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A
Chapter 4

His answer trickled through my head, like water through a
sieve.

Lewis Carroll

1.1. Find a formula for 1 + ngl j'j and use mathematical
induction to prove that your formula 1s correct.

a2
v Asroi Tne sums for n = 1,2, 3, 4,5 ®2, 6, 24,120, 720.
These are factorials; better, they are 21, 31 4t 5! 6! We have
been led to the guess

S(n): 1+ 5521 34 = (n+ DL

_/

We now use induction to prove that the guess Is always true

The base step S(1) has already been checked; W@%éﬁ):z'

—

For the inductive step, we must prove

Stn+ 1)1+ 2505 gy = (n+ 2L
Rewrite the left side as [1 + 251 jljl + (n + 1)i(n + 1). By the
inductive hypothesis, the bracketed term om=tiedeftsige Is
(n + 1), and so the left side equals (n + 1M+ (n+n+1)=
(n+ D1 +n+]={n+lin+ 2) = (n + 2). By induction,
S(n) is true for all n 2 1.

—

1.2.1f r = 1, prove, for all n =2 1, that
L+r+r2+rd+ -+l = ("= 1)/ - 1)

« The statement S(1) is true because the left side is 1 (this is

what the forrmula 1 +r + r2 + r3 + o 4 rn_l means when n =

1), while (r - 1)/(r -1) =l aswelllr-1=0 because r = 1l



Inductive Step: We state S(n + 1):

[L+r+r2+rd+ + pnlp e pn = (P2t - 1)/ - 1)

The inductive hypothesis allows us to rewrite the left side as

(r™ - 1)/(r - 1) + 1" (r? -1+ (r-0r™/(r-1)

- (el - 1) /(e - 1)

One can also prove the formula by showing that

(r'l)(1+r+r2+r3+...+rn—1)=r.n_l.
The proof here does not use induction explicitly (but it uses

other results needing induction in their proofs; e.g., the
generalized distributive law).

(r - 1)1 +r+r2+ T S
=r(1+r+r2+r3+---+rn'1)—(1+r+r2+r3+ C 4
=r+r2+r3+~~+rn+(—l—r—r2—r3—----rn’l)
=r? - 1.

1.3. Show, for all n =z 1, that 10" leaves remainder 1 after

dividing by 9.

x We prove, by induction on n 2 1, that there is an integer dn

with 10" = 9qp, + L.
Base Step: n = 1. Since 10 = 9x1 + 1, we may set gqq = 1.
Inductive Step: We are to prove S(n + 1)

107*1 = 9q,,,1 + 1 for some integer dn+1.

3]



The inductive hypothesis gives an integer ¢, with

10" = 9q, + 1.
Hence
100+t = 10x10" = 10(9gy + 1)
= 9(10gp) + 10

- 9(10q,) + 9+ 1

= 9(10q, + 1) + 1. \
Define qp+1 = 10qn + 1; it s an Integer because qn

1.4 11 a

< b are positive numbers, prove that a™ < b™ for all
integers n z

0.

x Base step. ad =1 = KO,

Inductive step. an+tl - 530 < ab®™, using the inductive

hypothesis and Theorem 1.4(1), and ab"™ s bb" = pi*l again
using Theorem 1.4({i).

1.5. (i) Prove that 12 + 22 4+« + n% = n(n + 1)(2n + 1)/6.

x Base step: 1(1 + 1)}(2 + 1}/6 =

Inductive step:

12+ 924+~ +n2l+(n+1)%= [nln+1)2n+ 1)/6] + (n + 1)2

(h + 1)n + 2)(2n + 3)/6.
(ii) Prove that 13 + 23+ 4 no = (1 + 2+ + n)2.

% Base step: When n = 1, both sides equal 1.



Inductive step:

[13+23+~-+n3]+(n+1)3=(1+2+-~+n)2+(n+1)3

n

[n(n + 1)/212 + (n + 1)°

(n + 1)%(n + 2)%/4

(1 42+ +n+(n+1)%
using Theorem 1.6.
(iii) Prove that
19+ 2%+ -+ n? = n%/5 + n%/2 4n3/3 - n/30.
» Base step:
1/5 +1/2 + 1/3-1/30 = (6 + 15 + 10 ~ 1)/30 = L.
Inductive step:
19+ 2%+ ~ +n+ (n+ D4

n8/5 + n4/2 +n3/3 - n/30 + (n + 1)°

(n+1)5/5+(n+1)%/2+(n+1)3%/3-(n+1)/30.

1.6. (i) Find a formula for ap = 13 + 33 +8% + % (2n - 1),
and then prove that your guess 1s correct using induction.

% Comparing small values of a, with corresponding values of

nd and n? ultimately leads to the guess: a, = on? - n?. The
proof by induction follows.

Base step: If n = 1, then ay = 13 = 1, while 2x1% - 12 = 1.



Inductive step: We must prove that

13+33483 4 4+ (2n-1)3+(2n+1)3

8n+l

2(n + 1)% - (n + 1),

Now

134334534 _+(2n- 1%+ (2n+ 1)°

[13+33+53+...+(2n- 1)3]+(2n+1)3 \

= ot - n?+ (2n+ 1)3.

It is now a matter of high school algebra to expand this and
compare it to the expanded form of 2(n + 14 - (n+ 1)2

(ii) Give a second proof of part (1) based on Exercise 1.5(ii) and
the following observation: If by, = 13 + 23 4+ 3% 42 (2n)°,
then Nedols

boy = ap + (25 + 43 + .+ (2n)%] 2x

—

~

ap + 8[13 + 2% + .+ n?]

-

ap + 8by,.
»x By Exercise 1.5(i1),
b = Yn2(n+ 1% and by, = %(2n)%(2n + 1%

By the hint,
An

1

bon - b

% (2n)2(2n + 1)2 - 8[4ncn + 1)4]

Y% [4n2(4n? + 4n + 1) - 8n¢(n? + 2n + 1)]

H

n?(4n? + 4n + 1) - on4(n? + 2n + 1)



3

4n% + 4n° + n? - (2n4+4n3+ 1)

ond - nz.

n

7 (i) If n = ab, where n, a, and b are positive integers,
then either a < /n or b= /n.

x If, on the contrary, a > /n and b> /n, then
n = ab>/ns/n = n,
a contradiction.

(ii) If n > 2 is a composite integer, prove that it has a prime
factor p with p = .J/n.

% Since n is composite, n = ab, where 2 < a and 2 £ b. By
(i}, we may assume that a s /n. By Theorem 1.2, either a 1s
prime or a product of primes. In either case, there is a prime
p dividing a (perhaps p = a), hence dividing n)with

p <acsJ/n

Gi) If fin) = n? - n + 41, use part (ii) to show that f{10),
f(20), {(30), and {(40) are prime.

% [t suffices to show that no prime < /f(n) is a divisor of f(n).
If n =10, then f(n) = 131. Since J131 = 11.45, we see that
131 is prime if it is not divisible by 2, 3, 5, 7, or 11. And one
checks easily that 131 is not divisible by any of these numbers.

Similarly, {(20) = 421, J421 = 2052, and one must check
whether 421 is divisible by the primes < 19; f(30) = 971, /971
~ 3116, and one must check whether 971 is divisible by the
primes < 31; f(40) = 1601, /1601 = 40.01, and one must check
whether 1601 is divisible by the primes < 37.



1.8 Prove that (1 + x)% 2 L +nx if 1+ x>0

x We prove the inequality by induction on n 2 1. The base step
n = 1 is obvious. For the inductive step,

(10t = (1+ 3L+ 307> (1 +3)(1 + nx)
[because 1 + x > 0]
=1 +(n+Dx+nxlz1+(n+1x
(The binomial theorem should not be used here.)
1.9. (i) Prove that 2" > n® for all n 2 10.

« Base step: 210 = 1024 > 10° = 1000. (Note that 2% - 512 < 9% =
729.)

Inductive step (n = 10 implies n z 4): The inductive hypothesis
is 2 > n°: multiplying both sides by 2 gives

on+1 _ 2,905 243 = n3 4+ n% 2 nd +4n?

v

n3+3n2+n2>n3+3n2+4n

n3+3n2+3n+1=(n+1)3.

v

(ii) Prove that 2™ » n? for all n > 17.

v

« Base step: 217 = 131072 » 174
(Note: 164 = (2% = 216

83521.

Inductive step (n z 17 implies n 2 7). The inductive hypothesis
is 2 > n% multiplying both sides by 2 gives

on+l _ o.on, ond o 4+ n4 > n+5n°

\%
3
+
NN
o



n4+4n3+6n2+n22n4+4n3+6n2+5n

v

n4+4n3+6n2+4n+1=(n+1)4.

v

1.10. Let gq(x), ..., gn(x) be differentiable functions, and let f(x)
= g1(x)gn(x). Prove, for all n 2 2, that the derivative

f'(x) = gl'(x)gg(x)"'gn(x) + 22 gl(x)“‘gi_l(x)g{(x)gH1(x)“'gn(x).
x Base step n = 2. the usual product rule for derivatives.

Inductive step: Define h(x) = g1(x)-gn(x) = f(x)/gns1(x). Rewrite

the conclusion: f'(x) = 2 ?111 gj'(x)f(x)/gj(x); now

f'(x)

(h{x)gn+1(x))

1

h'(x)gn.1(x) + h(x)g' ,(x)

.2 [gi'(x)h(x)/gi(x)}gm 1(x) + [f(x)/grne1(x)g' (%)

5 7Y gl 0f(x)/g(x).

1.11. Prove that every positive integer a has a factorization
a = Ekm, where k » 0 and m is not a multiple of 3.

x Second form of induction on a 2 1.
Base step: Take k = 0 and m = 1.

Inductive step: 1f a 2 1, then a 1s either not a multiple of 3 or
it is. If a is not a multiple of 3, then take k = 0 and m = a. If
a is a multiple of 3, then a = 3b. By the inductive hypothesis,

b = 3%, where ¢z 0 and n is not a multiple of 3. Hence, the
desired factorization of a is a = 38+1p,



1.12. Prove that 2" <n! for all n z 4.

The proof is by induction on n 2 4.
Base step. If n = 4, then 2% = 2% = 16, while n! = 4! = 24, and
16 < 24.

Inductive step. We must prove the statement for n + 1,
namely, on+l ¢ (n + 1)I. Multiplying both sides of the nth
staternent 27 > n! by 2, we have

on*l = 9x20 ¢ 2xnl
But since 4 £ n, we surely have 2 <n + 1, so that

2xnl < (n+ 1)n! = (n+ 1),

as desired. \ Loty

1.13. If the Fibonacci sequence is Fg, Fq, Fg,@, where Fp = 0,
F{=1,and F, = Fpq + Fp-pforall n=z 2, prove that F, < 2"
for all n 2 0.

x The proof is by the second form of induction.

Base step: Fp = 0 ¢ 1 = 29 and Fy = 1 ¢ ol =2

(There are two base steps because we will have to use two
predecessors for the inductive step.)

Inductive step: If n 2 2,
F,=Fp.1 *+Fn-2¢ on-1 4 on-2 ( on-1 4 on-1 _ sxon~1 o on

Notice that the second form is the appropriate induction here,
for we are using both S(n - 2) and S(n - 1) to prove S(n).

1.14. For every acute angle &,1e, 0" <8< 90°, prove that
sin @ + cot & + sec & = 3.

<« That © is an acute angle implies that the nurmbers sin @,
cot &, and sec 9@ are all positive. By Theorem 1.11,



[Ya(sin © + cot & + sec 9)]3 > sin 9cot &sec §.

Now
sin gcot gsec & = sin 9(cos ¢/sin @)(1/cos &) = 1.
Therefore,
[Va(sin @ + cot & + sec NP 21,
Ya(sin 9 + cot & + sec 9) 2 1
and
sin @ + cot & + sec @ z 3.
1.15 Prove that if aq, ap, =, ap are positive numbers, then

(ag + ap + ~ +ap)l/ag + L/ag + — + 1/apn) 2z n<.

x By Theorem 1.11, [(ag + ap + -~ + ap)/n|" 2 ajaza, and
[1/a4 + 1/ag + — + 1/ap)/n|® 2 1/ajapay. Therefore,

[(ag + ap+ = +ap)/n]"[1/ag + L/ag + = + 1/ay)/n]" 2
ajap - ap/atap ap = 1.
Taking nth roots, we have
[(ag +ap + = +ap)/n][1/ag + L/ap + ~ + 1/a,)/n] 2 1,
2

and so {ag + ap + ~ +ap)(l/ay + L/ag + —~ + 1/an) 2 n°.

1.16. For every n = 2, prove that there are n consecutive
composite numbers.

x1f 2<ac<n+1,then a isa divisor of (n + 1)} say, (n + 1)!
- da for some integer d. It follows that (n + 1) +a = (d + 1)a,
and so (n + 1) + a is composite for all a between 2 and n + 1.

10
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1.17 Show, for all r with O < r < n, that
(¥) = (a24).

« By Theorem 1.19, both (y) and (42, ) are equal to
n'/ri(n - r)l.

1.18. Show, for every n, that the sum of the binomial

—_—

coefficients is 27

(B) + () + (B) + - +(5) = 27

x Use Corollary 1.20 with x = 1.

1.19. (i) Show, for every n, that the "alternating sum’ of the
binomial coefficients Is zero:

B -M+® -G =0
% Use Corollary 1.20 with x = -1.

(ii) Use part (i) to prove, for a given n, that the sum of all the

binomial coefficients (?) with r even is equal to the surn of all
.

those (7) with r_ odd.

x In the alternating sum, ali the "even' terms have one sign,
and all the "odd" terms have the opposite sign. Since the
alternating sum is 0, transposing gives the result.

1.20. What 1s the coefficient of 16 in (1 + X)ZO?

x Pascal's formula gives (128) = 4845,



1.21. How many ways are there to choose 4 colors from a
palette containing 20 different paints?
2}}]) -

« The answer is "20 choose 4" = ( = 4845%5. One can calculate

with Pascal's formula, or one can use the symmetry in
Exercise 1.17 and the calculation done in Exercise 1.20.

1.22 Prove that a set X with n elements has exactly 2"
-

subsets. -
x There are many proofs of this. We offer three: a proof with
binomial coefficients, an algebraic proof, and a combinatorial
one.

Binomial coefficients. By Exercise 1.18,

(0) + (1)~ (D) + ~ +(5) = 2™

On the other hand, (r;) is just the number of subsets of X
having exactly r elements. Thus, (§) is the number of subsets

with r = 0 elements (there 1s only one, the empty set &), (?)
is the number of subsets with exactly 1 element (there are n

such), (2) is the number of subsets with exactly 2 elements,
and so forth. Every subset S of X 1is counted, for 5 must
have r elements for 0 < r <n.

b

Algebraic. Let X = (a1, ap, =, ap). We may describe each
subset S of X by an n-tuple (g1, €2, =, €y), where g; = O if
a; isnotin S and g = 1if a; isin S (after all, a set is
determined by the elements comprising it). But there are

exactly 27 such n-tuples, for there are two choices for each
coordinate.

