
' = ij + Ajk
Since A}k is the difference of two affinities defined in the same x-frame,

it is a tensor; it is symmeiric since the affinities are symmetric.

Using equation (36.21}, we calculate that

T L U I AN AR Ty
¥ F§£, * Ajz - ék,a - Agk,g
= B}kﬂ + TrkAga +T§£A;k TrzAgk §kﬁig * AikAgg
Arghyy * AJﬁ,k Aﬁk ¢
- B;kﬁ R}ﬁ;k N A;k;% * Ark 32 ArﬂAgk

a pair of terms Tkthr - FEkA}r canceliing by virtue of the symmetry of the

affinity.
Contracting, we find
e . R
Rik = Bid ™ Ry A5 Ayt * AR 57 Atk
Finally
i = gl i ;
Aij 2(6jg,i + 61 . g1Jg o r)
= . + s ™ O = .
Moy * Moy 539, r) BNT
No.28. Let 0x'%* be the oblique axes and Ox}x* rectangular axes as

indicated in the figure. If A has coordinates x’, %' in the two frames,
then
X o= 0P = OM-PM o= x' - xPcotw



1
o P = X, X

Suppose A has components ( ) in the rectangular frame,
Choose the displacement vector 0A such tha% the point A has coordinates
(Ay.A;) in the x-frame., The contravariant components of A transform like
the differentials of the coordinates, viz.

A* = A' - MPcotw = A, - A,cotw = OP
A* = APcosecw = A cosecy = O

recalling that the covariant and contravariant components are identical

in the rectanguiar frame. These equations show that the contravariant
components of A in the x-frame are obtained by projecting the displacement
vector OA on to the axes, by parallels to the axes.

The inverse transformation equations for the coordinate
differentiais are

dx! = dx} + dx®cosw, dx? = d¥*sinw
Hence, the metric is
ds? = (dx})? + (dx2)2 = (dXY)? + 2dx*dx*cosw + (dx?)?

and_the components of the metric tensor in the obiique frame are G,y = gy, =
1, g,, = cosw.

We can now calculate the covariant components of A in the
oblique frame thus:

K + coswhA? OM

1
Hi
L

0 + 0Qcosw

It

A= g,A

E = § .M

1 2
, G coswA' + A

it
1

OPcosw + 0Q = ON

These equations show that the covariant components can be found by pro-
jecting OA on to the oblique axes by perpendiculars from A.

No.29.

P is any point on the conical surface. PN is the perpendicular
from P ta the avie ON A e dafinad fn he the annle hatween the nlana NPN
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ds? = PP'®* = dr? + r?sin®od¢®

With x* = r, x* = ¢, the metric tensor has components g, = 1,
Gy =0y gy, = r*sin®a. It follows that the equations {43.19) for %he

geodesics take the form .

d?r

-a*g‘—z- - T‘Sinzﬂf{%‘g‘]

df{ o .2 dit _
{r 51in GHEJ = {

1t
Lan

ds

We discard the first equation and replace it by the metric as a first
integral. The second equation shows that

ds = cride

where c is a constant., ETlimination of ds between this equation and the
metric yields the equation

rdgv/{c®*r* - sin*a) = dr

or dr

dd)S'irlO'. = W-(W_—T)-

where b = ¢ coseca. Putting r = 1/u, this equation js seen to be equivalent to

dbeinOﬁ = = 7‘(52—(:':1-62—;'

This integrates to
dsina = cos *(u/b) + B

where B is a constant., It follows that

u b cos(4sina - B)

or r a sec(dsing - B),

where a = 1/b,
If we cut the cone along the generator OA and open it out into a

plane, the arc AP will continue to be circular, since every point on it has
the same distance r from 0. But AP = AN.4 = r¢sine. Hence, in the plane,

P
(.f'

C y — A‘ |
the angle AOP = AP/OP = ¢sinu; i.e. (r,¢sine) are polar coordinates in the
plane, But geodesics in the plane are straight lines and any straight
Tine AP has polar equation r = 0P = a sec(6 - 8). Thus, in terms of (r,4),
the geodesics in the plane have equations r = a sec(¢sina - R)}. But these
straight 1ines are curves of minimum distance joining two points and
remdin so when the plane is rolled back intc the cone, i.e. they remain
geodesics. This explains why r = a sec{¢sina - B) along a geodesic on the
cone,
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components of the Christoffel symbols of the first kind must have at least
two indices the same and we calculate that

[0.F] = - 2agpg/ox, = - %e"xp
[0.Q = 3o9ge/3xg = BeMy
Po.P] = Bagpp/ax, - %e",\q

provided P # 3. (N.B. Repetition of a capital letter index does not indicate
summation,) The restriction P # Q can now be removed by combining the first
and second resutts into the formula

[00,P] = e*(8f = )p-

The third result is clearly valid when P = Q.

80 = 1A

The non-zero symbols of the second kind now follow immediately,

viz.
0 - o - -y
P PP

Thus, summing with respect to i and r,

{r'liF}{Pri} ) %'{{1P}{Pii} ¥ %ﬂ {rip}{ﬁri}

where we have separated out the terms in which i = r from those in which

i #r. Then

{1‘ Aot - Z o= W
If i ¢ r, for a non-zero contribution to the sum we must have either i =P
orr =P, If i =P, the net contribution is

3]

D {r P}ip P} - 4 PZ#'F’ A =B %7\?,

P, the net contribution is the same. Hence

i r _ 5 . -
{r lTF = M- BB = AW - B

If r

Now " 3 N
. -
R = g RJk e Z:_ RPP
p=i
and _
_ 3 fi
Rop = Bppy ~ {r PHP 1} - {r‘ 1HP ok + {P 1} o {P P}
We calculate that zg:
{H} .= M
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BXP{F 1}‘ = &gy
3 'i}n } - -
axﬁ{PP '%ﬁ(%}‘ﬁ)*%pp

Substitution of these results shows that

Ml

s )LPP

R

tt

pp %(N+2)k§ - A, F BAA - JE-NA; + iNAp + BAis = App

- }.(N-z);\ﬁ FAMN-2)A A+ B+ B(N-2)0p,

Thus L 5
= = - - - -
R = e % Rop = @ "[3(N-2)A A + N(N-2)A A, + 3NA  + B(N-2) ]
= _1yaTA -
= (N-T)e " [r(N-2)x Ay + A ]
No.31. The non-zero components of the metric affinity for the sphere

have been calculated in Ex.17 above. They are
r,, = - sinécose, r:, = T3 = coto

Referring to equation (33.7), it follows that a parallel displacement of A
from (8,¢) to (0+d6,d+dd) Teads to increments

8A; T13A1dx coteA2d¢,

- 3
§A, = szﬂidx

Along the parallei of Jatitude 8 = o, d6 = 0 and the equations

cotehA,d6 - sinecosoA, d¢.

reduce to

6A, = A,cotads, sA, = - A/sinacosadd

Thus, variation of A along this paraliel s governed by the differential
equations

dA

dA, - _ A,cota, a$2 = -~ A;sinacosa

dd)
Eliminating A,, we arrive at the equation

2
%—El +  Cos aA

0

whose general solution is

A, = Pcos(¢cosa) + Qsin{¢cosa)
P and Q being integration constants determined by the initial conditions
Ay = X, A, =Y at ¢ = 0 (we choose the zero meridian through the initial
point.

A, can now be found, thus:

2

A, = %%lta““ = {- psin(scosa) + Qcos(pcosalsina
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Substitution for P and Q now leads to the results stated.

If A is the magnitude of Ai’ then

2 = gAAy = A%+ cosecoh?

Thus, initially A% = X* + Y®cosec*a. Finally

AZ

{Xcos (pcosa) + Ycosecasin(pcosan)}?

+ {- Xsinusin{¢coso) + Ycos(écosa)l}?cosec?a

X* + Y%cosec®o
and A is unchanged.
No.32. We have gy = Ay Uy = ¥, §,, = r?sine, all other components

vanishing. Thus, equation (43.13) for e geodesics yields the equations
2 z

2
df{,dr y fdr dp , d ~
HE{AHEJ - A {HEJ - r{agJ -y s1n28[a%J = 0

2
é%(rz%%} - rzsinecosetggJ = 0 (1)
‘é%[rzsinze%%} = 0 (1)

where ' = d\/dr. The metric also provides a first integral

dri? 40?2 . dg} ‘o
A[ag] + rz[ag} + rzs1nze{a§J = 1 (1i1)
1f 8 = 3w, dg/ds = 0 at s = 0, equation (i) shows that d?e/ds? = 0
at this point also. Further, by differentiating this equation with respect
to 5 once, twice, etc. times, we can show that derivatives of 6 of all
orders vahish at the initial point. It follows by Maclaurin's theorem that
8(s) = 8(0) +58'(0) + 4,5%0"(0) + ... = Bw

i.e. along the geodesic 6 takes the value im constantiy.

Thus, putting 6 = 1w in equations {ii) and (iii) we are led to

the equations ] 2
d d i dr do _
B-S'[r'za'%} = 0 N A [a-—s—] + Y'z [a'g} = 1.

It follows that dé/ds = b/r*, where b is constant. Then, eiiminating ds
from the second equation, we conclude that
2

,\[%J v 2o phyp?

Putting r = b secyp, the iast equation reduces to

2
dgt L dd _ .3
A[E&] = 1 or @y - A
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If X =1, then ¢ = constant, implying that r = b sec{¢-a}
(ot constant). In this case, theﬁ? is Euclidean and (r,8,4) are spherical
polar coordinates. The equation r = b sec(¢-o} gives the geodesics in the
plane 8 = imw, in terms of pclar coordinates {r,¢? in this plane. It is
clear from the diagram that these are straight lines, as expected.

geodesic

Q
No.33. By trigonometry we can eliminate the parameters 6, ¢, ¥, to give

(Y2 + (v + (y3)2 + (y9)® = R

which is the eguation of a hypersphere of radius R.

-]

Differentiating, we find

dy! - Rsinade

H

dy®> = RcosBcosddd - Rsindsingde
dy® = Rcos8singcospds + Rsindcosdcosypdd - Rsin@sindsingdy
dy* = RcosBsingsingds + Rsinbcos¢singdd + RsinBsingcospdy
Khence
ds? = (dy*)® + (dy*)* + (dy®)* + (dy*)*
= R2(do?+ sin®6d¢* + sin®osin?edy?)

We now calculate that
9,, = R%, 9,, = R%*sin?s, 455 = RPsin®gsin?y

ght
{2 é} - sinbcoss, {élé} = - sinfcospsiniy, {ézi} = -$incose

3
{124} cots, {335} = cote, {é é} = cotd

all other distinct components vanishing.

1/R?, ¢%*2 = 1/(R%sin®8), g = 1/(R%sin*8sin?¢)

Ii

The component B1 e of the curvature tensor vanishes if i = §

or k = £, 0Of the remaining components, we calculate that

T R A L Rt
Rz[“ b 44+ g%{éiéll

I
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i

R®sin?8( - cos?8sin®$ + cos?y + sin?¢ - cos?¢)

= R%*sin"esin®¢
3 r 3 r 3 3 b 3
O | R S A BT VR AR
883718 ) r 3311 13{1 3 oyt T 3} T3
= R%sin?0sin®¢(~ cot?p + cosec?8) = R*sin®osin?¢

3 | - ' L
The remaing 'mixed' components Bioyss Bygoas Bygays vanish, e.g.

9318325 * gn[fﬂ%{g%} AN ";;2{213} - _3%3{212}]

= 0

Bi22§

Ifi=3orks=3g, then gikgji - gmg.].k is obvicusly zero and
the equation Bijk£ = K(gikgjg - giigjk) is validated, If (i,j) is a
different pair from (k,2), each of the terms 9:. 9145 giggjk must contain a

J
zero factor and, again, the equation reduces to 0 = § and is validated,

The tensor gikgjﬂ - giggjk is cleariy skew-symmetric with
respect to {i,j) and also with respect to (k,2). Hence, it only remains
to validate the egquation for 51212’ Byasas Ba131' We have

Biarz = K(93,92, = 95,9,,) = KR*sin’g
which is true with K = 1/R*, Further,

Boyzs = K{9y,855 = 954940) = RPsin’gsin®g

Byzsy = K{Q5s95y = 913051) = R%*sin®gsin?¢

showing the equation is valid in all the other cases with K = 1/R%,

No. 34, Putting q,, = g,, = sech®y, g,, = 0 in equations (43.19}, we
find the geodesics aré determined by

é%(sechzygg] = 0,

2
é%[sechzygg) + sech?y tanhy[[gg] + (g%}ﬁ] = 0
The first of these equations integrates to yield

%? = Acosh?y,

where A is constant. The metric sugpiies a first integral
[gé] + {%%] =  cosh*y
Eliminating ds between the last two equations, we find

fg%] +1 = %ﬁsechzy
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2

where o = &, - 1, Thus

=l —

dz -
X = jVTﬁfut"Efj' = sin“*(z/a) + constant

sinhy = z = asin(x + 8)

ar

This is the equation of the geodesics.

