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Chapter 1

1-1. The Gaussian unit of charge (the "esu" or "statcoulomb") is defined by
Coulomb's force law, Eq. (1.1). Therefore, dyne = (esu)?/cm?2, and esu =
V(dyne-cm?). But from F = ma, dyne = g-cm/s2. Hence, in the basis units, esu =
cm32-gli2_g-1,

Capacitance is defined as the ratio of charge to potential difference (see Prob. 1-7). The
Gaussian unit of potential ("statvolt") is equivalent to erg/esu = dyne-cm/esu. Hence,
the capacitance unit ("statfarad") is (esu)2/(dyne-cm) = (cm3-g-s-2)/(g-cm2-s-2) = cm.

Conductivity is the ratio of current density to electric field. Hence, the Gaussian unit is
(esu-s~1-cm~2)/(dyne-esu-!) = (esu)?/(dyne-cm2-5) = s-1.

In SI units, the Coulomb force law contains the dimensional coefficient 1/4meg.
Therefore, the units of £ are coulomb?/(newton-meter2). But C= A-s, and
N =kg-m/s2. Hence, [g] = A2-s4/(kg-m3). The unit of capacitance is the farad =
coulomb/volt, which works out to m—2-kg-1-s4-A2; thus it is conventional to express
the units of & as farad/meter.

Note: Although SI treats the ampere as an independent basis unit, the ampere is in fact
defined implicitly in terms of the three mechanical units through the magnetic force law
[combining the SI versions of Eqs. (1.36) and (1.54)), with the SI permeability
coefficient defined as pp = 4x X 10-7 henry/meter.

Jptam=y,

1-2. A conductor cannot support a static electric
field in its interior: if there were a field, charge would
flow contradicting the assumption of electrostatic
equilibrium. There can be net charge on a conductor's
surfaces. Imagine a Gaussian surface that lies entirely
within the conductor (where E vanishes), enclosing the
cavity. Gauss' law demands that a charge totaling —g; is
induced on the conductor's inner surface, distributed
over the surface in such a way that it cancels ¢;'s field
within the conductor. Since the conductor has no net
charge, a charge totaling +g; remains on the outer
surface, distributed in such a way that it produces no
field within the conductor.

‘gq.
{é-fsda = +q

A Gaussian surface drawn outside the conductor encloses net charge, and therefore the
electric field does not vanish. Although this field is ultimately caused by g, its spatial
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distribution and the magnitude of force on g, depend upon the geometry of the outer
surface of the conductor (and not upon the location of g; within the cavity, nor upon
the shape of the inner surface).

The presence of g induces an additional charge density on the outer surface of the
conductor, distributed so that it cancels g,'s field within the conductor. The integral of
this additional surface charge is zero. There is a net force on the total outer-surface
charge due to g. Thus the action-reaction pair of Newton's third law is between g2
and this total charge distribution on the outer surface of the conductor.

Similarly, there is an action-reaction pair of forces between g and the induced charge
distribution on the inner surface of the conductor, the magnitude of which depends
upon the location of g; and the geometry of the inner surface. The conducting shell
surrounding q; shields it from any influence by g5.

1-3. Consider a point charge g enclosed by an
arbitrary Gaussian surface S. The flux of electric field
through the element of area da is

E-nda=’%e,-nda N

where n is the outward unit normal to da. Meanwhile,
the solid angle subtended by da at g is

d.Q=—?%—e,--n S

Thus, the total flux through the Gaussian surface can be expressed as

§3E°nda = q§dﬂ

If the charge g is inside the surface S, the integral over all solid angle is 4,
independent of the precise location of g. If the charge is outside the surface, the

integral is zero.

Since the total field E is the linear (vector) sum of the fields of any number of point
charges, we can write, in general,

§SE b llda = 4“40“!:]

where geqc) represents the (scalar) sum of all charges enclosed by the surface. This is
Eq. (1.6).
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1-4. A spherically symmetric charge distribution is represented by a charge density
p(r), which does not depend on the angles @ and ¢ of spherical coordinates. If we
choose as Gaussian surface a concentric sphere of radius R, then we can infer from the

symmetry:

(1) The direction of the electric field E at the surface is purely radial, hence
everywhere normal to the Gaussian surface.

(2) The magnitude of the electric field is constant over the surface.

Therefore, the general flux integral in Gauss' law specializes to
§SE-nda -3 ésE,da — E,ésda = E,4nR2
Equating this to the charge enclosed gives

E(R) = E/(R)n = ’—2 F p(r)4nr2dre,
0

But this is identical to Eq. (1.3) for the field of a point charge whose magnitude equals
the total of the distributed charge up to radius R.

If the charge distribution extends beyond radius R, the value of the function p(r) for
r> R has no effect on the field at R, unless the distribution ceases to be spherically
symmetric!

1-5. Construct a Gaussian surface in the form ofa
coaxial cylinder of radius r and length 5. We make
two inferences from the axial symmetry: (1) The
direction of the field produced by this charge must be
purely radial (in cylindrical coordinates), normal to the
chosen Gaussian surface. (2) The magnitude of the
field can depend only on r (not upon @ or z). Thus the
left side of Gauss' law, Eq. (1.6), can be evaluated as

ésE'nda — E/r) 2nrb

(There is no contribution from the ends of the Gaussian surface because of the dot
product.) The right-hand side of Gauss' law, proportional to the enclosed charge,
depends upon whether r is less or greater than a. For r < a, the enclosed charge is
zero, and the field within the hollow cylinder vanishes:

E(r) = 0 (r <a)

Chapter 1

(It also vanishes inside the wall of the conductor, no matter how thick.)
For r > a, the enclosed charge is p, and the field is

E() = sipanpd)e, = Lle, (r>a)
For the potential ®, we can use Eq. (1.13). It is most convenient to choose the
reference point ro (where @ = 0) at the surface of the cylinder; then the potential
outside the cylinder is

o = —J.rE-dl - - rg‘g‘dr = —2pgln[£) (r > a)
a

To

The field-free hollow interior and the conductor wall are an equipotential region, where
@ = 0. The potential blows up (negatively) at large cylindrical radii, but remains zero
at large distances along the axis. Thus, in this case, the potential at "infinity" is
different in different directions, and so "infinity" is not a suitable reference point. This
anisotropy is an artifact of the idealization of an "infinitely" long cylinder.

1-6. The spherical symmetry is the same as Prob. 1-4. For a Gaussian surface of
radius R, Gauss' law gives

R
E,(R) 4nR?2 = 4= J. p(r) 4nr2 dr
0

If E; is to be a constant, then the integral must be proportional to R2, which implies that
p(r) is proportional to 1/r. Let p(r) = o/r, and evaluate the integral to obtain 2waR?.
Therefore the constant field magnitude is Eg = 2ne, so that

E
p(r) = 3L

An alternative approach is to use the potential and Poisson's equation, Eq. (1.15).
From Egq. (1.13), the constant radial field Eq gives the potential function
&(r) =—Egr. The Laplacian operator for spherical symmetry, from Eq. (A.52), gives

Vi - -}z-g(rz%] = —2-'?,_—0- = —4np(r)

With spherical symmetry, the field right at the origin must be zero (if it weren't, the
field's direction would violate the symmetry). The mathematics shows the charge
density blowing up at the origin, a nonphysical idealization. If we cap p at a constant
finite value close to the origin, then the field magnitude falls linearly to zero as r — 0.




1-7. (a) For parallel plates, the uniform charge density p; = £¢/S lies on the inner
surfaces. Construct a Gaussian pillbox (Fig. 1-11) enclosing one of these surfaces.
One face lies inside the conductor (where E=0); the other lies in the space between
the plates (where the field is of constant magnitude and normal to the face). The flux
through the cylindrical surface of the pillbox vanishes because the field has no normal
component. If the face area is Aa, Gauss' law relates the field E to the charge g by

Eda = 4n%aa - g =52

The difference of potential between the plates is simply A® = Ed. Therefore the
capacitance is
q_ ESlan s

A® - Ed T 4nd
(In SI units, this appears as C = £5/d.)

C =

(b) By Prob. 1-4, the field in the space between the spheres is the same as a point
charge g at the center of symmetry. The difference of potential between the spheres is
therefore

= [T4L L1
IA®] = rzd" = g (a_ b)
a
So the capacitance is
C = 4 = ab
IADI b-a

[In SI, C = 4ngpab/(b—a). Note that this case reduces to the parallel-plate formula in
the limit where the separation a — b — d is much less than a or b, and
4na? = 4nb?2 — S.]

(¢) From Prob. 1-5, the field between the cylinders is E, = 2p/r, and therefore the
potential difference is

The capacitance per unit length is

Cy =

1-8. In order to find the force on an element of charge

(the fest charge), we must find the field at the position of this

charge due to all charges of the system excluding the test

charge. This removal of the test charge from the array of fs da.
source charges spoils the spherical symmetry needed for a

direct application of Gauss' law.

Rather than performing a brute-force integration of Coulomb's law, however, we can
find the required net field by subtracting the field contributed by the test charge from the

field of all the ch . .
e inside outside
For the complete spherical bubble, the field inside is zero  E=0 E= 4R,
and the field just outside is 47p;, radially outward. e
ToTAL

But, locally, the element of test charge psda appears to be

part of an infinite plane of charge. By Gauss' law, the field

of a charged plane is 2np;, directed away from the plane on =2 =2
both sides. il

—— —
By subtracting the "local" field from the "total" field, we find Ytocal”
the required "distant” field at the test point. Note that this
"distant" field is continuous across the location of the test
charge element, which is to be expected since the test charge
does not contribute to it. E.=2Zwp | B=2wps

— —_
Thus the force on the test charge is §
SpisranT”
dF = Edq = 2n p2da (outwards)

and the pressure is

d
p = 7 = 2mp?

What is the analogous force or pressure for a charged infinite cylinder?

1-9. A central force (or field) has the form F(r,0,9) — f(r) e, We wish to carry
out the line integral of this force along an arbitrary path from the three-dimensional
point ra = (r4,64,%4) to the point rg = (rp,0s,9p):

rp rp .
J’ F +dr.= J. f(r) e, - (e,dr + egrd@ + eprsinfdo)
rA K4

Chapter 1



= J'l'sf(r) dr = jm_ﬂ'r) dr

TA TA

In the first line, we have written out the arbitrary integration step dr in full detail in
spherical coordinates. The orthogonality of the unit vectors produces a purely one-
dimensional integral—the integral of an exact differential. All sensitivity to the path's
displacements in 6 or ¢ is lost. Consequently the value of the integral is not only
independent of the path, but also independent of the @ and ¢ coordinates of the end
points.

A less formal approach is to consider a typical incremental contribution F-dr. The dot
product can be thought of as involving either the projection of F onto dr, or the
projection of dr onto F. Since, for central forces, F is purely radial, the latter choice of
projection shows that it is only increments in the path's radius (dr, not 46 or d¢) that
contribute to the integral.

1-10. (a) If the dipoles are "dumbbells” of length £

I
and they are aligned at the angle 8 with the normal to the @ |
mathematical surface, any dipole will be cut apart if its !
center lies within % (£/2)cos@ of the surface. For a surface

element of area da, the dipoles in the volume (Zcos8)(da)
are cut. If there are N dipoles per unit volume, the number
cut per unit area of this arbitrary surface is Nfcos6. This
represents the magnitude of charge gN#4cos@ = Pcosé.

D

(b) The polarization vector P is in the sense of the positive ends of the dipoles. The
convention is that the vector area element, da = n da, is outward with respect to the
(closed) Gaussian surface. Therefore, where P is pointing outward with respect to the
surface, the negative ends of the dipoles are inside the surface; and vice versa. We can
use the dot product to express both the cosine of Part (a) and the sign of the "trapped"”
charge: the total bound charge enclosed by the Gaussian surface is -ﬁP-da.

(¢) Substituting in Gauss' law, Eq. (1.6), we have

gﬁ E-da = 4n [qm-gar-da)

Transposing the bound-source term and conflating it with the field term produces
Gauss' law for the D field. The D field is a hybrid, which is interesting because its
flux depends on only the enclosed free charges.

Chapter 1

(d) The molecules are now modeled as current loops of - d_ﬁ
area S, with their normals making the angle & with respect
to the arbitrary line drawn through the region. Consider an \a a
element of the line d/, and a cross-sectional area Aa
perpendicular to dZ. This volume contains N df Aa
loops, and their projected area perpendicular to d/ is
Scos@. The probable number of loops that the line threads
in the distance d/ is therefore

N dZ Aa)(Scos = NS dZcos8

Aa

The current threaded is then
NIS dfcos® = cM dfcos@

A check of hand rules shows that for a closed line (contour) the linked current is
positive in the right-handed sense when M-d( is positive. Substituting in Ampére's

law, Eq. (1.37),
§B'dt= '?(Ifrge+c§M'd£)

Transposing the bound-current term and conflating it with the field term produces
Ampere's law for the H field. Again, the H field is a hybrid, interesting because its
circulation depends on only the linked free currents.

The significance of these arguments is that, because they can be applied to arbitrary
Gaussian surfaces and Amperian loops within a molecular medium, the fields E and B
are proper macroscopic averages of the microscopic internal fields. Likewise, the
medium properties P and M, and the hybrid fields D and H, are macroscopic averages.

1-11. 1fthe macroscopic boundary of a dielectric coincides with the face of the
averaging cell of Fig. 1-3, then the equivalent bound charge density on the surface is
(Ps)p = q'/d?2, which by Eq. (1.23) is directly equal to the polarization magnitude P.
More generally, when the physical boundary is tilted by the angle 8 with respect to the
surface of a cubical averaging cell, the cell can be deformed to match the boundary.
The same charge ¢’ is now distributed over an area that is larger by the factor 1/cosé.
Hence the charge surface-density is reduced by cos6, and n-P properly represents the
charge density and its sign (where n is the unit normal outward from the dielectric

boundary).

Similarly, if the macroscopic boundary of a magnetic material coincides with a side wall
of an averaging cell, Fig. 1-9, then the equivalent bound current density on the surface



is Kp = I'ld, which equals cM by Eq. (1.58). If the physical boundary is tilted so that
n remains perpendicular to M, the cell can be deformed to match with no change in K.
But when the boundary normal n tilts out of the plane perpendicular to M, and the cell
wall deformed to match, the same current I’ is distributed over a width that is larger by
1/cos@, where @ is the angle between n and the plane perpendicular to M. Thus the
surface curmrent-density is reduced by the sine of the angle between n and M, and
-nXM properly represents the current density including its vector sense.

1-12. From Egs. (1.25) and (A.50),
Py = - div P(r) = a%%[ﬂ(m] = 3k

At the surface r = a, by Eq. (1.34) or Prob. 1-11, there is a surface charge density

(ps), = e *P(a) = ka

We have spherical symmetry and can use Gauss' law. Using a spherical Gaussian
surface of radius r with Eq. (1.6),

§E-da = E/(r) 4nr? = 4ngeqnc

When r < g, the charge enclosed is

r
q-—-—Jp;,dv = —SkJ. 4nr2 dr = - 4mwkr3
0

E(r<a) = - 4wnkre, = —4nP
When r > a, the charge enclosed is zero. (The dielectric dipoles consist of equal
positive and negative charge. Formally, the volume integral of p is canceled by the
surface integral of p;.) Thus, E(r>a) =0.
Gauss' law for the D field, Eq. (1.82), gives
§ D-:da = 4nqfpee = 0

That is, D = 0 inside as well as out, since no free charge is present. As a check, note
that Eq. (1.28) is satisfied both inside and outside the sphere.

1-13. (a) The bound surface charge is + g =

(ps)y, = n+Pg = Pgcosé

where 6 is the polar angle with respect to the z axis. By
symmetry, the net field at the center (the origin) will be in
the z (or 8 =0) direction. The surface analog of

Eq. (1.20) gives: N\ /

E,(0) = J @b (e, - e;) 2ma? 5in6 46

n +1 41
= —2nPy J‘ cos20sin@d8 = - 2nPy uldu = - —3—Po
0 -1

That is, E(0) = —(4n/3)Py.

(b) The total dipole moment of the polarized sphere is
p = Py(4na3/3), where a is the radius. Since the external
field of a spherical charge distribution is the same as an
equivalent point charge at the origin (Prob. 1-4), the
dipole moment of the superposed uniformly charged
spheres is p = = q¢& = po(4na3/3)6. These are equal
(independent of a) when

Py = pod

Now if we take the origin at the center of the negative sphere, with the center of the
positive sphere at the vector position 8, we can write the total field within the
superposed spheres as

4 4
E = Lpol-r+(-8)1 = -Fpos = - P

Thus the result of Part (a) extends to the entire volume of the polarized sphere. [Yet
another approach to this problem uses the spherical harmonic expansion of Section
3.3.]

(c) Again we use superposition. If there were no cavity, the (spatial average) field in
the uniform dielectric would be E, as given. Superpose the polarized sphere of Parts
(a) and (b) with its polarization equal and opposite to the polarization in the dielectric,
producing the cavity, in which the net polarization is zero and the field is

E-4p) = E+4p

Chapter 1
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Note: The actual E outside the cavity will have a dipole contribution (from the cavity)
superposed on the postulated uniform field (from unspecified distant sources, such as a
parallel-plate capacitor geometry). The E in the formula is to be interpreted as the
asymptotic uniform field at large distances from the cavity where its dipole perturbation
can be neglected. Furthermore, the assumption in this problem of a strictly uniform P,
even close to the perturbing cavity, is rather artificial. If, instead, we assume a linear
dielectric (with P proportional to E), then the P just outside the cavity is modified by
the dipole perturbation: this subtly different problem is addressed in Prob. 3-17.

1-14. we have axial symmetry as in Prob. 1-5. Using Gauss' law for D and
assuming a free charge per unit length p, on the inner conductor, we have

§D-da = D(r)2nrb = 4npdh

where b is the length of the cylindrical Gaussian surface, and r lies between the inner
and outer conductors. Thus

D = 2—%‘e,

But if E is to be constant, then D = e E — &(r) Ep e, Consequently we require

&r) = 2% - cmr_stam

1-15. By Eq.(1.34) the system can be
represented by two disks of surface charge density
(ps)p = P, equal and opposite and separated by d. P
The potential at the observation point O, due to the
charge on an element of area da of the positive face, is

= /-l-

/[
I\
(VAR

That due to the corresponding element of area of the 4 —»] e
negative face is (using law of cosines) o

da.

__Pda d

dd_ = To > P

Pda

‘\' r12+2rdcosB+d2 rz n

where @is the angle between P and r; as shown in the
sketch. Thus the total potential is 0

Chapter 1

P da 2d a2y
dd = = I:l—[l+;cosﬂ+r12 ]

= Pd ¢zia cos@
ry

But d2 = da cosé/r)2 is the solid angle subtended at O by this area element. Thus
the integration over the face of the disk can be expressed in terms of the total solid angle
subtended by the disk, Af2, as

® = PdAQ
The sign convention for AL2 can be taken that the solid angle is positive when the point
O is in the half-space corresponding to the positive face of the disk, and negative when
point O is in the half-space of the negative face.

The two sheets of surface charge density ps = +P comprise a parallel-plate capacitor
geometry. By Gauss' law, the internal field magnitude is

E = 4mp; = 4nP
in the sense opposite to P. The D field is, from its definition Eq. (1.28),
D =E+4nP - (-4nP)+ 4nP = 0

Note: For the electret the polarization P is "frozen in" and the linear relation of
Eq. (1.33) does not apply.