Combinatorial Induction on n 2 1 (taking base step n = O 1s
also fine; the only set with 0 elements i1s &, which has exactly
one subset, itself). If X has just one element, then there are
two subsets: @ and X. For the inductive step, assume that X
has n + 1 elements, of which one is colored red and n are

B



colored blue. There are two types of subsets S: those that are
solid blue; those that contain the red. By induction, there are
oM solid blue subsets. There are as many subsets containing the
red as there are solid blue subsets: each such subset arises by
ad joining the red element to a solid blue subset (even the
singleton subset consisting of the red element alone arises in
this way, by adjoining the red element to &). Hence, there are
on 4 20 = 201 subsets.

1.23. A weekly lottery asks you to select 5 numbers between 1
and 45. At the week's end, 5 such numbers are drawn at
random, and you win the jackpot if all your numbers, in some
order, match the drawn numbers. How many selections of 5
numbers are there?

x The answer is "45 choose 57, which 1is (455) = 1,221,759. The

odds against your winning are more than a million to one.

1.24. Assume that term-by-term differentiation of power
series is valid: if

f(x) = Zx>0 akxk = ap + a1x + a2x2 + -+ apxt o,
then the power series for its derivative f'{x) is

2 + . 1 + P

f'(x) = Zga1 kakxk-’l = ay + 2ap%x + 3azx ©+ napx"’

(i) Prove that f{0) = ag.

x f(0) = cgq, for all the other terms are 0. (If one wants to be
fussy--this is the wrong time for analytic fussiness--then the
partial sums of the series form the constant sequence cg, €0,

Cok} N\ Ldet

(ii) Prove, for all n z 0, that the nth derivative

(0 (%) = Spop kik - 1k - 2)(k - n+ Dapxk ™7,

13
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[f(O)(x) is defined to be f(x)]. Conclude that a, = £n)(Q)/nt for
all n =2 0.

x One prove this by induction on n 2z 0. The base step Is
obvious because £(0)(x) is defined to be f(x). For the inductive

step,
(MMI«EJ
(n+ D) = (Ml A T~

[Zysn kik - 1)k - n + 1)akxk-n©

1}

Sian Kk - 1)k = n + 1)k - n)agxk™m7L,

by term-by-term differentiation. Notice that the constant
term in the expansion of £(n)(x) involves a,, so that this term

is not present in the expansion of f(n*l)(x); thus, the

summation is really/\k >n+ 1.

Sorv

1.25 (Leibniz) Prove that if f and g are C%-functions, then
(fg)(n) _ Z?@O (i)f(k)g(n"k).
% Base step. If n = 0, then the left side 1s (fg)(O) = fg, while the

right side is (%)f(O)g(O) = (%)fg = fg, because (%)= 1.
Inductive step. -

(o)D) < [(1g) (D W

5% (1) f(k)g(n*k)@

_ zkr=10 (i) [f(k+1)g(n—k) + f(k)g(n—k+1)]

EKQO (r}:) f(k+1)g(n—k) + szO (rﬁ) f(k)g(n—k+1)

= () re +((1) + (511D L(B) +



()] €3)g(n-2) 4 () + (3)) £V 3+ 4 (7)) 110)g

Now add, using Lemma 1.18.

1.26. Prove, for all n = 0 and for all r 2 0, that
(8) +(n1+1) + (n2+2) + +(n:r) =(n+:+1)_

x We use induction on r z 0.
Base step. If r = 0, then the left side is (§) = 1 while the right

side is (“51) = 1.
Inductive step.

(B) +(PF1) + (g2) + -+ +(F)1+ (071

- (n+;’+1) +(nr+:1+1)

(n+r+ 1) +n+r+ 1)
riln + 1)! (r + Dn!

(n +r + 1) 1 + 1

rin! n+1 r+1
={n+r+ 1) n+r +2

rin! (n+ 1)r + 1)
= (n;:1+2)'

Remark. A proof by induction on n 1is more complicated.
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Chapter 2

2.1. (1) In Figure 2.11a, QPSR is a rectangie and YZSR is a
parallelogram. Show that AQYR and APZS are congruent.

Q Y P Z

Figure Z2.11a

x AQZR and APYS are congruent by “side-angle-side™ |QR] =
IPS| (opposite sides of the rectangle), IRY| = ISZ| (opposite sides of
the parallelogram), and the included angles are right angles.

(i) Show that one can construct the parallelogram YZ5R from
the rectangle QPSR by cutting off APZS and pasting it in
position AQYR; conclude that the parallelogram has the same
area as the rectangle.

x areal(ZYSR) = area{PSRQ) - arealAQYR) + area(APZS). By (i),
however, arealAQYR) = arealAPZS).

(iii) Prove that the parallelogram YZSR has the same area as

the rectangle QPSR when Y is not between Q and P (see
Figure 2.11b.)

Q

R b S c X
Figure 2.11b



x Note first that AQYR = AXSZ, by “side-side-side”: |QR| = a =
IXZl; IRY| = 1ZSl; ¢ = IXS| = IXR] - ISRI = 1QZ] - IYZ| = IQY|. (One
could, instead, use the fact that two right triangles having the
same hypotenuse and one leg must be congruent.) Therefore,
both triangles have the same area, namely, Ysac. We now
write the area of the rectangle QZXR in two ways:

alb + ¢c) = 2(0%2ac) + p,

where p 1s the area of the parallelogram YZSR. It follows
that ab = p, as desired.

2.2. Show that the area of the trapezoid is *2{a + b)h.

. b
Figure 2.12a

x Dissect the trapezoid into two triangles using the dashed
diagonal. The area A of the trapezoid is the sum of the areas
of the two triangles:

A = Y»ah + ¥2bh = Y2(a + b}h.

2.3 Assume, in Figure 2.13, that PA, EH, and QR are parallel.

p A
£ P G/H
Q R

Figure 2.13

17



If P and Q are points, let us denote the length of the line
segment PQ by [PQl Prove that |IEF| = |IGH|, and conclude that
Cavalieri's Principle applies to APQR and AAQR. (Hint. Let ¢
and ¢' be parallel lines, and let t and t' be transversals. If
2" is parallel to ¢ (and to &), then ¢ divides the
transversals proportionally. In Figure 2.13, IPE|/IPQl = |AHI/IAR])

% Since APEF and APQR are similar, [PEI/IPQl = IEFI/IQRI, and
since AAGH and AAQR are similar, |AHI/IAR| = |GHI/IQR]. By
the hint, |[PEI/IPQl = |AH|/IAR|. Therefore, IEF|/IQR! = |GHI/IQRI,
and so |EF| = IGH|.

2.4 Let a and b be integers.
(i) If a is even, then ab is even for every integer b.

% Since a is even, a = 2m, and so ab = (2m)b = 2{mb) is
even. )

(ii) If both a and b are odd, then ab Is odd while a + b 1is
even.

x Since both a and b areodd, a = 2m + 1 and b= 2n + 1
for some integers m and n. Thus,

ab = (2m + 1H2n + 1)

4dmn + 2m + 2n + 1

= 22mn +m+n)+1,
while
a+b=2m+1+2n+1=2{m+n + 1).

(iii) If neither a nor b Is a multiple of 3, prove that ab Is
not a multiple of 3.

x Dividing a by 3 leaves remainder either 1 or 2, so that a =
3g+ 1or a = 3g+ 2 tor some integer g; similarly, b also has
one of these forms. There are thus four cases to check (all are
easy). For example, ab = (3g + 2)(3t + 2) = 9qt + bg + 6t + 4 =

18



3(3gqt + 2q + 2t + 1) + 1; that is, dividing ab by 3 leaves
remainder 1 (and not 0), so that ab 1s not a multiple of 3. One
deals with the other three cases in the same way. —/a/

NoterCongruences-are—dome—ta—the next course.

2.5.1f r = p/q is a nonzero rational number, show that r + /2
and rJ/? are irrational numbers. Conclude that there are
infinitely many irrational numbers.

% Suppose, on the contrary, that r + J2 1s rational;, that lis,
there is a rational number r' with r'=r + /2 Thus, /2 =

r' - r is also rational (for the difference of two rationals is
rational), contradicting Theorem 2.5. A similar argument, using
the (easily proved) fact that the quotient of two rationals is

also rational, shows that rJ/2 is irrational (when r = Q).

2.6. Use the Pythagorean theorem to prove that if a s the
side length of a cube and |AB| is the length of a diagonal joining

opposite corners, then x% = 3a‘,

A

D a C
Figure 2.14a

% In the cube drawn in Figure 2.14a, all side lengths are equal
to a, and we seek the length |AB|. Applying the Pythagorean
theorem to ABCD (lying on the floor), we see that IDBIZ = 2aZ,
Now apply the Pythagorean theorem to AABD to see that
IABIZ = 2a2 + aZ = 3aZ.

19



2.7 Prove that /3 is irrational.
x Assume, on the contrary, that J3? is rational; that is,
J3 = p/q,

where both p and g are posifive integers (with g = 0). By
(i), p = 2k and g = 3¢n where k, £ 2 0 and both m and n
are not a multiple of 3. If k 2 ¢, then p/q = 3kt /n. We may
thus replace p by zk-4n and g by the number n (which 1s
not a multiple of 3); a similar replacement can be made 1f

k ¢ ¢ Therefore, we may assume that at least one of p and g
is not a multiple of 3.

Squaring both sides, 3 = pz/qz, and cross rmultiplying gives

3q2 = p-©.

Now p must be a multiple of 3, otherwise p2 would not be a
multiple of 3, contradicting p2 = 3q2 and Exercise 1.11. Hence,
p = 3r for some integer . Substituting gives 3q2 - (3r)? = 9r2,
so that

q2 = 3r2

I+ follows, as above, that g 1s a multiple of 3, contradicting
our assumption that at least one of p and g 1s hot a multiple
of 3.

2.8. (i) Prove that an integer m 2 2 is a perfect square if and
only if each of its prime factors occurs an even number of
times.

= Let m = peqf--' be the factorization into primes, where we
have collected all like primes together. 1f all the exponents e, f,

are even, say, e = 2e, f = 2f', ..., then m = p29|q2f'---. If we
define a = pe‘qfl---, then a Is an integer and a? = m. Thus, m

is a perfect square.



Conversely, assume that m = a2. 1f the prime factorization

of a is peql~, then m p2eq2f---, and so every prime factor

of m occurs an even number of times.

(ii) Prove that if m is a positive integer for which /m is
rational, then m is a perfect square. Conclude that /2, /3, and
J6 are irrational.

x If /m = a/b, then m = 22/62 and mb? = a% Now every
prime factor occurs an even number of times in both mb? (=
a?) and in b? so that every prime factor occurs an even

number of tirmes in m. By (1), rm 1s a perfect square, and so
Jrm is an integer. -

(iii) If n 1is a positive integer, show that ns +n?is a perfect
square if and only 1if n + 1 is a perfect square.

x 1f n°+ n? is a perfect square, then there 1s an integer a

with a2 = n3+n? = n2(n + 1), Hence n+1 = (a/n)2, /n + 1is
rationa!, and, by (), n+1 isa perfect square.

2.9 Let p be a prime number, and consider the number

N =1+2x3x5x7x11x = xp. \Qdaaf

e
Prove that none of the prime numbers 2, 3.5, 7, 11,(-9, p
used in the definition of N 15 a divisor of N.

« 1f a and N are positive numbers, then we may divide N
by a obtaining the quotient ¢ and the remainder r (where
0 <r<a) We write this as the equation

N =qga+r.

Of course, a is a divisor of N precisely when r = 0. Now N 1is
an odd number, so that dividing N by 2 leaves remainder 1,

that is, N = 2g + 1, where g = 3x5x7x-xp. Similarly, dividing
N by 3 also leaves remainder 1 (g = 2x5x7x-xp); indeed,



dividing N by any of the numbers 2, 3, 5, 7,., p leaves
rermainder 1 and not 0.

2.10. Use Exercise 2.9 to prove that there are infinitely many
prime numbers.

x Suppose there were only a finite number of primes. One
could then write a list of them, savy, 2 3,5, .., p. Since finitely
many numbers can be multiplied together, the nurnber N =1
+ 2x3x5x7x11x~ xp is defined. By Exercise 2.9, none of the
primes 2, 3, 5, .., p 1Is a divisor of N, and this contradicts
Theorem 1.2, for every positive integer z 2 1s either a prime or
a product of primes.

2.11. (i) If p = 11, the number N in Exercise 2.9 is 2311,
Show that 2311 is prime.

x /2311 < 48, and so one need check only whether primes up
to and including 47 divide 2311.

(ii) If p = 13, the number N 1Is 30031. Show that 30031 is not
prime.

x 30031 = 59x509.

(iii) If p = 17, show that 191s a divisor of N = 510511.

%x 510511 = 19x26869.

212 A mad architect has designed the symmetric building
shown in Figure 2.15. Find the area of the building's front (not
counting the two circular windows (of radius 2) and the
sermicircular entrance way), given the dimensions in the figure.

x The area is 2040 - (75 + 175 + 80) = 1710.

213 Use a dissection of a cube having side lengths a + b to
prove

(a + b)° = 23 + 3a2b + 3ab® + B3,

tJ
r2
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Consider the front siab of the cube having sides of length a + b:

it consists of 4 boxes having volumes a3, azb, azb, and ab?.

b a a\{ °

a b = b

The back slab also consists of 4 hoxes they have volumes a2b,

ab?, abZ and bv. The volume of the whole cube 1s (a + b)° as
well as the sum of the 8 boxes.

2 14 Give another proof of the Pythagorean theorem
(attributed to U.S. President James A. Garfield). Take a vertical
line CC' of length a + b, and construct two replicas of AABC
as in Figure 2.28.



Figure 2.28

%« Construct Figure 2.28 by drawing two copies of the original
right triangle: AABC and AAB'C'. Notice that A BAB' = 907,
for the sum of the three angles at A 1s 180°, and the other
two angles at A are the acute angles of AABC. Thus, CBB'C 1s
a trapezoid whose area T can be computed in two ways. On
the one hand, Exercise 2.2 gives T = *2(a + b)x(a + b); on the
other hand, T is the sum of the areas of the three triangles:

T = Yab + Y2ab + Vac?.
Therefore,
Ya(a + b)% = ab + Yyl

and high school algebra gives a2 + b2 = 2,

215 (i) In a triangle with sides of lengths 13, 14, and 15, what
is the length of the altitude drawn to the side of length 147

% A "slick” way is to see that one can construct a triangle with
sides of lengths 13, 14, and 15 by pasting together a right
triangle with sides 5, 12, 13 and a right triangle of sides 9,
12, 15, as in the figure below.
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It follows that the length of the altitude drawn to the side of
length 14 1s 12.