The metric for the spherical surface is ds? = d6? + sinod¢?.

Now

dy = tani6{-cosec?i6)ids = - cosecods
Also _

ef = cotio, e ¥ = tan}o
s0 that

coshy = %(tani6 + cot}d) = cosecd
Hence

sechy dy = - d6

In terms of coordinates (x,y), the metric can now be expressed
in the form
ds? = sech’y(dx? + dy?*)

Since the great circles on the sphere are geodesics, in terms
of the coordinates (x,y} they must have equations

sinhy = oasin{x + 8)

I1f, as in Mercator's projection, the coordinates {x,y) are plotted as
rectangular Cartesians, this equation shows that the great circles will
appear as sine-waves, somewhat distorted (flattened) in the y-direction

AN N e
T

No.35.  Bijyg = 94B3ig gis[{rsk%rﬁ}— ﬂ«sg}{jrk} * T;;k{jsse,} - i‘g{jsk}]
[*"ksi]{jrg} = [re.1] {jrk} ¥ gisf}{js'ﬂ,} B gisiﬁ{jsk}
gisf;k{jsa} - f;k[gis{jszﬂ - gis,k{jsf} ) f;k[”’ﬂ - gis,k{jsz}
Bijkg = [sk.1] fjsﬁ} - Is2.dl {J‘Sk} - gis,k{jsi} " gis,m{jsk}

2 Tis Y - B 11 %

But

Hence,
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skl §5°} - T i13°, ) - (ke + [skoi) %}
v ([izss] + (0.5 F ik[jg,fj - f;g[jk,ﬂ
- [1k,s]{j5£} + [i0.s] {jsk} + f;k[””ﬂ - iwﬁ[jk,i]
having used the identity (42.3).

ST TATEN!

9 a1 - 1 -
axkbﬂ”ﬂ = Bl9455 ket 40,5k T Y50,k

Since

the Tast identity is equivalent to

Biske = H9ig 5k * Yjk,in 7 Yikage T Yin,ik)

s bubi" S - 9t

The identities (41.5) - (41.7) will be found to follow directly
from this result,

No.36. The components of the metric tensor are 91; =
Thus, ¢ = -6, = 622 = 0, G!2 = -¢; hence, g** = g2%

The christoffel symbols of the first kind are
[t1,1] 0, [e,1] 0, [22,1] $
(11,2] ¢,» [12.2] 0, [22,2] 0
The symbols of the secend kind now follow thus:
B S DRI RN
illz}’ gt*[12,2] = 0

b
i
?

]
i
1

y

1]
it
i

i

g*2[22,2] = 0O

¢®*11,1] = o

il

t
(2

1ok
Then

Brorz = 9128550 T i ‘_r 1}{2 2} - {r 2} T { - _ﬁi 2 IH

= 4904 A = - b A A

u

g?*12,77 = ©

g**{22,1] = ¢, /¢
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the remaining 12 components of the curvature tensor vanishing.

The space is flat provjded all components of the curvature
tensor vanish. This is the case if B,,,, = 0, i.e, if ¢¢xy = ¢x¢y'

= ]p =1 w = w = lp U’J
If ¢ = e”, then ¢x pxe ; ¢y wye s ¢xy wxye + wxwye
and the condition for a fiat space reduces to wxy = 0. For this to be

true, wx must be a function of x alone and, hence,

P f{x) + g{y)

In this case,
b = ef+g e ef eg = F{x} G(y)

j.e. ¢ is a product of a function of x and a function of y. Thus

ds?

n

2FGdxdy

Now choose {£,n) such that

dg  _ dn  _
* - g
Then
2 _ odE, dn,  _
ds® = Zazdx y y = 2dEdn
No.37. It is being assumed the affinity is symmetric so that (see Ex.8
above)
_ r
Asak ™ Mokg 7 APk
Cyclically permuting (i,j,k) we obtain the additional equations
_ r
Aiki ™ Ajsik T Bk
_ r
Msis ™ Aggi T APy
Adding the first two equations and subtracting the third, we
find that

Ak ™ Pask * AG 55 7 By A~ Ay
_ p r r
= AplBige * By ¥ By

which reduces to

Ak " Asik © Ae(Bige B 7 Brgy)
in view of the given condition.
But
sk~ Aypic = Mgy T Al T PR

again using the given conditjon., Also, it follows from the identity (41.1) that

P r r_ _ogl
By < Bris = "By

iik

B
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No.38. The Cauchy-Riemann conditions which have to be satisfied by
the real and imaginary parts of an analytic function are

3 @ W W

u v v ou

Differentiating the transformation equations x = ¢, ¥ = | we
arrive at the differential transformation

_ 99 3¢
dx = Eﬁd“ +  dv

v
_ By g Ny . L B, .
R T T

Squaring and adding, we obfain the metric

ds? = dx* + dy* = [ ‘] u? + dv?)

In the special case ¢ + ip = 1/w = (u iv)/(u?+v*), we have

u v 99 vZ - 3 _ 2uv

b= veaEaaT S A T e 2 Em ¥ E)i’ v (U T vI)E

ahd so

= u _ v
T wyvEee Y T Ty

du? + dv?

2 = 2 2 -

It follows that the transformation from coordinates (u,v} to
coordinates (x,y) may be regarded as a transformation from curvilinear
coordinates in a plane to rectangular Cartesian coordinates. In terms of
the Cartesians (X,y}, the geodesics form a family of straight 1ines with
equation

ax + by = 1,

{a,b) being parameters. Thus, in terms of u and v, the equation for the
family of geodesics must take the form

au - by = u? + v? (i)

If, instead, we use the transformation equations u = rcosé,
v = rsing, then

du = drcoss - rsindds, dv = drsing + recosfdd

and the metric reduces to
ds? = r~*dr? + r~2de?

The equations governing the geodesics now follow by substitution
in equation {43.19); they are

gl

n
o
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drz zdezﬂ I

S
The second equation shows that de/ds = Ar?, where A is cinstant. Elim-
inating ds, we conclude that, along a geodesic

2
{gg] +r? = 1/A% = (2

Thus, d8/dr = (c¢* - rE)-% and integration Teads to

6 = sin"}(rfc) + o
where o is constant, Hence
r = ¢ sin(B-~a) = ¢ sinBcosa - ¢ cosBSina = - b sin® + a cosHd
where a = - ¢ sina, b = - ¢ cosa., Multiplying through by r, and using the

transformation equations, we once again derive eguation (i}.

No.39. The repeated index summation convention is suspended in the
solution to this exercise,

The transformation equations are

rcoso, ¥ = rsing

vV{x* + y?), 8 = tan"i(y/x)

X

.
From these, it is easy to verify that

ar ar

Frvili cost, 3y = §inG
0 1. 3 _ 1
'8'5(— = - FSH\G, "é"‘? - FCOSG
Also, A = tang + cotd = Zcosec?d. Since there is no distinction between

covariahf and contravariant components in a rectangular Cartesian frame,
we conclude that AX* = AYY = Q, A= a¥* 2 2cosec?s.

The transformation equations for a second rank contravariant
tensor now show that

re _ {8r}%xx artfarixy . fori%,yy _

R o IR LA
rd  _ 8r 3@,xx , 9r 38,xy . 9r 30,yx | Or 8f,yy _ 2

A = o™t ax ByA * §§'§§A Y7 ByA = yeotzs
89 _  [90}*,xx 30} {90} xy , [8@}%,yy _ 2

0= [l B - R

That A" + 2299 - 0, now follows immediately.

No.40. Again, we suspend the summation convention.
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ds® = dx® 4+ dy? + dz? = (vZ42)du + 2uvdudv + (uP+2)dv
This shows that the .  covariant components of the metric tensor on the

surface are g = v¥42, g = uv, dyy = u*+2, The contravariant components

follow from tHgse, viz, W

g = wEA2)g, ¢ o= - uwg, ¢V = (vER2)/9

where g = {(u*42)(v242) - u®v? = 2u% + 2v? + 4,
We can now raise the indices of the covariant tensor Aij thus:

ug ur_us
A —A:E:g g Ars

1 ,
52]:(u”w-z)muu - (WH2)uvA - uv(uPR2)A, )+ UBVEA, ]

3
g?

ur_vs
EEQ 9 A

1 2 L] 2 24,2 ~ 2
‘§2E'UV(U H2)A,, + WPV |+ uPVEA uv(v +2)Avvj

wi(u® + v+ 2)2 = Wt = &Auu

U

= - %qu(uz +v® +2)" = - juv = 3A

AVV - zngPgVSArS

-%2[u2v2nuu - uv(vZ+2)A

i

- uv{vi2)A o+ (vEH2)EA T

uv
‘ 1
- 2 .
= a,vz(uf +v2+2)2 = vt o= &AVV
No.41. Differentiating the transformation equations partially with
respect to x (keeping y constant), we cbtain
- s s w iny 2
1 = a sinhu cosv T coshu siny T
0 = a coshu siny LU a sinhu cosv v
X ax
Solving for 3u/ox and 3v/8x, we calculate that
su sinhu cos v _
aX a{sinh™u cos?v + cosh?u sin?v}
v coshu siny
ax a{sinhZu cos®v + coshZu sin?v)
Since
sinh?yu cos?v + cosh?u sin®v = sinh®u(l - sin®v) + {1 + sinh®u)sin?y
= sinhZu + sin?v = 1i{cosh2u - cosZv)

these results can be written

su Aodibe. cmea il av Dmmmbais ade IR
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_Bu BV
Ax - ﬁiﬂu +'§§Av

= Z(Ausinhu cosv - A coshu sinv)/D.

No.42. The curves u = constant are rectangular hyperbolae with asymptotes
y = X, The curves v = constant are orthegonal to the first family and are
rectangular hyperbolae with the\gxes as a§ymptotes (see diagram),

o ” .

%Y

Differentiating the transformation equations, we find that the
differentials are related thus:

du = xdx - ydy, dv = ydx + xdy.
Solving for dx and dy, we get
(x2 + y23)¥dx = xdu + ydv, (x2 + y*}dy = xdv - ydu

Hence,

ds? = dx® +dy? = (%% + ¥2)"F(du® + dv?)
But

(xz + y2)2 = (xz - yz)z + 4x2y2 = 4(U2 F Uz)
so that ds? = 3(u® + v2) H(du? + dv?).

Differentiating the transformation equations partialiy with
respect to u (with v constant) gives

1= *=u " Y50 0 Yzu %y

Solving for ax/su and 3y/su, we calculate that

X X oy o y

U X2+ ye? du X2 + y2

Thus, a transformation equation for the covariant vector Ai is

xA - YA
) Y - X N
AT T T y X2 ¥ y2

Similarly, differentiating the coordinate transformation
equations partially with respect to v and solving for ax/av, 3y/3v, we

find that
X y 3y - X
W XAy W XF Ty
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A VA Tl
v Vv X avy X2 4 y?
No.43, Differentiating the transformation equations
dx = udu + vdv, dy = vdu + udy
Hence,
ds? = dx® +dy? = (u®+v®)du® + 4uvdudv + (u%+v?)dv?

gives the metric in terms of curvilinear coordinates,

The components of the metric tensor in the uv-frame are now
found to be

= g = u2 + v?, g = 2uv,

guu LAY uv

g = g% (v +v3)/7g, ¢ = - 2uv/g

ir

where g = (u? - v2)2,
We can now raise the index of the covariant vector Ai’ thus:
U uu uy - Loyl
A" = grA, g A, = (u \ v)

v _ vu vy
A = g Au + g AVJ

1

(u - v)?

The Christoffel symbois of the first kind are
,1] u, [12,1] v, [22,71]
[11,2] v, [12,2] U, [22,] = v

leading to the following formulae for symbols of the second kind
1
11
1
12
2
b

H

u

i
il

i

G111 + g2[11.2] = u/(u? - v?)
vl - vR), {212} = WP - V),
TR P X

b - v

The divergence of A is given by

U/(uz - Vz)a

[

- v2),

i _ i i .1
Al = A+ TR

1 2 1 } 1 {'1 } 2 {'2 1 { 21,
‘E‘,z”,z*{n‘"‘* 2 1§ A+ 12}“ +22}“

2(u-v) - 2(u~v) + Gigvf(u-v)zw Efgqf(U‘V)z

i

U .32 _ V¥V y2
+ ﬁi:?f(” v) Uf:vf(u v)

it

2 (u-v)*2/ (uv)
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sa¥ . - {111 Aldy - {172 AVdy - {211}Avdu - {212 AV dy

27 . 27 .U 27 v 2 {av
-{1 1_;num-ﬂancixx-jmﬂ\ciu-fzz}ﬂuw

Along the curve u = 0, we have du = 0 and these reduce to

i

'\

il

u oo 3T Laus o 1],y . _ iU
SA” = {12}11\ dv {'ZJA dv = vAdv
v 21U 27,V - 1,v
8A -—{12_Adv-{22}ﬂxde-vﬂdv

Thus, variations in AY and AY during parallel displacement along u = 0 are
governed by the differential equations

dal o dv daY dv
AU vy AV v

The variab?eé arevseparab1e in both cases. Integrating from the initial
conditions A" = A" =7 at u =0, v = 1, we deduce that

AY =AY = gy

Thus, at the point u = 0, y = 2, the components of the parallel displaced
vector are given by A" = A" =
No.44, In the usual notation:

9y = Ty 9p7 = X% 992 = 0,
gt = 1, g** = Vx,  g*? = 0,
01,07 = 2,01 = [0.2) = [22.2] = o,
[12,2] = - [22,1] = «x
23'1 A _ %2 . 2} . 0
[ S § I S W - ey
2 _ 1 L
% 2} = 1/%, {é 2} r =X,
The contravariant components of the vector field are given by
KO < glA = xcoszy, A = g**A = - sin2y.