1-16. Ata typical field point P, the magnetic
field is given by the Biot-Savart integral

Idéy x
B(P) = §r ___Lclrz E

where e, is the unit vector from the source element
df; to the field point P, and r is the scalar magnitude
of the distance between d£; and P. This integration
is around the hardware current loop I'l. We wish to
evaluate the Ampérian line integral of this field

§FZB -déy




around the (mathematical) closed path I';. Thus the desired quantity is the double
integral

L§ 5'; df) X e, - dt,
c R Jnr r?

Now, at the point P the current loop subtends a certain solid angle £2. When the point
P advances by the step d£, the subtended solid angle changes in a way that is
equivalent to a displacement of all the elements of the current loop by —d£, with respect
to the original point P. Each d{;, displaced by —d#;, sweeps out an area of magnitude
Id€; X d;l. In general, this area is not normal to the direction of e,; we need its
normal projection to determine the solid angle. With due regard to sign, the increase in
solid angle contributed by d¥; as P takes the step df, may thus be seen to be

diQ

= [de) X (-d&)] - e,
- 2

r

By the commutative properties of the triple scalar product [Eq. (A.18)], this differential
solid angle is precisely the integrand of the previous integral. Hence

. - L 2 ..L&
§r,B at, = — §_,.2 422 = 9, a0

where the first-order differential {2 is the change in solid angle subtended by the full
current loop I'1 when the observation point P takes the step df;.

To evaluate this last integral, assume at first that the current loop I is plane, and
choose to begin and end the integration path I'; where the integration path crosses the
plane of the current loop, outside the area bounded by the loop. At that point the solid
angle subtended by the current loop is then clearly zero. Let us further assume that the
integration path links the current loop. Now, as the point P moves around the
integration path, the solid angle grows from zero, to 2r (when P crosses the plane of
the current loop, inside the loop's area), and finally.to 4%t (when P completes the circuit
back to the starting point).

On the other hand, if the integration path does not link the current loop (i.e., the second
crossing of the loop's plane is also outside the loop area), the solid angle rises to a
positive maximum, returns to zero (when P crosses the plane, half-way around), rises
to a negative maximum, and returns to zero (when P returns to the starting point).
Thus the elapsed increment in solid angle is either 4% or zero, depending solely upon
whether the integration path does or does not link the current loop.

The special assumptions (a plane loop, and beginning and ending the integration in that
plane) are not necessary so long as one handles the multivalued property of the solid
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angle properly. But the three-dimensional spatial perceptions are difficult for most
people!

As noted, it is then a relatively trivial matter to note that superposition allows Ampere's
circuital law to apply to any number of linked current loops.

It is much more difficult to reverse the logic and derive the Biot-Savart law from
Ampére's law. In the electrical analog the elementary electric source, a point charge g,
permits invoking spherical-symmetry arguments (see Prob. 1-4) to "un-integrate" the
flux integral of Gauss' law and find E at a point—i.e., Coulomb's law for g. In the
magnetic case, the analogous elementary source is the differential element I £, and
Ampere's concept of "linking" fails. If one takes a full current loop as the magnetic
source, there is no way to invoke symmetry to "un-integrate” Ampeére's circulation
integral. To accomplish this goal, therefore, one must convert Ampere's law to its
differential-equation form, Eq. (1.41), and then find a way to solve it for the
elementary source. The text does this, in a much broader context, in Section 9.3.

1-17. The geometry is shown in the figure. A I

typical current element I d£ produces the vector field 2y

contribution 4B at the point P. The angle betweendf I [R 48
and e, is 90° so Biot-Savart's cross product gives . N
maximum magnitude. However, by symmetry, only j P ¥
the z component of B will survive upon integration U

around the loop. With d#= a dg, where ¢ is the
azimuthal angle around the loop, the field is

-1 (®adp __a _
B,(2) = c J; (a2+22) (ag_'_zz)!fz

2na?

I
¢ (a2+22)%?

(Note that the cosine of the angle between dB and the axis, to extract B, is the sine of
the angle between e, and the axis.) The integral along the axis is then

J’+°= B(2) dz = 2na2l Jw dz

fim 2ma?l z R 4ml
e T il

(The integral can be found in tables, or use the substitution u = 2Na2+z2)

—
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To make a closed path suitable for Ampére's circuital law, consider closing the z axis
by a large semicircle of radius R. At large distances the loop looks like a dipole and
therefore its field is of the order of a2/R3 [see Eq. (2.64)], while the semicircle's
perimeter is proportional to R. Consequently the contribution of the semicircle to the
line integral B-d? is of order (a/R)2, which can be made arbitrarily small.

1-18. Using the result of Prob. 1-17, develop a Taylor expansion about z = h/2.
We will require the derivatives through order 4:

. c 1
f(z) = 555 B(2) = @
Foml e
S (a2422)°?
f.o - u & - 3 + 152.'2__
dz? (azﬂz)m (az+z2)7"2

d3f _ (15430)z _ _ 10523
(@+z22)"?  (a2422)”?

f"! = d_‘.{ = 45 _(315+315)22 + 94574
T oAt T (@) (a4 (a2

Let the first loop be located in the plane z=0. The Taylor expansion in the
neighborhood of z = k/2 is (where {=z — h/2)

c h
2l Bz[ﬁ*C] =

) er@) G i) ) -

Now let the second loop be located in the plane z = h. Then its field at z = +(h/2)+{
is equal to that of the first loop at z = —(h/2)+{ (the loop currents are in the same
sense). Observe that the odd-order derivatives are odd functions of z. Consequently
all odd terms in the Taylor expansion for the second loop have opposite signs from the
corresponding terms for the first loop, and these terms cancel when the two series are
superposed. Thus we can write for the total field near z =h/2:
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c h o 2
2nal B‘(?C) T [a2+(h12)2P?

S4 3 15(h12)2 )
+¢ { a2+ (h2 12 [+ h2)H)

gi[ 45 _ 630(h/2)% + 945(h/2)* ]
2 \[@r 222~ T hi2p 2+ a2y

The first term is the one we want, a spatially constant field. The term proportional to £2
can be made to vanish if we choose

SURRCECIEEY

The lowest-order error in this "uniform field" is now of 4th-order, proportional to £*.
For this condition of optimum homogeneity, with N tumns in each loop, the zeroth-
order (nominal) field is

a) . 2ma’NI 2 _ 32mNI .
IB‘z( 2) - c [al{_(m)zlm = $32cq (Gaussian)
—5%92&— (SI units)

The ratio of the 4th-order (error) field to the nominal can be worked out to

%ﬁ = - 125 [_g_]'

which remains small until £ becomes comparable with a. The constraints on the three-
dimensional magnetic field contained in the equations divB =0 and curl B =0 (no
local currents near z = a/2) require that the field also remains very uniform as one
moves out from the axis—that is, the error is no bigger than 4th-order throughout a
spherical region centered on the axial point z = a/2.

1-19. The Biot-Savart approach is straightforward but tedious because of the
geometry of the integral, which becomes in this case:

B(P) = J.‘-'%'?’;—?I- =¥

I J' siny dz
9 2



where y is the angle between the wire (z axis) and the I
radius vector (magnitude ) from the integration element A
(d€ = dz) to the field point P. The unit vector ey is in a
the right-handed azimuthal sense with respect to the

current. Any one of the three variables z, r, and yis a a P
candidate for the variable of integration. We will choose
the angle yand express the other two in terms of it:

a r
r = m &
Al o
T e dz = sinzwdw
Therefore, the field is

o (22 (18

I LA 2
= —3 % J.o siny dy = ~a °9

Ampeére's law affords a much simpler analysis in this example because the system has
axial symmetry. Paraphrasing Probs. 1-4 and 1-5, we can infer from the symmetry:

(1) The direction of the magnetic field B is azimuthal with respect to the wire.

(2) The magnitude of the field depends only upon the radius (cylindrical
coordinates).

Therefore if we choose a coaxial circle of radius a as the Amperian path of integration I"
(coinciding with a field-line of B), the line integral reduces to scalar multiplication:

§rn -de > §r Bo(r) d¢ — By(a) §rd: = Be(a) 2%a

Equating this value to 4n/c times the linked current I gives Bg(a) = 2I/ca, agreeing
with the Biot-Savart result. [For the field inside a wire of finite radius, see
Prob. 1-25.]

1-20. From the axial symmetry, we can
argue that the magnetic field must be everywhere in

the axial direction. The magnitude canbe atmosta ___ggo ,
function of radius. A visualization of the field- 1

lines shows that they are dense (strong field)inside L __  _____ _ ——
the solenoid, and very sparse (B — 0) outside.

(A more complete argument for the vanishing of —-~—8eeeessesere———
the exterior field is given in Section 2.7.)

For the rectangular Amperian loop of length £, shown in the sketch, we thus conclude
that the only contribution to the line integral of B is from the interior side parallel to z.
Ampere's law then gives:

$B-at > Ban 2= Ener

4nnl
c

B e,
In fact, there is no radial dependence—the field is uniform everywhere within the
solenoid (except near the ends). Furthermore, this analysis is not restricted to
solenoids of circular cross section. The cross section is arbitrary so long as it is
constant with z.

1-21. The geometry of this problem is
most easily perceived if we initially assume a
solenoid of nearly circular cross section, and a
field point P located so that it can "see" the
inside surface and the far end of the solenoid. v
Consider a rectangular element of area on the
surface of the solenoid, of dimensions dz in the
axial direction by dZin the azimuthal direction.

72y

T — - —

I—'.vj.

The orientation of this element of area is given by its (outward) normal, which is
parallel to dxdz. The solid angle subtended at P by this element of area (seen from
the inside) is then

dza = !led!!°!—e:!

r2

where e, is the unit vector from the element to P. We can permute the triple scalar
product [see Eq. (A.18)] to write this as

a0 = dixe,-dz )
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Now from the Biot-Savart law, Eq. (1.36), for a solenoid consisting of n turns per
unit length, we have

d’B = n:r.:z! dtrxzez @

which must be integrated over both z and the cross-sectional path I" whose elements are
df. Substituting (2) in (1), we have

d2Q = —S—4?B - dz

ndzl
c dz c c
= Edzﬂ " EG'ZB ey = ﬁdZBz

That is,
a2, = ZLag

We see that integrating over the surface of the solenoid is equivalent simply to
integrating over the aperture of the near end of the solenoid (if we assume that the solid
angle subtended by the far end is negligible—if not, we will subtract that solid angle
off). Thus

nl

B,(P) = - AQ 3

where AL2is the solid angle subtended at P by the near end (neglecting the far end).

‘When P is inside the solenoid (that is, within the cross section and with z > 0), AQ in
(3) becomes larger than a half-space (A2 > 2m). For this case, it may be more
convenient to re-bookkeep AS2 as the smaller solid angle looking "backwards" at the
aperture of the end; that is, AQ(new) = 4% — AQ2(old). When P moves a long way
inside the semi-infinite solenoid, we obtain

4nnl
B, =
in agreement with Prob. 1-21.

Formula (3) is in fact general for any observation point P and any (constant) cross-
sectional shape since the vector algebra remains valid. If the solid angle of the "far
end" of the solenoid is not negligible, it can easily be subtracted out. Note that this
calculation gives only the component B, not the full vector B.
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1-22. The function whose gradient we want is

f(l',l") - = ‘].- =i - [(x_x:)z + (y_yr)z + (z_z!)2]-—l.~‘2

Thus, for instance, by the chain rule of differentiation,
aa;f(r,r’) = = L1722 2(-x")(+1)
% firr’) = = [ 2(x-x")(-1)

The gradients, from Eq. (A.24), are then
E-xDeg + .. _ _ r-r’ _Crr

4 = - — —
grad, fir,r’) = [...1372 Ir—r'B Ir—r'P
N € [V SV L o err
grade firx’) = + 5= = +pTem T tp-oP

That is, switching between the source and field coordinates simply reverses the sign of
the V operator.

1-23. Without specified currents, we cannot use Eq. (1.46) to find A, and so we
must work backwards from Eq. (1.47). From Eq. (A.28), the z component of the
curl is

dA dA

(curl A), = ~—a—xY—_—a—yl- = B, - By

This differential equation is obviously satisfied by either of the candidate vector
potentials:

Api: A;;=0, Ajy=Box+f(y,z), A1;=10
Ay: Ay =-Boy+g(x,2), Azy=0, Az;=0

where fand g are arbitrary functions, and we omit the arbitrary constants that could be
added to each of the six terms. However, the nonzero components are constrained by
fact that the x and y components of the curl must vanish. For instance, f cannot be a
function of z, because the derivative df/dz in (curl A), would give a nonzero
component B,. Likewise, g cannot depend upon z.

To further define A, we are at liberty to choose a value for its divergence. For the
conventional choice of div A =0 (see Section 4.5), we see that f cannot depend upon
y, nor g upon x. Thus, fand g are at most constants. Even with this prescription of



the divergence, we still have the option of forming a linear combination of the two
candidates,
A3 = aA + (1-a)A;

where a is an arbitrary constant. For instance, if a = 1/2, we can write the vector
potential in coordinate-free style as

1
A = -7rxB

As noted in the text, the addition of the gradient of an arbitrary function will not change
the curl of A, and hence the resulting B. If the arbitrary function is restricted to
solutions of Laplace's equation, its gradient will not change div A either.

1-24. From Stokes' theorem, Eq. (A.54),
§rA -dl = IscurlA-da - an-da

where the closed line I (comprised of elements d£) bounds the open surface §
(comprised of elements da), in a right-handed sense with respect to the sense of da.
The final integral is the conventional definition of the magnetic flux through a surface §

[see Eq. (4.11)].

1-25. As in Prob. 1-19, we have axial symmetry I
and can use Ampere's circuital law, Eq. (1.37), b

§ B-df — By(r) 2nr

The current linked depends upon whether r is less or
greater than a. Inside the wire,

Bg(r<a) 2nr = %5 (-féz—] nr2

21,
= B =je, (r<a) )]
Outside the wire, as before,
By(r<a) 2mr = ‘t—":
21
= B =—_-e (r>a) 2

11

From Eq. (1.46) or (1.51), we know that the vector potential A must be everywhere
parallel (or antiparallel) to the straight current, i.e., the axis of the wire. By symmetry,
the magnitude can depend at most upon r. Because A is a potential, we can choose A
to be zero at an arbitrary point; for this geometry it is convenient to take this reference
point at the surface of the wire (see Prob. 1-5). 1‘ Ab,

-+

—T<o

As a Stokesian integration path, choose a rectangle in a
plane containing the axis. One side coincides with the
wire's surface; the opposite side is at a distance r from
the axis. Let the length of these sides be Z Then the

:—‘PH
CoF

line integral (circulation) of A around this path is | ®B
§A-d!—» +Ar) 2 o G Y
with the sign depending upon whether r is inside or |-— >a t—
outside the wire. From the circuital relation proved in
Prob. 1-24, and formula (1) above, we have inside —>afe—
the wire
Afr) ¢ = J'r By(r<a) £dr = —;%(az ~12)
2
A(r) = % [1 —';—z)ez (r < a)
And outside, using formula (2),
—Ar) ¢ = J’r By(r<a) ¢dr = 2%1:1(5)
A(r) = --{;—m(%)e; (r > a)
3
1-26. The observation point is rp = (x0,Y0.20)- w &
2a
The contribution to the vector potential from the side - X
between corners (1) and (2) is, from Eq. (1.46), 2z (®
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Ax12

+ —
cro ro? T re? Tt

_ 1 J’-M(l _Zx x & 2 i x2 53)_”24,:

~ L XoX  _ Yyoa_
= J; [I e e o ...)dx

2yoa?
ero [2a+0-- = )

Similarly, for the opposite side between comers (3) and (4),

2
(—20 - 0= 2208 )
ro

Axs = o

For the side between corners (2) and (3), we have

A 23 = L J’+a d}'
7 ¢ J_, [(x0-a)2 + (yo-y) + 20212

I
—
(o]
+
o]
S F‘
[
L)
+
[=]
|
—

And for the final side between corners (4) and (1),

2 2xga?
cro (—2a+ o 0- ]

Thus to the lowest surviving order,

4a2
crg3

(= yo ex + xg ey)

Now where ey, is the unit vector in the ry direction, then

e € €
0 0 1 x

e X e, = = _Y?O_ex_,. ;o-e),
X Yo % 0 0
nn To 7o
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L J’+a dx _ 1 J‘+a dx
¢ ) lwo-rl ¢ J_ [xo—x)? + (yo+a)? + 20

6))

If we define the magnetic dipole moment in accord with Eq. (1.55) as

m = %4a2ez
then we can write
Ao X €y
ro?

This formula is worked out for an arbitrary loop as Eq. (2.58). The field B can be
found by computing the curl of formula (1).

1-27. In the time At, the conduction electrons move with the average drift velocity
u and advance by the distance u At along the wire. That is, the number of electrons
that cross a reference plane in the time At is the number that occupy the volume
(u Af)(Aa), where Aag is the cross-sectional area of the wire. The current [ is the rate at
which charge crosses the reference plane, which is

1 = qﬂ%t)}Ml:nquAa

(a) The Lorentz force on one electron is
= 4
Fg = p= uxB

In a wire element of length dZ and cross-sectional area Aa, there are n dZ Aa electrons.
Consequently, the total force on all the conduction electrons in this element is

dF = (ndfAa) L-uxB

1d?
= pre uxB

If we transfer the vector symbolism from the microscopic drift velocity u to the wire
element d£, then this simplifies to the standard macroscopic form,

d¥ = %nuxn

(b) On the model that the conduction electrons are free to move within the metal, the
force just calculated will push the electrons sideways in the wire, but have no direct
effect on the rigid lattice of copper atoms, which are positively charged but stationary.
However, when the electrons are pushed sideways, they produce an excess of negative
charge on one side and a deficiency of negative charge (i.e., an excess of positive



charge) on the other. This charge separation produces an electric field within the wire
such that there is no net force on the electrons, gE = —qu X B. The electric field acts
on the positively charged lattice to exert a force numerically equal to the Lorentz force.
The existence of a sideways electric field, and the resulting difference of potential
between the two sides of the wire, is known as the Hall effect.

1-28. From Prob. 1-19 the field of the ¥
long straight wire is I
g igh %
21
B =37 %8 e
From Eq. (1.54) the force on the near side is —L: %
1
Fhear = TJ‘M“ Idéx B —i

241 241
=iy (e X eg) = “hp(-e)

The outer side gives

2ha
Fouter = ?(}Ef-b.i (+e;)

The sides perpendicular to the long wire involve an integration since B varies as 1/r.
However, it is easy to see that the forces on these two sides are equal and opposite, and
contribute no net force to the rigid loop. Thus,

Fiotal =

2hfa (1 1
c2 (=B tawp)Cr

211 ba?

2b(a+b) ©"

1-29. The force on element 1 due to the field of element 2 is
@2F1; = L2 at x [y x (-e))]

where e, is the unit vector from element 1 to 2. Similarly, the force on 2 due to the
field of 1 is

@2Fy = L2 at x [y x (+e))]

13

Expanding the triple vector products using the "BAC-CAB" rule, Eq. (A.19), we have
d2F | o< —(e,-dl))dlr + (df - db) e,
d2F;; o< + (e > dl) dl) — (d&; - dfy) e,

The second terms are equal and opposite, but the first terms are not, in general. Now
from Prob. 1-22,
tdl,

r

1 1
~r£2"— = —gradz(TJ = + grad;(T]

Thus

- dby §I E;;gtl_ = —-dé, él grad]( 1 ]o dé,

r

By extension of Eq. (A.25), the last integrand is the increment of (1/r) over the step
df,, that is, it is an exact differential. Consequently upon traversing the closed loop 1,
the total increment in (1/r) is obviously zero. Thus the first term of the expansion of
d2F1 vanishes upon integration around circuit 1. Similarly the first term of d2F3;
vanishes upon integration around circuit 2. Since physical circuits carrying slowly
varying currents must be closed loops, Newton's third law is satisfied.