Here is a less tricky solution. The altitude divides the side of
length 14 into two pieces of lengths a and b, so that a+b =
14: it also divides the triangle into two right triangles. The
Pythagorean theorem gives the equations

h? = 152 - a?
h? = 132 - b2,
Hence, 15¢ - aZ - (132 - b?) = 0, so that
22 - p2 = 152 - 132 = 225 - 169 = 56;

that is,
(a - b)la + b) = 56.

But a + b = 14, so that a - b = 56/14 = 4. We solve the
system:

a+b 14

a-b

n

4,

2 =9 and b =5 Finally, h? = 1582 - a2 = 225 - 81 = 144, and
so h =12

(ii) Find the area of this triangle.
= The area is 2x12x14 = 84.

2.16. Given a right triangle with perpendicular sides a and b,
find the side s of the inscribed square.
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Figure 2.2%a

% The area of the given triangle1s A = Y, ab. A diagonal of the
square divides the given triangle into two triangles, as in
Figure 2.2%9a. Thus

A = Yaas + Yabs = Y2(a + bls.

From Ysab = Y%(a + b)s, we obtain s = ab/(a + b).

2.17. Given a right triangle with legs a and b, find the radius
r of the inscribed circle.

Figure 2.30a

% Draw line segments from the vertices of the triangle to the
center of the circle. The triangle of area 2ab 1s thus divided
into three triangles. It follows that

Yaab = Yaar + “2br + Yacr,
where c is the length of the hypotenuse. Thus

.

ab = (a+ b+ dr,
and

r = ab/(a + b + c}, where ¢ = a% + b2,



2.18. The length of the perimeter of a right triangle 1s 60 units,
and the length of the altitude perpendicular to the hypotenuse
is 12 units. How long are the sides?

« If a and b are the lengths of the perpendicular sides and ¢
is the length of the hypotenuse, then

a+b+c=60 and a2+b2=c2.

The area of the triangle can be computed in two ways: it is
Yoab as weil as 2 x12c¢c. Therefore,

ab = 12c.
It follows that

(60 - )2 = (a + b)2 = a2 + b? +2ab
- c?+ 2ab = c2 + 24c,

or
3600 - 120c = 24c.

Thus, 144c = 3600, and hence ¢ = 25. 1t follows that
a+b= 35 and ab = 300.

Setting b = 300/a gives a + 300/a = 35; we rewrite this as
al - 354 + 300 = 0. The quadratic formula now gives

a =15 and b = 20.

2.19. A cylindrical column has height 30 feet and
circumference 8 feet. A garland is wound evenly, In spiral
fashion, 5 times around the column, reaching from top to
bottomn. Show that the garland must be at least 50 feet long.

xThink of the cylinder as a 30 by 8 rectangle which has been
rolled up. If we unroll the cylinder, we see five rectangles, each
6 by 8, as in the figure.
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The portion of the garland in any of these small rectangles
must go, in some way, from the upper right corner 1o the
lower left corner. The shortest such path is the straight line;
that is, the diagonal, which has length 10, by the Pythagorean
theorem. The garland is thus of length at least 5x10 = 50 feet.

2.20. (i) Show that an equilateral triangle A with side lengths
5 has altitudes of height a/3/2.

«The Pythagorean theorem gives 22 = (a/2)? + hZ and this
gives h = a/3/2.

(i) Show that the area of A is a2/3/4.
x area = vaxaxa/3/2 = aJ/3/4.

2.21. Find the area and circumference of the circumscribed
circle of a regular hexagon whose sides have length s

x The radius of the circumscribed circle is s, and so Ag = ws?
and Lg = 2Ts.



2.22 Find the area and circumference of the circumscribed
circle of an equilateral triangle whose side has length s.

« Let r be the radius of the circumscribed circle and let h be
the height of the equilateral triangle. By Exercise 2.20,

h o= s/3/2.
Moreover,
r = 2h = sJ/3/3.

Thus
Ay = arl= Yms? and Ly = ZWr =27s/3/3.

2.23 s there a Pythagorean triple (a, b, ¢) with a = 1 or 27

= No. In a Pythagorean triple, c? - p? = a?, so that (c + b)(c - b)
= 22, 1f a = 1, then 22 = 1; since there is only one
factorization of 1 Into positive integers, sO that c+b=1=

c - b, forcing b =01 a=2 82 sinilar contradiction arises
from(c+b)(c-b)=4.Either c+pb=2=c-b or c+b=4
and ¢ - b =1;1In the first case, b = 0, and in the second case, €

= 5/2.

2.24. (1) Verily that (781, 2460, 2581) 1s a Pythagorean triple.

x One can verify that 7812 + 24602 = 25812

609961 + 6051600 = 6661561,

or one can check that 781 = q2 - p2, 2460 = 2qp, and 2581 =
q2 + pz, where q = 41 and p = 30.

(ii) Verify that (3 993, 7 972 024, 7 972 025) is a Pythagorean
triple.

» A hand calculator with an 8 or 9 digit display is inadequate
for this problem.



(3993)2 15944049

(7972024)2 = 63553166656576

(7972024)2 = 63553182600625.

Here is an alternative way. Note that ¢ = b + 1. If this1s a
Pythagorean triple, then

a2 +b2=(b+1)%=0p2+2b+1,

and b = %% (a? - 1). And this does, in fact, hold here, for
%(3993% - 1) = 7 972 024.

(ii1) Is (169568, 1139826, 1152370) a Pythagorean triple?
% Yes., for one can find g = 813 and g = 701.

2.25 Show that no two of the Pythagorean triples in Eq. (2)
are similar.

x In each case, show that c/c¢' = a/a’ and c¢/c' = a/b". For
example, (5, 12, 13) and (8, 15, 17), for 13/17 = 5/8 and 13/17
= 5/15 (as one checks with cross multiplication).

2.26. Prove that if b = 4(m2+1) for sorme m = 2, then there is a

Pythagorean triple (a, b, ¢) with ¢ = b + 1. Conversely, prove
that if there is a Pythagorean triple {a, b, ¢) with ¢ = b + 1,
then there is an integer m 2 2 with b = 4(m2+1).

*1f b = 4(m2+1) = 2m(m + 1) = 2m¥? + 2m, it is only a question
of finding a with

a2+ b2 =(b+1)% =b2+2b+1.

Thus, a2 = 2b+1 = 2mZ + 4m +1 = (2m + 1)%, and a = 2m + 1.
Hence, (2m + 1, b, b+ 1) is a Pythagorean triple.

30



If a2+b2=(b+1)2=0b%+2b+1, then a? = 2b+ 1 There
are two consequences: a is odd, say, a = 2m + 1; b = % (a? - 1)
= ¥(a + 1){a - 1). Hence,

b= Ya+1)a-1)

Y (2m + 2)2m = 4(™S1).

2 27 Let A be a right triangle with legs a and b and
hypotenuse c¢. In Exercise 2.17, one found that the rad&us r of
the inscribed circle is given by r = ab/(a + b + c) [r 1s called
the inradius of Al

If (a, b, ¢) is a Pythagorean triple, prove that the inradius
of the corresponding right triangle is an integer.

ab/(a + b + c)

*
~
1

2ap(q? - p?)/[2qp + o ~ p% + q° + p?]

2gp(g + p)q - p)/2alp + q)

= plg - p).

2.28 Let A be a right triangle with side lengths a, b, and ¢
all integers. Prove that the height h of the altitude to the
hypotenuse is a rational number. (Hint. What 1s area(A)7)

« Area(A) = Yab = ¥ahc, and so h = ab/c is a rational
number.

229 Find the values of g and h for t = %, %, 3/5, and 4/5.
* t = % Ya 3/5 4/5

5/13 7/25 8/17  9/41 pdr g g
S omnr &3&

0
"

juy
[}

12/1% 24/25 15/17 40/41



2.30. Find g and p in Theorem 2.12 for each of the following
Pythagorean triples.

(i) (7, 24, 25).
xq=5p=3

(ii) (129396, 261547, 291805).
x q =526, p =123,

231 Show that the same number can occur as a leg in two
non-similar Pythagorean triples.

% (6, 8, 10) and (8, 15, 17) are Pythagorean triples that are not
similar.

2 32 Show that there are distinct Pythagorean triples (a, b, c)
and (o, B, ¢} having the same c.
-

% If (a, b, ¢) and (%, y, z) are Pythagorean triples with ¢ = z,
then (az, bz, cz) and (cx, cy, cz) are Pythagorean triples with
the same hypotenuse. Thus, (3. 4, 5) and (5, 12, 13) give
distinct Pythagorean triples (39, 52, 65) and {25, 60, 65).

2 33 Show that every integer n z 3 occurs as a leg of some
Pythagorean triple.

%« [f n is even, say, n = 2k (k 2 2), then (n, k2 - 1, k? + 1) is a
Pythagorean triple because

(2k)2 + (k2 - 1)2 = 4kZ + k% - 2kZ + 1

K4+ 2Kk2 + 1 = (kK2 + 1)%

a sirmilar calculations shows that if n is odd, say, n = 2k + 1
(k = 1), then (n, 2k(k + 1), k2 + 2k + 1} is a Pythagorean triple.



2 34 Use Heron's formula to solve Exercise 2.15(1).

x The sides have lengths 13, 14, and 15, so that the
semiperimeter s = (13 + 14 + 15) = 21. 1f A is the area,

then AZ = 21x8x7x6 = 7056, and so A = 84.
235 let P =(1,1),Q=(2,3),and R = (-2, 2) be three points
in the plane.

(i) Show that P, Q, and R are not coilinear.

% [t suffices to show that the slopes of the lines PQ and QR
are different. The first slope is ¥, and the second slope 1s 4.

(ii) Find area(APQR).
= \apprg
% The distance W {/‘
Pal = /5(%224; |QPl = J17(= 4.12; IPRI=-/10 & 3.16.

Thus, the semiperimeter 1s s %/4.76, and so Heron's formula
gives:

(area)? = 2.24 x (476 - 2.24) = (4.76 - 4.12) x (4.76 - 3.16)

476 x 252 x 0.64 x 1.6 = 12.28,

NS

and area(APQR) @ 3.50.

236 To find the distance between two points A and C on
opposite sides of a river, a distance of 100 feet i1s paced off on
one side of the river from A to a point B with AB
perpendicular to BC. The angle 2 CAB is measured as 60°.
Find the distance |ACI.
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B 100 A
Figure 2.40

% |AC| = |ABlcos60° = 100x*% = 50,

2.37. A pole 30 feet tall casts a shadow 50 feet long. Find the
approximate angle of elevation of the sun.

x If o is the angle of elevation, then cos o« = 30/50 = 6, and

S0 a@SS.l".

2.38. New Orleans, Louisiana is due south of Madison,
Wiscensin. If the tatitude of New Orleans is 30°N, the latitude of

Madison is 43°N, and the radius of the earth is 4000 miles,
what is the distance between the two cities?

x Since the radius of the earth 1s 4000, the circumference of
the earth is 8000m. Now 13° (43 - 30 = 13) corresponds to
13/360 of the circumference, and the distance between the
cities (on the surface of the earth) is 13/360x 80001‘{0 907.6

miles. M{J\\M‘j

2.39. Assuming the fact that the arc and the chord subtended
by a small central anglie in a circle are approximately the
same length, compute the diameter of the sun using the facts
that the distance from the earth to the sun is about 93,000,000
miles and that the sun as seen from the earth subtends an
angle of 0.53 degrees.
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= The arclength in miles is approximately . 6&fffhex

/

L
53/360x93,000,000m\= 430,000.
Using the assumed fact, this is the sun's diameter.

2.40. If a regular decagon whose sides are 7 inches long is
inscribed in a circle, what is the radius of the circle?

» Connecting each vertex of the decagon to the center of the
circle dissects the decagon into isosceles triangles, with equal
sides r (the radius of the circle), the other side of length 7, and

with the angle at the center 36°. The perpendicular bisector

)

thus splits this triangle into two right triangles, each with
hypotenuse r, angle 18°, and opposite leg 3.5. Hence, cos 18°
=35/r, and so r = 35/cos18" = 3.68.

2.41. et o« be an angle and let A = (cos «, sin «). Show that
if m is the slope of the line OA (where O denotes the origin),
then m = tan o

% The slope of the line joining points (a, b) and (c, d) 1s m =
(b -d)/{a - c) Here, m = (cos o - 0)/{sin o« - 0) = tan o.

2.42. Let (g, h) be a point in the first quadrant lying on the arc
of the unit circle, and let the line ¢ joining (g, h) and (-1, 0)
have slope t. Prove that if the line L joining (h, g) and (-1, 0)
has slope T, then T = (1 - t)/(1 + 1).

= By Egs. (2), and (3), we have g = 2t/(1 + t2) and h =
(1 - t2)/(1 + t2); by Eq. (1), we have T = g/(h + 1). Substituting,
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- ot/(1 + /01 - t2)/(1 + t9) + 1],
After simplifying, the term on the right is (1 - 11/(1 + 1)
2.43 Prove that 1/(csc @ - cotg) - 1/(csc ¢ + cotg) = 2cot .

x Rewrite in terms of sin @ and cos 9; then use Theorem 2.14;

after simplifying, each side is (1 - t2)/1.
2.44. Prove that cot%e + cot?g = cscie - cscle.

x Rewrite in terms of sin & and cos ©; then use Theorem 2.14;
after simplifying, each side 1s

(1 -2t% + 18)/1614.
2.45. 0Of all the triangles with a given perimeter p and with
one side of a given length a, prove that the trlangle having the
maximal area is 1sosceles.
»x If p = 2s, then Heron's formula give

(s -~ b)(s - c) = A/s(s - a),

where A is the area of the triangle, and so the arithmetic
mean-geometric mean inequality (Theorem 1.11) gives

(Yals - b +s - c])? 2 A2/s(s - a),

IV

with equality if and only if s - b =s-¢c 1e,if and only if b =
c. Thus, the triangle with largest area is isosceles.

2.46. Prove, for every triangle A, that
(p/4)% > area(A),

where p is the perimeter of A. Can there be equality?



x Let p=a+b+c=2s By Heron's formula,
s(s - a)(s - b)(s - ¢) = AZ,

where A = area(A), and the arithmetic mean-geometric mean
inequality gives

(ls+s-a+s-b+s-ch?z Al

But s+s-a+s-b+s-c=4s-(a+b+c¢c)=14s-2s =25 =p,
so that (p/4)% = AZ. Taking square roots, (p/4)% = A

The inequality is always strict, for it can occur only when
s =s-a=s-b=s-c But s=5s5-a gives a = 0, which 1s
riot a length of a side of a triangle.

2.47. Prove the Law of Sines: In a triangle AABC with angles
o, g, and Y opposite sides of lengths a, b, and ¢, respectively,

sin «/a = sin p/b = sin y/c.
» Since areal(AABC) = »»bh = Mbcsin o, we have

sin o/a = 2area(AABC)/abc.

Since areal(AABC) = Y2ak = Y2acsin p, we have

sin p/b = 2area(AABC)/abc.