The divergence of the vector field is given by

i
ST

X y 2 Lax
A9X+Asy+{|2}A

cos2y - 2c¢0s2y + cos2y = O

Al

LI
+ FjiA

No.45, We have
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= rp - 1 rp -

297 500tp,s * Isp,t T Ist,p) B9 (Gep 65 F Isp, 5 T Sst,pj)
Differentiating with respect to x| and ignoring terms containing
first order derivatives of the metric tensor {since the frame is geodesic),

we get
o BXJ S t} gtp ijs T 9sp,ijt ~ gst,ijp)
as stated.

_ Now
R} = g1kR

g = (A - B AT - A6
i gik{ﬁikijss} " éis{ﬁskﬂ

for a geodesic frame. (N.B. Although the Christoffel symbols vanish at the
point, their derivatives do not.)

Also, by -differentiating (i) with respect to x" and then ignoring
terms conta1n1ng first order derivatives of the metric tensor, we calculate

that
Ri - gik 9? 5 % _ 3% {_s }
sl 5 axk U axioxS U K
But, in a geodesic frame, R = R1 . so that we have proved the second resuit.

Jsi Jai
Putting j = i in (i), we get

RN R AT SN SRS

Differentiating with respect to x) and neglecting terms containing first
order derivatives of the metric tensor, we find

ik{ a2 5
R. =g — 1} - {
»J [ax‘]ax %] S‘E ax ax k]

which is the third result.
We now make use of the first identity to show that

ik sp - - - )
Rjst = 29797095, 4ks * Isp,ikj ~ Ijs,ikp T Ipaisk T Jkp,isy * gk, isp’
_ ik _sp - -

= 3997 (9 k5~ Yys,iko T Fkp,isi t Ijk.isp)
_ ik_sp _

= 29 g (gsp,ikj gkp,isj)

after exchanging the dummies (k,s) and (i,p) in the second term inside the
bracket. Further,

_ sp - - - .
Ry = 2979 (gipgjks * en,3ki ~ Yis,3kp " Yip.isk T Fkp,isi T gik,JSD)
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after exchanging the dummies (i,p}
in the bracket.

It now follows that, in the gecdesic frame, R

and (s,k) in the second and fourth terms

LY

Since this is a tensor equation, we can conclude that 1t 1s va11d in

every frame,

No.46, In the usual notation:
g, = ¥ 9, = 1, g, = 0,
911 = 1/3,2, 922 = 1, gLZ = 0,
D, = (22,1] = [2,2] = [22,2] = 0
[12,1] =-[1,2] =y
RUIEIE A1 BN R SR At
{l 1} I ¥4 é} 1 2} 2
1 - 2
%1 2} = Wy f} 1}
Thus,
= - J . 1} 2 {2} 1 - . ]
6Ax SA, = FIindx % > A!dx *H A, dx yAydx + 7
- - - 1 R |
ﬁﬂy = A, = PZJA1dx = i?T}AIdx = ?Axdx
For parallei transfer ajong the curve y = y(x), Ax and Ay are
accordingly governed by the differential eguations
dA dA
x _ 1, dy _ y _ 1
dx ?AXH? yAy’ dx ?Ax
In particular, if y = secx,
dAX dAy _
i Axtanx - Aysecx, rri Axcosx (i)
X = t -
COSX " = Axs1nx Ay
Eliminating A thus:
Y d dAx d
H?{cosx Ix ] HY(Ax51”X) - Axcosx
2
or COSX ; AX - sinx dAx = §inx dAx
ax? dx dx

Putting dAX/dx = u, this equation may be written

du
u

which intearates immediatelv to aive

2tanx dx

—A_dy
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where P is constant. Hence,

Ax = Ptanx + )

whence, using the first of equations (i),
Ay = - Peosx + Qsinx

Initially, AX =0, A =1 at the point (0,1). Thus, P = ~1,
0 =0 and so y

Ax = - tanx, Ay = COSX.
At the point (w/3,2), these eguations show that AX = -3, Ay = 3,
No.47. The metric for the sphere is

ds*> = de? + cos*ode?

and equation {43.19) shows that the great circle geodesics are determined
by the equations

2 2 :
-ggg + sinSccse(g%] = 0, gg{cosz dg) = 0.

The second equation integrates to give ds = acos®8d$, where a is constant,
Eliminating ds between this equation and the metric, we find

aZcos*ed¢? = do? + cos?ede?

or dp _ 1 _ sec’s
d8 ~ V({a%cos*f - cos2@) V/{b% - tan?b)

where b*> = a® - 1, Integrating this equation, we calculate that
~ aip-ti] -
¢ = sin (Etané} 8
where B is constant, Thus
tang = bsin(¢ + B)

which is the egquation stated if we choose o so that tana = b.

Since the point © = 0, ¢ = =g lies on the great circle, -8 can
be identified as the longitude of the point where the great circle intersects
the equator. Also, since the point 8 = a, ¢ = iw-B, also lies on the great
circle, o can be jdentified as the latitude of the most northerly (or
southerly) point on the great circie.

No.48, We calcuiate that

931 = Ugp = SECh®y, gy, = 0,
gt = ¢** = cosh’y, g = 0,
[11.2] = sech?y tanhy = - [12,1] = - [22,2]

{121} = tanhy = - {112} = ‘5222}
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i i 2 1
SR, {1 3 Aidx‘} = {1 1};\2 dx' + ‘E Z}Al dx?

A, tanhy dx - Aitanhy dy

sty = Ll aad - Llla et 4 HEgA o

= - Altanhy dx - A, tanhy dy

It

Along the 1ine y = b, we have dy = 0 and the equations reduce to

A = Aztanhb dx, SA

. = - Altanhb dx

2

i.e. parallel displacement along this iine is governed by the differential
equations

P = ptannb, Sz = - tanhb (1)

Eliminating A,, we find that Al satisfies the equation

Ay 4 atanh? = O
Iz lan = .

whose general solution is

A, = Xcos{xtanhb) + Ysin{xtanhb),

X and Y being constants of integration. Substituting in the first of
equations (i), we then get

A, = - Xsin(xtanhb} + Ycos{xtanhb)
At x = 0, we see that A, = X, A, = Y, so that {X,Y) are correctly

identified as the initial componen%s of the vector. The components of the
vector in its final position at x = a are now found to be as stated.

No.49. In the X-frame, we can differentiate A’ covariantly thus:
. i ,
A LI
Substituting from the tensor transformation equations
s —i . — S
1 _ 3K ,r %1 o 9X BX ,4r
K - ‘é'_r A Y A ;j - r _"j A ;S 5
X X 9X
into the first equation, we get
sxtoax® r o an ox® 0A” L 8% axd e L =i axXS ,r
=P T Tr o Ts Tt s N YT e A
ax” axe ax” o) ax®  ax ax® A%y I ax
We next put .
A A
’ X
and, after cancelling a pair of identical terms, arrive at the equation
=i .5 2= 5 soaTk
X’ 9x” rr At - _9Tx 3% Al &+ T aX Af

ox" oxd TS ax"ax> % k3 gx"
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t AP o= s .ok
ggt et o 30x T, FOBX

ax’ axd TS axox® o kj ax’

Multiplying through by er/8§£ and rearranging, we arrive at the trans-
formation eguation

P st e S e aR
which is equivalent to the one given in the exercise.

. ol ¥ ..S a—1 ro..5
I;l _3x ax 9xT Lt o X ax X (i)

If we differentiate the identity

i
%

X

ax” 8%
pﬁrtia11y with respect to X (keeping the remaining Xs constant), we find
that

3

i i

I S TARN 3? A
5x xS oxd ax ax" BXQBXJ
Thus
2% o ax® | ax aix"
ax" 9x> axf'L BxJ ax" a%Vex

and equation (i) is seen to be equivalent to equation (34.8).

No.50. We have
=ik
i ¢ T
TR ROk 5% ax’ oy 9%
ax" ax® - Laxd axd ax< o ax“ax"
= e TRy rs 97X U,V
=y 5rﬁsrvw "9 v %Ss
IX 9X 29X
_ grs_§§1 pUoghs *x’
ax! 13 ax ax>
_ X' 4 _rs 9%%
= Tl r..s
09X ax ox

Suppose grs and TV are given over the space and T' is to vanish
everywhere; then we need

i 2]
ax u rs .
N (1)
X N ax

This is a set of N second order partial differential equations for the N
unknown functions x' (x}; in general, these will have an infinity of
solutions,

Noete that

V2V = div grady = [gjk@ik} = gjk[agk]
;3 LAY

ax ox
% 5%

]
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since the covariant derivative of the metric tensor vanishes. Hence

s A ol
vt = ng BJX - thﬁr
IX" BX ax

Equation (i) can now be written ¥2x' = 0.



EXERCISES &

No.1. At the point P, the y-frame is geodesic and the metric is given by

ds2 = dyfayX

(Note: Summation with respect to the index k is understood.) Now dyk =
(ayk/ax1)dx1, so that at P

k. k.
ds?= Eiﬁ A dx'dx?,
3X 8
k .k
gi: =L 3. at this point,
Joax! ax
Then, using equation (47.2),

showing that, 1in the x-frame,

ik .oy P ax! ax (o)

i
T. = g..,7 =
J Jk By axk oy’ ayS 'S
sP EXP.§§1 (o) _ ﬁXﬁ ax 1(0)
S axd gyt TS axd gyl TS

in agreement with equation (47.3).

This shows that our definitions of T1J, T}, Tij in the x-frame
are consistent with the rules for raising and lowering indices.

]

No.2. x! = x, x% =y, x3 =z, x* = ¢,

29 2
9y = 922 = 1s 9 = € » 9us = "€ ¢

gt = g22 = 1, g% = 9"29, gh* = _e“2¢

The only distinct non-zero components of the Christoffel symbol
of the second kind prove to he

3y 3L 2¢~26, 4}_.
{33}‘9’ {44}*9 9 {34 =0
It now follows that the only distinct non-zero cemponents of
the curvatfure fensor Bjki are
k] - 2¢'28 o 1 12 b - oo [ ] 2
BY,, = eV - 8o’ +¢'?), B = oM -8'9 v
Hence, B}kg = 0 provided ¢" - 8'¢' + ¢'? = 0.
If ¢ = -8, then for flat space-time we need

cbn kS 2¢I2 = 0
or %$%— = ~2dz

Integration yields
~1/¢' = -2z + constant
or

Sk
!

™o

]

-+

Q1
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¢ = 2%log(z + &)} + constant

Taking the constant in the form 1logb, we obtain the stated result.
No.3. Interpreting (r,6,z) as cylindrical polar coordinates, the
given metric has axial symmetry about the z-axis and can represent the
gravitational field in the empty space surrounding & static distribution
of matter posse551ng this type of symmetry. The proof that r and z can
be defined in such a manner that gy3g.s = -r>{as indicated in the metric},
will be found on page 311 of Relativity: The General Theory by J L Synge
(North Holland, 197T1).

The derivation of the equations proceeds as below:

}‘. -
991 922 = € gys = rle °, Uyy = €

it . P 4 “p
ey

e, g = -€
and the only distinct non-zero components of the Christoffel symbol of
the second kind are listed thus:

{11115 = Mo {121} = i, {7]2} = s 1212} = -
5 U 1 R O AN R L

{323} 1rip,e A, {J 3} = % - 2o, {233} -3,

15114} 3o, 1124} = 30,e”7, ’1 4} = 10y, {244} "

The non-zero comporients of the Ricci tensor now follow:

w ” {r'l {1 1} ]‘y 1} ] 1} Bx1{1 iy %1'{311}

T S R T E )

Roo = iz}fz’}} AN A R S Rt

1
= Byt B, 4 ??Al + gpi

SR AR B AR A SER A B N o5

_p..x

22 —-A

] -
=e’, gt =rT?