1-30. (a) If the initial velocity is perpendicular to the magnetic field B, the
magnitude of the Lorentz force, Eq. (1.52), is

F=-Liguxsi» 2z

The direction of this force is perpendicular to the plane containing u and B. Thus the
magnetic force does no work on the particle, and its speed u = lul and kinetic energy
1/2mu? remain constant. Since the force is always perpendicular to the velocity, the
particle moves in a circle, and its acceleration has the centripetal form #%R. Newton's
equation of motion is

—?F uB = m 2

The radius of the circular orbit is thus
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(b) The angular velocity has the magnitude
1q1B

o e =
LIRS

The sense of gyration is such that for a positive particle the vector angular velocity @ is
antiparallel to B; hence,

-
(0] ch

(c) Any component of initial velocity parallel to B produces no force and therefore
remains constant. This general motion has the form of a helix.

1-31. Let E be in the x direction, B in the y direction; then EXB is in the z
direction. Newton's equation of motion is

m%= q[E+%xB) (1)
We introduce the Galilean transformation such that y,®
s X
y =y
' =z-c¢ 'E-._’.;...}a_l, 7‘:5
Using vector notation, we can write & Exg
u’ = u-cE;? 2
Substituting in (1),

du’ 1
m gy = q[‘“z

I}
Y

|

X
-

Thus in this reference frame the particle sees only the magnetic field, and the situation is
that of Prob. 1-30. In the original reference frame, the motion appears as a cycloid

Chapter 1

(see Prob. 1-32). Note that the "drift" direction EXB is independent of the sign of g.
Note also that this nonrelativistic analysis is restricted to field magnitudes E2 << B2,

+ + + &+ &4+
tn fast € @B

In the velocity selector, the collimated beam of particles
enters the "crossed-field" region through a narrow slit.

The particles leave the narrow exit slit when the electric /' I] teo “'\
and magnetic forces in Eq. (1.53) are precisely balanced, / \

P — =

that is, when u = cE/B, independent of g or m. enfeance sl exit alt
1-32. For B=(0, B, 0), .8
uxB = -zZBe,+xBe, %E
And from Eq. (1) of Prob. 1-31, 3 Exg
mx = qE - q—? 1
my = 0 2
mi = 12 &)

[

For convenience, let the particle be located at the origin at £ =0, with the arbitrary
initial velocity g = (uox, oy Uo,). Equation (2) can be integrated immediately,

y = ugyt 4)
Now define:
- 9B
cyclotron frequency @, =
drift velocity vV = %—
Integrate Eq. (3) once, obtaining
:': = @;x + Up; (5)

Substitute in Eq. (1), obtaining
I= 0. V-olox+ ug)

I+ wl2x = 0V - ugy)



The right-hand side being constant, this is the standard SHM equation for a displaced
equilibrium. The solution for x(t=0) = 0, X(#=0) = g, is

% (“—ﬁ) sinw,t + [V;“Ql) (1 - cos@et) )
@, o,
Substitute Eq. (6) in (5) and integrate,

Z = ugesinwct — (V = ugy) cos@wct + V

i ("_Q.:](] — cosw,t) - [Y—-"—'—Eﬂl]sinmct + Vi ()]
G),_- mc

where the constant of integration has been added to make z(#=0) = 0. Equations (4),
(6), and (7) describe the motion. Three constants of motion (the components of ug)
appear; we could trivially add the components of an initial position rg if we wished.

The oscillatory terms (sin and cos) average to zero, so the average velocity components
are:

@ = 0
6')=“0y
@ = v = F

An initial velocity component in the y direction (parallel to B) is uninteresting.
Consider initial velocities ug = (uqy, 0, ug;), and rewrite Egs. (6) and (7) in the form

x — (V;RQ‘J = (%JQ'E] sin@w.t - (%‘&)cusmcr

c €

z- [EQ“] = Vr - (%Q‘) sin@ .t — (%’Q‘]cosa)cr

c (4

then these equations can be put in the simpler form:

15

x - (%Q‘J = R sin(@. - ¥)

[

z - (%,Q‘J = Vt - R cos(@.t-Vy)

The constant offsets on the left could be eliminated by redefining the origin. The
geometrical meaning of the right-hand sides can be seen by analogy with the motion of
a lamp mounted on a wheel rolling in the +z (or EXB) direction, rotating at angular
velocity @,. The wheel is of radius V/@,; the lamp is mounted at radius R. When
ug = (0,0,V), the lamp is at the center of the wheel, and its trajectory is a straight line.
When R = V/w, (for instance, when ug = 0), the lamp is on the rim, and the motion
is a common cycloid (with cusps). When the initial conditions are such that R is less
than or greater than V/a@,, the trajectory is a curtate or prolate cycloid, respectively:

2

T——*‘z’f
/‘\/‘\/‘WY'

cuvtate comwmon prolate
1-33. We model the electric dipole as a pair of @ _F=4E
charges 1q separated by the directed distance £. Ina ¢
uniform field, the two forces are equal and opposite, / —E"'
constituting a couple. The vector torque produced F= 'ie;_@ %
on a system by a set of forces is given by
v
T = Z raX Fgu 0
[+

Thus,
Te = ry X gE + r_X (—gE)
= g(ry-r.)XE = gIxXxE = pxXE

The magnetic dipole is modeled as a current loop of oriented (vector) area S, with
m = IS/c as in Eq. (1.55). The force on an element I df of the loop I is
dF = (I/c)dfxB. Thus, recognizing that df = dr and using the "BAC-CAB"
expansion of Eq. (A.19),
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T, = %érrx(drx B)

e ¥ : o 8
= = §F(B r) dr —— érB(!"dl')
For a spatially constant field B, the second integrand is the exact differential d(1/2r2),

which vanishes around a closed path. To evaluate the first integral, it is easiest to use
the operator form of Stokes' theorem, Eq. (A.63),

§rdr [...] = _L,daxv [...]

where da is an element of any open surface S bounded by the closed loop I'. In this
case, the operand is (B - r) [the identity has the form of Eq. (A.61)]:

&rdr (B-r) = IsdaxV(B-r)

But for a spatially constant B, V(B -r) = V(B,x+B,y+B;z) - B. Using
Eq. (1.55), the torque becomes

Tm = L(Lda)xn =mx B

c

As noted, in a uniform field the net force on an electric dipole is zero because the forces
on its constituents are equal and opposite. For the magnetic dipole, the net force is

§ruuxn - I(SBrdr)xn = 0

where the integrand is again an exact differential.

1-34. consider a cylindrical wire of radius a, length £, carrying the current I.
The current density is

Y
I =2

and the potential difference (voltage) between the ends is
V = E¢{¢ L
The "microscopic” Ohm's law, J = oF, becomes: I

I Vv
=0

na?

V=(‘2)1=R1
ona

where R is the macroscopic resistance, R = £/o naZ.

This analysis is elementary for the simple geometry of a long straight wire. It also
applies to much more general "thin-wire" geometries (e.g., the wire wound into a coil)
so long as the radius of curvature of the wire's axis is much larger than the wire's
radius @, and any changes of radius with length (da/d£) are small. Under these
assumptions, the current density J is essentially constant over an equipotential cross
section, and the potential difference V = IE-d'l can be integrated along a path that
coincides with a field-line of E. The resistance is then given by the integral |d&/oma?.

1-35. The boundary conditions for the : E‘L
E‘:ﬁ"ﬁd&ﬁﬁ:mﬁﬂ?&ﬁw oy € E.?l/ Eat
Dyp = D2s = €1 E1n = €2E3, E’"L 0:—1: .

Ey = Ey Ey i

(We assume that there is no free charge at the dielectric interface.) But from the
geometry,

tanf; = %I"-
n
tanf; = gzz:

1 = L
= tanf; = & tan&;

The D field-lines, being parallel to E, obey the same rule. The D field-lines are
conserved across the interface so long as there is no free charge there; the E lines can
terminate on bound charges.

Snell's law for optical rays (see Section 6.2) is n1sin6) = nasin,, where n; and ny
are the refractive indices of the two media. For near-normal incidence (small angles 6),
tanf = sin@= 6. Thus the formulas have a similar form, with (1/¢) <> n. Note
that if one follows the analogy to make a "converging” dielectric lens for E, it would be
concave for typical dielectrics with £> 1 (compare the convex converging lens for
optical media with n > 1).



The question of whether a dielectric lens can be used to "focus" an electric field is a
subtle one. The short answer is "no". Light rays, which are a limiting solution of the
wave equation, obey different rules from field-lines of E, which relate to solutions of
Laplace's equation. Light rays are determined by their source at one end of the system;
they are not affected by the nature of the absorber at the output end. The electric field,
pictorialized by field-lines, requires that both sources (positive charge) and sinks
(negative charge) be specified, or the equivalent, on a closed surface surrounding the
system. Field-lines do not necessarily travel in straight lines in a uniform medium.
From the Maxwell stress tensor (Section 4.8) it can be shown that field-lines act like
"furry rubber bands," which try to shrink along their length while pushing each other
apart side-to-side. By contrast, the rays of geometrical optics do not interact with each
other. Thus rays can cross each other at a focal point, whereas electric field-lines can
cross only at those special points where the magnitude of the field happens to be zero
(the field can't have two directions at the same point).

From Egs. (1.92) and (1.95), for the magnetic field (with no free current on the
interface),

Bip = Bza

1 1
H = H = —B = -—B
1t 2t ™ 1r U2 2r

From the geometrical relations, as before, we obtain for a magnetic field-line,

1 1
i tanf; = 12 tan6;

Both the B and H fields obey the same rule. The B field-lines are conserved across the
interface since there can be no magnetic monopoles, free or bound, on the interface; the
H lines can terminate on bound Coulomb-like sources (see Section 2.7).

1-36. For the needle-shaped cavity, the
surface charge density (p;), = nP on the B
boundary of the cavity is essentially restricted, +— e | =
by the dot product, to small areas at the two '

ends.

==LE

Because the cavity is long and thin, the small magnitude and large distance (squared) of
these bound charges produce a negligible perturbation throughout most of the cavity.
Thus the cavity E-field remains equal to that in the medium. This fact can be seen more
formally by constructing a Stokesian loop as shown and paraphrasing the argument
leading to Eq. (1.89). The force on the test charge is F = &g Ecavity = 84 Enedium-

For the disk-shaped cavity, the dielectric surface charges
approximate a parallel-plate capacitor and contribute an E-field
of magnitude 4nP, parallel to the E in the medium. The total
E-field in the cavity is the superposition of this cavity field and
the global field produced by the unspecified distant sources,

)
[

e E R LT

Ecavity = E + 4nP

But, by the definition of Eq. (1.28), this is just the D-field in the medium. An
argument using a Gaussian pillbox, as for Eq. (1.84), confirms that D is the same in
both cavity and medium. In this case, the force on the test charge is F = 8g Ecavity

= 5‘1 Dmedium-

These arguments can be made rigorous for ellipsoidal cavities using methods analogous
to those discussed in Section 3.3 (see Stratton St41, pp. 206-215). For ellipsoids of
intermediate shape, between the limits of needle and disk, the cavity field tumns out to
be spatially uniform; it can be related to the medium field by geometrical coefficients
known as the depolarizing factor [see Probs. 3-23 and 3-24].

1-37. For the vector potential A, paraphrase the treatment of the vector fields in
Section 1.8. For the tangential component (actually a two-dimensional vector),
construct a rectangular Stokesian loop as shown in Fig. 1-12. The circulation of A
(line integral around a closed loop) is established in Prob. 1-24 as equal to the B-field
flux through the loop. As the width w of the rectangle shrinks to zero, the flux also
goes to zero, and therefore the boundary condition for the tangential component is

[paraphrasing Eqgs. (1.89) and (1.94)]
(A2 -A;)Xmn =0 = A, = Ay

The normal component is found using a Gaussian pillbox as in Fig. 1-11. The flux of
A through a closed surface depends upon the choice of divergence of A. If we take
div A =0, then [paraphrasing Eqs.(1.84) and (1.92)],

(A2-A;)'n =0 = Ain = A2a

With this choice of divergence ("gauge"), the full three-dimensional vector potential is
conserved across the interface [compare Eq. (1.90)],

A, = A,
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1-38. Consider the integral of the Gaussian function,

I = Imexp(— %)dx

—oo

Since x is a dummy variable, the square of this integral can be written in a way that
allows a convenient change of variables:

e 2
2 = J- J’M exp(—- "—2-"28-'%’-) dx dy
s r e u
= J- exp[— @J 2rrdr = = J exp(— @)du
0 0
= =2 2 [ - L)]- = 2 2
na exp( 22 |, na

Thus we conclude that the function as given has been normalized to unit area under the
curve, for any value of a,

+ oo - ’ -
I F(x,a) dx T -

—-0

This is one of the defining propertied of the Dirac delta function, stated in Eq. (1.97).

Changing the variable from x to x— xp simply shifts the center of the Gaussian from
x =0 to xg, without changing the normalization As seen in the graphs, the function
F(x-xg,a) has a nonnegligible value only within approximately the range

x0—-3a < x < xp+3a

(The parameter a is the standard deviation of the Gaussian function.) Thus the A
function, incorporating the limit a — 0, satisfies the other defining condition for the
Dirac function, stated in Eq. (1.96).

When this limit of the Gaussian function appears as a factor in an integrand, as in
Eq. (1.98), the integrand is essentially zero except when x = xy. Therefore, by the
mean-value theorem, the other factors in the integrand can be evaluated at x = xp and
taken outside the integral.

Chapter 1
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2-1. (a) On the polar axis, ‘a’

__ 49 __ g
En = o v

_ fi[(l P2y ) (-2 )]

4q9¢
3
z é _‘1_
But p = 2¢gl, and E is parallel to p. Hence, vectorially, 18
2 c -
Epe = _Lzs T t
(b) In the equatorial plane,
= q i s
+ Eep = 2 (r2+ 2) (r2+£)12

_LT\ - %q_,,i(l+%)'3m o3 Eg,i
y; > r

% Or, vectorially,

Eep = —5

Note that both formulas are linear in (vector) p, and inverse-cube in distance. One
contains the factor 2, the other the negative sign.

(c) The field at the observation point P is the
superposition of the polar-axis field of the
component p; = p cosf, and the equatorial-plane
field of the component p; = p sinf. That is,

E(r0) = 2Ble, + B, Pu

= —r%— (2 cos@ e, + sind ep) by

19

which is Eq. (2.29). Note that the direction of egis generally opposite to that of p, so
the negative sign is suppressed.

2-2. The geometry of the external fields of electric aschic

and magnetic dipoles is the same, so that the formulas of ma
Prob. 2-1 can be adapted by simply replacing p, E by 3 ¥
m, B. For a spherical Earth, the horizontal component

is just the eg component. However the latitude angle 6;

is measured from the equator instead of the pole. Thus

m cosf
Bhoriz = Bg = 'R_E:;L

For Rg = 6.37 x 108 cm, artartic

.108)3
= 02963710y _ ;4. 1025 gauss-cm3

cos40°

Note that the Earth's magnetic dipole points to Antarctica; the return field-lines point
geographically north at the surface of the Earth. This corresponds to a current
circulating in the opposite sense to the Earth's rotation. The magnitude for our very
crude model can be found from Eq. (2.56) [Eq. (1.55)], m = IS/c:

(7.8:1025)(3-1010)

e LA = = 19
I TR 7 (2.12-108)2 1.7 x 1017 statamperes

= 5.5x10? amperes

(The conversion to SI units is found in Appendix D.)

B 3

2-3. Place the origin of a Cartesian coordinate system at the center of the dipole.
Expand the field E in a three-dimensional Taylor (Maclaurin) series about this origin:

E(x,y,z) = Eo + (%‘-j-lx + [—% y+ (%lz + ...

= Eg+ (r-grad)E + ...

(This expression is shorthand for Taylor series for each of the three components
E,, E,, E;) Now sum the (vector) forces on a model dipole consisting of charges +g
at positions £, respectively:
F = g[Eo+(¢£-grad)E + ...] - g [Eo— (£-grad)E + ...]
= 2q ({-grad)E + ... = (p-grad)E

Chapter 2
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This leading term of the expansion gives the correct force so long as the E field does
not change appreciably over the dipole's structure size (£in our model).

—1

Fong = ¢ Eep(p) = -, )

For the interaction of a point charge with a dipole, in *
case (1) the charge ¢ is located in the "equatorial plane" P
of the dipole. Thus from Prob. 2-1(b), the force is

where e, is the unit vector in the direction of p. In case (2) the force on p is
Fonp = (p-grad) E(q)

where of course E(q) is spherically symmetrical. The operator (p - grad) is the
spatial-derivative operator in the direction of e,. It might appear that the field due to g,
at p, is changing only in the direction radial from g, and therefore that the derivative in
the e, direction is zero. Not so!—although the field's magnitude does not change, its
direction does change. In terms of a coordinate system with origin at g, x axis towards
p» and y axis parallel to p, the field near p is:

- q X q
E;, = O24y2) (x24y2) 12 s,

E, = q y ~ 4¥
YT (YY) (x24y2)2 x3

s q Zz qz
E;, = G4y Zay?) 2~ %3

The relevant operator is
p-grad — p %
Thus g's force on p is
Fonp =P % (fie, + qisze). + %e,_)
=phe @

which, with x — r and e, — e, is equal and opposite to (1), in agreement with
Newton's action and reaction.

Chapter 2

2-4. (a) The field of a unit source charge is E() = e,/r2. Thus the rule gives
2) = —(p* &
E@ = - (p-grad) (r!]

From Eq. (2.24), we have

E® = —grad(—Pr;—r] = - grad(p . e—f%)

This has the form of grad(A *B), which can be expanded by the identity of
Eq. (A.37). Since p is a constant vector, the expansion gives

E@®@) = - (p - grad) [%J- p X curl [ff)

But the monopole field is conservative, and its curl vanishes [Eq. (1.12)]. Therefore
the two expressions for E(2) are equivalent, and work out to Eq. (2.28) or (2.29).

(b) The potential produced by a unit monopole is ®(1) = 1/r. Thus
1
®@2) = —(p-grad) (T]

which is equivalent to Eq. (2.21).

(c) The electrostatic potential at a point is the potential energy per unit test charge
placed at that point, @ = U1)/g,. The potential energy of the dipole is

U2 =4+(p-grad)® = -p+-E

where E = —grad® is the field produced by other sources. This is the well-known
formula for the potential energy of a dipole, which can be found by integrating the
torque of Prob. 1-33 with respect to angle.

The meaning of this operator can be seen from the analysis of Prob. 2-3. Because the
dipole charges are equal and opposite, their zero-order (monopole) effects cancel
identically. The first-order terms of any Taylor expansion don't quite cancel, because
of the slight offset between the dipole charges, and are expressed by this operation on
whatever function is being Taylor-expanded. The sign results from whether the dipole
is at the source or field (test) end of the radius vector, in the spirit of Prob. 1-22.




2-5. (a) From Eq. (2.7), the dipole potential is ® = p cos6/r2. Thus
re = ;J.}l%;ﬁ@_ = Ro‘chosOI

with the radius parameter Rp = v pl\®@1, where @ is the potential value on that
surface.