Therefore, sin «/a = sin B/b. The hint is essentially the whole
proof!
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2.48. For any two angles o and B, prove
cos[¥a (o0 + gllcosl (a0 - )] = Malcos o + cos B).

x cos[V (o + B)lcos[¥a(o = p)]

(costaacos¥ep - sintaasin’zp)(cos’2xcos*ap + sinYz2 osin’z p)

cos?¥s acosszB - sin2% «sin Y B

= cosZ¥ ocosétap = (1 - cosZhh o)1 - cosiap)

cos?VaxcostVap - (1 - cosVa o - cosiVhp + coste xcostVap)

= -1+ cos?hho + cosélap

= -1 + Ya(cos o« + 1) + Yalcos p + 1)

= Ycos oo + Yacos B.
2.49. Prove that cos 20°cos 40°cos 80" = 1/8.
*x Using Exercise 2.48,

cos 40°cos 80° = Ya(cos 120° + cos 407)
[“ (o + p) = 80 and "2 (o - B) = 40 give
o +p =160, o - p = 80,
so that
o = 120 and 8 = 40].
Hence,
cos 20°cos 40°cos 80° = cos 20°%[(cos 1207 + cos 40°)]

= -Yacos 20° + Ya(cos 20°cos 40°).

Using Exercise 2.48 agaln,
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cos 20°cos 40° = Ya{cos 60° + cos 207).

[Y(ex + p) = 40, Yl - 8) = 20

give
o« +p=280,uo-pg=40,
so that
o = 60 and p = 20}
Hence,

1l

cos 20°cos 40°cos 80° = -Yacos 20° + ¥ (Ya(cos 60° + cos 20°)

“Yacos 20° + Y% (Ma(cos 60° + Yacos 20°)

Yacos 60° = 1/8.

2.50. (i) Prove that

cos x cos 2x cos 4x--cos 20k = sin 20t 1x/20* lsin x.
%« The proof is by induction on n 2 0, and the idea is 1o
multiply the left side by sin x.
Base step n = 0: The double angle formula sin 2x = Zsin xcos X

gives cos X = sin 2x/2sin X.
Inductive step:

cos x cos 2x cos 4x--cos 2" xcos 277 1k
= sin 27 ixcos 20" x/20* lain x
= Yasin 2% 2x/29%Lsin x
= sin 2Nt 2x/2"*25in x.

(ii) Use part (i) to give a second proof of Exercise 2.49.

% Ewxercise 2.49 follows from the case n = 2:

Cos X Cos 2% cos 4x = sin 29%/2%sin % = sin 8x/8sin X



set x = 20" and obtain

cos20°cos40°cos80° = sin 160°/8sin 20°.
The result follows, for sin 20° = sin(180° - 207).
2.51. Prove that

2cos(n + 1)x = {2cos x)}(2cos nx) - 2cos(n - 1)x.

% We prove 2cos(n + 1)x + 2cos(n - 1)x = (2cos x){2cos nx)
by using Exercise 2.50.

2cos(n + 1)x + 2cos(n - 1)x = 2[cos(n + 1)x + cos(n - 1)x]

2[2cos([n + 1 +n - 11/2)cos([n + 1 - n + 11/2)

4cos nx cos X = (2cos x)(2 cos nx).
2.52. Prove the half angle formuila for tangent:
tan(e/2) = sin /{1 + cos &).

x In Figure 2.41, we see that t = tan(e/2) is the siope of the
line joining (-1, 0) to (cos &, sin &). But Eq. (1) gives

tan(e/2) =t = h/{g+ 1) = sin g/(cos & + 1)}.
2.53 Find the indefinite integral [sin ¢de/(2 + cos ).
x After substituting using Theorem 2.14, the integral is
[4tdt/(1 + t2)(3 + t9).
The partial fraction decomposition 1s
41/(1 + t2)(3 + 12) = 2t/(1 + 12) - 21/(3 + t9),

so that the indefinite integral is
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Inl1 + t2] - Inl3 + 2] = Inl(1 + t9)/(3 + )]
By Eq. (4), t = sin /(1 + cos &). Anything more is cosmetic.
2.54. Find the indefinite integral
[lsin & - cos ¢ldo/[sin & + cos 8l
x After substituting using Theorem 2.14, the integral is
[2(-1 + 2t + t2)dt/(1 + 2t - t2)(L + t2).
The partial fraction decomposition 1s
(-1 + 2t + t2)/(1 + 2t - t2)(L + t2) =
(2t - 2)/(1 + 2t - 12) + 2t/(1 + t2),
so that the indefinite integral 15
-lnll + 21 = t2] + Inl1 + 2] = Inl(1 + t9)/(1 + 2t - 121,

By Eq. (4) and some manipulation, the indefinite integral 1s
-inlcos & + sin ¢l

2.55 Find the indefinite integral [(/x - 1)dx/(/x + 1).
x The substitution /x = 1/t rewrites the integral as
[-2(1 - t)dt/(1 + D2,
The partial fraction decomposition is
S2(1 - /(L + 3 = -4/t + 4712 - 2760 + 4/(1 + 1),
Therefore,

[-2(1 - )dt/(1 + 015 = 4Inl1 + 1/1] -4/t + 1/t%.
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Recalling that 1/t = J/x, the indefinite integral is
4In{/x + 1) - 4/x + x.

2.56. Reduce the indefinite integral [x"/x% + 1 dx, for any

integer n = 0, to an indefinite integral of a rational function.
% The appropriate substitution is:
x = (1 +t2)/(1 - t2),

so that y = 2t/(1 - t?), and dx = 4tdt/(1 - t2)2 (for we are in
the case of a hyperbola). The integral is rewritten as

[812(1 + t2)ndt/(1 - t2)n+3,
The drudgery of partial fractions is not recommended.

2.57. (1) Show that the ellipse with equation x2/a’ + 3,/'2/b2 =1
can be parametrized by x = acos & and y = bsin 9.

x (acos 8)2/a2 + (bsin 8)2/b2 = cosl@ + sin%9 = 1.

(i1) Show that if a > b, then the arclength of this curve is given
by the integral

2[“0/2 Va2 - (a? - b?)cos?e de.
x If a curve is parametrized by x = x(9) and y = y(@), then

its arclength is given by [J/{dx/de)? + (dy/de)* do. Here, the
expression under the radical 1s:

a2sin9 + b?coslg = al - (a2 - b%)cosle.

{i11) Show that the tan 9/2 substitution rewrites this as an
elliptic integral of the form | R(t, /f(1))dt, where R(u, v)is a
rational function of two variables and f(t) is a quartic
polynomial.



x The substitution gives cos & = (1 - t2)/(1 + t%) and d9 =
2dt/(1 + t2). The integral becomes

§Va2 + (a2 - b2)cosle do = [JI(1) d/(1 + 19)%,

where f(1) = b2t% + 2(2a2 - p2)t? + b2,
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31 (i) For n 2 1, define ky, = 1 - (1/10)"; show that k. /1.
% Clearly, kq ¢ ko ¢ kg < < 1; moreover,

1-ky=1-1{1-(1/10)"] = (1/10)" < 22" for all n.
(ii) For n = 1, define &, = 1 - 2(1/10)7; show that ¢,/ 1.
x Clearly, 1 < 85 < 83 ¢ ~ < 1; moreover,

1-2¢,=1-[1-2(1/10)"1 = 2(1/10)" < %" for all n.
3.2 Show that 1.1, 1.01, 1.001, .. approximates 1 from above.

x Define K, = 1 + (1/10)" for all n 2 1. Clearly, Ky > Kz > Kz >

- > 1 for all n; moreover ; ;

Ky - 1= (1/710)7 < 227 for all n.

3.3 Use Theorem 3.1 to prove (again) that the sequence .9, .99,
.999, ... approximates 1 from below.

x The sequence in question is k, = 1 - (1/10)", which clearly is
increasing. Now

1-Kkq =1-9=1¢» =205,
We must also check, for all n 2 1, that

1-(1 - (1/10 ) < %1 - [1 - (1/710)7));
that Is,
(17101 ¢ %(1/10)",

This last inequality foliows from Exercise 1.4, for 1/10 < Z%
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3.4. Mgdify the proof of Theorem 3.3 to show that Y3 is equal to
.3333@ (an unending string of 3's).
L

x Let B = .333@(&11’1 unending string of 3's). It is plain that B
< % (because 3B < 1), so that either B < % or B = Y. Our
strategy is to eliminate the first possibility.

The sequence here is k, = (1 - (1/10)7); that is, ky =.3, kg
- 33, kz = .333,(7. We show that this increasing sequence
approximates % from below. For all n = 1,

Yo - ky = % - W1 = (1/10)7) = %(1/10)" < (1/10)™ < 257,

If B< %, then the Getting Close Principle says that there 1s
some k, with B < Kky; that is, there is some n 2 1 so that a

—

string of only n 3's is larger than B = 33333, a never-
ending string of 3's. This contradicts the criterion for
determining inequality between two numbers which are given
as decimal expansions. We have eliminated the possibility B <
¥ and the only remaining option is B = .

3.5 (i). Show that if M is a positive number and k. / A,
then Mk, ~ MA,

x By hypothesis, k, < A and A -k, < 2"A forall n21. It
follows from Theorem 1.4 that Mkq < Mky < Mk3 ¢ - ¢ MA and
M(A - kp) = MA - Mky < %2"MA for all nz 1.

(ii). Show that if M is a positive number and Ko™\, A, then
MK, \, MA.

= By hypothesis, K, > A and K, - A <%"A forall n2 1 It
follows from Theorem 1.4 that MKy > MKy > MKz > = > MA
and M(K, - A) = MK, - MA < 2"MA for all nz L
*

(iii) Use part(i) of this exercise, together with the fact (proved
in Theorern’ 3.4) that the increasing sequence .9, .99, .999, ..
approximates 1 from below, to give a second solution to
Exercise 3.4.
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x In (1), take kp = 1 - (1/10)", A =1, and M = ',

3.6. Prove that if ax / A and b, / B, then a1+ by, ag + by,
az + bz, .. approximates A+ B from below.

x It is easy to see, using Theorem 1.4, that ag + by ¢ap+ by <«
az+ bz ¢(.. . < A+B.Forall nz1 wehave A-ap¢ 2 "A and
B - b, ¢ »2"'B. By Theorem 1.4,

A+B~(an+bn)=A-an+B—bn<‘/z“A+‘/2“B=‘/z“(A+B).

3.7. Assume that k., ~ A. \ LAt
(i) Show that ko, k3, kg, ~ approximates A from below.
\(‘J-\)ﬁ \C.OLJTT

/
« Clearly, ki < ko< kz < .2 <A implies kp ¢ k3 < ()¢ A Also, we

know that A - k, ¢ ¥2%A for all n z 1. Define ¢, = kp.1; that
ko, &y = k3, etc. We must show that A - £y < “UhA  for
1.But A -0, = A - kpep < BPPIA < 1BTA,

1s, 1

all n

v

(ii) For every m 2 1, show that km.1, km+2, Km+3, D
approximates A from below.

» This is essentially the same argument as in (ii). Define ap =

Kp+m; thatis, a1 = ke, a2 = k2, etc Clearly, a1 ¢ ap ¢ azg <
sedoty

©< A; that is, Kypeq < Kkms2 ¢ kme3 <5 ¢ A} moreover, an =

Keom <A and A-ay = A-Kpem ¢ 20TTAL HIUAL

3.8. Show that ki ¢ kg ¢ kz < = < 1 does not approximate 1

from below, where k, =1 - %" forall n 2 1.

x1f n=1,then1-ky = % > %. Since one needs the inequality
1 - ky ¢ %27 for all n 21, this suffices. However, one sees that
1 -k, =%">2" forall nz1

N\ LS
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3.9. A pizzeria charges $2.50 for a 10" pizza and $5.00 for a 19"
pizza (a 10" pizza is circular with diameter 10 inches). Should
four hungry students order four 10" pizzas or two 15" pizzas?

x The area of a 10" pizza is 25, so that four 10" pizzas give
1007 square inches of pizza. The area of a 15" pizza Is (7.5)2m =
56.251 square inches. Thus, two 15" plzzas having 112.5m
square inches are more filling.

3.10. Complete the proof of Theorem 3.8 by showing that A'/A
> r'2/r? leads to a contradiction.

« 1f A'/A > r'2/r?2, there is some number M’ with M'/A =
r'2/r? so that A'/A > M'/A. Multiplying both sides by A gives
A' > M.

We have seen that area(P.) / area(D'}, where P/ is an

inscribed regular 21+l _gon. Since M' ¢ A', the Getting Close
Principle says that there is some inscribed peclygon Pé with
M' < area(P,). Let P, be the corresponding polygon in D. By
Lemma 3.7,

area(P,)/area(P,) = r'é/r?,

But MY/A = r'2/r, so that area(P,)/area(P,) = M'/A. Hence,
area(P,)/M' = area(Py)/A.

This is a contradiction, for the right side is smaller than 1
(because P, 1is inside the disk D, hence has smaller area)
while the left side 1s greater than 1 [for Pé was chosen so that

M' < area(Pé):{.

n+1

3.11. The inscribed polygon P, consists of 2 congruent

isosceles triangles, each with height h,. Prove that h. Sor.
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\o&’oﬂ Figure 3.10

x Clearly, hq < ho < hz < .. <r, the last inequality because hy, 1s

a leg of a right triangle whose hypotenuse is r.
Second, we must show that r - hy < 2r. We can find hy

explicitly. Let us assume, in Figure 3.10, that n = 1; thus, AB
is a side of Py. Now AOAB is an isosceles right triangle with
equal sides of length r. Thus, IABIZ = 2r%, and |AB| = /2r; hence,
IEB| = /2r/2. But AQEBR is also isosceles, and so hy = J2r/2.
Therefore, r - hy = (1 - J2/2)r = 293r ¢ 5r = %r.

We describe the desired inequality r - hy,.1 <>2(r - hy) In
geometric language. AAOB is one of the 1sosceles triangles that
dissects P,, OC is the perpendicular bisector of AB, and |OE| =

h,; the perpendicular bisector of AC 1s OD, and IOF| = hp.1-

We must show that r - |OFl < ¥a(r - |OE}]). Now |OF| = rcos @,
where o = A DOC, and |OEl = rcos 28, where 28 = A AOC, so we

must prove that
r(1 - cos 9) < Yar{1 - cos 2¢).

By the double angle formula, cos 29 = 2cos?e - 1,

Y% (1 - 2cos%9 + 1)

% (1 - cos 29)

% (2 - 2c0s29)

1 - cosZ g

(1 + cos 9)(1 - cos &)

>1 - cos ©, because 1 + cos & > 1.
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3.12 For all n 2 1, let P, be the regular 2"-gon inscribed 1n a
disk D of radius 1 (as constructed in the text). Prove, for all
“n = 1, that there are inequalities

area(P,) < ® < area(Py) + (2)"m.
% Theorem 3.6 gives area(P,) / area(D) = m. Therefore, for all
nz1,

0 < m - area(Py) < (*2)7m,

Adding areal(P,) to all sides gives

area(P,) < m < area(Py) + (2},
3.13 Let P, be as in Exercise 3.12, and let s, be the length
of a side of Py.