1t

g r

i
1]

i

=
1

= "%(rzﬂu + r2p22 + Y'D;)e

Raw = {r‘ 4%{4 1} {r } 4 4& ax*{ﬁl 1} ) ii {_4{4}

= ~}p, + 1o )e””
Raz = §r12}{1ri} - Fdhd SXZ{J d - i" hal

22 I
1
= %p;pz - ?F(pz + Ag)
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equivalent, we derive four equations, viz.

I T N I T (1)
Apg * A ¥ %11 tp, = 0 (i)
o1y Ppp +apy = O (ii1)
A, tp, = rpyo, {(iv)

The Tast two equations are included in the Tist given in the
exercise. The remaining pair of equations in the 1ist are reached by
the operations (ii) - (i) and (i) + (i1} + 2(iii).

Note that, by putting v = A + p, the stated equations can be
reduced to the form
v, = 3r(py = pi)s vy, = rpy0,s
Vot gy = 0, Vo4 (el 4 pZ) = 0

2 2
for the unknown functions p and v. (Note: v2 = %—2 + %EQ.) Then,

r
differentiating the first pair of equations, we get
Vyr 7 %(pi - pi) + r{pngx - 92912)
Vaz = Tlp,eg, *0y05,)
Addition now gives
Vv = #(p} - p3) t rp, VP = -3{p} ¥ ol)

by appeal to the third equation., This shows that the fourth equation is
derivable from the cother three and so may be discarded.

Comments on the solution of these equations will be found on
pages 312 - 317 of the book by Synge referred to earlier,

No.d.  With gy, = Gsp = Gas = ~Gyn = 2<%, the equations (43.19) for

geodesics through space-time take the form:
d { 2kx dx 2kxffdx}? | f{dy)* | (dz}? _ {dt}?] .
ag[e a§]‘k‘°- [[ag] +[ds} el sl | 7o
df 2kx d _ o df 2kx dz} _  df 2k dt} _
ds( a%] - az[e HE] = Hs_[e ‘ag] =0
These determine the motion of a freely faliing body in the gravitational

field.

Integration of the last equation yields dt/ds = e %K% where
A is constant.

From the metric, we deduce that

X2 gt 43t -1 = (ds/dt)? = e



- 109 -

If, when x = 0, then v = V, we find that 1/A% = ¥2 - 1. Thus

1= v = (1 - vzt

Note: For a photon, ds = 0 and v = 1. Thus, the velocity of
Tight is unity in the units being used. Hence, v and V are Tess than
unity for a particle.

No.5, As 1in the previous exercise, we chtain a geodesic equation
diy dtt  _
ag[“aa} =0
which integrates to give
dt _ A
ds ot

The metric now leads immediately to the eguation

a?(x* + y2 + 2%} - c2a = ({ds/dt)? = o?/A%
or 1
v? cfamt + gy = - ckx + constant

If v =V at x = 0, the constant is V2 and so

V2 - v2 = ¢Zkx.

Ne.6. The given metric describes a static gravitational field directed
along the z-axis and uniform over any plane paraliel to the xy-plane.

The field could be generated by a distribution of matter whose density

was uniform over any such piane and which therefore extended to infinity
over sych a plane, e.g. an infinite uniform plane plate.

To caiculate the field in empty space outside the matter distrib-
ution, we require Rjk = 0.

With the usual notation and Visting only non-zero components,

911 T 922 = Y5 7 € g, = "€
ghl = g22 = g% = 7%,  g** = 7B
1}__ 3 3{2 B T AU R
T 37 11 23 fza2l " 33
{344}=%B.’ {434 . 3p1e80
Hence
Ryp = Ry, = B0 + jo'? + ja's’,
Ryg = a + 8" - In'B" + 1g'2

- -(36° + do'g’ + 3pt2)eP

=
g
-

1

Teading to the Einstein equations stated.

Eliminating o" and 8" between the Einstein equations, we deduce
the equation a'{ia' + 8') = 0.
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and integration gives B' = 2/(z + A), with A constant. Hence, B = 2log(z+A) +
constant and

&P C{z + A)Z,

If 3a' + B' = 0, then eliminating o' from any one of the Einstein
equations, we arrive at the equation

g - 58’2 = 0,

showing that the equations are consistent, Two integrations now lead to
the equations

gt = 2/{k - z), B = -~2log(k - z} + constant

Thus, e® = B(k - 2)"2. It then follows that o = -28 + const. = 4log(k - z) +
constant and so o
e’ = Alk - z)*.

No.7. The non-zero Christoffel symbols are listed below:

1 - t ‘[ _ - -I _ B"(I|
{11}*"“ {22}“'"8 ’ {33}"5“‘—‘ B
1], oy, 21 _1 {3 o {4}_ ,
{44}‘%9 Y {12}‘? 13}'39 14§ = Y

It follows that the non-zero components of the Ricci tensor are:

LA

Tl

Ryp = 36"+ B 382 + 3% - da'B - du'y! - g
Ry, = ire™(8' +v' - a')

Re = 2eP70(8" 4 38" - g0 + 38'y' + 8"

Ryy = -deV %(y" + 3v'% - fa'y' + 38'y' + J,:Y')

and these lead to the stated Einstein equations in vacuo.

Eliminating a' from the Einstein eguations by appeal to the
second equation, these reduce to

B" +,Yu - %B. - _}Yl - BIYI = 0’ Bu +-};B' = O, _YII +';|:TI = 0 (.I)

The last pair of eguations are easily integrated to yield p = -Alogr + const.,
v = ~ulogr + const. Thus

B = B, ef = oM,
Substitution for 8 and v in the first of the equations (i) shows that
2(A + u} = AL
Finally,
o = B+ v+ const. = -{i + pujlogr + const,

and so
e = ap (AtH)

No. 8. Geodesics through the space-time are governed by the equations
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There are clearly solutions for which y = z = 0 identically and, hence,
for which a falling particie moves along the x-axis. Puttingy = z =0
in the metric, we are Ted to the first tintegral

4 e

dx/dt But, from the third of equations (i), we deduce that
Ax , where A is constant. Hence

where
ds/dt

B .

x2 = x% + Ayt

i

Initially, x = 0 at x = 1. Hence, A2
imaginary for a real particle). Thus

-T {(N.B. ds is always purely

Xt = x% - x*
Putting x = sechu, this gives
sech?u tanh?u U2 = sech®u - sech*u = sech?u tanh?u
i.e. u=1. We conclude that u =t + o and so x = sech(t + a). Since
X = 1 at t = 0, we see that o = 0 so that x = secht.

For a photon, the equations of a null-geodesic must be used,
viz,
d’y _ d*z _ d zdt - 0
R CAY: 1S L i
. . . (11)
x* +y* + 22 = %,
Initially x = 1 and the motion is along the y-axis, so that x =z =0.
Substituting these values in the last of equations (i1}, we find that
y? = 1; hence y = 1 initially.

Integration of the first two equations (ii) shows that
dy/dx = const., dz/dA = const., x*dt/dx = constant (iii)

But, initially dz/dx = z(dt/d)) = O; hence dz/dx = O throughout the motion,
showing that z = 0, i,e. the photon moves 1n the xy-plane., Dividing the
first and third of equations (iii), we get x 2dt/dy = const. Thus, y = X*,
since initially x = 1, y = 1. The last of equations (ii) now y1ers

X2 + x* = X%,

whose solution is x = secht as before. Thus } = x2 = sech®t and so

y = tanht, since y =0 at t = 0.
It now follows that the photon moves in a circle since

1

x2 + y* = sech®t + tanh®t

n

Na.9, The equations governing null-geodesics in the universe are

2
é%{rZ%%) - rzsinecos@[%%] = 0
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~ifdri? o afdei? e o fdgYE o o
A [Hf] +r [HE} + rsin<g ri3 Act = 0
The first two equations can be satisfied by taking 8 and ¢ to be constant,

confirming that radial motion of a photon is possible. The equations
then reduce to the pair

d {,dt} _ dri? 2 2
s o [ - o
Thus
dt RZ/¢
dr -~ RE- 2
which, after integration, shows that

_ R R+r
t = ?E1OQET7773 + constant

Sirce v = 0 at t = 0, the constant vanishes. Solving for r, we find that
r = Rtanh(ct/R)
As t + 4o, tanh(ct/R) + +1 and so r -~ R.

Putting r = 4R in the equation for t, we get t = %%4093.

No.10, Equations for the gecdesics are:
d { odr dr}? de}? dz}? aty*
g ol -l e o
d{ .do} _ dfdz} _ df_ dt} _
a'a['" 'az} - 5["3‘5} - 'd’.c?[ rﬁ?;_] =0
Integrating the last three equations, we deduce that

de¢ _ A dz _ B dt _ € (4)

ds  r2> ds ¥ ds ¥’

where A, B, C, are constants. Dividing the last two equations, we see
that z = B/C and, since z = 0 initially, this means B = 0, Thus z =
constant = 0 throughout the motion, which lies in the guasi-plane z = 0,

Putting z = 0 in the metric, we have the first integral

ofary o ofdeY | (dt}? _
r [Hg) + oy [HE] rids = 1
Using equations (i), this leads to

2z CZ

202 E N .-
C*rs + = Ty S ] (i1}

Dividing the first and Jast of equations (i), we find
2 _ A s
8 = F (111)

Hence, by the $nitial conditions, A/C = /3/2. Also, by substituting

2t FdnTl arnTiina 4w F140 vim mnTanTrdka Rha+ AZ . r2 Wn ran nmia Aadiiens
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The last equation proves that r can only be real if 1 r g3
and the particle's trajectory accordingly 1ies between the circles r =1
and r = 3. r can only change sign when r = 1 or r = 3; it follows that
r increases to the value 3 and then decreases to the value 1 alternately.

Bividing (iv) by the sgquare of equation (ifi), we derive an
equation for the trajectory in the form

[%g)z = B -

8 J’VI—[J—?‘ETW = 3S'in"'1(l"—2) + ¢onst.

- r—

Since 6 = 0 when v = 1, the constant is 3w/2. The polar equation of the
trajectory is therefore
r = 2 - cos(6/3).

For a photon, the equations (i) are replaced by

& _ A dz _ B dt _¢C
ax r2? a v dx r

and the first integral by
zdf‘z 2d82 dzzi dtz_
r [’a'x] + 7 ("a—):] + Y'['a"j\"] r 'a-x = 0
If initially z = 0, z =0, then B = 0 and z = O throughout the motion. Thus,

C*f{de}® , A> _C?
?2[?:(5] ety =0
Initially, dr/d6 = r{dt/de} = 0 and r = 1. Hence, A%/C? = 1 and we deduce
that

r -1

ey
o.icn.
D3,
ka
1]

or
8 = fVTFQEMTT = 2/{r - 1) + const.

Since 8 = 0 when v = 1, the constant of integration vanishes and we deduce
that r = 1 + 18%,

No.11. Along a geodesic

d [ L2ct/R dx

_ o df 2¢t/R dyy  _
ds dsy © ds|® -

g [GZCUR dz] - 0

d
ds ds

which integrate to give

dx  _
T ° A

It follows immediately that

-2ct/R dy _ -2¢t/R dz  _ -2ct/R
2 . . Be s ds Ce

dy/dx = B/A, dz/dx = C/A

so that 3 B
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For the motion of a photon, the argument can be repeated with
s replaced by A,

If a particle is projected from the origin along the x-axis,
it will continue to move along the x-axis so that y = z = 0, Thus, the
metric first integral for the particle's motion reduces to

2¢t/R dt}? ds}? 1 4ct/R .
o ct/ - CZ{H}] - [ﬁ%} - ﬁée ct/ (1)
At £t =0, x = V and, thus, 1/A%2 = 1 - ¢2/¥%. (i) now reduces to
- cve~2Ct/R
et - v+ yze cCHR)

-2¢ct/R

Integrating (change the variabie to e ), we find that

Vx = Ric - /(c® - ¥2 + V2e'2°t/R)},
since x = 0 at t = 0.
For a photon moving along the x-axis, equation (1) is replaced by

2
n2Ct/R _ cz{g;} - 0

or
X _ Ce-ct/R

for motion in the negative sense. Thus,

Re—ct/R

X + const.

If x =X at t = 0, the integration constant is X - R and

x = X~ R(1-e /Ry (i1)
Then x = 0 when

MR -y
or t = - %Jog(1 - X/R).

Equation {ii) shows that x decreases steadily towards the value
X-Ras t ++w. Hence, if X > R, the photon never reaches 0. The
exponential time factor present in the metric, implies that the universe
expands at a steadily increasing rate and this increasingly retards the
photon's motion in the xyz-frame, ultimately (t = 4=} bringing it to
rest. (Note however the comments at the end of section 66 regarding the
unreal nature of this expansion.)

No.12. Equations for geodesics through the space~time are
2
é%[rzgg} - rzsinecose[gg] = 0

d coode) o df r dt}
Hz[rzs*“zeag] = 'ag[FIz'asJ =0

Thaea tnrather with the mafric. determine the mntion of a freelv falling
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identically, showing that the trajectories lying in this quasi-plane are
possible. The initial conditions 8 = iw, 8 = 0, indicate that the fraj-
ectory to be calculated is of this type.