(b) The dipole field is given in spherical coordinates by Egs. (2-9) or (2-29). If the
function rg(6) is to represent a field-line, then it must obey the differential equation

dg  _ E, _ _2cosf

red@ ~ Eg =  sin@
E drg _ |® _2d(sin

re sin@
Rg

- ’“(Rﬂé) % 2 1n[i'1;f—) 4 #g = Rg%in2e

where we chose the lower 0 limit of 7/2 so that the integration constant Rg is the radius
at which a particular field-line crosses the "equatorial plane" of the dipole.

In drawing quantitative plots of dipole field-lines, such as Fig. 2-11, it turns out to be
a nontrivial matter to choose a set of Rg values so that the field-lines are spaced in a
meaningful way. How would you choose them?

2-6. The diagram for the two-dimensional case is essentially the same as Fig. 2-1,
except we now understand that the "charges" are line charges perpendicular to the page,
and the vectors r, Rj, and R; lie in the plane of the diagram. The field of each line
charge is inverse-firsz-power in r, and the potential is logarithmic (see Prob. 1-5). For
one line charge, the equipotentials are of course concentric circles. For the pair of line
charges, we expect something qualitatively like Fig. 2-2.

(a) The analog of Eq. (2.1) gives the potential as
D(r,0) = - 2p;,(InR;—-1nRy) = 2p,In [%]

From Fig. 2-1, in the limit r >> £, we can approximate

Ry = r-{£cosé@, Ry = r+ £cosé@

from which it follows that

21

R - 4
R 1 + 2 Scos@
The power-series expansion for the natural logarithm is In(1 +x) = x — x2/2 + +--.
Therefore the lowest-order surviving term (the dipole approximation) is

(i) - g
ib':}) = 2p¢-—f—cose = p:% = P—‘;—’-

where ps= 2pA is the dipole moment per-unit-length, and r = r e, is the radius
vector in cylindrical coordinates. This compares with Eq. (2.7) for the three-
dimensional dipole. The potential is zero everywhere in the midplane (6 = n/2), as
well as at large cylindrical radius.

(b) The field components {in cylindrical coordinates) are

.3°a_ cos6

E’ = - r = p! rz

B D _ sin@
6 = 708 T Pt

EfZ

-‘E{— (cos@ e, + sinf ep)

This differs from the 3-d Eq. (2.29) by the omission of the factor of 2 in the radial
component.

(c) Paraphrasing Prob. 2-5, the function re(6) representing an equipotential is, from
Part (a),

re = %ﬁcosO = Ry lcos@l

where again the parameter Rg = p,/ |®/ is the intersection distance along the "polar
axis" of the dipole. Here there is no square-root as there was for the 3-d dipole.

For the 2-d field-line,

drg _ E _ _cos6
rgd®@ ~ Eg = sin@

J'rkirs_ _ J'ﬂ d(sin6)
" Re TE /2

sin@

- ln(-m] = ln[mlle) — rg = Rgsin@

Chapter 2
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where again the integration constant Rg is the radius at which a particular field-line
crosses the "equatorial plane" of the dipole. The sin@is no longer squared as it was for
the 3-d dipole's field-lines. In this 2-d case, the equipotentials and field-lines have the
same form (sine equals cosine rotated by 90°). Both formulas create circles of radius
R/2, all passing through the dipole origin. The 3-d curves are flattened and elongated
as shown in Fig. 2-2.

2-7. (a) From the preceding problem, the potential is

o = 2p,1n(’—§ﬂ = —2p,In(D)

D
r= P[ E]

Thus an equipotential is a locus of constant I. For the Cartesian coordinates
suggested, the R radii are given by:

Ry2 = (x-82+y?

R32 = (x+ H2 +y2

R (x =52 +y2
re = (_l. =
R

2] T (x+ H2 + y2

IMx2 4+ 242x + £T2 + T2y2 = x2 - 26+ £ + y?
1+2\f ., _ (2¢C
[ "(1-{2 *y® = (1—.r2

This is the equation of a displaced circle (cylinder in 3-d), with center at (X.,0) and

radius Re given by:
1412 )
X, = {¢ (l-—ﬂ) = {coth (Zp:]
2/ 1
Ry =775 = £ —————
® T n-ri Isinh(®/2p)

For I'< 1, corresponding to ® > 0, the circles are nested about the positive line
charge, with I'— 0 and ® — +In(°0) at the line. For I'=1 and ® =0, the
equipotential circle becomes the line (plane) of symmetry at x =0 (with

Chapter 2

X.=Rg —> ). ForI'>1 and ® <0, the circles are nested about the negative
line charge.

I =osr r=15

0.50 20

(b) To apply to parallel wires of radius a, center-to-center separation 2d, we first note
that equal and opposite potentials, +A®/2, correspond to reciprocal values of I}

r, = }l,t = exp(-—‘ﬁq]

4p,
Then
I 1
= - e - i L S 1
& = dg =2 (1-1“3) = ¢ Soh@oyap)
d = X. = ¢ [HE2) 2 fcoth(adors
= c = I—F.'.z = {coth( 0 p()
Hence

and the capacitance per unit length of the parallel wires is

pr  _ 1
Ce= A0, = Fcosh-'(dla)
Further applications are discussed by Edmonds and Corson, Am.J. Phys. 54, 811
(1986).




2-8. By Eq.(2.22) the dipole moment of a
system of charges is

P = Z‘i’arc’z 'Oj
o

Express the position vectors in terms of an intermediate )
origin O’, located from the original origin O by the
vector ro,

l':, = rp + R;,
Then,

roz 4a+z 9z R

If the system has zero net charge (2g, = 0), the dipole moment is independent of the
location ry of the origin.

= X qa(ro+Rg) =

2-9. From Eq. (2.35) the quadrupole tensor in full glory is

2q(2x2-y2-z2)  Zq(3xy) 2q(3xz)
{Q} = Zq(xy)  Zq(-x*+2y>-z%)  Zq(3y2)
29(3x2) 24(3y2) 2q(-x2-y2+272)
For a single charge +¢ at (0, 0, +4),
-gf£ 0 0
Q) = 0 —g£ 0
0 0 +2g2

For an equal-and-opposite charge —¢ at (0, 0, —4), the quadrupole tensor is exactly the
negative. Thus the total {Q} vanishes for the pair, constituting a finite-size dipole. If,
however, the origin is chosen somewhere other than the center of the dipole, the
dipole's {Q} does not vanish, in general. The dipole moment p, being the lowest-
order moment of this system, is independent of origin, as shown in Prob. 2-8.
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2-10. When x4 is the symmetry axis of the charge distribution, the quadrupole
moment is [discrete form of Eq. (2.42]

= Q033 = Z qa (Sx;3x;3—r&32)
a

The quadrupole tensor is diagonal and, by Eq. (2.38),
Q1 = Q22 =- 30

Thus Eq. (2.34) gives

o = ZQ [Bxx—rb'J
=5(-3 )[3x =)+ (- )T "2] (+Q)(~—3‘—’2J

(— ~x1 - i‘.‘tzz + —sz) i ("‘.\73 %r'z)

But with the polar axis of spherical coordinates aligned with the symmetry axis x3,

o 1N
cos@ = 2

so that
1 @ o3 1
O@(r,0) = T (Ecoszﬂ - 5)

This peculiar factoring of the numerical coefficient anticipates the conventional
normalization of the second-order Legendre polynomial, P>(cos@) [see Egs. (3.39)
and (3.41)].

2-11. We wish to recast Eq. (2.34),
o0 = 2 0 (Bx;x _rzaJ

By Eq. (A.88),
re{Q}er = X x0yx% =

ij

Z_ Qijxix;
ij

Chapter 2
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With e, = r/r, the first term of the potential is
le__(Bxg,-) _1¢€-{Q}-e
6 i Ci|Trs | T 2 r3s
ij
The second term is, using Eq. (2.40),
___I_Z Qi dii = _Lz Qi =0
6r3 i1 Y 6r3 & =M

Thus the new form of the first term is a complete expression for @@,

2-12. (a) Direct calculation from Eq. (1.21):

2e e

@(P1) = 5 -7 0.2039 e

D(P3)

2e e
5 g 0.1500 e e

%
a
N

(b) The general multipole expansion is given in 3
Eqgs. (2.19-20).

monopole moment: g = 2e—e = +e

OM(P)) = ®M(Py) = L = £ = 0.200¢

From Egs. (2.22-23),

dipole moment: p,= (+2e)(0)+(-e)(l)=— = p=-ee,

‘e co0s90°
d(P)) = p,z L = £~ = 0
F °
O@(Py) = BEr = ecos180° _ _0.040 ¢

From Egs. (2.34-35),

quadrupole tensor: {Q} =

°°£’

0 0
+e 0
0 +e

Chapter 2

2 _ g2 -
ONP) = %ZQ”:’L’-‘LSL = %egzd"s#l = 0.004 e
i

(P, = ‘li gL"—%l = -0.008 ¢

[Since the charge distribution is axially symmetric about the x = x; axis, the
quadrupole potentials could be found from Eq. (2.43), with Q = Q1) = -2e, and
6, =90°, 6; =0.] Thus the first three terms of the multipole series are:
®(P;) = e (0.200 + 0 + 0.004 + ---) = e (0.204)
®(P3) = e (0.200 - 0.040 - 0.008 + --:) = e (0.152)

Because the finite size of the charge distribution extends in the x direction from the
origin, P; is effectively closer than P;, and its series converges somewhat more
slowly.

2-13. Using Eq. (2.35) in the given coordinate system, we have

0 -3¢g2 0
{Q)}) = | -3¢g2 0 0
0 0 0

The symmetry of the charge distribution suggests a rotation by 45° about the z axis.
[This transformation can be found formally by the method outlined in Sec. A.7. See
also Marion and Thomnton (Ma95, Sec. 11.4).]

In the new system with axes as shown,

-3¢g2 0 0
{Q} = 0 +3g2 0
0 0 0

Because the system is not a figure of revolution,
the relationship of Eq. (2.41) for the diagonal
elements does not apply here.




2-14. Equation (3) of Example 2.4 gives

3cos20 -1

D@ = 2ps 3
The field components are:
20 —
Er=_3¢f=6p!3coifl
oP cos®@ sin@
Eg = g 12p£ -

Clearly the field-lines are radial (Eg= 0) at 8= 0, 90, 180°, and reach their maximum
radius (E, = 0) at 8= cos-1(+1/V3) = 55, 125°. To find the quantitative shape rg(6)
of the field-lines, we have the differential equation (see Prob. 2-5)

dg _ E _ 3cos26-1

red8 =~ Es = 2cos@sinf
J"'lg drg _ 3 J"’ cos@ 1 J.‘ 1
= 2 ——de - > —_—de
2 2
Re TE A sin@ - cosfsinf
= [E Inlsin@l — Lin |tan8l]o
2 2 cos-11/3

The lower limits of the definite integrals are chosen to be at the maximum radius Rg.
The first angular integral is obvious; the second may be found in tables. Thus,

=7 = : ;:-__'.

TN

q"g-. ’

1
nt
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) _ [ [sn20)’ ,,,Lno;lcosﬂ]
RE Imduz - (2’13)1!2 (”3)1!4

re = sin@ lcos 812
E = E (4{27)”4

All field-lines are similar to each other, that is, the same function of 8 scaled by the
maximum radius Rg. Note that since we have used only the quadrupole potential (the
lowest-order term for the configuration of Fig. 2-4), these field-lines do not take into
account the finite size of the charge distribution.

2-15. Evaluating Eq. (2.35), we have %
3 ¢ ¥
+39¢ 0 0 o
@ =| o -%eao P
0 0 0 % “'V" %
%

Now, from Eq. (2.34),

rs
_ 3 ﬁ(ﬂg—_ﬁj
= 29 rs
For spherical coordinates such that
xy = rsinf cos¢
X2 = rsinf sing
x3 = rcosé@
we have

o4(r,6,p) = 2‘.’1 gl [sinzo (coils.p_sinzq,)]

= 3g2 ( sin26 cos2¢ ]

as quoted in Eq. (4) of Example 2.4. Because of the ¢ dependence, the potential and
field are not axially symmetric. The field components are:
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E, = - 3% o %qﬁ [33i|138c032g)

r4

P 3 sin26 cos2

E. = ol (2 sinzﬂsinZQ)
0 =

= ___3
T rsinfdep ~ 4 ré

In the equatorial plane (8 = 90°, the x;-x; plane), Eg vanishes and the field-lines are
found from the differential equation (see Prob. 2-5):

dre _ E, _ 3cos2p
redp ~ Ep ~ 2sin2g

J’?Qz " ajzv <0204 0
2(45°)

r sin2
Rg s ?

h{%] = % In Isin2 @l

re = Rglsin2¢l?/4

In this plane the field-line looks much like that of Prob. 2-14, but of course there is no
longer an axis of symmetry.
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2-16. The monopole moment is, trivially, g. From Eq. (2.22) the dipole moment
is

p = | o et av
q +h
- e Ip;zdz = ezth- zdz = 0
~h
From Eq. (2.42), since the system is symmetric about the z axis,

0 = 04 = | pr") 322 - r2) av’

+h
> [ pe@ryaz = —E—J' 22dz = qh?
-h

By Eq. (2.41),
Qs = Oy = - 50z =~ igh?
Thus the full quadrupole tensor is
- 0 0
{Qj = 0 -3gi2 0
0 0 +%m

2-17. The monopole moment is zero only
with the added point charge at the center. When
added, the dipole moment vanishes for any
origin (see Prob. 2-8). Without the central
charge, the dipole moment depends upon the
choice of origin. For the obvious origin, at the
center, the dipole moment vanishes anyhow, by

symmetry. 7 ;

Both systems are symmetric about the z axis, so Egs. (2.41-42) apply for the
quadrupole moment. With the origin at the center,

QOring = 0z = | p(r') 322 - r'2) dv’

- § ps(-a?) de = (igmj)—az)(Zna) = - qa?



The point charge at the origin adds no contribution. Thus, in either case,

7@ 0 0
Q) = | 0 2 o
0 0 -ga?
2-18. 1tis instructive in this problem to keep 3’

separate account of the two components of the
given linear charge density. Note that we might
regard these as two terms in a Fourier series.

o~ ¢

%

= %IZ'(¢°S¢)(ad¢)——g—J2' (sin2@)(adp) = 0-0 = 0
o 0

That is, for each term there is an equal quantity of positive and negative charge. The
components of the dipole moment are, from Eq. (2.22),

2n
Px = § pexdl = -ﬂ-—j (cos@ - sin2¢@)(a cosp)(a dp)
0
2n 2n
= qa [f coslpde -2 J- sing cos2¢ d@] = ga (n + 0)
0 0

2n
py = § pey df = —E—J. (cos@ — sin2g)(a sing)(a dp)
0

2n n
= qa U sing cosp do -2 J’ sinZg coswdnp] = gqa (0 + 0)
0 0

= Pp = Tga e,

The dipole moment arises only from the cos¢ term in the charge density. [Note: To
evaluate integrals of the form Icosznp dg, recall that cos2¢ =3(1 + cos2¢), and thus
that the average value of the integrand is % Therefore when the integration span Ag
covers integral periods of the integrand, the integral is simply 3A¢.]
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Since we do not have axial symmetry, we must calculate each element of the
quadrupole tensor from Eq. (2.35):

0y = § poGriy- ) dt

2
Oxx = —z— J. " (cos@ - sin2¢)(3a2cos?p — a2)(a d@)
0

2 2
ga? [j ¥ cos@ (3cos2p-1)dp -2 j " sing cos@ (3cos2p ~- 1) dlp]
0 0

= ga? (0-0)

2n
@y = L f (cos@ - sin2@)(3a2sin@ — a2)(a d@)
0

2 s
ga? [J- " cosp (3sin2p - 1)dop -2 J' sing cosg (3sin2p — 1) dop]
0 0

= qa2 (0-0)

2
Q. = L 'f " (cosg - sin2¢)(-a2)(a dp) = ga? (0 - 0)
0

L}

2
Qzy = Qyx = —'g— J * (cos@ — sin2¢)(3a2 sing cosp)(a d@)
0

2n 2n
= 3ga? ['[ sing cos2p dp - J sin22¢ dtp] = 3qa2(0 - D
0 0

The other off-diagonal elements are zero because z = 0 for all charge. Thus the
quadrupole tensor is:

0 ~-3nga® 0
{(Q} = [ -3nga2 0 O
0 0 0
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Thus the quadrupole contribution arises only from the sin2¢@ term in the charge density.
Note the qualitative similarity with the discrete charge distribution in Prob. 2-13. If the
axes were rotated 45°, or if the phase of the term were shifted to cos2¢, {Q} would
have come out in diagonal form.

Using Eqs. (2.23) and (2.34), the terms in the potential expansion are:

oM = 0
P = MQE:T"EL - ﬂ;;_’-"_

2
O = L5 @y + Q) (Bxy) = - TIEXD

X 3
= & = mqga (ﬁ-*ég-:}+---)

2-19. (a) Note that one cannot integrate a vector field over volume in anything
but Cartesian coordinates, because non-Cartesian unit vectors (such as e, eg, ep of
spherical coordinates) have different orientations in different places. With the axial
symmetry of a dipole, we need be concerned only with the integral of the field
component parallel to the dipole axis. Hence, choosing Eq. (2.29) because it is more

transparent,

By <5 | Bidy w || ey FRE08AE T 8iN0 ) . 55 60y
R R ri3

R dr n
= 2mp = (2cos26 — sin260) sinBdO
0 0

The @integral is

+1
f (3c0s20 - 1) d(cosf) = [00539-0059]3 = 9
-1

However, the r integral is
R 4r R R
L < = [Inr]) = Inp) ~ In()
Thus the three-dimensional integral (including the trivial integration over @) is
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indeterminate (0 X o) when the lower limit is at the origin. However, if we take the
lower limit at some small finite radius &, then R/g and its logarithm are bounded and the
zero of the @ integration stands, independent of the value of R. That is, if the integral
has any nonzero value, it comes only from the volume element right at the origin.

(b) Expressing the field as the gradient of the dipole potential, Eq. (2.23), we have
= pP-€r
IR E dv = —J-Vgrad ( =3 Jdv
e
-7 &s [Pr_E'L) da

using Eq. (A.58) to transform to an integral over the surface S (with vector elements
da) enclosing the volume V. Again, it is only the e, component we want, so that

IR E,dv = - §s (&‘,‘ﬁﬁ) (e;+e,) 21R2 sin@ d6
® #1 47
= - 2mp I cos20sin@d@ = - 2np uldu = -—3p
0 -1
4n
= JyEar = -

The volume integral includes the origin (there is no bounding surface there), and the r
dependence cancels identically on the surface at r = R. The three-dimensional Dirac
delta function, &(r) of Eq. (1.99), is precisely the quantity that is zero everywhere
except at the origin, and has a finite integral (of unity) over any volume that encloses
the origin. Thus we modify the field formulas of Egs. (2.28-29) by adding the term

—(4n/3)p&(r).

(c) Equation (2.64) for the magnetic dipole has exactly the same form as Eq. (2.29),
and so the mathematics of integration is identical. Paraphrasing Part (b) using the
vector potential, Eq. (2.58), and the identity of Eq. (A.59), we have

LB dv = L, curl [%&]dv =
& _§s(mr—’;°=]xda

Therefore, noting that m X e, is in the e, direction, and e, (epX €,) = — sin6:



.[n B,dv = - ﬁs ('"Rs‘;'o) [e;* (epX e,)] 2RR? sin6 d6
n +1 8n
= + 2nm sin30d@ = 2nm (1-u?)du = +5m
0 -1

= IRBd‘P=+Tm

Therefore we add the term +(47/3)mé(r) to Eqgs. (2.63—64).