(i) Prove that sy = J2.

x In Figure 3.10, AOAB is an isosceles right triangle with equal
sides of length 1. The Pythagorean theorem gives sy = J2.

(i1) Prove, for all n 2 1 that

Spn+1 7 ‘G‘ v4 - Sp-

= In Figure 3.10, s, = |AB| and s,,1 = |ACl. We begin by
computing the altitude |OEl = hy,; the Pythagorean theorem
applied to ACEB gives

h% = |OE[ = 1 - %s%.
Similarly,
h2,, = |0F] = 1 - %sd,q.
Now
EC| = 1 - [OEl =1 ~-h, =1- Y1~ Ysy.

The Pythagorean theorem applied to AACE gives
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2
Sn+1

ICEI? + |AE|?

(1 - hp)? + (Yasy)?

1 - 2h, + hS + Ysd

1—241—%sn+1—%5%+%52

n

2 - 2v1 - Ysh.

The result follows from this if we rewrite the last term
2¥1 - Yasy = JAY1 - Yasy = Y4 - sy,
3.14. (i) Prove that area(Pq) = 2.

x By Exercise 3.12{i), each side of Pj has length sq = J/2; it
follows that area(P4) = 2.

(ii) Prove, for all n = 1 that area{Pp.1) = 2"sy.
% In Figure 3.10, we compute area(ACAC) by letting 0OC be
the base and AE be the altitude. Notice that |0C| = 1, for 0OC

is a radius, and that |ACl = *2s,. Therefore,

area(ACAC) = %|OCIAEl = Y% (Yesy) = Yasy;

since Pp,.1 1s dissected into 2N+*Z triangles congruent to ACAC,
we have
area(P,) = 2"%%%s, = 2%,

3.15 Use the previous three exercises to estimate T.
(1) Show that 2 < m < 4.

x A disk D of radius 1 {and diameter 2) can be inscribed 1n a
square Q with side lengths 2, and so
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m = area(D) < area(Q) = 27 = 4,
By Exercise 3.12, a lower bound Is area(Pq) = 2.

(ii) Show that 2.828427125 < m < 3.828427125. (Hint. Use
Exercise 3.12 with the estimate 1 < 4 in the upper bound.)

x When n = 2, the inequality in Exercise 3.12 becomes
area(Pp) ¢ T ¢ area(Pp) + (% )2m.

Now area(Pp) = 2sq = 2/2 = 2.828427125, by Exercise 3.13(i),
so that

D 828427125 < 1 < 2.828427125 + (¥%)%m.
Since T < 4, we have (v3)21 < 4/4 = 1, and so
5 828427125 < Tt < 3.828427125.

(iii) Show that sp = 0.765366864, area(P3z) = 3.06147456, and
20611467456 < 1 < 35611467456

x When n = 3, the inequality in Exercise 3.12 becomes
area(Pz) < m < area(Pz) + (%2 ).

By Exercise 3.14(ii), area(P3) = 4sp, and by Exercise 3.13(i1),

52=‘f2—~’4-51.
PR o
Since sq = /2, we have 52@ 0.765366864?/
area(P3) = 4 x 0765366864 (=)3.06147456.

Hence,
2 06147456 < 1 < 3.06147456 + (V).



Since ()31 < (%)%4 = % = 5, we have

3.06147456 < T < 3.56147456./

(iv) Show that sz = 0.390180643, area(P4)®3.121445144, and
3121445144 < 1w < 3.371445144.

@{;prlﬁ)’

x When n = 4, the inequality in Exercise 3.12 becomes
area(Pg4) ¢« m < area(Py4) + (1a)%m.

By Exercise 3.14(ii), area(P4) = 8s3, and by Exercise 3.13(ii),

‘[2-44—32.
N

Since sy = 765366864, we have s3()0.390180643 and

33=

area(P4) = 8 x 0.390180643 £)3.121445144.
Hence,

2101445144 < 1 < 3.121445144 + (¥2)%m.
Since ()4 <« ()% = % = 25, we have
2121445144 < 1 < 3.371445144.

(v) Repeat this procedure until you can estimate m well enough
to see that its first digits are 3.14.

x We keep iterating this process until we reach an inequailty of
the form 3.140 < 1 < 3.149.

We recall that area(P,) = 2" 1s,.1, and we define the nth
upper bound UB, = area(P,) + 4/2".

h
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2

1414213562
0765366864
390180643
196034280
098135347
049082455
024543073

012271763

i6

32

64

128

256

area(Ppy)

2.828427125

3.061467456
3121445144
3.136548480
3.140331104
3141277120
3141513344

3141571328

arealP,) + 4/2"

3828427125

3.561467456

3.371445144

3.261548480

3.202831104

3172527120

31571383544

3149383828

3.16. Let P, be as in Exercise 3.12. Show that

% In Figure 3.10, area(P,) = on+larea( AOAB). If on = £ 0AB,
then oy = 360/2"*% Since the disk has radius 1, the altitude
cos Yoo, and the base sy = |ABl = 2|AE| = 2sin Yoy,

hn

Therefore,

area( AOAB)

area(P,)

Yahpsn

= 2Msin(360/27).

= Yacos oy 2sin oy = Yasin 2o,

Since 2aty, = 2x360/20%1 = 360/2", we conclude that

317 Let AABC be a triangle in the plane, as in Figure 3.17,

area(P,) = 2" 1x¥sin 200, = 2%sin 20, = 27sin(360/27).

and let & be a concave polygonal path from A 1o
wholly inside it. If p has n 2 2 edges, prove that

|AC} + |CBl| » length .
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x The proof is by induction on n 2 2, the base step n = 2 being
done in the text. For the inductive step, let p be an (n + 1)-
edged path from A to B; its first edge is AD and the
remaining n edges form a path B’ from D to B, asin the
figure.

A

Extend AD, and let it meet CB in the point E. Since the path
B is concave, 1t is entirely inside the triangle AAEB. Let us
compute.
{AC| + ICBIl > |AEl + [EB

= |AD| + IDE| + |EBI

> |AD| + length(p') = length(p).
The first inequality holds by the base step, for AE + EB 1s a
concave 2-edged curve inside AABC; the second inequality
holds by the inductive hypothesis applied 1o ADEB.
3.18. Show, in Figure 3.21, that

|AC] + |CD} + IDB| > JAE! + |[EBI.



Figure 3.21a

x Draw an edge from A to D. As Figure 3.21 1is drawn, the
path from A to E to B lies inside the regicn bounded by AB
and the path from A to D to B. By Exercise 3.2%, |AD| + |DB]
> |AE| + |[EB|. But |AC] + CDI| » 1AD|, and this gives the result.

A more genera! interpretation involves any concave 2-
edged path inside a region bounded by AD and a concave 3-
edged path from A to B. One can show that the inside path
lies either in AADB or AACB, but this invelves taking the
definition of concavity more seriously than is being done in the
text.

3.19 True or false: the arclength of the curve y = %2 between

0 and 1 is greater than the arclength of the curve y = x5

between 0 and 1. No fair integrating.

% False. Both are concave curves from A = (0, 0) to B = {1, 1),
and since 3 < %2 <1 for all x in [0, 1], the quadratic curve is
inside the region bounded by the line AB and the cubic curve.
The principle of concavity now applies.

3.20. The front wheel of a tricycle is 3 feet in diameter, while
its two rear wheels are 2 feet in diameter. If, on a straight
road, the front wheel makes 64 revolutions, how many
revolutions do the rear wheels make?

% The tricycle travels 64x3m feet, so that the numkber of
revolutions made by the rear wheels s 64x3m/2m = 96.

wn
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3.21. Let aq, ap, az, O be a constant sequence; that 1s, there is
some number ¢ with a, = ¢ for all n. Prove that a, = c.

% Let £ > 0. If we choose ¢ = 1, then
lay —cl=lc-cl=0<e
for all nz 1.

%292 Prove that |x - Bl < € if and only if B - ¢ < x < B + ¢; that
is, x lies in the open interval (B - ¢, B + ¢).

x Interpret |x - Bl as the distance from x to B.Now both

B - ¢ and B + & have distance € to B.If x lies in the open
interval (B - £, B + g), then the distance from x to B <¢, and
if it lies outside this interval, its distance to B > €.

3.23. () If b, » B = 0 and all b, = 0, prove that there is an
integer ¢ and some number N with 1/lbyl ¢ N forall n 2 &

% Let € = |IB|/2; note that € > 0 because B = 0. Since b, — B,
there is an integer ¢ with |b, - Bl < IBI/2 for all n z £ Since
Ib,, - Bl is the distance between b, and B, we are saying that
for all n = ¢, by, lies in the open interval (B - IBl/2, B + {B|/2).

“wh -1 |B|

hY hY 7

If B> 0, every point in this interval lies to the right of V2B,
and so its distance to O is larger than ¥%B; that is, [byl = [by, - O
> %B.1f B<O0, every point b, is to the left of -»2|Bl, and so its
distance to 0 is also greater than »2|B|. By Theorem 1.4(iti), we
have

1/b,l < 2/1Bl for all n 2 &

Define N = 2/|Bl.



(ii) Assume that a, — A and b, — B.Prove thatif B = 0
and all b, = 0, then a,/b, — A/B.

% Given € > 0, we are going to tinker a bit. First, let's see what
we need.

la, /by - A/Bl = I(Bay, - Aby)/byBl

(Ba, - AB + AB - Ab,,)/b, Bl

1A

l(Ba, - AB)/b,Bl + [(AB - Abp)/bnDBl

la, - Al/lbp! + by - BI-IAI/Ib, Bl

Choose ¢ and N asin (i), so 1/lbpyl < N for all n 2 &

There is ¢ with lay - Al < £/2N for all n 2z ¢ (since ap =
A), and there is ¢ with [B - byl < €lBI/2]AIN for all n 2 &
(since b, — B).If welet A denote the largest of ¢, ¢, and ¢,
then all inequalities hold simultaneously when n z A

lan /by - A/Bl s lay - Al/lbyl + by - Bl:lAl/Ib,Bl
< lay - AIN + |AlIB - bpIN/!B
< eN/2N + ¢|BIIAIN/2N|AlIB]
= g/2+¢e/2 = ¢

(iii) Let f(x) and g(x) be polynomials. If g(b) = 0, prove that
the rational function f(x)/g(x) is continuous at b.

x Let ap — b, and assume that f(ay)/g(a,) are all defined;
that is, gla,) = 0 for all n (we are told that g(b) = 0, so that
f(b)/g(b) is defined). By Theorem 3.24, we have f(ay) — f(b)
and gla,) — g(b), so part (ii) gives flay)/glay) = f(b)/g(b).

3.24. Prove that the sequence {a,) given by ap = (-1)" does
not converge.



x If, on the contrary, a, — L, then for every ¢ > 0, there is ¢
with |IL - apl < € for all n 2 & In particular, this would be true
for € = ¥2. Thus, for all n 2 ¢, a, liesin (L - %2, L + »2), the
open interval with center L and radius Y2 . Since this interval
has length 1, it cannot contain both numbers -1 and 1 (the
distance between them is 2). This is a contradiction, for agp
and ap.1 have different signs, and so both cannot be in

(L - %, L+ %)

3.25. Prove that a convergent sequence has only one limit: if
apb = A and a, — L, then A = L.

x 1§ A =L sete=®|L~-Al>0(¢is half the distance from A
to L) Notice that the two open intervals of length 2¢ with
midpoints L and A, respectively, do not overlap. Since

a, — A, thereis ¢ withla, - Al < e for all n 2 & This says, for
all n > ¢, that a, lies in the open interval with midpoint A;
sirnilarly, a, — L says therei1s ¢ with a, lying in the open
interval with midpoint L for all n 2 £&.If n > larger of ¢
and ¢', then a, lies in both nonoverlapping intervals, and this
is a contradiction. Therefore, A = L.

\ L gots
3.26. (1) Let ajy, ap, as, gbe a Se/qu_emh a, — L, and

consider the new sequence az, asg, a4,©obtained by
eliminating the first term. Show that the new sequence also
converges to L.

x Define a sequence b, by b, = an.1; thus, by = ap, by = az,
etc. Given ¢ > 0, there exists ¢ with lay - LI < e for all n 2 ¢
Therefore, b, - Ll = fap,1 -~ LI < e forall nz &

(ii) Show that if (a,} converges to L, then every subsequence
of {ap) also converges to L.

| Lot
% 1f by, by, bz, = is a subsequence of {ay}, then each by = amy
with m 2 n. Given € > 0, thereis ¢ with lay, - Ll <€ forall m
> ¢ If n>¢ then b, = ay for mzn z ¢ so that |by - L| =
lay, - LI < €.
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(iii) Use part (il) to give another proof of Exercise 3.28.
x The subsequence ajgy-1 — -1, while azy = 1.

3.27. (Sandwich theorem). Suppose that {a } {bn} and {c,} are
sequences with a, = L, by = L, and ay < < b, forall n2
1. Prove that ¢, — L.

x Given £ > 0. Since a, — L and by — L, we have a, - by —
L -L = 0. There is thus ¢ with |b, - anl < e/3 for all n 2 ¢
(more tinkering afoot). Now
b = an = (by = cn) + {cp = an) > by - cn,
so that b, - ¢cpl < €/3 for all n 2 & Now
IL-cyl=1IL-cpn+by-bytag - an

<IL - apl+ by - cnl + lag - byl

Since ayp — L, there is ¢ with [L - ayl < e/3 for all n > ¢.
Hence, if m 2 larger of ¢ and ¢', then for all n z m,

IL - cpl < e/3+€/3+¢/3 =
3.28. (i) Show that 1 - %" — 1,

% Since 0 < % < 1, Theorem 3.19 shows that %" — 0. It follows
that 1 - %" - 1 -0 = 1.

(i1) Show that(n - 1)/n — 1.

x (n-1/n=1-1/n. Now 1/n —0, as in the text, and so the
result follows from Theorem 3.23.

3.29. Prove that a, — A if and only if A-a, — 0.

x If a, — A, then for each £ > 0, thereis ¢ with A - apl <€
for all n > ¢ Hence, (A - ay) - 0l < g for all n 2 ¢, and so



A-a, = 0

Conversely, if A - ap = 0, then for each € > 0, there is ¢
with |(A - a,) - 0| < € for all n 2 ¢ Hence, |A - ayl < ¢ for all
n:4¢ andso a, — A.

This is so easy that it looks hard.

3.30. (i) Prove that if |rl <1, then r® — 0.

= In light of Theorem 3.19, we may assume that r = -s, where
0<s<1. Given € > 0, thereis ¢ with ls®™ - 0] = [s"] < € for all
n > . But Ir™ - 0} = [r? = {(-1)sT] = [s"] for all n, and so

r™ - 0] < € for all n = &

(i) Prove that the geometric series S,20 r converges, with

sum 1/(1 - r), whenever |r| < 1.