Integrating the other two equations, we get

$ -4 §F=0re2y (1)

Also, the metric yields the equation
roftdel® e fdey® o r fdt}®
T+T1) (43 ds T+2ds
Etiminating dé/ds and dt/ds between these equations, we find that

L R Lo gl 2
r + 1} tds 2 r -

or

A2 (Al A2 .2 g
Ffmryz[aas] tye B o= (%)
Dividing the equations (i), we have § = B?(%ﬂ Substituting

initial values, we then find A/B = /(3/2). Alse, putting initial values
in (i), we get A% - 382 = 1. Hence, A% = -1, B* = -2/3. {ii} now
teads to the equation

B

Putting u = 1/(r+1), this eguation reduces to;

[%35]2 = J3(2111-1)(»:11;-1)

[%‘1]2 = r41)2(3-r) (r-1) (411)

or

3 du 3.: -
¢ = J[wa{l/ﬁﬂ ~Tw T 37ETIT G 1/;;1n 1(8y-3) + const.

Initially u = 1, ¢ = 0, so that the constant of integration is -v(3/8)(n/2}.
We now deduce that

8 - 3

sin{a¢ + 3w} = cos(ad)

or ro= 5 o~ cosEa@%
+ cos{ad)’
Since cos({ag) oscillates between the values #1, r oscillates
between the values 1 and 3 (this also follows directly from (iii)}. As
a$ increases by 2w, r makes one complete oscillation. Thus, two success-

ive contacts of the particie with the circle r = 1 are made as ¢ increases
by 2r/a.

No.13, Equations for geodesics through de Sitter space-time are:
2
é%(rzgg} - rzsinecose[g%] = 0

—fifrzsinz d?q = ;L(AC25E1 = 0
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identifying trajectories in the plane 6 = iy, the remaining equations

then integrate to give

d dt i
E% - %2’ ds '%9 where A =1 - r2/R%, (i)

and o, B, are constants. The metric contributes the first integral

-1 dri? 2 | do z - 2z fdt 2 =
A [‘a’g] +r [’ag] Ac a‘s— 1
Eiiminating dt and ds between these three equations, we arrive

at the equation , | 2.2
dr _ I"_ 2 B C” &
R

Also, by division of the equations (i), we get & = oB/(Br?).

Substituting the initial values in the Tast two equations
{(N.B. dr/d¢ = r/¢ = 0, initially), we calculate that o® = -}R?, g% =
-3/2c*, It now follows that

[%]2 - (e RE)(4rF - RY),

determining the polar equation of the trajectory in the plane 8 = iu.

Putting r = u_é, the last eguation reduces to

[-‘1!]2 = m (1 + R2u)(4 - R2u)

w(f - fro- 4]

from which it follows that
ésin"[}(ZRzu - 3i] + const.

H

¢

1§

Initially, ¢ = 0 when u = 4/R?®; hence, the constant of integration is -im.

We now deduce that 1
13-(2R"u -3} = sin(2¢ + iw)

COSZ2,

which is equivalent to the result stated.

No.14. We have geodesic equations
d LAxbo_ didyy | d LAty
dsi“dsy =~ dsi{“dsy ~ ds|“ds
dx12 . f{dy}? | {dz}* _ fdt}? _ 1
e E -

Integrating, we find
dx _ A dy B d¢ _ ¢
7

[

ds =~ 7z ds =~ Z° ds

Since y = 0 initially, B must vanish and so y = 0 throughout the motion,
which Ties in the xz-plane. Also, dividing the equations for x and t, we
conclude that x = A/C = v throughout the motion.
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vZ - 1, Hence

Putting in the initial values z =1, 2 = 0, we find 1/C?
22 = (1 -1 - z).

Since v < 1, we must have z < 1 for z to be real; i.e. z must decrease
from its initial value. Thus

- m = I/(} - V2)dt
which integrates to give
2/(1 -2z) = /(1 -v®torz=1-3{1- v?)t?

the integration constant being zero. It now appears that z = 0 when t =
2//(1 - v*).

Since x = v, X = vt. Thus
2 = 1= 450 - V)2

which is the equation of a parabola in the xz-plane.
No.15. This result follows immediately from equations (47.14) and (47.16}.

No.16. From the compongnts of the Energy-momentum tensor stated, we
gg&ggiate that T = 3p - c¢®u, Ty, = pe’, T,, = pr¥, Tgy = prisin?e, T,, =

The non-zero components of the Ricci tensor are listed at (51.718).
It now folTows that Einstein's equation (47.15) requires that

17+ 36'0 - do'8 - o' = ee™(p - o) (1)
e™*(1rg' - tra' + 1) =1 = der?(p - ¢2u) (i)
czeB_a'(-%B" _ %B:z + %OL'B‘ -~ JYTB') = ‘%KCZQB(:’JP I Czu) ('i'i'i)

Equation (i) is equivalent to the third of the stated equations.

From equation (iii), we deduce

~38" - 38'% + Jo'B' - 18" = -3xe™(3p + c%y) (v)
Adding (i) and (iv), we get
lr(B' ta') = ke’(p + cin)
Equation (i1} is equivalent to
Lo ) o 206 1 e - )

Hence, adding and subtracting the last two equations, we obtain the
remaining two equations asked for.

Integrating the first of the stated equations, we find

r(t - e %) = %Kczprs + const.

Thus,

- n 1 o o " e
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e® = 1-qr?

where g = kc®1/3. This condition on A is clearly necessary if we are to
avoid a singutarity at r = 0,

Eliminating p between the second and third of the stated equations,

we get
" 1 Fal 2 ¢ 1 T
BY 4387 - J0'8' - Lot - e+ L - 1) = rctue®
or - -
R e SR TR I

Substituting e ™ = 1 - gr?, a'e™™ = 2qr, the last eguation reduces to

(] - qr2)(8u + %B:Z) = %ﬁ'

This is a Bernoulli type eguation for g'. We solve it by first
substituting B' = 1/y—this leads to

d.y+ .y = 1
dr * gy e

which is a first order linear equat10n for y. The integrating factor is
found to be r/v{1~qr*); thus

T ¥ { I~-c;r'2 ]i
This integrates to yield
ry o1 2
eI ?aJ(1 qre) + const,

so that
by = gEB/0mar®) - (1-art)
where B is constant.

We can now substitute into the second of the listed equations in
the exercise tc obtain an expression for p, thus:
kp = %B'e'a Sl - e
3qv{1-gr*} - qB
B - v/{T-qr?)

If p=0atr =a, then B = 3/(1-qa%). Thus, finally

_ 3qi/(1-qr?) - /(1-ga®)}
KPT TBYTGazy - J(T-qrE)

Since q = xc*p/3, this is equivalent to the result stated.

Clearly, as r decreases from its surface value a, the pressure
increases towards a maximumvalug 3t the certre where

_ s 1 - V(1- ﬂz)
Pax = C°H 37(I—q32§ =1

1Ff aa?2 ic amall (4 a dencitv nat +nan areat nr vadiue fnn Tavnel
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since « = 8nG/c*(equation (49.9)), G being the Newtonian constant of
gravitation. This is the classical result for the pressure at the
centre of a uniform sphere of gravitating liquid.

No.i7. For space-time with the metric (52.10), null geodesics for
which 6 and ¢ are constant are governed by the equation

2 2
TTJZW‘F[%‘;"} - C2(1 - Zm/r)[g;%] = 0.
Thus,

r o= c{1 - 2m/r)

Inside the Schwarzschild sphere, r < 2m and for a photon
moving away from 0 therefore

ro= cl2m/r - 1)

or ?.m_;df v = cdt

Iintegration Teads to
-r - 2mlog{2m - v} = ct + const.

If r =0 at t = 0, the constant of integration is -2mlog2m and so

¢t = 2mlog[—2§-r_-l_]—F] - r

Then, as r =+ 2m, t =+ 4+~ and so the photon takes an infinite coordinate
time to reach the sphere r = 2m,

For a photon moving towards O,
ro= -c(2m/r - 1)

and the integral takes the form

r + 2mlog(Zm - r)} = ct + const.
If r = R when t = 0, the integration constant is R + 2miog(2m - R). Hence
ct = 2m109[—%%‘1—~:——]9 +r=-R
If t = T when the photon arrives at 0,
T = 2m1og{2ﬁg¥~§l— R = -R - 2miog(1 - R/2m)

No.T18. To evaluate the integral in equation {57.3), we put r = Rcos*e,
so that dr = -2RcosBsinéds, When v = R, then 8 = 0, and the integral
reduces thus:

% RMcos0. 2RcosOsinede oR ®  cos*s dg
o {Rcos2g - 2m)R¥2sing 5 £0526 - 2m/R
| 2 2 ot ;
= ZRI [CGS g+ a” + Co5TH ~aF dg (i)

Q
where «® = 2m/R.



- 120 -
8 8
f cos®0d9 = %f (1 + cos28)d® = 36 + 3sin20 = 1{0 + sinfcoss)
o 0

fazde = o28
8]

b g do = o asec’s o _ ® a*d(tans)
Ocesze - of ol = a* - o*tan?g ol - o - aftan?®

ol ! /{1=cf) + utané]
ZAT - az) 09 |[7(T=) = atang)

H

The expression (i} is therefore egual to

. 2o, [V(1-0%) + otanél
R(6 + sinBcosB) + 4me + T < a2)1091!(1_af) “atans |
= (R + 4m)cos~/(r/R) + /PR -7} + /(R/§$ - 1)109[% f 1]

Multiplying through by (R/2m - 1)%, equation (57.3) now yields the expression
for ct stated.

As r + 2m (approaching the Schwarzschild sphere), we see that
vy +~ 1 and the Tog term =+ 4o,

No.19. Equation (57.4} can be rewritten in the form

dvoo o1 RryE
dr YZm)IR - r

for the case r decreasing. Hence,

3
- _ R r 1 . _ R r dr
= 2mI[R - rj dr = ?EIVIRP = r%)

iR

R R-r R
Eﬁf Rr = r&)or -~ ?ﬁj?(Rr - rzidr

/(R¥/2m)T/(p - p?) + 3cos™*(2p - 1)] + const.

it

1t

where p = r/R. If v = 0 when r =R (or p = 1), the constant vanishes and
we have obtained equation {57.5).

In the special case when the particle commences its fall from
the Schwarzschild sphere, we take R = 2m and then

cT = 2m[/(p ~ p*} + jcos™¥(2p - ]ﬂ
where p = r/2m. This shows that o = Q0 when
¢t = mecos (-1} = mm
i.e. T = mn/c as stated.
Referring to equation {52.14), m = GM/c¢? and the time of fall is
therefore wGM/c®, where M is the mass of the black hole. In the case of a

black hole of solar mass, 6M = 1.33 x 10%% and ¢ = 3 x 10° in SI units;
these data lead to a time of fall into the hole of 16 x 10”% secs.
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922 = r%y Gy = rPsin®e, gy, = -c*(1 - 2m/r), gy, = g4y = C.
Thus, g-= -& r*sin®6 and so

gt = 1 - 2m/r, g?? = %2’ gt = %Ecosecze, gt = gtk = %

the remaining components of the contravariant metric tensor vanishing.

We can now 1ist the non-zero components of the Christoffel
symbol as below:

{212} 2m - r, {2 2} {3 3} 2m - r)sin®s,

§343} - gsin“e. {3 3} = ~ sinbcoss, {4 4} (r - 2m)
b - (% - ﬁgﬁ,ﬁgqm,%gh

The 10 distinct components of Rjk can now be checked through to

H

vanish.

No.Zl. Differentijating the transformation equations, we derive the
differential transformation
~3 5
rofr r/é4m r r/4m
du = TS'nT*'!('EE - 1} e/ cosh(ct/4m)dr+-¢cn-1[ﬁ - 1] e

_ 3
dv 'élz[gl 3 1] %er/4msinh(ct/4m)dr +-$%{£% - 1} rf&mcosh(ctfﬁn)
m2 {Zm

sinh{ct/dm)dt

Squaring these equations and subtracting, we find that
2 | 2
2 _ 4.2 . _F ro_ r/2m 2 C r r/2m,, 2
du™ - dv® = 4m4(’2ﬁi ‘] ar TGi'ﬁz[?fﬁ } a

showing that
-1 8 _
[1 - %?] dar? - 02[1 2"th2 = E%T e r/2m(du2 - dv?)

which proves that the metric transforms as stated,

If we square and subtract the original transformation equations,
we obtain the result
2 o_ 2z ro_ r/Z2m
u ve o o= (?ﬁ 1}e

This is an inverse transformation equation determining r in terms of u and v.
For radial motion of a photon, we put ds = d6 = dp = 0 in the
new metric to give

5 _
BT/ gz L g2y = o

r
Hence, du = tdv, which integrates to u = #v + constant.