Since the "logarithmic infinity" of Egs. (2.29) and (2.64) is weaker than the delta-
function's infinity, it is not necessary to exclude the origin from the domain of the
original formulas. Real dipoles of finite size have complicated but finite fields within
their structure, and the idealized Eqs. (2.29) and (2.64) [or (2.28), (2.63)] will surely
fail as r — 0. However, this problem shows how to finesse this complication by
working with the potentials and converting to surface integrals, at a large enough radius
that the structural details are irrelevant.

2-20. The time-average of the first term of Eq. (2.45), when written as a discrete
sum, is

(aw) = L f: [E;Za', 9a uaJdr

s 3 B _* ra(7) - ra(0)
'tr%q“J‘or“d"a'zaq“ ra

[The denominator r, representing the distance from origin to the field point, is not a
function of time, nor the charge index a.] If the charges are restricted to a bounded
region of space, as postulated, then the term [ry(7) — ro(0)] remains finite as 7— o,
and (A() goes to zero.

2-21. Stokes' theorem, Eq. (A.54), is
Is curl V-da = §PV - ds

where the closed curve I"bounds the open surface S, and the vector elements ds and
da are related in a right-handed sense. Let V =r Xk, where k is a constant vector.
On the right, using Eq. (A.18),

29
&rv-ds—b §rrxk-ds=-k-§rrxds (¢))

On the left, using Eq. (A.39) and the fact that k is a constant vector,

curlV - curl (rxk) = k-gradr-kdivr
Now, for example, if k = ey,

a
e,*gradr = HF = ex

Thus for an arbitrary constant k,
k-gradr = k

[This result could also be obtained by noting that grad r is the identity tensor,
Eq. (A.72).] Also, we have divr =3. Consequently the left side of Stokes'
theorem becomes
_Lcurl(r)(k)-da:—.’&k-jsda 2
Since the equality between Eqs. (1) and (2) must hold for arbitrary k, it follows that
2 I da = é rXds
s r

(a) Specifically for a circle of radius b with origin
at the center,

b
2_[3 ldsl = 2J 2nb da = 2mb2
0

§ Ir x dsl = b§ ds = 2nb?
r r

The vector direction of both integrals is perpendicular to the plane of the circle.

(b) For an arbitrary origin O, express r in terms of
a secondary origin O’ at the center. Then,

é rxds = &r(k+r')xds

r 4',
r
=Rx§ ds+§r’xds
r r 0
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But $ ds = 0 for the closed loop, and the second integral is identical with that in case
(a).

2-22. (a) Using Eq.(2.51) and Ids — qu [Eq. (1.49)], we define the
(instantaneous) magnetic moment for a discrete charge as

m = 5’6§rrxds - ilc-ran
The vector angular momentum of a particle is defined as [see (Ma95, Sec. 2.5)]

L = rXmu

The two expressions differ only by scalar coefficients, and the gyromagnetic ratio is
m/L = g/2mc, which depends only upon the particle's charge-to-mass ratio.

(b) For a collection of particles,

1
m Eza, g X ggUg

o
I
M

rax meg Uy

Now if all particles have the same charge-to-mass ratio (even though the individual
charges, and masses, may differ), these vector sums are directly proportional in the
ratio (g/m)/2¢. If a system consists of electrons with ¢ = —e and m = m,, and the
angular momentum of the system is quantized with L = % (£=0, 1, 2, ---), then the
magnetic moment of the system is quantized as

el

where the constant is known as the Bohr magneton. In this example with negative
charges, the magnetic moment is antiparallel to the angular momentum.

This classical analysis works for the orbital behavior of elementary particles. It fails
notoriously for the spin behavior, where, for electrons, it is found that their spin
magnetic moment is (very nearly) one Bohr magneton even though their spin angular
momentum is only one-half of £ That is, the electron gyromagnetic ratio for spin is
twice as large as the clasical value.
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2-23. 1t would be a forbidding task to integrate the Biot-Savart law, Eq. (1.36),
over Solenoid 1 to find the magnetic field that it produces at many points throughout
the volume occupied by the windings of Solenoid 2, and then to integrate the Lorentz
force law, Eq. (1.54), to find the net force exerted on Solenoid 2.

However, we can replace each solenoid by its equivalent (fictitious) magnetic poles (see
Fig. 2-12). Strictly, these are disks of magnetic charge (pole-strength) at the ends of
the solenoids, with charge density given by Eq. (2.77). For the geometry of this
problem (with d2 >> A/m), we can neglect the spatial extent of the disks and treat them

as point charges of magnitude

g* = pta = "4
c
The configuration thus reduces to:
e. - & & & & & ° @ @ e. L L - - @ = .@
10cm Scm 12cm

The net force between the solenoids is now given by the algebraic sum of Coulomb
forces between the four possible pairs of charges. From Egs. (2.69) and (2.72),
counting attractive forces as positive and repulsive as negative,

Tqt 1 1 1 1
FeX Al g(g-1-1+ 30
= g*%2 (0.03347 cm-2)

To evaluate ¢g*, we note from Appendix D that 1 ampere = 3-10° esu/s; thus

_ nlA _ (600 A/cm)(3-10° esu/A-s)(2cm?) _
¢t = o = (3-1010 cm/s) = 120em

(note the canceling factors of "¢ = 3"), and the force is attractive with magnitude
F = (120)2(0.03347) = 482 dynes

(From Coulomb'’s force law in Gaussian units, dyne = esu?/cm?2.) Alternatively, one
can convert the algebra to SI:

Koy 4iqf
q* = nlA F - 41:2 ?%j

with /4 = 10-7 henry/meter.




2-24. (a)If we represent the magnetized material by its equivalent pole strength,
it has a surface pole density of (pf)b =n-Mp= Mjpcosf. Paraphrasing the
solution for Prob. 1-13(a) (sphere radius =.a), we find the field at the center (and
indeed throughout the sphere) to be:

*
HL0) = J-(Z—sz)k(—cosﬂ) 2142 sin6 d6

+1
e —ZnMoJ. u?du = -—%M’n
-1

= H =-Tm

We use H here because Eq. (2.67) shows that magnetic pole strength is a Coulomb-
like source of H, not of B.

(b) However, if we represent the magnetized material by its equivalent bound current,
it has a surface current density of K, = —cn XMy = cMj sin@ ey. A simple Biot-
Savart integration (Prob. 1-17) finds the field on the axis of a circular current loop (of
radius a;) to be

2na; 2l }

Bi(2) = c@l+22)" dI =

Now the surface current on the sphere (of radius a) can
be considered to be divided into the elementary loops
that lie between @ and @+ d@. The current is
I(8) = Ky(6)ad6; the radius is a; = a sinf; and
the axial distance to the sphere's center is z — a cosé.
The field contributions of all loops at the sphere's center
are in the direction of the polar axis (e, = ey). Thus:

_ [™2m (asinB)? (cMj sinb)
B:(0) = L ca3 (sin28 + cos26)*? 444

+1 sn
= 2nMy (1 — cos?8) d(cosB) = TMQ

-1
= B=+%"—m

(c) The two fields thus calculated give B — H = 4tMj, which does indeed satisfy
the definition of H in Eq. (1.65). They are related as
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B = -2H

—that is, in opposite directions, with magnitude ratio of 2.

(d) The ratio of the intercepts for Alnico V's R

hysteresis "rectangle” is 13000/600 = 22, more "t"‘*;ﬁﬂ‘;“ A

than ten times the constrained slope of 2. That is, eonshat kine
the intersection of the constraint line for the for sphere
spherical shape will be relatively close to the ciind H

"coercive-force" H-intercept. Thus: force

(H,B) amicov = (600 oersted, 1200 gauss)

sphere

[It is conventional to use the different names, oersted and gauss, for the units of H and
B even though they are dimensionally the same in Gaussian units. In SI units, H and
B differ dimensionally by the constant p.]

For a magnet in the shape of a long bar, magnetized parallel to its axis with its "poles”
at the ends, the internal fields are H — 0, and B — 4nM. In this case, the B/H
constraint line has a very large (but still negative) slope, and the intersection with the
hysteresis curve is close to the "remanence" B-intercept. If the "long bar" is a right-
circular cylinder (or anything other than a prolate ellipsoid), the internal fields are not
spatially uniform, and the B/H ratio varies within the sample. Thus, the equilibrium
magnetization M is likely to be somewhat nonuniform, especially near the ends. See
Probs. 3-23 and 24 for related dependency on the shape of a dielectric or magnetic
object.

2-25. (a) The magnetic circuit consists of the length (£+ d) of soft iron, plus
the air-gap of thickness &, all with cross-sectional area A. From Eq. (2.81) the
reluctance in Gaussian units is

R(9) =ﬁ[——-+,,—

Of the two terms, the air-gap completely dominates the reluctance unless
8 < (4+d)/u = 16/5000 = 3 - 10-3 cm—that is, a very tiny gap. Thus, in the
analogy to the usual Ohm's law, the iron is "hookup wire" of negligible "resistance"
and the air-gap constitutes the entire "load resistor" of the circuit, unless the air-gap is
essentially zero as in this example. Have you noticed how a magnet tends to "grab" its
keeper just as the gap closes?

From Eq. (2.81), the magnetic field in the circuit is simply:

Chapter 2
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B = 2a® . N

AR(d)
(b) The force is
F = iqn. - [...'?_ ﬂ
28 )50 95 \2¢R(6) )I50
_Np R _  2m2NPPA
20R?2 38 = cX(£+d)?

_ 2n(5000)2(300)2(20A)%(0.8cm?) (3-10%sw/s® _ 1 o< . 106
= T(3101%m/s)2 (12+4)%cm? ( A )z' 1.96~10%"dynes

(Note the cancellation of the factors of "c =3".) Alternatively, the algebra can be
converted to SI by replacing the coefficient 1/c2 by po/4n = 10-7 H/m, and
interpreting y in the formula as the relative permeability, L) = 5000, of the iron.

The negative sign indicates that the force is in the direction of decreasing air-gap 6 —
that is, the force is attractive (as any schoolchild knows). This is the force at one end
of the keeper; if a load is placed symmetrically at the center of the keeper, the two poles
would provide twice this force.
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3-1. From symmetry, the potential is a function of the cylindrical-coordinate radius
only. From Eq. (A.47),

The first integration gives
d (r ‘%] =0 = rege = C (a constant)

The second gives

The integration constant C is now determined by
b
@9 = ®(b) = Cln|—

Therefore,

In(r/a)
0 Inba)

o(r) = @

The result can be checked by the use of Gauss' law as in Prob. 1-5.

3-2. The problem is identical to Prob. 3-1 except that the symmetry is spherical.
Using Eq. (A.52), with ® a function of the spherical-coordinate radius only,

712‘%(”‘%%" = g5 =C
o) = CI'% =c (%-%)

The integration constant C is determined by



3-3. The potential averaged over the surface of a sphere of radius R is
(@) = ﬁ h,, ®(R,0,p) R? 5in0 d6 dp

If we can show that this quantity is independent of radius, then as a special case it must
equal the value of @ at the point R — 0. Although the explicit R dependence cancels
out, ® remains a function of R in the integrand. Thus we need to evaluate

d 1 D) .
ﬁ(@)u = o= 9»9(_; sin@ d0@ do

But by Eq. (A.25),

[—?-LR = (e,-grad @) __,

and we can write

d 1
Eﬁ(tb)n = Wﬁgﬁ"‘” grad ® -e.da

sphere
By the divergence theorem, Eq. (A.53), this can be transformed to a volume integral,

1 J' . ' 2
4nR2 volume div grad ®dy = 47R? J volume Viddy

By assumption, there is no charge within the sphere, and Laplace's equation,
Egq. (3.2), makes the integral vanish. Thus the derivative d{®)/dR is indeed zero, and
the theorem is proved. Note that we have made no assumption concerning the
symmetry of ®(R,8,¢), nor of any charge distribution outside the sphere.

This theorem is a manifestation of the smoothing property of Sec. 3.1, and is closely
related to the relaxation algorithm discussed in Sec. 3.6.
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3-4. If a positive charge is to be in stable equilibrium at a point, then (1) the
electric field must be zero at that point, and (2) at any nearby point, there must be a
nonzero field pointing back toward the stable point. (We are speaking here of the
externally imposed field; we do not count the field of the hypothetically confined
particle itself.) Thus, if we enclose the point with a Gaussian surface, stability
demands that there be inward electric flux everywhere over the surface. By Gauss'
law, Eq. (1.8), this inward flux must be matched by enclosed negative charge. But,
by assumption, the proposed confining field is to be produced by external charges
only. This contradiction proves that no such stable point is possible.

It is possible to confine the particle in two dimensions, but it will then be unstable in the
third.

An alternative argument invoking Laplace's equation is frequently given. In one
dimension, a charge is in equilibrium when E = -d®/dx = 0. This equilibrium is
stable (i.e., there is a restoring force) if, for positive particles,

d’® dE
-&x—-i- = - _dx >0
In three dimensions, stability would require that all three second-order derivatives be
positive,
20 20 20
&2 ] @2 » &2

But this would violate Laplace's equation—at least one of the derivatives must be
negative (unstable). This argument, while applicable in the typical case of potential
functions @(x,y,z) with "normal” Taylor expansions in the vicinity of the confinement
point, fails in the unusual circumstance where the second-order Taylor derivatives all
happen to be zero. One must then test for stability in the higher-order terms. See
Weinstock, Am.J.Phys. 44, 392 (1976).

0

Problems 3-5 through 3-8 have Cartesian geometry in two or three dimensions. The
method of separation of variables discussed in Sec. 3.2 is appropriate.

3-5. In two dimensions, the separation constants, o2 and B2 of Eq. (3.13), are
equal and opposite, and the resulting harmonic functions are oscillatory in one
dimension, and exponential in the other. For the boundary conditions of this problem,
X(x) is easily identified as the oscillatory function, and ¥(y) as exponential. Since only
a finite range of y is involved, the linear combination of positive and negative
exponentials known as the hyperbolic sine is appropriate, adjusted so that ¥(yp) =0,
_ sinh[B(o-y)]
YO) = “sinh(Byo)
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The denominator normalizes the function so that ¥(0) = 1. The phase of the square-
wave potential along the x axis suggests that its Fourier series is comprised of sine
functions [Eq. (B.1)],

X(x) = 3, B,sin(rfx)

The spatial periodicity B must match that of the given problem, that is, fa =n. From
Eq. (B.2), we have

B,

1}
—
2
X
2
.
5
E

[
—
|2
—

[
=1|N
A

)

E

—~
)

A
o
S

0 (r=2,4,6, --)

Note that we used the odd symmetry of the two factors in the integrand to integrate over
half the domain and double the result. Thus we have

@(xy) = 4‘%2 sin(rx/a) sinh[B(yo—y)1

led r sinh(fByo)

Note that coshu and sinhu are the linear combinations of exp(du) that have even and
odd symmetry, respectively.

3-6. (a) The boundary conditions of this problem differ from Example 3.2(b)
only in that the top face of the cube, in addition to the bottom face, is maintained at the
potential ®g. Thus given the Example's solution, Eq. (10), we can immediately write
out the desired result:

@(x,y,z) = 150 2 24 [m-(ﬂ)—] sin(ﬂ) sin(m—bZ)

5 -
T ¥ nddrs sinh 7,5¢ a

16®, ZL sinh gz | . (rmx) . (smy
+ 5 et 73 I:sinh'y,sc sin| == | sin| =5
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where 7 is defined in Eq. (4) of the Example. The first term, reproducing Eq. (10),
gives the value @ on the bottom, and zero on the other five sides. The added second
term is a simple revision of the first (replacing ¢ —z by z), which gives the value ®p
on the top face, and zero on all other sides (including the bottom). The sum matches
the new boundary conditions.

(b) For the cube, % = (m‘aﬂ r2+ 52, and the potential at the center is:

s 1
0@ e e - 320 1 [sinhamNr2+s2 | omy  sm
22 2) i ﬂz s sin 2 sin _2
5 odd

sinh wV r2 + 52

The sine functions are of magnitude unity, alternating in sign as the index advances 1,
3,5, ---. Numerically,

L7 L (2) w(g)

r 5
sinh ,.z +52
1 1 0.10719 + +
1 3 + -
} 0.00232
3 1 o +
3 3 0.00014 - -
1 5 + +
} 0.00007
5 1 + -+
3 5 - -
} 0.00001
5 3 + -

Beyond the first term, sinh(u/2)/sinh(u) can be approximated by exp(-u/2). Thus,
@ (center) = Py ::-'E% [0.10719 - 2(0.00232) + 0.00014 + 2(0.00007) — 2(0.00001) — --:]
= Cbo [0 10281---] = 0.33334 @y

This value coincides with the average potential over the walls of the box (compare
Prob. 3-3):

20
(@wans = "T_r,A = "%—‘1’0



The numerical terms in the table were evaluated by the following BASIC program:

REM Numerical factor for Problem 3-6
INPUT PROMPT "r, s, = ": R,S
LET RT = SQR(R"2+58"2)

LET E = EXP(PI*RT/2)

LET F = (E - 1/E)/((E”2 - 1/E"2)*(R*S))
PRINT F

END

3-7. The oscillatory functions will be in the y direction, restricted to terms that
vanish at both y =0 and b. The exponential functions are in the x direction; since the
x derivative must vanish for x = 0, the hyperbolic cosine is appropriate. Thus we
construct a solution of the form:

®(xy) = Z Ay (g:ll:mz)sm(ﬂb’—)

rodd

Note that even values of the index r, which also satisfy the requirement that @ = 0 at
y =0, b, nevertheless would violate the symmetry of the boundary conditions about
the center-line y = b/2.

The potential at x = a can be considered to be the first half-period of a square-wave,
for which the Fourier series was found in Prob. 3-5. That is, A, = 4®¢/nr, and we

have:
_ 49 Z cosh rx/b\ ( sin rny/b
P(xy) = K [coshnra/b r

S
5

(0]
* G
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3-8. As in Prob. 3-6, we invoke superposition in order to deal separately with the
two arbitrary functions. Putting o®/dx = 0 along x = 0, we modify the solution for

Prob. 3-7,
Wiy o z (ﬁ—m!][,q,cos(ﬁgl)ar B,sin(ﬂbl]] )

r

where the Fourier coefficients A, and B, are to be determined such that

(®)x=a = n(y) = 2 [A,cos(%l)+ B,_sin(%r'y—]]

r

Both the cosine and sine series are needed because we have assumed no special
symmetry of the function 7)(y) about the center-line y = b/2. Multiply through by
cos(smy/b) [or sin] and integrate over y from O to b. Because of the orthogonality of
the sine and cosine functions, as for example

b
J-n cos(mbz)cos[sf—bz)dy = 'Tb Ors

we can thus determine the coefficients from [equivalent to Eq. (B.2)]
[ e

} (2)
= _[ n®) sm( de

The second partial solution is for the boundary conditions ®(x=a)=0, and
o®/dx = £(y) along x=0. The x-dependent factor must vanish at x = a, and have a
first derivative normalizable to unity at x=0. The appropriate function is
sinh[o(x - a)], and so our second partial solution is of the form

D, = 2'_ [(rm'b) et ma/b) [C,cos(bﬂ]+ D, sm( B ]] 3)

The boundary condition at x=0 is

(%% o=t = z [Crcos[%!J+ D,sin(-’g-’iJ]

r

A

B,
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By the same procedure as above, we can find the Fourier coefficients from:
» T I E» GOS( ) y
} (4)
f £0) sm( )dy

Thus the problem is solved in full generality by adding together (superposing) the
solutions (1) and (3), with the coefficients calculated from (2) and (4).

c,

D,

3-9. (a) The zero-order function is uniquely Fg=1. The first-order function,
Fy = x + a, must be orthogonal to F, that is,

+1 +1
0 = I Fo(x) Fi(x) dx = J' (x +a)dx = [—.ur2 +ax] = 2a
-1 -1

Therefore, a=0, and F; = x. Now, F3 = x2 + bx + ¢ must be orthogonal to
both Fg and F), that is,
+1

0 = fﬂ (1)(x2+bx +c)dx = [%x3+'§bx1+cx] = 242
4 -1 3

_ [* 2 = Tlaylyss ool o 2
0 = (x)(x2 + bx +¢c)dx = [4x + 3bx +,:,cx] _Tb
-1 -1

Therefore b =0, ¢ = -4, and Fz = x2 — L. This sequence of computations can be
continued in a straightforward manner. Note that even[odd] orders of F,, contain only
even[odd] powers of x, respectively. Since each higher order adds one more
coefficient to be determined, but also provides one more orthogonality integral with
lower orders, the whole set of polynomials is unique.