« If r = 0, then the partial sum sy = Zj2¢ r' = 00 = 1 (we
made this agreement in the first chapter). Thus, {sy) is the
constant sequence of all 1's, and hence s, = 1.1f r = 0, then
1/(1 - r) = 1, as desired.

We may now assume that -1 <r« 0. As 1n the text,
s, = 1/(1-r)-r/(1 - r).

By part (i), r® — 0, and the proof that s, — 1/(1 - r) is now
completed as in the text.

3.31. Prove, using the definition of convergence, that Yo =
3333,

= By definition, B = .3333- is the limit of the sequence {ay]

with a, = 3/10(1 + (1/10) + (1/10)% + — +(1/10""1). By the
example of the geometric series, we have

an = (3/10)[1/(1 - r) - r?/{1 - r},
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where r = 1/10. Since r®*/(1 - r) — 0, we have B = 3/10:10/9
1
= 3,

3.32 Assume that there are two sequences converging to the
same limit: a, = A and b, — A.Prove that
AN FW.g

a1, by, az, by, a3, b3, ag, ba, (/= A.

x Let € > 0. Since ap — A, thereis ¢ withlay, - Al < ¢ for all n
> ¢ since b, — A, thereis ¢" with |by - Al < g for all n = ¢£".
If ¢ is the larger of ¢ and ¢", then both of these inequalities
hold simultaneously.

Define a sequence {cy) by con-1 = an and cp, = by (thisis
the sequence described in the statement). If L = 2¢, then we
claim that le, - Al < € for all m = L (and this will complete the
proof). Let mz L = 2¢. If m = 2n, then

lcyy = Al = lcay - Al = |by - Al < g,

1l

because m
then

on > 2¢ implies n 2z ¢. Similarly, if m = 2n - 1,

lcm - Al = lcop-1 - Al = lay, - Al <g,

H

because m = 2n ~ 1 2 2¢ implies 2n 2 2¢ + 1, and hence

nzdé+ oL

3.33. Define a sequence {apy} by app-1 = 5 and az, = 1/n;
thus, the sequence begins 5, 1, 5, »%, 5, %, 5, %, 5, —. Prove
that (a,) does not converge.

x The interval (4, 6), of radius ¢ = 1 and center 5, contains no

term ap,, but it does contain all odd terms azpy-1. In words,

there is no ¢ with |5 - ayl < 1 for all n 2 £ Therefore, ap, # 5.
Now let L be any number other than 5 There is € > 0 so

that (L - £, L + €) does not contain 5 (for example, take ¢ =

%IL - 5]); that is, this interval contains no term apy. In words,

there is no ¢ with IL - a,l < 1 for all n =z & Therefore, ay # L.
Alternatively, one can use Exercise 3.30(i).
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3.34. Define a sequence (a,) by agp-1 = 1/n and apz, = %"
The sequence begins: 1, %2, 2, %, %, 1/8, %4, 1/16, .
(i) Prove that a, — 0, where a, = 1/n

% Given € > 0, there is ¢ with 1/n < ¢ for all n 2 ¢, and there
is ¢ with %P <¢forall n2¢. Thus, if £" = ¢+ ¢, then
ap < € for all n 2 ¢"

(ii) Prove that the terms a, do not get "closer and closer” to
the limit O; that is, if n > ¢, then it does not follow that la,, - O
< ]ae - Ol

% Since 2" > n for all nz 1, we have 2™ < 1/n, for all n. That
is, asp-1 = 1/n > ap, = * 7. But it is easy to prove, by
induction, that 2" > n + 1 for all n 2 2, so that %" < 1/(n + 1),
that is, agpn < @2n+1 = @2(n+1)-1. Thus, the sequence keeps
oscillating up and down.

3.35. (i) Let {P,} be the sequence of inscribed on*l_oons in a
disk of radius r, and let {Q,} be the sequence of circumscribed
2n+1_oons (notation as in Chapter 2). If p, is the perimeter of
P,. and if g, is the perimeter of Qy, prove that p, — 2mr
and g, — 27r.

x In Theorem 3.6, we proved that area(P.) /" area(D);
moreover, in Theorem 3.13, we saw that area(Py) = »2hppy. As

area(D) = mr?, Theorem 3.21 gives Y2h,p, — nre, hence, hppn
— 21r?. Now h, — 1, by Exercise 3.11 (and Theorem 3.21), so
that Exercise 3.27(ii) gives

P = hppn/hny — 2nré/r = 2mr.

In Theorem 3.11, we proved that area(Qx) ™, area(D);
moreover, in Theorem 3.13, we saw that arealQy,) = *2rqn. As

area(D) = mr2, Theorem 3.21 gives %rq, — mr%, and so

Theorem 3.18 gives qp — 2mr.



(ii) Prove that sin(n/2™)/(w/2") — 1.

% Position P, as in Figure 3.2%. so that the coordinates of X
are {cos8,/2, sin9,/2), where sing,/2 = *2b, and by is the

length of a side of Pp. Note that &, = om/onl = /20,

Figure 3.23

Now
pn = 2% by = 2% 2(Y%by)

= o0+ 2n (g, /2) = 2" Zsin(n/2R*]),
so that 2" 2sin (n/2771) - 2m, by part (i), and hence
on+lgin(m/2n*l) - m
Finally, Theorem 3.18 gives

sin(m/20 ) (m/2n* ) = 1

3.36. (i) Prove that if a, liesin(b-1/n, b+ 1/n) for all
nz1i,then a, — b.

x Given £ > O, thereis ¢ with 1/¢ < & (because 1/n — 0). If

n > ¢, then 1/n < 1/¢, so that the interval (b - 1/n, b + 1/n) is
inside of the interval (b - 1/¢, b + 1/¢). Therefore, if n 2 2,
then a, in (b -1/n, b+ 1/n) imples a, in (b-1/¢, b+ 1/8)
hence, la, - bl < 1/¢ < €. Therefore, ay = b.

63



Alternatively, one can use the Sandwich theorem (Exercise
3.31). For all n 2 1, we have

L-1/n<a, <L+ 1i/n.
Since L-1/n—=L and L+1/n — L, we have a, — L.

(ii). Assume that f(x) is continuous at a point b. If b = 0,
prove that there is some interval (b - €, b + €) so that fla) = O
for all a 1n (b - €, b + €). Hint. Use part (i).

% If the result is false, then for each ¢ » 0, there is some ag In
(b - €, b+ ¢) with flag) = 0. In particular, for each n =z 1,
there is a, in (b - 1/n, b + 1/n) with f{(a,) = 0. By part (1),
we have a, — b. Hence, {f(ay)} is the constant sequence of all
0's, and so fla,) — 0. But since f{(x) is continuous at b, we
have f(a,) — f(b) = 0, a contradiction,

3.37. 1f (a,) is a decreasing sequence if a, — t, prove that
ap 2t forall nzi.

» If {a,) is eventually constant, i.e., there is some integer N so
that ay = aN+1 = @aN+2 = ., then it 1s easy to see that t = ap,
and so a, =zt for all n.

We may assume, therefore, that for every m, there exists
k >m with ap > ag (strict inequality). Suppose that the result
is false; that is, suppose that t > a; for some ¢ Choose € =
t - a,. Since a, — t, there is N with la, - tl < e for n 2 N.
Thereis k = N with a,> ag, so that

t-ap=t-ap+ap-ag = ¢+ (ap- ag).

Since ap > ap, the term a, - ay 1s positive, and so t - ak > €.
As k z N, this contradicts lay - tf < £
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Chapter 4

4.1.1f r{ and rpare the roots of f(x) = x?

b and c¢ in terms of ry and rp.

+ bx + ¢, compute

*» By the hint,
f(x) = x% + bx + ¢
= (x - ri)dx - ro).
= x% - (rq{ +rp)+
17 7I2 rira.
Therefore, b = - (rq + rz) and ¢ = rirp.

4.2 1f a, b, and c are odd integers, prove that ax? + bx + ¢

has no rational roots.

24iphx+c =0, then

= If x = p/q is a rational root of ax
(@) ap2+bpq+cq2 = 0.

As in the preamble before the proof of Theorem 2.5, we can
assume that p and g are not both even. There are now

three cases (we shall use Exercise 2.4 throughout).

Case 1.p is even and g 1s odd.

In this case, ap2 + bpg = plap + bg) 1s even, so that cq2 must
also be even. But since both ¢ and g are odd, Exercise 2.4(i1)
gives oddness of cqz, a contradiction.

Case 2. p 1s odd and g 1s even.

This is similar to the argument in Case L.

Case 3. Both p and g are odd.

In this case, each of the terms in Eq. (&) is odd, so that we
have a surn of three odd integers being zero. Transposing, we
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have the sum of two odd integers being odd, contradicting
Exercise 2.4(ii).

An alternative, though more complicated proof, can be
based on Exercise 2.8(ii): /b® - 4ac is rational if and only if
b4 - 4ac is a perfect square.
If b2 - 4ac = m?, then m? must be odd (being of the form
odd - even), and hence m must be odd; say, m = 2k - 1. In

this case, we have be - m2 = 4ac, so that (b + m)(b - m) =
4ac. If we write b = 2¢ - 1, then

4ac = (b +m)b -m) = [2k + 2¢ - 2][2k - 2¢]

4(k + & - 1)k ~ &)

4[k2 - k - £2 + ¢).

[

It follows that k2 - k - (42 - ¢)

that k% - k is always even, for it factors as k(k - 1); that is,
it is a product of two consecutive integers, one of which must

ac is odd. But it 1s easy to see

he even. Hence, [k? - k] - (22 - ¢]is even, a contradiction.

4.3. Find the points where the line with equation y = 2x + 2
intersects the circle of radius 1 and center (0, 0).

= If a point (x, y) lies on the graphs of %2 +y2 =1 and of y
= 2x + 2, then x2 + {2x + 2)% = 1; hence, 5x2 + 8x + 4 = 1. The
quadratic formula gives

x = (-8 = /64 - 60}/10 = (-8 + 2)/10 = -1 or -.6.

If follows that there are two points of intersection: (-1, 0) and
(-0.6, 0.8).

4.4. Suppose that a rectangle having sides of lengths X and vy
has area A and perimeter p. If p2 - 16A > 0, show that the
roots of the quadratic in Eq. (1) are x and y.
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» The gquadratic is 222 - pz + 2A can be rewritien in terms of
x and V.
222 - pz + 2A = 072 - (2x + 2y)z + 2xy.

Setting either z = x or z =y gives {0

4.5 Find and estimate the rootis of 1(}"50x2 + 2% - 9,

x Now /4 + 36/10°Y is very close to /4 = 2. Therefore, the root
X =[-2 - J4+ 36710°°1/(2/1059) = -4/(2/10°0) = -2x10°%. To
calculate the second root, use the variant expression:

[-2 + /4 + 36/10°9]/(2/10%9)

bl
i

18/(2 + /4 + 36/10°Y)

n

i

18/4 = 4.5.

4.6. Suppose a cannon on the ground makes an angle of 45°.

(i) If the initial velocity of a shell 15 vg = 80 feet per second,
what is the horizontal distance R the shell travels when it
hits the ground?

x The quadratic equation is 1612 + 80(1//2)t = 0, so that the
time 1t 1t takes to hit the ground is t = 5//2 seconds.
Substituting this value of t into Eq. (3) of Chapter 4, one finds
R = 80(1//2)5(1//2) = 200 feet.

(i1} What should the initial velocity vg of a shell be in order
that it hit a target 400 feet away?

% In this problem, Egs. (2) and (3) are:

400 = vgtcos 45° = vgt/J/2

()
il

-1612 + vgtsin 45° = ~16t2 + vgt//2,
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where t Is the time needed to hit the ground. Hence, 162

400 and t = 5. Therefore, 400 = v5//2, and vg = 80/2.

\ Ldats
4.7. Prove, for any numbers a4, ap, =, ap, that
[(ag + ap + - + ap)/nl? < (azi + a% + o+ a%)/n.
*Set by = by = = = by = 1 inCauchy’s inequality (Theorem
4.4):
(a1b1 + agby + - 4+ anbn)z i
(af +ah+ - +af)(o] +bG +  + by,
to obtaln
2 2 2
(ag + ap + — + ag)® < nlaf +a%+ ~ +ay)

Now multiply both sides by 1/n2.

4.8 Rewrite each of the following complex numbers in the

form a + bi.
(i) (3 + 4D)(2 - ).

x 10 + 5i

(D) (1 + 2.

x 2i

(iii) (1//2 + (L/72))°.
* |

(iv) (3 + 4i)(3 - 41).

% 29
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(v) (3 + 41)/(1 + 1).
x Y2 (7 + 1)

4.9 Prove the cancellation law for complex numbers: 1f u, v,
and z are complex numbers with zu = zv, and if z = 0, then
u-=v.

x Since zu = zv, we have {(1/2)z]u = [(1/2z)z]lv, and so u = v.

4.10. Show that if u and v are nonzero complex numbers,
then their product uv 1s aiso nonzero.

x If uv = 0, then 0 = {1/u)uv = {{1/u)ulv = v. This contradicts
the assumption that v = 0.

411 Prove that if z is a complex number on the unit circle,
then 1/z = zZ.

x For z is on the unit circle, z = a + bl, where al + b% = 1.
But zz = al + be = 1,and so z = 1/z

412 Let z = a + bi. Prove that if z 1s a real number, then =z
= Z: conversely, if z = Z, then 2z 1s a real number.

x Let z = s+ 1. If z is a real number, then t = 0, that is, z =

s + 0i; hence, Z=s5-0i =35+ 01l =z Conversely, if z = z, then
s + ti = s - ti. One equation of complex numbers gives two
equations of real numbers: s = s, of course, and t = -t. Hence

t =0 and z = s+ ti = s+ 0i = s, therefore, z 1s real.

413 1f z = a + bi, show that {x - z)(x - Z) is a quadratic
polynomial having real coefficients.

* (x - z)(x-2) = (x~-a-ib)(x - a+ib)

=(x-a)z—(ib)2=(X-a)2+b2=x—2ax+a2+b2.



4.14.1f z and w are complex numbers, prove that

v +w=2+w and z = Z W,

xLet z=5s+ti and w =p+ql. Now z+w = (s+p)+(t+ql
so that

N

+ w = {s+p)-(t+qgl

+w=(s-t)+(p-gqi)=_(+p)-{+agl

N

Also, zw = (sp - tq) + {sg +tpli, so that

zw = (sp - tq) - (sq + tpli,
and this is equal to zw = (s - ti){p - qi).

4.15 Let f(x) = ax? + bx + ¢, where the coefficients a, b, and
¢ are complex. Prove that if the roots of f(x) = 0 are not real
numbers, then they are complex conjugates.

x Quadratic formula: If D = b% - dac, then f(x) has a complex
root if and only if D < 0; write D = -E in this case. The roots
are

-b/%a + i JE/2a) and -b/2a - i /E/2a,

and these are conjugates.
Alternatively, suppose that f(z) = 0. Thus,

0=00= a2 +bz+c=azé+bz+C =az-+bz+c

az’ + bz + ¢, because a, b, c are real

I

f(z).
Therefore, z is a root of f(x).