%o.22. From the first transformation eguation, we conclude that

28
v -— rag} fll _ |f\2{! -_— III"I -— l!%k
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Differentiating the transformation equations, we get
du = dv + (ri/a)dr
_ ar
dv = dt + T~ RZ dr

It fallows that

rdv - aZdu

dr = ;%:(du—dv), gt = S5,

Hence

1]
-
Vs
fu
Sl
r
——
oL
=
i
=Y
<
3
1
o,
]
|
=
=
1
]
o
] ma
o
=
3

a
v
2 N
= -% (U - v)™Bgu? - dv? = gyz(u - v)TWgyr - dy?

which completes the transformation of the Schwarzschild metric.

Note: Units have been chosen so that ¢ = 1. If this is not
done, it is necessary to replace t by ct in the second transTormation
equaticn,

No.23. As shown in Ex.13 above, any trajectory which lies initially

in the plane 8 = §m, remains in this plane. Hence, we shall put & = in,

do = 0, ds = 0, in the metric to obtain an equation governing the motion of
the photon, viz.

(1 -~ 2m/r)"*dr? + r2dg® - c*(1 « 2m/r)dt® = 0O (i)
Substituting initial values for r and ¢, we calculate that r = +2/7¢ initially.
We also have the geodesic equations
a%\-[ra%%] = Hdi[ﬂ’] - Zm/r)g—;é =0
which together imply that

2
T—_:rm%% = constant = A ('I'I)

Eliminating dt between equations (i) and (ii), we deduce that, for a photon,

N2 2
Eﬁﬂ = r{2m ~ r) +-%2r“

Inttially r = m and dr/d$ = r/d = - %gm; it follows that c?/A% = 1/(27m?)
and so

d z L
[H%] = ri{2m - r) + §%ﬁz

Putting r = T/u, this equation transforms to
rdU]z ~ B 5 ] 1 i~ A Bea -
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_ du
o = 3‘/3mf(3mu o /TR )

(Note: do/du = - %.d¢ = - r2¢/v > 0 initially.) Changing the variable
of integration by'pdfting 6mu + 1 = v®, we find

¢ = 2J3[;§g§j§ 10g{5ﬂ£—§%} + const,
V7 ~ V3

Since initially ¢ = 0, v = ¥7, the integration constant is - 109[ ) =
/7 + V3 . . UEEE
Tog ?7—-7r- = Jog{3({(5 + v21)} = a. Solving for v, we find that

v = /3 cothi{a - ¢)

It now follows that

_6_::“. = 6mu = v* -1 = 3coth®*L{a -~ ¢) -

As ¢ increases from 0 to o, cothi{a - ¢} increases from cothio
to 4o and r, accordingly, decreases from m to 0, i.e. the photon fails
into the biack hole.

No.24, For photons moving in the plane & = iw, we have null-geodesic

equations
d r__drf . m dr)? d¢ L e 2{dt)? -0 (i)
dxir - 2m ax (F = 2Zmy2{dx F{dn r2 dh !

adx[ 3\] - o - awng] - o (11)
together with the first integral
2 P 2
Trfpﬂﬁﬁ [%%] + r2{g%] - c2(1 - 2mfr)[%§] = 0 (717)

If r = constant 1s to satisfy these equations, equations {1)
and (i) require that along such a trajectory

¥ = =3 # o= Sr - om)
L] r,s

Hence, r must satisfy the equation

me? c?
= jalr-om)

i.e, r=3m
(Note: In the special case of a trajectory r = constant, (i} cannot
be derived from (i1) and {111} and so (1) cannot be ignored.}

With v = 3m, we have & = ¢/(3/3m). Hence ¢ increases by 2w in
coordinate time 6+v3mm/c.

For generaI motion of a photon in the plane, equatigns {ii) show
that ¢ = A(r - 2m)/r® where A is constant. Thus, eliminating $ from
equation (117), we get

2 2 Ai’. .
Ggﬂ = -%2(r ~ 2m)? - Fslr - 2m)* {(iv)

Suppese the photon is deflected at some point on its trajectory



bR i
Z7m*  3m
immediately afterwards. Hence A% = 27m*c? - 243m%8%*. During the motion

where ¢ is initially small.

2
after the disturbance, suppose r = (3 + E)mg
(%), we find that

Substituting in (iv) and ignoring terms O
. 2
m2e2 = %752 + m52{1 + %ﬁ _ %ez)

Initially, € = & and ¢ increases. This causes e to increase due to the
presence of the dominant term c®¢?/27 in the last equation and thus ¢
becomes large. This means that the orbit r = 3m is unstable.

No.2b. If r is constant and 8 = lw, the geodesic equations for the

Schwarzschild metric reduce to
o {de¥® | mcE(di}*
R - o
d dt
ag[rz%] - %[(1 - e = 0

2 2
rZ(ggi} - 2] - 2m/r)[%;i) = ]

We deduce that
Br

5)2 = iTICZ/I"E, de/ds = Afl"z, dt/ds = T O

with a first integral

where A and B are constanis. Since mc? = GM, the first equation shows that
the relationship between ¢ and r is the same as for classical theory, The
other two equations give ¢ = A{r - 2m)/(Br®); hence B*/A% = (r - 2m)*/(mc?r?),

Substituting in the first integral, we find that

A BPr | g
r: v - Zm

s _ _ __mr* e _ gr - 2m)? .
A= r-3m’ B = -~ @ - (i)

But A and B must both be purely imaginary, since ds has this preperty for
any trajectory of a real particle. We conclude that A% and B* must be
negative and so r > 3m.

Hence

If v is time measured by a standard clock moving with the body,
then ds = icdt and so

i -1
@ = 1% = Seeym - 3)7

It follows that ¢ increases by 2w in a time
1
gﬂﬁ(r/m - 3)2
c
as measured on this clock.

For an observer who is stationary at some point on ?he orbit,
if t' is time as measured on his standard clock, then the metric shows that
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(see equation (55.1)). Since ¢ = c/{m/r®), we deduce that
d¢

“d_,El

=

I

C -
F(r/m -2) 2.

As measured by the observer's clock, therefore, the orbital period is as
stated,

tquations governing the general motion of a falling body in
the plane © = im are

d _ A 4t _ _br
ds r2? ds ~ r-2Zm°
2 2 2
(1 - 2m/r)"1[-j§] + rﬁ[ggi] -2t - 2mfr)[%] = 1.

Putting ds = icdt and eliminating ¢ and t, we arrive at the equation

it 2 - - 2!]1(22,':\2 C2A2 2mc? - 4 p2
dt ’

Differentiating with respect to 1, we get

2 Zp2 2p2 2
dr _ émc”A* _ 2¢*A° _ Zmc (i1)

dr? rt r3 re

Now suppose that the body is orbiting in the circle r = R{>3m), when it
is sTightly disturbed. The constants A and B will then be perturbed from
the values given by equations (i); tet

,1\.2 - - mR2+ 6
R-3m:*

where § is small. On the new orbit, r will be governed by equation (ii).
Suppose r = R(T + €}, where e is initiaily small. Then, to the first
order in e,

d*e _ 6mcZA?

2p2 2
REE - W(M%)-%M}-k)-%(]-k)

2c®8  2mcRR - 6m) + 6ci8(R - 4m)
R R (R~ m)

H

Provided R > 6m, for sufficiently small &(with either sign). this equation
will take the form .
g;% + wfe = 2c?/R®

where w® > 0, showing that ¢ oscillates about the value 2c2§/R%. In this
case, the new orbit will stay close to the circle r = R and the circular
orbit is stable, If, however, R < ém, the equation will take the form

2
9L wre = 2c2/R°

and € will increase in magnitude so that the new orbit diverges widely
trom the circle r = R, which is accordingly unstable.

No.26. The equation governing the motion of the signal is
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_ For the inwards motion, we choose the negative sign and
integrate to yield the. result

ct = R~ r+ 2m 10g[§~§-§%ﬂ

choosing t = 0 initialtly,

For the return journey, we chbose the positive sign and
integrate to give the same time for this phase of the motion.

Thus, the total coordinate time elapsing between transmission

and reception is
2 -
E[R -+ 2m 109["5“_—‘%%}]

But, as explained in the previous exercise, a standard clock
stationary at (R,0,¢} will indicate a time lapse which is smalier than
that for an adjacent coordinate c¢lock by a factor V{1 - 2m/R}). Multiplic-
ation of the last result by this factor gives the stated result.

If d& is the distance between the points (r,8,$) and
(r+dr,6,¢), then the metric shows that

d2* = (1 - 2m/r)"*dr?,

Hence, the total distance between the points (r,8,¢) and {R,8,¢) is given by
R

R
9 = f (1 - 2n/r)"2dr = [V(r2- 20r) + mlog[r - m o+ (r2- 2mr)]\
i r
= /(R*- ZmR) ~ /{r%- 2mr) + m-log‘E‘_: m : jéﬁi: g;}%
= Y(R*- 2mR) - /(r®- 2mr) + 2"‘70‘% : jgs - gm

According to classical theory, the time a wireless signal would need to cover
the distance 2% is 28/c and this is the result given.

To the first order in m, the relativistic time is

%(R~ r-m+r~nﬁt+2m1og§)

and the classical time is
2 R
E(R -1+ m]og?).

Subtracting the classical time from the relaticistic, we obtain the
difference stated.

No.27. As explained in section 55, the period (and therefore the
frequency)} of the radiation, measured in coordinate time, will be the same
at the peoints of transmission and reception. But, at coordinate distance

r from the centre, an interval dt of coordinate time is related to an
interval dv of time measured on a standard clock by the equation

dr = V{1 - 2m/r)}dt. Thus, the radiation frequency v measured by a standard
clock and the corresponding frequency w measured by a coordinate clock are
related by the equation
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Since w is unchanged at the radius R, we have similariy

v-sv = (1-2m/R) 2y

Hence
v - &y o= /1 Zm/r {% - m(~ —-ﬁﬂ

to the first order in m. This gives the result stated.

Ne.28. Differentiating the transformation equation, we get
- _oomE
dr = [1 Wz]dr
Also - om {1 - m/2r 2
r P+ m/2r!

Substitution in the Schwarzschild metric now leads to the stated result,

No.Z29. Geodesic equations for the given space-time metric are as
follows:

d {dx dat} | d%y _ d*z _
a'a[aa“"atag] gz S wr -0
Integrating these equations, we derive the equations

gﬁ + at%E- = const., %% = const., -%% = const.

The metric supplies a first integral, viz.

dx dt dy 2 dz1% » {dEtl2 _
(o) B[R -
Hence
dt/ds = const.

It now follows that

dx  _ dy . dz  _
*a—'f = at + B, *a‘-_t-— = D, 'aE F,

where B, D, F, are constants. The stated equations now follow inmediately
by integration with respect to t,

Thus, a freely falling particle experiences uniform acceleration
parallel to the x-axis in the frame.

Putting x = x' - %at®, dx = dx' - atdt, in the metric, it
reduces to the Minkowski form ds? = dx'2 + dy? + dz? - c?dt*. Thus,
in the x'yzt-frame, a freely faliing particle moves uniformly, i.e.

x' = A+Bt, y = C+Dt, 2z = E +Ft,
Substituting x' = x + 3at®, we recover the original equations of motion.

No. 30. We have

k
rhrk — ._a.:y



- 128 -

Substituting in the Minkowski metric of I, viz. ds? = dykdyk, we calc~

ulate that

k .k . .
ds? = 9 gxtaxd
x| ax
Thus, for S,
0. = ey
1 3x1 BXJ

Along P's world-Tine, dx* = dx? = dx® = 0. Hence

. 1
dy' = gL dx"

But, at the initial instant under consideration, since P is stationary in
I, dy! = dy? = dy® = 0. It follows that 8y./ox* = 0 for i = 1,2,3, But

q _ Byk Byk Exk oy*
- - — oy - 3 _“-h
T4 x| oX 3y ax
In particular 2
. foy*
Giv T {oxv)

Thus, By“zax1 = 914X/(94u) at P at the instant under consideration.

Since the points P and P' are cbserved at the same instant
in $, dx* = 0 and so . . o
X X
where Greek indices take values 1, 2, 3. The standard rod at rest in I
now measures the distance d& between the positions occupied by P and P'
at the time x* in $ and, since geometry is Fuclidean in I, we find

dy

[

a8 = dyadya = N sl = Ty, dxhdxu

ax” axH H
where
On, 0O
_ 3y '3y k ok ok

T T o T EX} gzh ) gil gzﬂ = S I3/ %,

ax™  ax X" ax RoRhR

using previous resuits,

We note that v,. is the metric tensor of the &, which is the
section of space-time by %He hypersurface x, = constant, it being under-
stood that distances between neighbouring points of the R, are measured
by a standard measuring rod which is in free fall and which is instant-
aneously stationary at the points.