(b) The normalization constants are:

+1
Co = J- (1)2dx = 2

C; = J‘+ (x)2dx = [313]

+1
C, =j (x2 -

1,2 Ls_23.L1" - 8
3) dx = [5x5-9x3+9x] : = 25
=1 -

(c) Clearly Fp and F, are identical to the corresponding Legendre polynomials of
Egs. (3.41), while Fp = %Pz. Because the orthogonality integral, Eq. (3.43), has the
same form as the F's condition (4), we can infer that the whole set of F functions is in
fact the same as the set of Legendre functions except for their normalization. For the
Legendre polynomials, the normalization condition, replacing (3), is given by
Eq. (3.40): the function has the value of unity at the upper end of its domain, x = +1.
For this choice, it turns out that the coefficient of the highest power, !, in the Legendre
Pyis

(21-1)21=-3) --- 1
3

That is, this is the factor that one must multiply our F functions by to turn them into the
conventional Legendre functions. The normalization constants for the Legendre
functions are given in Eq. (3.43) as C;=2/(2[ + 1).

3-10. Any polynomial of degree n,
n
Fu(x) = ZO a;xi m
can be regrouped as a sum of Legendre polynomials,
Fp(x) = X AP(x) @
=0

There is a unique transformation between the n+1 coefficients a; and the n+1
coefficients A;. Now, the conventional least-squares method for approximating a given
function f{x) is to solve the n+1 simultaneous algebraic equations

+1
% [ﬂx)—z a;x‘]zdx =0 (0<i<n) 3)
i i=0

-1

for the n+1 aj's. An equivalent operation is to solve the n+1 equations

+1
;%; [ﬂx)—lzoA;P;(x)]z dx = 0

(0<Il<n) “)

for the n+1 A/'s. The integral in (4) can be expanded out to



+1 3 *
j [ JPdx = J’+l R dx - 23, A:f ' f0) i) dx
-1 I=0 -1

+ 2 AR J” PR dx + 2, AjAp I” P(x) P(x) dx
=0 -1

1= -1
The last integral vanishes by orthogonality, and the next-to-last integral can be

evaluated by Eq. (3.43) as 2/(21+ 1). Thus, setting the derivatives with respect to A;
equal to zero as in (4), we obtain the n+1 independent equations:

_2 J-”f(x) Piydx # 2A;(2—I—i-—l] =0
-1

Ao 2221 (0<I<n) )

which is Eq. (3.45). Although the least-squares approximations of the function f{x)
by the series (1) and by the series (2) are numerically identical (for the same degree n),
the computation of the coefficients in (2) does not involve solving simultaneous
equations, because the Py's are orthogonal whereas the x;'s are not. Moreover, if one
wishes to improve an already-computed approximation by extending the series to a
higher order n’, all n"+1 coefficients in (1) would have to be recomputed, while only
the additional n-n coefficients in (2) are needed.

3-11. Expand the generating function, Eq. (3.46), in a binomial series, and then
regroup in powers of u:

1
(1 -2ux +p)'/2 —

[1+(-2px+pn)] 2

1= 3(= 2ux +x2) + 3 (= 2ux + x2)?

- 2ux +32)% + 25 2ux + x2)% -

l+p(x)+p2(-%+%.t2)
+,u3( §x+2x3)+p4(—— z+£"§t“)+

The coefficients of successive powers of i are the Legendre polynomials, Egs. (3.41).
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3-12. (a) For x =+1, the generating function reduces to:

1 1

= (1 -pu)!
(- 2px + 22 = [(1-w]™ (1-p)

= 1+pu+pu2+pd+pt+--

All the coefficients of this binomial expansion are unity. Therefore, the P; of
Eq. (3.47) go to unity for all / when x=+1.

(b) We wish to substitute the given function

1

F(x,u) = (1 -2ux + uz)nz
in the equation
(=% )i§—2x¥+ ,UW(,HF)
First we compute:
aF 1 1
_a_x- = (_ 5) (] _2#; +p2)312(_2#)
2F _ (_3 p _
oxz (_ 2) (1-2ux +p2)5!2( 2#)
dF
m(ﬂf’) =F+p ou
1 1
(1 -2ux+ uz)lﬂ. ( -2'"') (1 -2ux + pz)yz (— 2x + 2]’.&)
> a2
a0y = 3 [30m]
1 1 1
= (-3 - -2
(-2 5 o v R W) + e e (3 - 28)

1
+ p(x - p) (- %) (= 2px + g2 (-2x+2n)

To substitute the derivatives in the proposed identity, it helps to organize the algebra by
collecting terms according to the power of F that appears as a factor:
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F3 [(1 - x2)(0) - 2x)(1) + ()((x - 1) + (x - 2))]
+ FS [(1 - 22)(3p2) - (20)(0) + () (3p(x - p)?)]
= FS [(=3p2)(1 - 2px + p2) + 3p2(1 - x2) + 3p2(x - p)?] = 0O

Yes, the generating function F satisfies the given equation. Now express F in the form
of Eq. (3.47), that is, as a power series in i with the coefficients P;(x). Substitution
in the identity gives a sum of three infinite series, each of which is a power series in .
Select out from each of the three series the particular term involving y!. The explicit
factors of u in the third term compensate for the second derivative—that is, we start
with the term Pyul!. Multiply it by u [u! —» ul+1], differentiate twice
[—= (I+ 1) p*+1], and multiply by g once more [ (I+ 1)I u!]. Then we can
rewrite the three-term identity in the form:

Z [(1 —xz)a;—;‘— 2 Py 114 1)P,],uf =0

Since this sum must vanish identically for all y, the coefficient of each yu must be zero.
Therefore the Pj(x) functions defined from the generating function F do indeed satisfy
Legendre's differential equation, Eq. (3.37).

3-13. For Q¢ = LIn(1 +x)/(1-x), calculate the derivatives:
40 _ 1 ( 1 1 ) _ 1

dx = 2|T+x*t1-= 1-x2
29 _ _ 2x
dx?  — (1-x2)?

Substitute in Legendre's differential equation, Eq. (3.37), with [ =0:

2x
ey =X 1 _
(1 x)(l—x2)2 21\:1_J|c2 0

The equation is satisfied. Similarly for 0, =-.:,-x In(1+x)/(1-x)-1, and [ = 1:
dg, _ 1, (1+x x
dx = i3 |t1

2o _ 2 2w _ 2
dx?2  ~ 1-x2 (1-x2)%  (1-x2)
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2 1
(-5 oy - 2x [%1:1(1 f;‘) . fﬂ]

+2[%xln(}t;:]— 1] = 0

Again the equation is satisfied. From the recursion relation of Eq. (3.48),

I+1) Q1 = QI+ 1) xQ1-1011

we can compute

1 1 1+x 1, 1+x

0, = §[3x[§xln1_x - l]— [’Il“l—x]]
103 1 1+x 3
=3G=2-1Y) '"[1_x) - 2%

The coefficient of the logarithm looks familiar. In fact, continuing this process, one
can show that

1 1+x 21-1 21-5
g = EP"“[I—x] - (I.IJPI—I - (ﬁ)Pm s

The presence of the logarithm makes this solution independent of the P's (but also
makes this solution blow up at x = £1).

3-14. 1n Eq. (3.39) the A, term contributes the potential
®(r,0) = Ay r2 Py(cosd) = A r2 (3cos26-1)

Remember that we are assuming axial symmetry—that is, the potential is independent
of the azimuthal angle ¢. The potential is zero on the cones given by

cosf = :t;}g = @ = 55°, 125° (1)
Positive potentials exist within each of the cones (near the axis); negative potentials
exist between the cones (near the equator). Let the equipotential of value +A®y/2

intersect the polar axis at r = R,, which sets A3 = A®y/2R,2. The cross section of
this equipotential in the x—z plane (z = polar axis) has the equation

2R,2 = r2 (3cos20-1) — 3z22-72 = 272 - x2



This represents a pair of hyperbolas ("hyperboloid of two sheets" when revolved about
the symmetry axis), and we imagine a pair of conducting electrodes made in this shape.
Both of these "polar electrodes" are at the positive potential—we could call one the
"north polar electrode” (z > 0) and the other the "south polar electrode” (z < 0), if
you like, but they are physically indistinguishable.

The negative equipotential of matching value —A®g/2, for the same A5, has the equation
2R;2 = —r2(3cos20-1) - -3224+7r2 = - 222 + x2

This is again a hyperbola ("hyperboloid of one sheet" in 3-d), which intersects the
"equatorial plane" (8=90°) at R_ = x(z=0) = VZ R,. So we make a conducting
ring in this shape to form the negative "equatorial electrode." Mathematically, all three
electrodes extend to infinity; in the real world they must be truncated somewhere out
along the asymptotic cones of (1). Except for these edge effects, the potential
distribution in the space between the electrodes is described by the A, term alone.
Intermediate equipotentials are of course hyperboloids with the same topology as the
electrodes.

The corresponding field components are

E, = —‘%‘?‘ = —Azr (3cos20 - 1)
op .
Eg = =g = Az r (3 cos@ sinf)

If desired, we could find an analytical formula for the field-lines by the method of
Prob. 2-5. The general topology is shown in the sketch. There is a null field at the
origin, and the magnitude [El increases as one goes out radially in any direction.

This configuration is sometimes called a "quadrupole field" in reference to the B; term
in the Legendre-polynomial (or axial multipole) expansion. By the same logic, one
would call the uniform field in a parallel-plate capacitor a "dipole field."
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The addition of a uniform axial magnetic field to the "quadrupole" electric field
produces an important configuration known as a Penning trap for charged particles [see
Brown and Gabrielse, Rev.Mod.Phys. 58, 233 (1986)]. The cylindrical analog [the
Az term of Eq. (3.79)] is used as an electrostatic lens to focus the beam in particle
accelerators.

Problems 3-15 through 3-27 involve geometries for which spherical coordinates are
convenient. Moreover the systems are axially symmetric and call for solutions in terms
of Legendre polynomials (zonal harmonics), as discussed in Sec. 3.3.

3-15. The electric field-lines of Example 3.3(a) are shown in Fig. 3-4; those of
Example 3.3(b), in Fig. 3-5. The equipotentials are everywhere perpendicular to the
field-lines:

conductor dielectric

3-16. The problem is identical to Example 3.3(a) except for the presence of the
net charge QO on the conducting sphere. Clearly, at large distances this charge produces
the monopole potential @/r of Eq. (2.20a) [= Eq. (1.18)]. The solution at all points
external to the sphere must, however, be expressible in the form of Eq. (5) of the
Example. Since Q/r is exactly of the form of the By term in (5), all we need to do is
add this term to the previous solution, obtaining

3
®(r,0) = g— — Egrcosf + ar—Ezo-cosﬂ

If it is desired that the potential of the charged sphere still be defined to be zero, we can
also add an Ag term [in Eq. (3.39)] equal to —Q/a. Note that Ay is just the arbitrary
constant that can always be added to the potential function [see paragraph following
Eq. (1.18)].
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3-17. Asin Example 3.3(b), there are two regions separated by the spherical
boundary at = a. The causal agent in this problem is the dipole at the origin, whose
potential is given by Eq. (2.23) as @ = (pg cos6)/r2. The @ dependence suggests
that we will need only the /=1 terms in the zonal-harmonic expansion, Eq. (3.39),
which involve Pj(cosé) = cosO. Therefore, the expansions reduce to:

Oine = [Aiir + Bim 5] coso
Oext = [Aeer + Biew ] cos6

Clearly, (B1)int = po because of the causal dipole, and (A1)ext — 0 because there is
no applied field at infinity. This leaves two coefficients to be determined by the two
boundary conditions at r=a:

Dint = Pext (Egint = Egext) ©

(ADima +po$ = (B1)ext ﬁ

(§]. =€ (%b‘l‘ (Drint = Drext) *

(Atine=2p0 5 = - 2€ (B1)exs 35

(7 ) o) = (o)

A ig ¥ - SE=1)P0..

3
- sy BDe = 30T

2e+1

Physically, the dipole pg polarizes the dielectric, which now has a bound surface charge
[Eq. (1.34)] on the cavity wall. This surface charge produces a uniform field within
the cavity of magnitude —(A})ine = +2(€— 1)pofa3(2¢+ 1). The surface charge also
modifies the field in the dielectric, the net field being that of a dipole of strength
(B1)ext = 3P0’(2£ +1).
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3-18. Label the three regions as shown. 3
Only those terms in the zonal-harmonic
expansion that contain P = cos@ are needed

to satisfy boundary conditions consistent with

the prescribed potential at large distances,

®3(r—>w) = - Egrcosf

Consequently the potentials in the three

regions will be of the form:
®,; = - Eyrcosf
Dy = Azrcose+32%cosﬂ
D3 = —EorcosO+B3'—Lfcos'8

where E; is the desired (uniform) field inside the shell. The potential, and the normal
component of D = ¢E (i.e., —& d®/dr) must be continuous across both boundary
surfaces (the factor cos@ cancels out throughout):

—Eja = Aza +-§2—

az
Azb-f-‘f%‘ = —-Egb +—bB-g—
E, = -£A2+2—i—83'2'

—eAz+2-%%z = Ep +—i%3-

In matrix form the simultaneous equations are:

1 1 1/a3 0 E 0

0 -1 1B 1B Az 1
= E 0

1 & -2¢8a> O B, 0

0 -& 2¢b3 -2Ub3 B, 1

‘We can use Cramer's rule to solve for Ey:



denominator determinant:

1 1
o - 2 ¢~ + 2 -
—bi'ii 4e - 2¢ E 2} F(z& 2e+ 2 28)

- ,L[ (2e+l)(e+2)+2(3_1)2]
- b3 = a3 b3

E)j numerator determinant:

;%3{- 4e - 2e-€g-2¢) = -3-3159850

9¢
Qe+ 1)(e+2) -%“:—(e— 1)?

Ey = Eg

This configuration is a useful model for the shielding effect of a dielectric layer
surrounding a region of space. A more practical application is the analogous problem
for an approximately linear ferromagnetic material with i ~ 5000. Substituting u, B
for g, E, and assuming i >> 1,

By 9
By 7 2u(l-a%bY)

For a thin shield, (b-a) << b,

B _3b
Bo ~ 2u(b-a)

3-19. mn the region a < r < b, only terms
involving P3 and Ps in Eq. (3.39) are required to ‘
match the prescribed boundary conditions.
Moreover, their coefficients must vanish
respectively on the outer and inner surfaces. This
fact suggests that we set up the potential in the form:

®(as<r<bh) = Cs3 (b—': - r3]P3(cosﬂ) + Cs [,s - ‘%)Ps(cosﬂ)

Atr=a,

a

CS[_-GSJ = ‘p, : C3 = b-;_d-;@a
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Atr=5,
11
c,[bs-%) =®, = Cs = b——,,'_’_‘n,,m

Therefore,

I L 11 _ gl1) p6
@(r.0) = ®, (H]%P;(cosa) + @ (;T-_—‘;-,—;);P,(cosa)

The uniqueness theorem (Sec. 3.1) assures us that we need look no further.

3-20. The surface charge density is

Ps(8) = pso cos28 = pso (2cos20 - 1)

= pso [~ Po(cos6) + 5 Pa(coso) |
where we have expressed the angular dependence in terms of Legendre polynomials.
Since the charge density is not an equilibrium one for a conducting sphere, we must
assume that it is "pasted” on an inert insulating structure, the interior of which has the
properties of free space (€= 1).

The potential must remain finite at the origin and at infinity, and can only contain terms
of the form:

®(r<a) = AgPo + A2r2 P,
1 1
®(r>a) = Bg ;Po + B, r—aPz
The boundary conditions at r = a require continuity of potential,
Ajal P = B;ﬁ}’j
and a discontinuity in E, proportional to p; [Eq. (1.85)],
LAja-l P+ (I1+1) By Py = 4% (p), Py

where (py), is the coefficient of Py in the given charge density. Eliminate A; to solve for
Br
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B B
I pagal-l + I+ 1) 2ag = 47 (py),

af'l-z
B = [‘m}‘"ﬁ (ps);

Thus, with /=0 and 2, we have
2
D(r>a) = 4npyo [—qs—rPo(coss) + %Pz(cosﬂ)]

With the potential expressed in terms of zonal harmonics, it is easy to see that the given
charge distribution has a monopole moment of g = —4mna2ps/3, and a quadrupole
moment of Q33 = 32na%p,/15 [see Eq. (2.61)].

3-21. Since the potential must remain finite :‘ :
at the origin and at infinity, we can write the U

r

D (r<a) = Ag+ A, (g)P. +As (5)2 Py+ -+ A, (5]' Pyt e

1
®y(r>a) = Ao(§)+}l| (%)zm + Az [‘;’T Py + -+ A, (f—,’]” Py+ o

That is, we have arranged the terms so that the two series are identical at the prescribed
boundary at r = a. On the boundary the potential is proportional to the "squarewave"
function,

potential in the two regions in the forms:

T
0<6<3

+1
fsw(B) = {

-1 §c9<n

Substitute this function for the left side of either series above, and let r = a on the right
side. Multiply through by P,(cos6) d(cos#), and integrate. By orthogonality, only
the P,2 term survives on the right. Using the normalization from Eq. (3.43), we have
then
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A, = (Zﬂ_;l_)d’o f Fuw(6) Py(cos8) d(cos6)
6=0

Since fy is an odd function, all coefficients for even n vanish. For odd n (even
integrand), double the integral from 0 to n/2,

1
Anodd) = (2n+1) @o J- Pn(x) dx
0

Specifically, using Eqs. (3.41),

1
Ay = 3@0_[ xdx = 3 @
0
! 7
Ay = %%J (5x3-3x)dx = - § @
0

1
As = Jéldaoj (63x5-70x3 + 15x) dx = Ll @
0

These coefficients now substitute in (1) and (2); for instance,

0xr>0) = @03 ([ £1-5 () o+ 1 (f Ps— -]

Incidentally, it can be shown that, for odd n,

1 ( 1)"%l 1-3-5
— - - e n
J-o Pnp(x)dx = "= [2-4 g T (n-l-l)]

3-22. We must superpose an expansion
of the potential due to g on that due to the
induced charge on the sphere. From Egs.
(2.3) and (3.46), we can write the potential at

the point P due to g as:



?
®, = % - —3—(1 -Z—f—cose+§r
= —3—2" (}{T P,(cos@) (r<d
12
= -ﬁ'—(l -2-f—cosﬂ+%].