4.16. If u is a root of a cubic polynomial f(x) having real
coefficients, then its conjugate U is also a root of f{x).
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« 15 f(x) = x>+ bx? +cx +d, then
O=u3+bu2+cu+d.

Repeated application of Exercise 4.14 gives

0= 0=(u” + bu® + cu + d)

- 0%+ bul +cu+d (b, c,d arereal
= f(u).
Therefore, U is a root of f(x). (This result and proof can be

generailized to polynomials of any degree having real

coefficients.)

4.17 1f ¢ s a cube root of unity, show that T = e2,
x ¢ = -¥% +1/3/2, and computing c2 gives -¥2 - 1/3/2.
4.18. Find the square roots of 3 - 41

* (2 -1).

4.19. Find the roots of x? + (2 + i)x + 2i = 0.

= Using the quadratic formula and the previous exerclse,

x=%(-2-1% /3 -41)=n(-2-12(2-1)=-1 or -2

4.20 Prove the binomial theorem for complex numbers: If z
and w are complex numbers, then for all n=>0,

(z+ w)™ = 2,20 (v) 27w

x The proof is identical to that of Lemma 1.18 (if one replaces
x by z throughout) and Corollary 1.21.
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4.21. Prove that if u, v, and w are roots of a cubic

polynomial x3 + bx? +cx+d, then b=-(u+v+w)and d =
—UVW.
x xo+bxl+cx+d=(x-ulx-vix-w)

= xS - (u+v+wix+(uv +uw+ VWIX - UVW.

- 4.22. (1) Find /8 + 151

x In polar form, z = 8 + 1561 = 17(cos 62° + isin 62°); 627 1s the
angle ¢ in the first quadrant with cos & = 8/17 and sin & =

15/17. N Gl
J8 T 151 = J17(cos 31° + isin 31°)(=,3.533 + 2.1231.

(Of course, the other square root is the negative of this one.)
One can also use the method of Theorem 4.10.

N e o 4 :
(ii) Find /8 + 15i \%W
4 . 4 o oy [ :
x 5+ 151 = YT7(cos 155° + isin 155°)(5 1.964 + 542i.
The other fourth roots are obtained by multiplying this one by
i -1, and -i. (The problem has been ambiguously worded,

however, so that a student with only one fourth root has
solved It.)

4.23 Find an 8th root of 9 = 71
\WT‘
x 9 - 7 (3 /T30(cos 322" + isin 322°);

322° is the angle ¢ in the fourth quadrant with cos & = 9/4/130
and sin 8 = -7//130.

8/5 71 = 1.356(cos 40° + isin 40°) {5} 1.403 + 8751,
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(The other eighth roots are obtained from this one by

multiplying by the powers of AAS

4.24. Show that cos 1.25664 + isin 1.25664 is a fifth root of
unity (1.25664 = on/5 = 72°).

b rox

x By De Moivre's theorem, (e172)5 o 1360 . 1,
4.25 Prove that if ¢ is a complex cube root of unity, then
(1 - ¢t - ) = 303
x £(1 - 201 - )2 = ¢+ o)1 - )’
[because 1 - €2 = (1 + £)(1 - ¢)]
= (g + A - o)
= (1 - )

[because 2+ +1 = 0]

= -1+ 3¢ -3 g3
= 3¢ - 3¢°
[because t° = 1]
= 3(¢ - ¢)
= 313

[because ¢ = -2 + 1/3/2).

4.26. For every positive integer n, show that there 1s a
polynomial fn{x) of degree n and with integer coefficients so
that cos ng = f,(cos &).
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x By De Moivre's theorem,
cos A% + isin nx = {cos x + isin x)™.

The binomial theorem gives
s n_(n I
(cos x +isin x)" = Z j=0 (J) cosP Ix 1 sindx

and so cos nx is the real part of this. The real part s the sum
of all the terms with | even:

cos nx = & j gyen () cos™Tx (-1)3/2 (sin%x)Y/ 2.

But sinx = 1 - cos2x, and sc this substitution gives a formula
for cos nx as a polynomial In cos X.

4.27. (i) Prove that 2cos & = e®+ 718,
* el® 4+ o718 = co5 9 + isin ¢ + cos(-9) + 1sin(-9) = Zcos 9.
(i1) Use De Moivre's theorem to give a new proof of Exercise
2.51:
2cos(n + 1)9 = (2cos 9)(2cos ne) - 2cosin - 1)9.
*By (i),
(2cos 8)(2cos ne) = (el + 719)(el® + ¢71N9)

= oiln+1)e , oill-njs oiln-1)8 , o-iln+1)e

- oiln+l)e o o-iln+1)e oiln-1)e 4 4i(l1-n)e

= 2cos(n + 1)8 + 2cos{n - 1)e.

4.28. (i) It can be proved that if z = a + 1b, then

e? = efe = e®{cos b + isin b).



Z

In contrast to real exponentiation, show that e¢ can be a

negative real number.
= [f z =1m, then el™ = -1,

(ii) If z and w are complex numbers, prove that

w

eW = g%t W,

% Let 2z =a+ib and w = c +1d. Then

oZoW = edpibgopid _ o2pCeibgid

a+cgib+id _ a+cgilb+d) o gz+w,

= e e

(iii) If w = €%, where 2z is a complex number, then define

log(w) = z. In contrast to real logarithms, show that -1 has a
logarithm; indeed, show that it has infinitely many logarithms.

x We know that e!™ = -1, so that log{-1) = im. On the other

hand, log is not single valued, for (eim4n-1 - _1 for all integers
n, and so log(-1) = (2n - 1)im for every integer n.

4.29. For any complex number z, define cos z = Yo (elZ + e712),

In contrast to real cosines, show that cos z > 1 1s possible.
= If b is real, then cos(ib) = Y5 (eilib) 4 o~ ilib)y
- Yale P + eP) = cosh(b).

But cosh(b) > 1 (indeed, we saw in Chapter 1 that there is
equality if and oniy if b = 0).

4.30. (i) Write 1/(e'® - 1) in the form a + ib.

* 1/(e'® - 1) = 1/(cos @ - 1 +isin &)

n

{cos @ - 1 - isin 9)/(2 - 2cos 9)



Hence, a = (cos & - 1)/(2 - 2cos 8) and b = sin 8/(2 - 2cos @).
(ii) Prove, for all n 2 1 and for all &, that

1+ ol® 4 o129 4 .. 4 gin® _ [eiln+1)8 _ 1)/[ei® - 1],
x The proof is identical to the proof of Exercise 1.2.

(iii) Prove the identity: (2 - 2cos@)(sin & + sin2¢ + sin3g) =
-(cos4g - 1)sing + sin48(cosg - 1).

* By part (i), 1 + e'%+ 128 4+ o138 = (o149 _ 1)/(e!% - 1). Rewrite

the right hand side, using part (i) and De Moivre's theorern,
and multiply both sides by 2 - 2cos ¢. The imaginary parts of
the two sides are equal, and this is the desired i1dentity.

4.31. (i) If cos 3o is positive, show that there is an acute angle
8 with 3o = 3p or 3o = 3(s + 90°); moreover, show that the
collection of numbers cos B, cos(p + 120°), cos(p + 240°)
coincides with the coilection of numbers cos(g + 90°),

cos(g + 210°), cos(p + 330°).

= Each collection of cosine values consists of
cos B, -Yacos B + J3/2sin p, and -Y2cos p - /3/2sin B.

(ii) If cos 3o is negative, show that there is an acute angle p
with 3o = 3(p + 30°) or 3o = 3(p + 60°); moreover, show that
the collection of nurnbers cos(p + 30°), cos(p + 150°),

cos(p + 270°) coincides with the collection of numbers

cos(p + 60°), cos(p + 180°), cos(p + 2707).

x Fach collection of cosine values consists of
-sin B, /3/2cosp - Ysing, -/3/2cosp - *asing.

4.32. Consider the polynomial f(X) = X3 + X2 - 36 that arose in
the castle probiem in Chapter 2.



(i) Show that 3 is a root of f(X) and find the other two roots as
roots of the quadratic f(X)/(X - 3).

x X3 + X2 - 36 = (X - 3)(X? +4X + 12).

The other roots are thus -2 £ i/8.

(ii) Use the cubic formula to find the root 3 of f(X).

x The substitution X = x - ¥ gives the reduced cubic
f(x) = x> - %x - 970/27.

Thus, q = -%, r = -970/27, R = 940896/27%, and

3 = %(970/27 + J940896/27)

(1/54)(370 + /940896) 5 35.926;

hence,
g & 3.2996. \ afgprod

4 x
It follows that h = -3q/g = 1/9g & .0336, and so
o+ h = 3333208 3%,

A root of f(x)is thus 3% - & = 3,

(iii) Show that the discriminant of f(X) is negative, and find its
real root (which 1s 10/3) using cosh.

« The discriminant formula gives a negative value, so that f(x)

has complex roots. In the reduced cubic f(x) = x° - Vax -

970/27, we have q = -% and r = -970/27, so that
-4g/3 = 4/9 » 0.

It follows that we are in the hyperbolic cosine case, and t = %.
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Mffd)[

P
Now cosh B = -4r/t> = 485, so that/é(ﬁ 6.8773 and /3
2.99243%. But cosh(2.29243)(8| 4.999 (® 5, so that tcosh(p/3)
% x 5 = 10/3. %

U

N

4.33. (i) Show, for all a and b and for all j =2 1, that
ad- bl = (a-b)al"l +al™2p+ a2+ - +abiTZ 4 BT,

% After multiplying out, all terms cancel except ad - b

(i) 1f f(x) = cpx™ + cpoqx™ 1 + = + cyx + cg be a polynomial of
degree n. For any number u, show that there 1s some

polynomial q{x) of degree n - 1 with

f{x) = (x - wglx) + f(ul

x f(x) - f(u) = er__lo cqxj —_zjio cJ-u~i = ZJ-ZO cJ-(xJ - ud); now use
part (i) to factor xJ - ul = (x - u)hj(x) for all j 2 1, where
hJ-(x) is some suitable polynomial. Hence,

0 0)

f(x) - flu) = (x - wglx) + colx” - u’) = (x - uwqlx),

where qg(x) = Zjil hj{x).

(iii). Show that u is a root of f(x)1f and only if x - u 1s a
factor of f(x).

x Jf u is a root of f(x), then f(u) = 0 and f(x) = (x - ulg(x),
by (ii).

Conversely, if f(x) = {x - u)(q(x), then f(u) = (u - w)(qlu) =
0, and so u is a root of f(x).

4.34. Show that every cubic polynomial f{x) = x5 + bx? + cx + d
having real coefficients b, ¢, and d has at least one real root.

% Suppose that f(x) has a nonreal root u; by Exercise 416, u
is also a root of f(x). By Exercise 4.33(iii), we have
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flst) = (x - ulx - uls - vJ,

where v is another root of f(x). Now the constant term is d
= uhv, so that v = d/ut isreal (for uu = 0 and is real).

4.35 Show that if cos 3o = r, then the roots of f(x) =
4x3 - 3w - r are cos o, cos(a + 120°), and cos(oc + 2407).

x Since r = cos 3x = cos3{o + 120°) = cos3{o + 240°), the

3

triple angle formula (Corollary 4.16(i1)) cos 3o = 4cos” o - 3cosx

shows that all three cosines are roots of f(x).

4.36 Find the roots of f(x) = %2 - 3Ix + 1.

x Since f(x) is already reduced, we can use the cubic formula

at once. Hence, g = -3, r = 1, and R = -3. 1t follows that g3 =
Y + 1J3/2 = r: since ¢ is a cube root of unity, g must be a
9th root of unity. By De Moivre's theorem,

g = cos 407 + isin40".

Now h = -q/3g = 1/g = g = cos 40° - isin40’, and so a root is
g+ h = 2c0s40° (£ 1532,
W

4.37. Find the roots of f(x) = x° - 9x + 28,

r = 28, R = 676 = 262, g = -1, h = -3 and the roots
-4, 2+ 1/3,2-1/3.

The complex roots emerge most quickly if one writes

f(x) = (x + 4)x?% - 4% + 7)

and then uses the quadratic formuta on the quadratic factor.
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80
4.38 Find the roots of f(x} = x5 - 24%% - 24x - 25,

% The reduced polynomial is f(x) = x5 - 216x -1241. Here, q =
016 r = -1241, R = 47089, /R = 217, ¢°> = 729, g = 9, and h =
8. Therefore, a roct of fN(x) is g+ h =17, and so a root of f{x)
i< 17 + 8 = 25. One can factor f(x) = (x - 25)(x? + x + 1), and so
the other two roots of f(x) are -*2 + 1/3/2.

4.39. {i) Find the roots of %9 - 15% - 4 using the cubic formuia.

x We have g = -15, r = -4, R = 484. The roots are:

gih-oVor Joi21 +°V2- /o121

tg + ¢%h = .3/ + /o121 +¢2° 0 - /o121
Zg + ch = ¢2.°/2+ /o121 v oo - /o121

It is not at all clear how to estimate the roots in the form
above. From Theorem 4.24, however, we do know that all the

roots are real numbers because the discriminant -27r? - 4q3 =
_27x(-4)2 - 4(-15)% = 13068 is positive.

(ii) Find the roots using the trigonometric formula.
rot MPro?‘ 6'*"”‘ £4@4o”

x 1= J/20(=; 447 and cos 3u (= 179. Hence 3 (3 80° and o (&
27°. Hence, cos 27° (z/ .891, cos 147" (3§ -.839, cos 267" (5 -.052.

Hence, the roots are:
J/20cos 27°(£)4.47x891 (3 3.98 @ 4
J/20cos 147° & 4.47 x(-.839) (& -3.750;

/Z0cos 267°\5 4.47x(-052) @ -.232.

Once one sees that 4 is a root, it i1s simplest to use long division
to find the other two roots. Since



3_15%2 - 4 = (x - 4)(x% + 4x + 1),
the other two roots are -2 * J3.

4.40. Find the roots of %o - 6x + 4.

% Roots are 2, -1 + /3, -1 - /3.

4.41 Find the roots of x% - 15x2 - 20x - 6.

* This is a realistic probiem; the implementation of the formula
is rather long (but see the remark at the end of this solution).

Set L = -15 M = -20, and N = -6. Then Eq. (16} is
6+ 204+ (L2 - aN)j2 - M2 = jb - 3054 + 249, - 400,

We now rmake this cubic (in jz) reduced with the substitution
j2 = y + 10, to obtain

aWru?‘ Fly) = y3 - 51y + 90.