No. 31, For the frame I, ds® = dx® + dy® + dz? - c?dt?*. But

dx drcos{8twt) - rsin(6+wet)(do + wdt)

]

dy drsin(8+wt) + rcos(O+wt}{dd + wdt)

so that
ds? = dr® + r2(dB + wdt)* + dz* - c?dt?
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Thus
grr = 1. 9yp = r?, Gy = - (Cc* = w?r?), Gou = wrZ,
other components vanishing.
Using the result of the previous exercise,
Yip = 1o Yoz T re o+ 2 '(f'z”"zh‘z‘:,hr | Ez:,zzrz s
the ather components vanishing.l Thus
r2dg?

2 2
N Y G
is the metric for geometry +in the rotating plane.

For space geodesics in the plane, we have

d r2 det _ 0
an T - wZrEjez dgy - ¢
Thus,

z
T-“:—UJ%;E—?E-[%% = c¢onstant = 1/b

Substitution in the metric leads to

40 T - w?r?/c?
dr — vW{bZ + wZ/cEyrz - T}

Putting b*+ w*/c* = 1/a® and c/w = ry, we have

adr a rdr

_ 1 - r?/ri _
& = Ir/(rz/a2 —11} dr = fF?T?E“:"EfT "F§I7(Ff*:_ﬁfT

The first integral dis evaluated by the change of variable r = 1/u and the
second integral is a standard form. Thus,

& = const. - sin"¥a/r) - %—,;_/(r2 - a?).
1

Clearly 1/a* = b% + w?/c* ww?/c*; thus, |aj € ¢/w = ry. For real values

of 6, we need r % [a[. Hence [a| is the closest distance of approach of the
geodesic to the origin, Since wry = c, points on the disc at a greater
distance than v, from O will have speeds as measured in I which are greater
than c; the frame R cannot be extended to such points and no geodesics for
R tie in this region; hence, for a geodesic toc be possible, we need [a| < vy
and then, on the geodesic, |a] < r < r,.

The shapes of the geodesics are independent of the constant in
the equation and so, taking it equal to im, we can write

8 = cos (a/r) - %Ef(ra - a%)
1

distant a from 0. Thus, we can regard - =,/(r* - a?) as a correction term

1 .
to allow for the rotation., The magnitude of this term steadily increases
as r increases from a and distorts the straight line as indicated below:

If w =0, then ry =« and r = asec8, whicg {as expected)} is a straight line
~r-|2
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No.32. Note: In the left-hand member of the first equation in the
exercise, %s should read Yig:

Along the world-Tine of a freely falling particle, the geodesic
equation {43.5) js valid. At any point where the particle is stationary
in the frame, dx /ds = 0 for i =1, 2, 3. Hence, at such a point,

@ i}y {dx*}% _ -
@7 *{4%(33] =0 (1)

Instead of the arc length parameter s, we can employ x®. Then
dxi _ dxi.dxIt dzxi _ a2xl | fdy¥)2 N dxi.dzx“
ds ~ dx*ds * ds? - (dx¥)2 ds ds ds% -

Hence, at a point where the particle is stationary, we shall have

g2x®  d*x™ .(dx“]2

dsz T (dx*)z |ds

where a = 1,2,3. ATso, from the Tirst integral {43.6), we find that at
such a p01nt gqu(dx /ds}?® = 1. Hence

2,0k s O

az T g, (a2

Equations (i) and (i) now yield the result

d2x* _ ol A 1 aJ Ju _ 99
@mye = -9 BTl = -0 Zax‘* Pl
Taking Vi * 95 ij " gugJ /g as in Ex.30, we have
d*x®* 1 aj 99 _ k3 ngu . 99,
Vio (d)2 = ~ 2V4ad Zax‘* -g‘”} e N
since v. = 0. Now
Ty
kj ki _ KJ - & s
Yik9 959 giugkug /91'lb = 5i 1# ufg
Hence,
dzx* 1,03 o J agjk _ 8y
Tia (dx¥)z ~ B -2-(6 g'lq{su/g )2 Taxy -.g;\]
99 9;
_ iv 1 3g T 71y 0G4
= etz +'?‘§* Txh

%
which is the result stated {after correction}.
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be treated as an invariant parameter and, thus, dx”/dx*, d2x%/(dx*)? are
contravariant 3-vectors (velocity and acceleration respectively). Lower-
ing an index, the covariant acceleration vector is

N dZXB i Oy guq Gyt o ag&n

B % Yag(@x®)z © 2’[;;0, * g,, oxk axt
3y
= - e 3o
3y (c* + 2U) Ixt

as may be verified by substituting for U and Vo

For the space-time metric of Ex.31, we have Do = - (c? - rZy?),
Gyy = 0r?. Thus

2
= 2y = . 122 . wr = =
U = - %(ggq +C ) = e, Yy ¥ ?zcz — wzrzjs Yo =Yy T

Hence

i.e. the initial acceleration of a particie placed at a point of the
rotating plane is radial and of magnitude w?r-— this is the acceleration
arising from the centrifugal force to be expected.

No.33. Null geodesic equations in the plane @ = im are

d{2de} _ dfpdt}
HE[rZHE} - HE[AEEJ = 0
-1 [dr}? do}? dt)?
ol ol el

Integrating the first two equations and dividing, we calculate that dp/dt =
CA/r®, where C is constant. It now follows from the third equation that

1l
L]

2
A_I{g';] trf - = 0
or

o= - an)

where X, = & + 1 Thus [a] <R
az = C* ~ R2’ '

Putting r = 1/u, the Tast equation for nuli geodesics reduces to

du -
@ - (a™* - u?)
Hence
¢ = cos *{au) + const.
or r = asec(d + a) a = const.

This 1is the polar eguation for a straight line distant a from the origin.

No.34. Null geodesics in the plane & = L are governed by equations
d{rzdﬂ B
dsi ds ds?
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1 dr}? de}? dti?
S Rt B

As in the previous exercise, we now derive the equations d¢/dt = C/r* and

1 ir}? ¢
1LTTTIFT{35] + r? - f?rh = 0
Putting c?/C? = u, this reduces to the equation stated.

With r? = 1/v, the equation reduces to

B - a6

showing immedjately that v oscillajes betwgen the values A and u; i.e.
r oscillates between the values A 2 and u ¢, Integration of the last
equation leads to the resuit

_1-_12V—A"'|J
¢ = 5sin [__—_k-u ]+const.
Hence
%2 = (A - p)sin(2¢ +a) + X+

The shape of the null geodesics is not affected by the constant
(only their orientation in the plane). Thus, take o = iw so that

2

T2 = (A = p)eos2e + X+ = {A - u)(cos?p - sin2¢p) + A +

Introducing Cartesian coordinates to replace the polars, we put rcosg = x,
rsing = y and v* = x* + y2, Hence

2= (- WOE -y ¢ (0t + ) = 20+ 2
or Ao+ oy o= 1,

We have )
r’¢ = € = c/v
This has the form of Kepler's second law, i.e. it shows that the radius
vector sweeps out an area at the constant rate c/2/u. The semi-axes of
the above ellipse are 1/Yx and 1/vi, so that its area is w//(Au). The
time taken for the radius r to sweep out this area is
T . € 2%

Ou) TR TA

No.35. We derive geodesic equations
d !l .dyt _ df .dzy _  df dt} _
EE[“ ‘aEJ § E@[‘* az] - a;[“aa} =0
2 dx 2 2 dy 2 2 CIZ\L2 . dt 2 _
o (HEJ + o [HE + g s, kai re =

Integrating the first three equations, we find dy/ds = A/o?, dz/ds = B/a?,
dt/ds = /o, where A, B, C, are constants,

Tha Fiwvet dnknmanal rFran bha rvmvnccad Joe dha Lo
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(x* + y* + 2%} - ka = [g-%] = %2

K 1
v -2 = @ = constant
Ne. 36. As explained in section 56, the form taken by equation (26.13)
in a gravitational field is
Fig T %517 By

But., as proved in No.7 of Exercises 5, this reduces to

= -8

ETRG RINEL
Hence, equation (26.13) remains valid in a gravitational field.

Assuming Q; = (0,0,0,x), where x = y(r), the only non-zero

components of the covariant field tensor are F,, = - F“E = dy/dr. Since
gt* = 17a, g2% = 1/r%, g** = 1/{r?sin%s), ¢** = - 1/(bc*), the other
components vanishing, we can raise indices and show that the oniy jongzero
components of the contravariant field tensor are Fi¥ = - F** = - “porde

biith Ji = 0, the first three equations {56.4) reduce to 0 = 0

and the fourth to
d} r2 d ~
HF[%iaBj 3%] = 0

dx _ q
H% - ﬂenr2/(ab)

where g is a constant (and can be interpreted as the charge at G in SI
units). A1l equations (56.5) reduce to 0 = 0.

Hence

Equation (56.6) determines the energy-momentum tensor S}. We
find that

-Sp o= 83 o= 53 o= - Sh o= x'%/(2ugabe?),

where y' = dy/dr; all other components vanish. Note that S = S} = 0,
Lowering indices, we get

Sgp =7 X' Zubety, Sy, = v R/ (2 abe?)
Sys = x'Psin®e/(2u,abc?), S, = x'*/(2nga),
the remaining components vanishing.

Putting a = &%, b = eB, and referring to equations (51.18},

we can write down the Einstein equations (47.15} thus:

%Bu + %E’IZ - %OLIBI - _;I:al = u:bclez = keﬁt/rk (1)

eM(Ire! - drat + 1) =1 = -l rtP = - K/t (i)
0

- 38" - 38'2 + 30’8 - 48 = - ket (111)

where k = Ga?/(4me.c*) {we have used the results u,e, = 1/¢? and k = 8r6/c").
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eB(rB' +1) = 1~ %1

Putting b = e? again, this takes the form

d k
Hf(rb) = 1 - T2
Hence
_ k A
b = 1+ 7z tw s
where A is constant. In the case k = Q, we know A = - 2m. Thus
_ 1 2m . k
b - ‘é‘ - -] - T + on

It can now be checked that equations (i) and {iii) are satis-
fied by this solutiaon.

Neo., 37. Referring to equation (48.6), we have the approximatiocn

1 = -
Tie = 20y #hye s = Py )

But, QJk = 89K 4 Pipst order terms in the hij' Hence
i Jkaai
T = r. = 2h.. . - h.. .
9 ik g 13,3 hJJn)

The condition from Mo.50, Ex.5 for a harmonic frame now takes the form

. o—i —j
gk ﬁﬁwEWF = Xy - 3h

ayd - TS rr,j)

—i =i 1
or X33 T XiPge,r = By )
Putting X' = x' + £, this takes the forf

i _ i i _
.35 7 (858 j)hsy -t )

= h, . - 1h

ir,r re,i

since the 51 are small with the hij'

We have the transformation equation

g, = O <
1 BXI BXJ rs
~ r r S S
or S5+ My = (8 + & )85 + B8 + By
_ i i
= Syy &gt E g F Ry

to the first order of small quantities., Thus

—_ _ _ J . -|
hyg = hyy m 8B
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i i
hos = by - 28

. N . -i _
Hence hii = 0 provided E,i = %hii‘
If the x-frame is harmonic before transformation, then hij
satisfies equation (58.2). Hence, the condition for the frame to remain
harmonic after transformation is then

-i = - =
895 = Mgy Ty < O

No.38. To apply the formula {58.25)}, we need to calculate the second

moments of a uniform sphere with respect to the rectangular axes Oxyz.

We have
I = u[xzdv = ufyzdv = ujzzdv = pf[frzcosze.rzsinedrded¢

having introduced spherical polar coordinates. Thus
a
[ = Zwufﬂcoszesinede X [ rdr = 4mua®/15 = Ma?/5
0 o

since M = 4maty/3, The product moments ujxydv, etec, all vanish on account
of the symmetry with respect to the axes,

Thus ,
2GM d o AGM e .
hiy = hyp = hyy = gEKF‘afz(az) = gEEF(az + ad)
foy = hyy = By, = 0.
No .39, Rename the frame Oxyz for convenience and suppose the rod

rotates in the yz-plane. At the appropriate retarded time, suppose the
rod makes an angle wt with the y-axis as shown in the figure.
=

a+ -

-
1) ‘\\\\\\\’ /7

szdv = JdeV = {xydv = 0

Then we have

a
. . 1
prde = %%f_arzs1n2wt dr = %Mazs1n2mt = EMﬁz(] - ¢os2wt)
a
ujz?dv = MI" r2cos?et dr = AMatcoslut = lMa"-U + cos2wt)
%), 3 3
a
ufyzdv = - %% résinwtcoswt dr = ~ %Mazsinwtcoswt = - %MazsinZwt
-a

Hence
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GMaZ d¢2 .
h;s = §EKF‘H¥2{1 + coswt) = - h22
' ' GMa? d* | . .
h25 = h82 = = ?E%F EE}(STnzwt) = Asin2ut

the remaining components vanrishing,

No.40, In empty space, the Einstein equation takes the form
toastn .oael -
Ry = 36R - 83 0

Contracting by putting j = i, we get R - 2R - 44 = 0, i.e. R = ~ 44,
Substituting for R in the covariant Einstein equation

we arrive at the equation stated.