= —?_—z (ﬂ' Pn(cos@) (r>29

Since the induced charge on the sphere has axial symmetry, we can represent its
potential by the B series of Eq. (3.39). The superposition thus has the form:

®a<r<s = L (Po +Ipy wlpyy )+ (‘E}Po + 2P+ 8Py 4 )

£ L

O(bcr) = L [Po + %Pl + %Pz + ]+ (%QPQ + %Pl + %P; + ]

At r = £ the two series coincide, as they must, except when cos@ — 1 (at the point
charge) where the series do not converge. To determine the coefficients B, we invoke
the boundary condition at r=a,

®(r=a) = 0 4
=4 a az Bo By By
= ![P9+!P1+ﬁP2+ J+ [0P0+02P|+33P2+

Because of the orthogonality of the P,'s, we know that the coefficients must vanish
individually:

as
By = - B;:——% Bg:——qﬁ— etc
That is,
B. = _.9.9.21‘1.
n M+l

The surface charge distribution on the sphere can now be found from:
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fad gna! n+1f ga?!
An ps = (Ep),y, = —(_; —— ‘[ ;o am-ZL- mel Pn

_ %Z‘ @2n+1) (EJ" P(cos6)

The integral of the n = 0 term over the sphere gives the net induced charge,

q’ = ;? !(--3-1)21: a? sin@ dé = -q-;—
This is a well-known problem that is neatly treated by the method of images. See, for
instance, Reitz-Milford-Christy (Re93, Sec. 3-9).

3-23. (a) Example 3.3(b), Eq. (9), finds the field within the dielectric sphere to
be uniform and related to the (asymptotic) externally applied field Eq by

L= 38
Eint = £|+2£oED -

z+2 Eo
Within the sphere, D = E + 4P = ¢E, from which it follows that P =
(e-1)Ejp/4n. Therefore, by straightforward algebra, we can express the internal
field as the superposition of the applied field and the incremental field produced by the

induced polarization:
3
Eiat = Ea[l—[l —“2]]

eE+2 - 3Ye+2 _ 1
=E-[s+2 I Ie-l]_E"_(3)4“P

(b) For a needle-shaped dielectric aligned with the applied field, the induced
polarization is parallel to the needle's long axis. The only significant bound charge-per-
unit-area [P-n of Eq. (1.34)] occurs at the ends, which by hypothesis have
negligible area. Therefore the incremental field associated with the polarization is
negligible, and the depolarizing factor L approaches zero.

(c) For a disk-shaped dielectric perpendicular to the applied field, the induced
polarization is normal to the disk faces, and bound surface charges (p;), = £P appear
on the two surfaces. This is a parallel-plate capacitor geometry, and these charges
contribute the incremental field Ep = 4w lp;l = 4nP. The direction of this
contribution is opposite to the applied field. Therefore the depolarizing factor L for this
limiting case is unity.
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3-24. (a) For a cavity in a surrounding dielectric medium, the result of Example
3.3(b) becomes

3e
1+ 2¢

Ejn: = Eo — Ep

_3&
€1+ 2¢g
Although the field in the spherical cavity is spatially uniform, the electric field E in the
medium near the cavity is not: it is perturbed by the dipole field due to the dielectric's
bound charge on the surface of the cavity. Far away from the cavity, where the
external field is uniform, the polarization in the medium is Po = (- 1)E¢/4n. We
can express the cavity field in terms of this Py as

3
Eov 8 Eigy = Eu[l + [1 +52£- 1)]
_ 3e—1-2eY4nPy) _ 1
= E°+( 1+2¢ Is-»l) = Eo+ (1+25J45P°

Qualitatively, it is easy to see that the bound charge on the cavity surface now aids the
applied field, rather than opposing it when a dielectric sphere is surrounded by free
space. But the factor of L = 1/3 that is characteristic of spheres is hidden in this
formula.

Problem 1-13(c) refers to a cavity cut in a uniformly polarized medium—that is, P is
spatially constant right up to the cavity surface. However, the local E field in the
medium surrounding the cavity is perturbed by the bound charge on the cavity wall—
that is, E is not spatially constant, P and E are not linearly proportional, and the
medium cannot be described by a dielectric constant. (Perhaps the polarization was
"frozen" in the dielectric before the cavity was cut in it.) Thus, in Prob. 1-13(c), the
bound charge on the cavity surface is due to the same P = Py that exists at a large
distance from the perturbing cavity. By contrast, the present problem assumes a linear
medium, with the local P, near the cavity, readjusting in response to the perturbed E.
Therefore the bound charge, which affects both the internal uniform field and the
external dipole field, is determined by the local P at the cavity wall rather than the value
Py that pertains at large distances from the cavity. The surface charge can be found

from Eq. (7) of the Example:
-1 (29,
(55

2Eq cos 9]

Py = m P = SEL(E),, = +&

w £k [ Eg cosf —

4n l+2£

e-1 3
= —Pncoso(l _2I+2£] = — Pg cos@ [l+2£]
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That is, the (py),, of the "frozen" uniform Py is reduced by the factor 3/(1 + 2¢).

(b) Once more we massage Eq. (9) of Example 3.3(b):

P
3 3 1*{80)

which shows that L — 1/3 for a sphere in the given formula.

In Prob. 1-36 we show, using a Stokesian loop, that E;; in the aligned needle-shaped
cavity is equal to Eg in the external medium. This equality holds when the "cavity"
medium has an arbitrary dielectric constant £;. Thus the formula applies to the needle
shape when L — 0.

For the oriented disk-shaped "cavity" we find, using a Gaussian pillbox, that the D-
field in the "cavity" (= E;; when & — 1) is equal to the D-field in the external
medium. Thus, for arbitrary &), we have Djy = £,Ejy; = £0Ep, and the given
formula is correct when L — 1.

These three special cases (sphere, needle, disk) are usually the geometries of interest
and are the easiest to treat. A more general analysis [see (St41)] shows that the concept
of a depolarizing factor L applies to ellipsoids of all ratios among the principal axes, so
that it is no accident that the same formula works in the three special cases. This
analysis also applies in the magnetic analog, where L is called the demagnetizing factor.

3-25. The surface current divides the world into two current-free regions, inside
and outside the sphere of radius a. The magnetic field is derivable from a (magnetic)
scalar potential in each of the regions,

B = - grad ®,
where @, is a solution of Laplace's equation and can be expanded in the zonal-
harmonic series of Eq. (3.39). [Since there are no magnetic materials involved, we do
not need to be careful to distinguish the B and H fields.]

The goal of the problem is to find a surface current distribution K(6) that will produce a
uniform field within the sphere. This implies a potential in the region r < a of

@, (r<a) = -=Bgz = —Bgrcos@

which is just the A; term of Eq. (3.39). Outside the sphere, since the potential must
not blow up at infinity, we have:



®,(r>a) = 2 C, %P;{cos@)
]

where we have renamed the "B;" coefficients in Eq. (3.39) to avoid confusion.

We must now investigate the boundary conditions that hold at r = a. From Egs.
(1.92) and (1.94), we conclude that the radial (normal) component of B must be
continuous,

B,(inside) = B/(outside)

and that the 8 (tangential) components differ by 4nK/c according to
Bo(outside) — Bg(inside) = f'cl Kq

These boundary conditions couple the inside and outside regions together, and allow us
to make the important inference that, because of the orthogonality of the Legendre
polynomials, only the term involving P = cos@ is acceptable for @, (outside).
Accordingly, we can write the two boundary conditions explicitly as

B, =~ a—%& = Bg cos@ = %‘-cosﬂ
Pad Ci . : +
Bo=- T = —3-sin0 + Bo sind = —}Kw(e)

These simultaneous equations can be solved for

3B, 3 2
i1 = 55%;  Ke(8) = gBosind
The current density varies as sinf, flowing azimuthally on the surface of the sphere.
Translated into discrete turns of wire, this is equivalent to a coil with constant axial
pitch. The external field of the coil is that of a pure dipole.

This problem is closely related to Probs. 1-13 and 2-24. For instance, the magnetic
analog of Prob. 1-13, which showed that the internal field of a uniformly polarized
sphere is constant, gives the internal field of a uniformly magnetized sphere as

H o« -3y

from which
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Then from Egq. (1.69),

K =-cnxM - S%Bgsinseq,

3-26. The potential on the symmetry axis can be a

written down immediately: @‘
RN
0@ = —2 1 ’ >
(z2 + R?) | 3.
@

For regions where z is less than or greater than R, this
function can be expanded in the respective power series:

owe<m = [ - 5] - 5]
TR T S R

Now imagine a spherical surface of radius R dividing all space into two regions. The
inner region, r < R, contains no charge (we neglect the thickness of the ring, which
lies on the surface r = R). Therefore the potential in this region is a solution of
Laplace's equation and can be written in the form

@l(r{R) = Ao'['AI (ﬁ)Pl +A2 [‘}%T P2+...
Similarly for r > R, } (2)

020> 8) = Ao (F)+ s (Ff P aa (T p2e -

Note that we have labeled the terms so that the two series coincide at r=R. On the z
(polar) axis, r = z, 8 — 0, and these series reduce to:
} (3)

®; = Ag+ A [%]-I-Az [%]:+---

B o s [§)+A, (‘;_—*]24-,42 [§T+

Comparing Egs. (3) with (1), we can evaluate the coefficients as:
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Aop = —Q—: Ay = A3 = Ajllodd = 0

Ay = - 12-—%- Ag = + 33—-%-, etc.

Substituting these values in Eq. (2) gives us a complete solution at all points in space,
except in the immediate vicinity of the ring where the series do not converge.

3-27. From Prob. 1-17 the magnetic field on

the axis of a circular loop is
I12=nR? C;)\“‘
e
g [ e M Ri .
@+ R L N7
| ¢
Except at the loop, there are no magnetic sources and | 3
the field is related to a scalar potential such that é
B = -grad @,
On the axis this reduces to
L) z
B, = - —5'551 = D,(z) = -J’ B, (z) dz

Expand Egq. (1) for z> R,

2
-2 - ¥ (-]

Integrate term by term to get

oo - 2B -1 4]

As argued in the preceding problem, the scalar potential for r > R must be of the form

®n(r>R) = Ag (§]+ i (%J’ Py + Ag (%]“ Pyt o

Matching coefficients when r — z and 6 — 0, we have:
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7l
Ag = A2 = Aalleven = 0 AI=T

&l

-’CH— = ;  etc.

Ay = - % ;0 As = + %
Thus the potential is of the form given. The numerical coefficients in the A's turn out
to be the Legendre polynomial values P;(cos%) = Py(0) [see (Ja75, p.93)]. The
potential series for r < R can now be written out trivially, as seen in the preceding
problem. One or the other series converges at all points in space except at the current
loop. Series expansions for the field components, B, and By, can easily be found by
differentiating the potential. Direct calculation of the off-axis fields from the Biot-
Savart law produces the transcendental functions known as elliptic integrals.

3-28. (a) When the observation point P is
displaced by the vector increment dr, the change in
solid angle subtended at P by the loop is equivalent to
the change holding P fixed and displacing the loop by
the increment (—dr). From this point of view the
element dZ of the loop sweeps out the area ld£ X drl.
To compute the change of solid angle from this area
element, we must project its area onto a plane normal
to the line-of-sight vector, R =r—r’= R eg, and
then divide by R2.

f
To make this argument fully quantitative, we must establish a,>0
a sign convention for measuring solid angles. When

viewed from P, if the current circulates counter-clockwise,

we will take the solid angle as positive; and if clockwise,
negative. (This convention will make our results consistent 3
with the potential of an electrostatic dipole.) a.<0

With this sign convention, we now complete the evaluation of change of solid angle for
a displacement of P by dr. Refer to the sketch showing P; and imagine that dr is
toward the loop. By our convention this will be a positive increment of solid angle,
equivalent to a displacement of df parallel to (—dr). The projected area with correct
sign may then be seen to be:

df x (-dr) * (—-eg)

= def X dr - ep
dQ = §r R2



where I'is the current loop, whose elements are d = dr’. By permuting the triple
scalar product [see Egs. (A.18) and (A.25)],

dQ = grad Q -dr = §r%&
X
grad 2 = - r‘uR—zen

But this is just the integrand of the Biot-Savart law, Eq. (1.36); accordingly,
B = - % grad Q2

Thus ISYc is the magnetic scalar potential for a current loop.

The multiple-valued nature of solid angles (as with plane angles) imposes a subtlety of
measurement that can cause trouble. Our convention defined above imposes a
discontinuity from £2 = +2n to —2x as the observation point moves across the "plane"
of the loop, inside the loop. However, there is a smooth change, with £2 passing
through zero, when the point crosses the "plane" outside the loop.

Alternatively we could define the solid angle for points
on the "P3" side of the loop (negative by our original
convention) as the exterior solid angle
£2) = 4n + 25 <4rn (see sketch). In this case the
crossing is continuous within the loop, but there is now
a discontinuity from 0 to 4% when crossing outside. 7
ty g €, = 4r+ O,

A discontinuity somewhere in the solid-angle bookkeeping is a necessary result of the
circulation of B in Ampére's law, Eq. (1.37), and one must arrange things so that it
does not occur at the point where one is computing the gradient of £2.

Problems 3-29 through 3-31 use spherical coordinates but no longer have azimuthal
symmetry. The full spherical harmonics of Eq. (3.66) are needed.

3-29. The potential as calculated in the Example is
sin2@ cos2
@ = 30 TQ

In the table, Eqgs. (3.59-62) [using the Euler identity, exp(¥2ig@) =
cos2@ * i sin2¢], we find a suitable linear combination of the spherical harmonics,

v+ v3?) = ‘\’% sin26 cos2¢@
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In this notation the potential is explicitly in the form of two terms of Eq. (3.66),

+Y
4
oM = ‘Jloqlz

3-30. The prescribed potential is
®(6,p) = ®psin30cosp = Do (3 sinf — 4 sin30) cosb [¢))

We propose to construct the required solution in the form of Eq. (3.66) by finding the
appropriate linear combination from the table of spherical harmonics, Egs. (3.59-62).
We observe that terms proportional to cos@ can be constructed from linear
combinations of ¥§1,

_%(”1 _Y-,-I) e IE(_ eiq_e—iw) = cosg

Furthermore, we note that the spherical harmonics of order I contain sin and/or cosé
to the power [.

The 6-dependent factor in #] is
4 co0s20 sin@ - sin30 = 4 sin@ - 5 sin30 2

Thus to match the coefficient of the sin38 cos@.term in (1) we require the term:

@ §5F (-3) st - )

But we see in (2) that this term includes also the term 4(%)sin6 cos@, the coefficient of
which is /5 more than required by (1). Thus we must add (negatively) the term:

-@oS\/_[ J(w - ¥i)

In order to keep the potential finite at the origin, the solution for r < a will include only
the A7 terms in Eq. (3.66). To keep the potential finite at infinity, the solution for
r > a will include only the B terms. Therefore our full solution, consistent with the
boundary conditions on the spherical surface, is simply:

@, *%E [%{E}Y'll ~ i)+ %z\/g_(g)j(ysl _ y—sl):|
e VB[« W)
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®(r<a,b,p)

®(r>a,d,p)

]
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Note the introduction of the factors of a, matching the powers of r. If the given
potential is such that the required set of spherical harmonics is not obvious, then the
coefficients can be found by direct integration of Eq. (3.65) for each pair of quantum
numbers Lm.

3-31. The problem is an analog of Example 3.3(a). From Egs. (3.59-62) and
(3.66), and the identity sin26 = 2sinfcos#, the given r, 0, and ¢ dependence can be
seen to be consistent with /=2, m =+1. Specifically, the distant (asymptotic)
potential can be written as

@ = 2\ (-) 03-19)

Because of the orthogonality of the spherical harmonics, the only term in Eq. (3.66)
that can cancel this A7 term, to produce zero potential at r = g, is the corresponding
B" term.. Thus the required full solution is immediately:

D(r,6,9) = ?—? (—- r2 + af—:](yﬂz-l = YE])

3-32. Expanding the derivative in Eq. (3.76) gives

Paraphrasing the solution of Eq. (3.30), we substitute the trial power-law function
R =re;

rPa(a-1)re-2+rare-1-np2ra = 0
a2-n2 =0 = a = +n

So long as n # 0, the two functions, v and 1/, are independent. A general solution
of a second-order, linear differential equation is then given by an arbitrary linear
combination of the two solutions, as expressed by the summation in Eq. (3.77).
Because of the symmetry in +n and —n, in both the Q(6) solution of Eq. (3.71) and the
R(r) solutions in Eq. (3.77), it is only necessary to sum over positive n's.

We must look more closely at the special case where n =0, and the two power-law

solutions collapse to only one. The differential equation, Eq. (3.76), can be integrated
twice by elementary means:
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r%[r‘%]= 0 = r—= BG = R=Bg]nr+A0

where the constants of integration in each step have been named to match Eq. (3.77).

3-33. (a) In two dimensions, introduce the complex variables u = x + iy and
v=x-iy. Compute the derivatives of the complex function Fy(u):

oFy, _ dFy du _ p ..

'z‘&l‘ u ox 1o ox2 du ox

oF dF, du L B #F, _ . dF) du
F=dmy=iF: i =igy=-h

where the primes signify differentiation of a function with respect to its argument.
Thus, the two-dimensional Laplace's equation is satisfied:

ViF, = 3%2]__'_3_35_} = F"-F;" =0

By the same argument, the function Fx(v) is also a solution. In order for complex

functions to have unique derivatives, they must be continuous and analytic. That is,
they must satisfy the Cauchy-Riemann conditions:
= ﬂsKD
x

Re®) | Im®),  Re®) _
dx -~ “dy ° y

See Boas (Bo83, Chap. 14).

(b) An analytic function of a complex variable can be broken into its real and
imaginary parts. If the complex argument is complex-conjugated (sign of i reversed),
the imaginary part of the function changes sign. Thus,

®1(x,y) = Re[Fy(x +iy)] = 3 [Fi(x +iy) + Fi(x - iy)]

Im[Fy(x + iy)] % [F1(x + iy) = F1(x = iy)]

]
]

D,(x,y)

Since we have shown that Fy(x) and Fy(v) are both solutions of Laplace's equation,
and the equation is linear, it follows that these pure-real combinations are also
solutions. It can be shown from the Cauchy-Riemann conditions that @, and @ are
orthogonal functions in the sense that, if Re(F) = constant represents an equipotential
of a system, then Im(F) = constant represents an E field-line of the system, or vice
versa.



(¢) Using the Euler identity, the summed terms in Eq. (3.79) can be recognized as the
real and imaginary parts of

Fo = (x +iy)" = rnein® = rn (cosn@ +isinn@)

The A, terms are generated when n is a positive integer, and the B, terms when nis a
negative integer. For n =0, this function contributes the Ap term. The By term is

generated by

Fop = In(x +iy) = In(rei®) = lnr + i@

The linear term in @ is omitted from Eq. (3.79) because it violates the requirement that
angular functions must be periodic (i.e., single-valued).

Problems 3-34 through 3-38 are in cylindrical-coordinate geometry. The first two are
two-dimensional (without z dependence) and use the cylindrical-harmonic expansion of
Eg. (3.79). The latter three are three-dimensional and require the Fourier-Bessel
expansion of Eq. (3.107).

3-34. This is the cylindrical analog of )y
the spherical geometry of Example 3.3(b). a &
If we take =0 in the direction of the £ —m

applied Eq, then the asymptotic potential is
©(r— ) = - Egrcosé

As in the Example, we find solutions for r < a and for r > a that satisfy the boundary
conditions at r = g, remain finite at the origin, and have the assumed limit as r — oo.