Apply the cubic formula: g = =51, r = 90, R = -11552. Thus, /R
= 10751, g° (//2 ~90 + 107.51) &) -45 + 53.8i, and De Moivre's
theorem gwes a cube root: g(‘j 3 + 2.8t Now h = -g/3g =
51/3[3 + 2.81] = 17/{3 + 2.8i.)(® 3 - 281 = g Therefore, g+ h =
g + g = 6 is a root of F(y) (alternatively, one could have
checked for integer roots of F(y) using Theorem B). Therefore,

j¢ = 16
(for j2 =y +10) and | = 4. Egs. (15) are thus

16 - 15 - 20/4 = -4

2m

1l
(o]

2¢

H

16 - 15+ 20/4

Thus, m = -2, ¢ = 3, and we have the factorization
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x4 - 15%% - 20x - 6 = (x2+4x+3)(x2- 4% - 2).

The quadratic formula applied to each of the two factors gives

the desired roots:
-3.-1,2+.J6, 2 - /6

In particular, all the roots are real.

Remark. it is natural to use Theorem B to check first for
rational, nence integral roots. One finds that -1 and -3 are
roots (the candidates are 1, +2, £3, and $6). Therefore, long
division gives

w3 _15%2 - 20x - 6 = (x + 1)(x + (%l - 4% - 2).
The other two roots are thus 2 + /6 and 2 - /6.
One now understands the unpopularity of the guartic
formula.

4.42 (i) Show that cos 28 = (1 - tan?e)/(1 + tang).

x (1 - tan9)/(1 + tan4e) = (1 - sin29/cos29)/(1 + sin9/cos?e)

(cos?o - sin29)/{cosly + sine)

1

c0528 - sin28
= C0S 29.

(ii). If r is a rational number, show that the only rational
values of tan rm are 0 and 1.

x |f tan rm is rational, then part (i) shows that cos 2rm is
rational. By Theorem 4.25, cos 2rmt = 0, +Y  or £1. Hence,

sin 2rm = 1, +%, or C. If cos 2rnt = O, then tan 2rm =

sin 2rmi/cos 2rw is not defined. In the other two cases, we have
sin 2rm/cos 2rm = =1 or O.



4.43. (i) Give an example of two positive irrationals whose sum
is rational.

* J2 +1and -/2 + 2.

(ii) Show that /2 + /3 is a root of x4 -10x2% + 1.

« (2 +/3)2 =5+ 2/6, (/2+ /3% =49+ 20/8, and so

(/2 +/3)% -10(J2 +/3)2 +1 =49+20/6+5+2/6+1=0
(iii) Use Theorem B to show that /2 + /3 is irrational.

x Were /2 + /3 rational, then Theorem B would say it is either
1 or -1.

4.44. (1) Prove that loggb is irrational.

x 1f loggb = r/s, where r and s are positive integers, then

5v/% _ ¢ and 5 = 65 This cannot be, for 57 is odd and 6% is
even.

(ii) Prove that loggl5 is irrational.

= 1f logg15 = r/s, where r and s are positive integers, then

6Y/5 = 15 and 67 = 15°% This cannot be, for 6¥ is even and 15°
is odd.
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Glossary of Boring Terms

G.1. (i) For any formula ¢, prove that ¢ v (~¢)is a tautology.
x ¢ v § is true if at least oneof ¢ or ¢ is true.

(ii) For any formula ¢, prove that ¢ ~ (~¢) is always false.

x ¢ ~ ¢ Is false if either ¢ or ¢ 1s false.

G.2 Prove that ~(~g) is logically equivalent to ¢.

« If ¢ istrue, then ~¢ is false, and so ~(~¢)is true;if ¢ Is
false, then =@ is true, and so ~(~¢) is false.

G.3. Prove that ¢ « ¢ and (¢ = ) ~ (¢ = ¢) are logically
equivalent.

x The truth table for (¢ = ) ~ (¢ = ¢} is the same as that of
P = .

G.4. Show that ¢ = ¢ is logically equivalent to (~¢) v 4.
x The truth table for (~y) v ¢ is the same as that of ¢ = .
G.5. Show that ~(g = ¢) is logically equivalent to ¢ ~ (~¢).

= Both have the same truth table:

¢ T T F F
P T F T F
F T F F

G.6. Show that (¢ ~ ¢) ~ [~ (¢ ~ )] is logically equivalent to
[ ~ (=) ~ Wy ~ (~¢l]
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x Both have the same truth table:

¢ T T F F
P T F T F
F T T F

G.7. Show that v & ¢ and ~[(¢ ~ (~¢)) v (¢ ~ (~¢))] are
logically equivalent.

= Poth have the same truth table:

n T T F F
Y T F T F
T F F T

G.8. Given statements ¢ and , define ¢ Ll ¢ by the truth
table

) T T F F

J T F T F

9ol W F F F T

(i) Show that (¢ | @) & (~@)} ~ (~¥)
x Both have the same truth table.
(ii) Show that ~¢ < ¢ | ¢.
% Both have the same truth table.
(iii) Show that ¢ ~ ¢ & (~¢) | (~y).

x Both have the same truth table.

85



(iv) Show that ¢ ~ b & ~(¢ | ¢).

% Both have the same truth table.

G.9. (Associativity). For any formulas ¢, ¢, and ¢, prove that
¢ v (pve)e (pv g ve and @~ (G ~9)e (@~ yP)~o

are tautologies.

» Both have the same truth table.

i T T T T F F F F
P T T F F T T F F
9 T F T F T F T F

T T T T T T T F

G.10. (Distributivity) Let ¢, ¢, and & be formulas.
(i) Prove that ¢ v (¢ ~ 8) & (¢ v ¢} v (¢ v 8)is a tautology.

% Both have the same truth table

o T T T T F F F F
Y T T F F T T F F
o T ¥ T F T F T F

T T T T T F Ft F
(ii) Prove that ¢ ~ (¢ v 8) & (¢ ~ ¢) v {¢ ~ 9) is a tautology.

x Both have the same truth table.



¢ T T T T F F F F
P T T F F T T F F
o T F T F T F T F

T T T F F F F F

G.11. (i) Define a sequence riy, rp, =, Ip, =, where rp 1s the
world record for the fastest mile ever run in or before year n.
Show that this sequence converges.

x This sequence is decreasing, i.e,, ry 2 I'yyq for all n2>1, and
it is bounded below by 0.

(ii) Conclude that there is a time t so that runners can run a
rnile in a time arbitrarily close to t, yet no runner will ever
run a mile even a millisecond faster than t.

x Exercise 3.30 (in the section on sequences) states the theorem
that every decreasing sequence that is bounded below does
converge to some some number t, and it proves that rp, 2 1t
for all n =z 1.

G.12. (1) Prove that (a, b) = (a', b") if and only if & = a' and
b =b.

x1f a=a and b =b, the result is obvious. For the converse,
assume that {a, {a, b}} = {&', {a’, b'}}. There are two cases:

[.a = a' and {a, b} = (a", b'};
[I.a = {a',b}and (a, bl = a"
In case I, a = a', so that {a, b) = (&', b'} = {a, b']. Therefore,
{a, b} - {a) = {a, b'} - (a).

If a = b, the left side is empty, hence the right side is also
empty, and so a = b’; therefore, b = b'. If a = b, then the left
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side is (b} the right side is also nonempty, so that it equals {b').

Therefore, b = b, as desired.
In case Il, a = {a’, b') = {{a, b}, b'}. Hence,

a € {a, bl € {{la, bl,b"} = a,

contradicting the axiom that a € x € a Is always faise
Therefore, case Il cannot occur.

(i1) Give a formal proof that (a, b) = (a', b') if and only if a = a'
and b = b\

% As it says in the text, "Once in your life, go into a secluded
room and actually write a complete formal proof.” 1 have
already done this; it 1s now the reader’s turn.

(iii) Prove that [a, bl = [(a', b'] if and only if a = a' and b= Db

x[f a=a and b =Db', the result is obvious. For the converse,
assurne that {(a), {a, b)} = {{a'}, (&', b'}}. There are two cases:
=b and a = b

If a =b, then {a, b) = (a) and so {{a), {a, b}} = {{a), {a}} =
{{a}}, the set whose only element is {a}. It follows that {{a } =
{{a"}, {a', b'}} 1s a l-element set, so that {a'} = (a', b'}: this, In
turn, gives a' = b' (for (&', b'} is a 1-element set). Therefore,
b=a=a =Db, as desired.

If a = b, then (a) = {a, b}, and so {{al, b)} is a 2-
element set: therefore, {{a'}, {a', b'}} 1s also a 2- eiement set, s0
that {a') = {a', b'}, and so a' = b'. The given equation

{{a}), {a, )} = {{a), {a', b')}

gives (a) = (a'} and (a, b} = (a', b'] (the other possibility {a) =
{a', b') and {a, b} = { 1 Cannot occur because (a) has exactly
one elernent and (a', b'} has exactly 2 elements). It follows that

a = a,and so{b) = {a, b} - {a) = {a, b’} - (a} = (b'). Therefore, b
= b' as desired.

G.13. For any subset X of a set U, prove that X U (~X) = U
and X N (~X) = &.
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« If ue€ U, then either u € X or u ¢ X; thatis, X U (~X) =
U. Thereisno u € U with ue€ X and u ¢ X.

G.14 Define X -Y ={u e X:u ¢ YLIf ¢ =¢lu)and ¢ = ulu
are formulas, show that V(g = y) = ~[V(g) - V()]

%« We use the observation in the text that if o = o(x) and p =
B(x) are true for every x, then V(o) = V(p). By Exercise G4,

¢ = ¢ and (~¢) v ¢ are logically equivalent; hence, V(g = )
= Vi(~q@) v W) = V((-¢) U V() = ~Vig) U V{(y). By a De
Morgan law, =V{g) U V(g) = ~[V(g) N ~V(P)] = ~[V(g) - V)L

G.15. Show that V(g & ¢) = ~[V(g) A V().

%« We use the observation in the text that if o = afx) and p =
p(x) are true for every X, then Vi) = V(p). By Exercise G.7,

¢ & ¢ and ~[(¢ ~ (~¥)) v ($ ~ (~¢))] are logically equivalent.
It follows that V(g < ¢) = ~V(g ~ (=) v 4 ~ (~9)]) =
~([V{g) N V(=] U V) 0 V=g)]} = ~[V{g} & (~V(e)].

G.16. Show that Vig | ¢) = ~V(g) N ~V(y), where ¢ = ¢(x)
and ¢ = ¢(x).
~ ), it follows that

% Since @ L v is defined as (~q@) W/,
V(~y) = =Vip) N ~VI(y).

~
Vig | ¢) = V(=) ~ (=¢)) = V(=9) N

G.17. (Associativity). For any subsets X, Y, and 7 of a set U,
prove that X U (Y U Z) = (XU Y) U Z and XnNn((Yyn?zs=
(X NnY)nZ2

x The proof involves showing that each side is contained in the
other. It is not very enlightening, for 1t hinges on the definition
of the connective "or" given in the text. For exampie, 1f u € X
U(Y UZ), then ue€ X or ueyYUZ thatis, u € X or u€y

or u€ Z Hence,u € X €Y or uc€Z and so ue XUY)u?Z

The reverse inclusion is proved similarly.
The proof for N is proved in the same way, hinging on the
definition of the connective "and”.
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Remark. If one knew that every subset of U 1is of the form
V(g) for some formula ¢ = ¢(n), then one could use Exercise G.9
together with the observation in the text that if o« = a(n) and
g = p(n) are true for every n, then V(x) = V(g). This is, in
fact, true, but readers may not be able to prove 1t (it involves
describing subsets of U by 2-valued sequences).

G.18. (Distributivity) For any subsets X,Y,and Z of a set U,
prove that X U (Y N Z) = (X U Y)Nn (X U Z) and
¥ Nn(YUuzZ)=XnY) uXniZ.

% This proof is similar to that of Exercise G.17, showing that
each side is contained in the other; again, 1t 1s just a guestion
of looking at the definitions of the connectives.

Remark. f one knew that every subset of U is of the form
V(g) for some formula ¢ = ¢(n), then one could use Exercise
G.10 together with the observation in the text that if o = aln)
and p = g(n) are true for every n, then V{e) = V(p). This 1s, In
fact, true, but readers may not be able to prove it (it involves
describing subsets of U be 2-valued sequences).

G.19. Prove that the sequence {(-1)"} does not converge to 1.

% As in the text, one rmust show

(3¢ > ONVYN)In = N[I(-1)™ - 1] = el.

™

Choose ¢ = 2 (the distance between -1 and 1; of course, any
srmaller positive choice of £ works as well). For any choice of
integer N, choose an odd number n = N. With these choices,

(-1)0 = 1] = |-1 - 1] = 2 2 €, as desired.

G.20. (i) If f,(x) = x", prove that fn(x) converges pointwise to
L(x) on [0, 1], where L(x) = 0if 0 < x <1 and L(1) = 1.

x By Theorem 3.20, « — 0 whenever 0 s x < 1, while the
sequence x 1s just the constant sequence ap = 1 when x =
1, and hence it converges to 1. Therefore, f {x)} converges
pointwise to L(x) on [0, 1.
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(ii) Write the definition of pointwise convergence with
quantifiers, and then write its negation.

x With quantifiers, the definition of pointwise convergence Is:
(Ve > 0){(Vc € [a, bD(ANXV¥n 2 N)lfy(e) - Lic)i < gl

The negation of pointwise convergence 15:
(3e > 0)(Fc € [a, bDIVYNI3In 2 N)llfx(c) - Lol = €l

G.21. (i) Write the definition of uniform convergence with
quantifiers.

* (Ve > 0)(AN) Ve € [a, bD(¥n z Nt (c) - Lic)l < el

Comparing the definitions of pointwise and uniform
convergence, one sees that the middle two guantifiers are
reversed (the text remarks earlier that the order of the
guantifiers is important).

(ii) Show that if f,(x) converges uniformly to L(x) on la, bl,
then f,(x) converges pointwise to L(x) on [a, bl.

%« The second basic principle about quantifiers given in the text
is (3N)(Vc ¢ [a, bl) implies (V¢ € [a, bI)(Z N), and this applies
here.

(ii) Write the negation of uniform convergence.

= (e > O)VYN) 3¢ € [a, bD(IAn 2 Nlfy{e) - Ll 2 €l.

(i) 1f f,(x) = x™, prove that fn{x) does not converge
uniformty to L(x) on [0, 1], where Lix) = 0if 0 £ x <1 and
L(1) = 1.

x Choose t© = 3, given N, choose c = (1:)N and n = N. Then
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lf,(c) - L{c) = ic® - O = c" = Ya » ¥4 = g, as desired. Therefore,
this sequence does not converge uniformly to L(x).

G.22. Prove that the empty set & Is a subset of every set X.

»The negation of
(Vx € Zllx € & = x € X]
1s
(Ax € 2lx € &) v (x ¢ X
But (Ix € &)e(x) is false for any formula @(x), because there

is no x € @ . Hence, the negation of (Vx € Flx e @ = x € X]is
false, and the original formula 1s true.

(i1) Prove that there is only one empty set.
x Suppose O is a second empty set; that is, O also has no

clements. As in part (i), O C X for every set X; in particular,
@ c @; similarly, £ C @, and so 8= g.