In the case of spherical symmetry, we can use equations (51.18)
to get the Einstein equations in empty space surrounding a spherical body,

in the form 1 o

%B“ ¥ %812 - %GIB‘ - ?a' = - fle (i)

eTOrg’ - dra 41} -1 = - A2 (i)

- 38" - 1B'% + fa'p' - %B' = - he” (111}
Adding (1) and (i1i), we prove a = - B as in the case A = 0. Thus (if)
reduces to

eP(rg’ +1) = 1-A® or rb tb = 1 - A
. d _ _ a2
i.e apirb)r = 1 - Ar
Integrating, we find 1
b = P - §ﬂr3 + const.
_ - 2m . 1 4

Thus b= 1 -5 -5hr

since the constant is known to be -2m when A = 0.

From equation (48.17), we calculate that the Newtonian potential
U is given by
U = %Cz(ggu - 1)

where - c?g,,dt? is the fourth term in the metric. In our case, ¢,, =

1 - Zm _ %ﬂrz and so nc? 1ﬁ -
S

This potential corresponds to a radial gravitational field whose inward
intensity is

U

du mc? 1
T S o AC*r
mc?/r® = GM/r? is the Newtonian attraction due to a sphere of mass M.
- lﬂczr represents an additional repulsive force, which increases with the

3
distance r from the body.



EXERCISES 7

No.T. We have to substitute ¢ = v/(1 + kr?) in equation (61.8).

Differentiation gives

1 ~ ikr?
dU= +lr\22dr‘
Alse
1 - ikr? :
) -
1= ko™ = [T:—gm]
Hence
do? ~ dn?
I'-ka? ~ T+ 3krE)Z
and
2
ds? = TT“ingFTTT{drz + r2(de*+ sined¢?)} - c?dt?
No.2. We have

wi Y] 4 ki i ok
Ty " +{ki}T *{ki]jT

y With x* = o, x* = 8, x* = ¢, x* = t, the non-zero components of
7' are given at equation (65.4). Thus

AT’
x|

1 being a function of the cosmical time t alone. Also

4 ki _ 4111 4] 2 41 33 { LI QUSTEY
{ki}T - {11}T ’“{22}T +{33T Y laafT

1
EZ

= U

Sg[ -} - T11 + o2T22 UzsinzeTaa]

= 3p8/(c2s)

i

R Y
{k i}T

. . 4
Hence, the conservation equation T !

i 1 3 Y
{4 i}T‘”’ - Wﬁ{/(-g)}ﬁ" = 3uS/S

0 takes the form

;i
. - 3 ]
or S%h + 3uS?S + %épsaé = 0
d 3 :
oy 'a:{_’-(usa) + EZpSZS = 0

If p =0, then uS® = constant,

No.3. Note: 'exp{ZHT)' should read ‘exp(2Ht}"' in the first metric.

Nifferentiating the transformation equations, we find
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dt = dT - 201 - wert/e2)tiar

Whence
p2eMtyqe o 242
AT zp2/c2) 3dre - 2Hr(1-H2r2/c2) 2drdT + H2r2(1-H2r?/c2)beT2}
- ¢*dT? + 2Hr(1-H*r?/c2) 1drdT - ﬂ%gz(]-H’*rz/cz)‘zdr‘2
But

eZH(t"T) = 1 - H%r2/c?

by the second transformaticn equation. Hence

AQEZthaz - c2dt? = (1-H%r2/c?)"idr? - cZ(1-H2r?/c?)dT?

Also
ZHt r2 Z2H{t-T
Aze 0.2 = - s € ( ) = r.z

This completes the transformation of the metric.

No.&. The equation of radial motion of a photon follows immediately
from the metric, viz.

pze?Mtyez - c2qe2 = g

For inwards motion, this reduces to

do _ _ c_-Ht
at - T At
Integration under the initial conditions o = oy, t = t_, shows
that
gy, =~ 0 = -ﬁ%(e"HtD - "Mt
Thus, when o = 0,
o~Hto _ oHE AHo,/c
or t = - %Jog(e_HtU - AHog/c) = t, - %109[1 - ﬂ%ﬁothuJ

Since the time taken to reach the origin is t - t,, this agrees with the
reslt stated.
If

never arrive at 0. The proper distance of the point {g,,6,¢) from 0 at
time t,.is

ﬂégﬁthU > 1, the Togarithm is imaginary and the photon can

J
d = ( uAthﬂdU = AcgthD

0
Thus, if Hd/c > 1 or d > ¢/H, the photon cannot reach 0.

No.5. We make use of eguations (64.6), (63.5), (64.7), viz,
4 = 053/S., z = 20 -1
L A S ’

i

e +
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If k = 1, the last equation gives
£, £
ol d 0 ds
sin tor = cf ~g— = f =
g, g, S0 - 3)

sin~1{(2S,~ D}/D} - sin~*{(28,- D)/D} (1)

n

having used equation {67.8) for & Friedmann universe. We can now calculate
o in the form

2

ﬁz{(ZSO— D)V§1(D - Sy) = (25;- DWS, (D - Sg))
2{(2a - 1)/B{T - BY - (28 - )&l - o)}

where o = §,/0, 8 = 5;/D. Hence

B (20 -~ V)BT ) - (28 - 1)/T — o)}
W78 - 1 - (2 - 1/B)YE(T - o) } (1)

Now, using equaticns {67.17), (67.20)}, we have

8]

q4

#
1

20a”{ (2a

s = C D = 2¢q
0 HoV(Zq,-"T)” Ho{ZG,- T)¥

Whence

a = (209- 1)/200, 5= {1 +2).

Substitution in (ii) now yields the stated result.
If k = -1, we use equation (67.14) and equation (i)} is replaced by
sinh™*c = cosh™2{{25,+ D)/D} - cosh™*{(2S,+ D)/D}

leading to the equation

o = 2{(28 + T)vala + 1) - (20 + 1)VR{8 + 1)}

For this case,
1

_ 2cq . . _ 1
D = W, o = (-l 2q0)/2q0, ~B— = G.(] + Z)

so that the expression for dL works out as for the previous case.
If k = 0, we use equation {67.12) and equation (i) is replaced by
o = 2{/(S,/D) - /(S,/D)}

Hence - - -
S 3 S
di_ = —~5—:{/(SD/D.) - /(SI/D)} = 759 -S—i(_/gi— I]

= Bz + iz +1) - 1)
il
using eguation (67.21)}, This is the stated result with g, = 3.

If z is small, we can use the binomial theorem to approximate to
d, thus:
L

A = _q._ rn w L fa - TV h = . 1,252 nt=-831"1
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{z - 3(q,~ 1)z* + 0{z%)}

a

iy

Then, referring to equation (64.5) for the apparent luminosity 2 of a galaxy,
we deduce that

L LH2 )
A o= Iﬁaf = Hﬁ§%§2{1 - 3(q,- 1)z + 0(z*)3°*2

2
b {1+ (- D)z + 0(z%))

in agreement with equation (64.14),

No.6. Retaining the cosmical constant term and taking p = 0, equation
(65.9} gives

255 + §% + ke? - c2A8% = 0

This can be written

$(s82) = - ke?d + a5
Integration Teads to the result

S3% = - ke’S + cAAS® + constant
or S8 = c3(D - kS + 4AS?)

where D is constant.

Sybstitution for 5% from the last equation into equation (65.10)
shows that wc?us® = 3D,

If k =0, D=0 (i.e. u = 0), then

§2 = %czﬁsz or § = ¢/(A/3)S.

HEt

Integration now yields S = Ae' ", with H = ¢/(A/3). This is equation (66.6)

for the de Sitter universe,

No.7. $82 is a cubic in §, which is stationary where S = x/{k/A}.
Thus, if k = =T and A > 0, or if k = +] and & < 0, the cubic has no real
stationary values and $5% increases monotonically with S if A > 0, and
decreases monotonically as S increases for A < 0. If k=0, 582 increases
monotonically with S for 4 > O and decreases monotonically as S increases
for A < 03 in these cases, $S* is stationary at S = 0 (point of inflexion).
If k =+1 and A » 0, or if k = -1 and A < 0, SS? has a real maximum and a
real minimum; its mindmum value is ¢®(D - 2/3/]A]) and, in sketching the
graphs, we shall assume this to be negative, since |Al is certainly
exceedingly small, The graphs of SS? are now easily sketched as below:

S can be assumed positive and § to be initially positive.
Then, S will increase steadily until § changes sign, which it can only do
by passing through the value zero at S = § Ay Referring to the graphs,
we note that this is only possible in the @a§es (a) k = +1, {b) k = 0,
A<0, (c) k=-1, A<0. In case (a}, if A <0, then S certainly
exists; if, however, A > 0, the § X only exists if the m$§imum of S5% is
negative {as shown)— the condi tibR® For This is 2/3VA > D, d.e. A < 4/(9D%).
Hence, if k = +1, we simply require A < 4/(9D%) for Sy, to exist (if
A = 47(90%), S takes an infinite time to reach the vallg Suny (see Ex.8,
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In the cases (a) k = +1, A > 4/(9D%), (b) k =0, A >0, (c) k = -1,
A> 0, SHAX does not exist and S will increase indefinitely.

If A =0, the evolution of the Friedmann model has already been
discussed in section 67, and we have shown that S increases indefinitely if
k =0 or -1, but achieves a maximum if k = +1. These cases have been included
in the statement of Ex.7,

If k = +1 and A > 0, if S > S {see graph above), then $$2 is pos-
itive and there is a possible motion. Then, if § is initially decreasing, S
will continue to decrease until S = S,, when S must change sign and S will
thereafter increase to +e,

No.8. If k = +1 and A = 4/{9D%), then
2
&2 c _ 2
§§% = ?752(30 25)“{S + 3D),
showing that S = 0 when S = 3D/2 = 1//A. It follows that, if S initially
increases from zero, it will do so monotonically until S achieves its stat-
jonary value 1/¥A. A further analysis proves that S takes an infinite time

to arrive at this value. Thus, putting S = 3D/{(u® - 1), where u decreases
from+= to V3 as S increases from 0 to 1//4, we find that

so that

_ 3/3D((_ 1 1
v f[u2 -1 7w B}d”
3D u-1 u - V3
21?[‘/3109u—+'l' - 1°9m7§] :

the constant of integration vanishing if we take £ = 0 when S = 0 (i.e. u = +»).
Now clearly, as u —» /3, t + +=,

1]



- 142 -

made positive and S will commence to increase— thereafter § cannot vanish
and S+ +», If § < 3D/2, then § <0 and S will commence to decrease——
thereafter S cannot vanish and S + 0.

No.9. Etiminating U between equations (68.7), {68.8B}, we Tind that

2

5§ + §2 ¢ ke? = 3c2ﬁ52

Multiplying through by 2SS, this gives

A(s?8?) =
which possesses the integral

SZéZ =

(- 2ke™S + 3c2hs*)S

-

- kc?§2 + %czﬁs“ + const,
verifying the stated result.

Substituting for §2 into equation (68.8), this shows that

3D = kUS™.
No.10. $2$2 equals a quartic in S, which is stationary where $ = %ﬁégé
or S = 0. Unless k and A have the same sign, therefore, there is only one
stationary point at S = 0. The various possibilities are illustrated below:
&3 A =i | SET
A>O <D
- I///’" Sraax
£
- B/
2 i (&) H
- \/ "
]
2 s
2D
t i
Smax : '
! k=D :
3] S : :
e =
- fe 2 a -
A =+1,0 /f ;g A A
. |
< O =
A A<LO
If k = +1, A > 0, the minimum value of 5282 equals c2(D - 3/{44}))
and SMAX only exists provided D < 3/(4A), i.e. A < 3/(4D). We conclude that

SM X exists in the cases (a) k = +1,
A 5 0: in these cases S increases to §
other cases, S increases indefinitely.

No.31.

SZéZ =

dt

2vD

A< 3/(4D), (b) k =0, A<0, (c) k=
MAX and thereafter decreases. In all

S

._]’

Ik =1, A =3/(4D), the equation of Ex.9 can be written
2
f%(zn - §2)2

Clearly, S can increase from ¢ to a maximum /(2D). We have
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Whence
vD

t = “"—6“

log(2D - $%) + const.

IfS=0att =0, the constant

%?JogED. Hence

o 20
t = Tlogp—=r

or 5% 2D0{1 - exp{-ct/vD)}.
This shows that the universe takes an infinite time to reach the static
state S = /(2D).

If the universe is disturbed slightly from such a static state,
if S > /(2D), then S has been increased and S © 0; § now increases indefinitely
since S cannot pass through the value zero. If S < /{2D), then S has been
decreased and $ < 03 S now decreases towards 0 and S cannot change sign. We
conclude that the static universe is unstable.