(a) Since there is no z dependence, we use the general solution of Eq. (3.79). The
functions cosn@ (and sinnf) form an orthogonal set analogous to the Legendre
polynomials Pi{cos6) in spherical coordinates—indeed, they are just the familiar
Fourier series. Consequently, we require only those terms having the same angular
dependence as that imposed by the asymptotic field:

@ (r<a) = Aj rcos@
Dy(r>a) = —Eorcos8+81+cos9

At r = a the potentials must match (this condition is equivalent to the tangential
E-fields being equal), and the normal D-fields are equal:

Aira = —an+81—la"
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Thus the coefficients are:
Ay = "si i Eo
By = X1 -¢&)a24,; = z;llazgu
The resulting potentials are:
®(r<a) = -ei 7 Eorcos®

- 2
1 Ep -GF-cose

Dy(r>a) = -Egrcosf + £

e+ 1
The fields are:
E(r<a) = -grad ®; = (+) 7 7Eo
E(r>a) = -grad ®; = Eg + E-IE (e cosf + eq sind)
= -8 2 = Eo e+ 1 r [}

As in Example 3.3(b), the field inside the dielectric is uniform, now with the magnitude
(2/e+1)Ey. The field outside is perturbed by a pure (two-dimensional) dipole field.

(b) As in Prob. 3-23, using the relation 4nP = (¢ - 1)E, we have

°[l'[l_£31)]
! B (e;-i-izIe+II4ﬂ:P)_ Eo—( )4“,1,

The depolarizing factor for a dielectric object in the shape of a long cylinder (or needle),
with the field perpendicular to its axis, is L = /2.

E(r<a) =

3-35. The magnetic analog follows directly except that, in the presence of
magnetic materials, one must be very careful to distinguish between the B and H fields.
It is the H field that is formally (mathematically) analogous to the electrical E field,
whereas it is B that is physically analogous to E as the fundamental field (i.e., the
space-time average field within a medium). As worked out in Sec. 1.8, at an interface
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the tangential E and H are continuous (with no free current), and the normal D = €E
and B = yH are continuous (no free charge).

(a) The magnetic paraphrase of Prob. 3-34 gives the internal fields within the cylinder
of magnetic material as:

Bint = uHjn By

2
Hint = BO = = p—_ﬁ

Note that By = Hy since we assume u = 1 outside the cylinder. In the limit of large
permeability, clearly B, — 2 By.

(b) By Eq. (1.54), the force on a current-carrying wire is ¢ dF = I d X B, where
the relevant B is the field within the wire. Thus, at first glance, it appears that the
force-per-length F,on the current / in an iron wire would be approximately twice the
force on a copper wire:

2 IB
Fdyy = o7 oo eXen, 33 200, m

The unit vectors are perpendicular, and their cross product represents a unit vector in
the third dimension.

But there is an additional magnetic force that arises in this situation. The iron's
magnetization is equivalent to a bound current density Kp on the surface of the wire,
and this current experiences a force from the B field produced by the wire's current 1.

(6="72)
The geometry of this effect is complicated. The }'F
sketch defines Cartesian coordinates with the current
I'in the z direction, B and M in the x direction, and e
the force of Eq. (1) in the y direction. There are also ~2B M
cylindrical coordinates sharing the z axis and with (e=0)

x=rcosf and y = r siné.

The magnetization in the iron wire is

By Eq. (1.69), the magnetization is equivalent to the surface current density on the
surface of the wire of

. =1 c—q'lsineez = c-ﬁﬂsinBez

Kp = -cnxM sl 9n
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This is in the +z direction on the +y side of the wire (0 <@ <), and in the -z
direction on the —y side (1 <@ <2n). From an elementary Ampere's-law
calculation, the magnetic field produced by the current / at the wire's surface (radius @)
is

Therefore the force-per-length on the magnetization due to the current / is

- | x|

= 2n -
= :#L_‘_ll_%ﬂ. sine(—-cosee,-sinBey)dO = -%—;—l'l-%o'e, (2)

0

Since ey = e; X ep,, this force when added to Eq. (1) neatly removes the dependence
on i

2 ~1)IB IB
Ftotal) = F{1) + Ff2) = (ﬁ_!:u_l)_gn,y « o,

That is, the net force on the current-carrying wire is independent of its magnetic
properties. The force of Eq. (2) is, in fact, an internal force on the wire (the force of
the conduction current on the magnetization), and you might think it shouldn't count.
But Eq. (1) includes the internal force of the magnetization on the conduction current.
We must either include both internal forces (an action-reaction pair, canceling out), or
omit both.

That this is a treacherous problem is shown by the inclusion of an erroneous statement
of it in a highly respected textbook: see (Re93, Prob. 9-12).

3-36. From Gauss' law, Eq. (1.6), the charge density on a conducting surface is
related to the normal component of electric field by

E
ps = 3¢

On the cylindrical walls of the system treated in Example 3.5,

En = —Er = +(}“)’=a

Using Eq. (3.1092),



2 Jotknr) = =k Jy (k)
Thus from the solution given in Eq. (8) of the Example,
Pi(r=a;2) = - 2L 3 ekat
m

where the allowed k,, values are determined by the roots of Jy(kna) = 0, denoted by
the index m.

On the endplate at z=0,

oD
E"=+E‘=-(E o

_ @0 Y Jolkwr)
PAr=0) = Fng Lok Ti(lend)
m
The total charge on the side walls, for a given mode k,, is

= o)
Gsides = J ps(a,z) 2ra dz = - _k_,,?_
0

Similarly the total charge on the endplate is, using Eq. (3.111),

a [ kga )
gend = J ps(r,0) 2xr dr = m J-o u Jo(u) du = + —k—ﬂ—

0 m

Thus all field-lines originating on the endplate terminate on the side walls, as they
should.

3-37. The problem is similar to Example 3.5 b __a =L
except for the finite length L. It is the cylindrical |
analog of the rectangular system of Example 3.2(b).

Let z =0 at the endplate of potential ®g, and z=L
at the endplate of potential zero. In place of the
decaying exponential exp(—,,z), we substitute

sinh[kn(L — 2)]
sinh(k,,L)
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which goes to zero for z = L, and is normalized to unity at z=0. The rest of the
calculation of Example 3.6 remains unchanged. Thus,

1 sinh[kn(L - 2)] Jo(kmr)
@(r2) = 2‘1’02 kma ~ sinh(kmL)  Ji(kma)

where again the index m denotes the roots of Jy(kna) = 0.

3-38. The fact that both endplates are at @ = 0 suggests Z(z) functions that are
periodic. Let the separation constant for Eq. (3.72) be +k2. The appropriate solution
of Eq. (3.73) is then

Z(z) o sin(kaz)
with the k, restricted by
kL = nn (n=1, 3,5, =)

Only odd values of n are consistent with the symmetry about the midplane.

The radial equation, Eq. (3.74), is now modified by the change of sign of 2. In
effect, the independent variable r is replaced by ir (where i = V-1). From the series
solutions, Eqgs. (3.95), it can be seen that real solutions of the modified equation are of
the form

I,(kr) = i-n Ju(ikr)

These functions are commonly known as modified Bessel functions of the first kind.
They increase monotonically, rather than oscillating like the ordinary J, Bessel
functions—the 1,'s are related to the J,'s as the exponential (or hyperbolic) functions
are to the sinusoidal functions. [The second, independent solutions of the modified
differential equation are customarily represented by the symbol K, ("modified Bessel
functions of the second kind"). Like the Neumann functions N, of Eq. (3.100), the
K,'s diverge for r — 0.]

In the given problem, there is no azimuthal dependence. Thus n =0, and the solution
has the form

®(r,z) = ;Am sin(k,z) I%%;%

We have already chosen a form that satisfies the condition ® = 0 on the endplates. At
r = a we require @ = @, which is accomplished by the familiar Fourier analysis for
a squarewave. From Prob. 3-5,
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= 4%
Am = mTm
Thus, with k,, = mrn/L,
_ $inky2 | fo(Km?)
@(r,z) = 4@ ; ( 75 A J I (kma) @

Physically, the problem would be unchanged if we took the cylindrical wall to be at
® =0, and the endplates at @ = —®q. This bookkeeping is more directly analogous
to Example 3.5 and Prob. 3-37. The solution in that case has the form

hlkn,(z = L/2)]
®(r2) = 2, B BTy — Jolknr)
m

Now the k,, values are determined by the mth root of Jo(kna) =0. To satisfy the
boundary condition ® = —®q at r =0 and L, we require

- ®g = 2, By Jolknr)

The coefficients B, are just the negative of those in Eq. (7) of Example 3.5.
Therefore,

_ _1 coshlky(z — L/i2)] Jo(kmr)
D(r,z) = ‘ZG’UZ k, cosh(kmL)  Ji(knma) @

The two solutions (1) and (2) have different forms and different definitions of the
parameters k,,, but the respective series sum to values that differ only by the additive
constant @;. We see that the algebraic form of series solutions of Laplace's equation
may not be unique even though the potential itself is unique (except for the additive
constant—see Sec. 3.1).

3-39. (a) The following relaxation program is written interactively (in
TrueBASIC dialect) to allow the user to monitor the decrease of the maximum change
(E) in each iteration, and terminate the sequence by hand when E is sufficiently small.
Alternatively, in place of the manual control, one could do the "WHILE" test on the
increment E to terminate the iterations automatically when E falls below a predetermined
value. Convergence can be speeded up by including an "over-relaxation coefficient"
(= 1.4) multiplying DV in the "update V(i,j)" line.
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REM Relaxation solution for Prob.3-39(a).
REM Square grid in X-Z plane, sides A=C=10.
REM Potential=0 on X and Z axes.

REM Potential=+200 at 2Z=10; -100 at X=10.

DIM V(11,11)
OPEN #1: NAME "Relax3-39A", CREATE NEWOLD Icreate output file
ERASE #1
FOR I = 2 TO 10 Iset boundary values
LET V(I,1) =0
LET V(1,I) =0
LET V(I,11) = +200
LET V(11,I) = -100
NEXT I
LETT =20 !flag for repeat, exit
LET N = 0 linitialize iteration counter
DO WHILE T<1 literation loop
LET E=0 linitialize maximum increment
LET N = N+1

FOR I = 2 TO 10
FOR J = 2 TO 10
LET S = V(I-1,J)+V(I+1,J)+V(I,J-1)+V(I,J+1)
LET DV = (S/4) - V(I,J) lincrement in V(i,j)
LET E = MAX(E,ABS(DV)) lupdate max increment
LET V{(I,J) = V(I,J) + 1.0*DV lupdate V(ij)
NEXT J
NEXT I
PRINT "Maximum increment = ";E
INPUT PROMPT "Enter 0 to repeat, 1 to exit: ":T
LOOP
PRINT #1: "Problem 3-39A: Potential relaxation
after";N;"iterations"”

PRINT #1
FOR J = 11 TO 1 STEP -1 Iprint out values
FOR I = 1 TO 11
PRINT USING "----#": V(I ,J);
PRINT #1, USING "----#": V(I,J); twrite to file
NEXT I
PRINT
PRINT #1
NEXT J
CLOSE #1
END

The output file after enough iterations to reduce the maximum increment to E < 0.3V
is:



Problem 3-39A: Potential relaxation after 29 iterations

200 200 200 200 200 200 200 200 200 0
97 133 147 152 151 146 133 107 49 -100
54 87 104 110 108 99 79 46 -11 -100
33 57 71 76 72 61 40 7 -40 -100
21 37 47 49 45 33 13 -16 =55 -100
13 23 29 30 25 13 -5 -31 -63 -100

8 14 18 17 11 1 -16 -39 -67 -100
5 8 10 8 3 -6 =21 -41 -68 -100
3 4 5 3 -1 -8 -19 -37 -63 -100
1 2 2 1 -1 -5 -12 -24 -47 -100
0 0 0 0 0 0 0 0 0 0

coOo0oO0OCcCoOoOoOoOo0OoOO0 O

(b) The adaptation of Eq. (10) of Example 3.2(b) gives:

4
P(xz) = ;r 7% Sinh ()

x [(+200) sinh(rnz/a) sin(rnx/a) + (=100) sinh(rrx/a) sin{ma"a)]

where @ =0 on the x and z axes, ® = +200V at z=c, ® =-100V at x=a, and
a=c=10. An interactive program follows, which again allows the user to monitor
the size of the largest term (E) as each order r (R) is added to the summation:

REM Series solution for Prob.3-39(b).

REM Square grid in X-Z plane, sides A=C=10.
REM Potential=0 on X and Z axes.

REM Potential=+200 at Z=10; -100 at X=10.
DIM V(11,11)

MAT V = 0 linitialize potential grid
OPEN #1: NAME "Series3-39B", CREATE NEWOLD Icreate output file
ERASE #1
FOR I = 2 TO 10 Iset boundary values
LET V(I,1) =0
LET V(1,I) = 0
LET V(I,11) = +200
LET V(11,I) = -100
NEXT I
LET T = 0 !flag for repeat, exit
LET R = -1 linitialize summation index
DO WHILE T<1 literation loop
LET E =0 linitialize maximum increment
LET R = R+2
LET D = PI*R*(EXP(PI*R)-EXP(-PI*R))/4
FOR I =2 TO 10

FOR J = 2 TO 10

LET RI = PI*R*(I-1)/10 lgamma*x

53

LET RJ = PI*R*(J-1)/10 gamma¥*z
LET N1 = (200)*(EXP(RJ)-EXP(-RJ)) *SIN(RI)
LET N2 = (-100)* (EXP(RI)-EXP(-RI))*SIN(RJ)
LET DV = (N1+N2)/D lincrement in V(ij)
LET E = MAX(E,ABS(DV)) lupdate max increment
LET V(I,J) = V(I,J) + DV lupdate V(i,j)
NEXT J
NEXT I

PRINT "Maximum increment = ";E
INPUT PROMPT "Enter 0 to repeat, 1 to exit: ":T
LOOP
PRINT #1: "Problem 3-39B: Potential series up to R =";R;
PRINT #1: " (i.e.,";(R+1l)/2;"terms)"
PRINT #1
FOR J = 11 TO 1 STEP -1
FOR I =1 TO 11
PRINT USING "----#": V(I,J);
PRINT #1, USING "----#": V(I,J);
NEXT I
PRINT
PRINT #1
NEXT J
CLOSE #1
END

Iprint out values

Iwrite to file

The output file after enough iterations to reduce the maximum term to E = 0.15V is:

Problem 3-39B: Potential series up to R = 15 (i.e., 8 terms)

200 200 200 200 200 200 200 200 200 0
97 134 148 153 152 147 134 109 49 -100
53 87 104 111 109 99 80 46 -13 -100
32 56 71 76 73 62 40 7 -41 -100
20 37 47 49 45 33 13 -17 -56 -100
13 23 29 30 25 13 -6 -32 -64 -100

8 14 18 17 11 1 -16 -39 -68 -100

8 10 8 3 -6 -21 -41 -68 -100

4 5 3 -1 -8 -19 =37 -64 -100

2 2 1 -1 -5 =12 -23 -47 -100

0 0 0 0 0 0 0 0 0

(= = I o= B = I Qi e e B o Y o i e |

o W0

The agreement between the two calculations is seen to be good. The "4th-order error”
[see Eq. (3.118)] in the relaxation calculation turns out to be of the order of 1V for the
grid size used here. The series calculation is subject to the "Gibbs phenomenon” of
Fig. 3-10. One could go on and write a routine (or use commercial software) to draw
equipotentials and field-lines determined by the grid values of potential.

Chapter 3



54
Chapter 4

4-1. (a) Assume a current / flows in one direction
in the inner conductor, and in the reverse direction in
the outer. In the space between conductors, the inner
current produces the magnetic field (Prob. 1-19)
2
Bg = — X
cr
/’

The outer current produces no field in this space because of its symmetry. The
magnetic flux, Eq. (4.11), passing between the conductors in a length £is

212 (b dr 21¢ . (b
-IB'“d“- TLT‘ T“‘[E)

From Eq. (4.9), the ratio of emf-per-unit-length to dl/dt is

L fcoax) = 22 ln(b

(b) In this case, each wire contributes flux to the

space between the wires, giving (in length £)
2 I( dr 41¢ ! !

and hence

. 4
L [parallel wire) = c—zln[gj
4-2, From Prob. 1-24 we have
§A-dt=jn-nda A
| BW=8t
Choose a Stokesian path in the form of a }

circle centered on the x3 axis. The axial
symmetry allows this relation to be evaluated
as:
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(Ag)(2mr) = (Bot)(mr2) => A(r) = LBotres

where eg is the azimuthal unit vector of cylindrical coordinates. Then, from
Eq. (4.42),

_ 1 JA _ Bor
B s ™ =%

An alternative approach for E is to apply Faraday's law in the form of Eq. (4.12),

1 JB
§E°d!= TI-I'nda
to the same circular Stokesian loop:

E(r) = -2

(Eo)2nr) = - (Bo)(mrt) = 50 s

4-3. (a Ampere's law and the Biot-Savart law are essentially inverses of each
other: Ampere differentiates the field to find the sources, while Biot-Savart integrates
the sources to find the field. Omitting the Maxwell displacement current in Ampere's
law, the equations are:

curlB = TJ ()] B = — —-;-z-—ﬂdv @

where J is the total microscopic current and we have substituted /d£ — J dv by
Eq. (1.49). Faraday's law,
_ 1 JB
curlE = - — 3)
has a mathematical form identical to Ampere's law, with B — E and 4nJ — —dB/ot.
Consequently, the integral relation analogous to Biot-Savart is

1 JdB/9di
e,

Note: Under slowly varying conditions, the Maxwell term (JE/d¥)/4x can be included
within the "J" in both (1) and (2) [see Eq. (4.18)]. However, it will integrate to a null
resultant in (2), because E is derivable from a scalar potential in this limit. Under
rapidly varying conditions, (2) is no longer correct, because of retardation effects.
Then the proper formulas are Eqgs. (8.26) and (8.30), which express the fields entirely
in terms of the ultimate charge and current sources, without using "induction” terms
involving JB/dt and JE/ok.



(b) The time-varying magnetic flux in the ring constitutes
a "magnetic current" producing an electric field according
to (4). The situation is analogous to the circular electric

current producing a magnetic field in Prob. 1-17. Only 3
the components of JE parallel to the axis contribute to the
net field, and the integration is elementary: ®
_ 1_| (dB/an)(S)(2ma) | (a
B = "m[ r? ][?)*z

a?s B
~ 2e(a222) (_9‘_ o

4-4. The voltmeter V1 measures IgxR;, and V, measures IgR,. That is, the two
meters read different values (for R; # R3) even though connected to the same points
a,b, because the electric field is not conservative (its line integral is not independent of
path). Moreover, the meters read opposite polarities: i.e., one meter will indicate that
Point a is "positive" relative to b, at the same instant that the other meter indicates the
reverse).

The point of this famous example is to clarify the distinction between conservative
(Coulomb) and nonconservative (Faraday) electric fields. Because of the time-varying
magnetic flux, a Faraday electric field exists both within the solenoid (where
curl E # 0) and in the space outside (where curl E — 0). Strictly, a vector field is
conservative only if the curl vanishes everywhere. More to the point, one must be able
to carry out the line integral jE-d! around any closed path and get a null result. In this
sense, the Faraday E is nonconservative outside the solenoid, as well as inside.

However, in the present example, the Faraday contribution to the total E acts as if it
were conservative when we limit attention to a circuit-integration-loop that does not
encircle the solenoid (e.g., the loop containing V; and R;). That is, although there is a
Faraday component of the total E in the region occupied by this loop, both this
component as well as the conservative Coulomb component of E integrate to zero
around the loop. Therefore we can pretend that the total E is conservative, apply the
Kirchhoff loop rule (sum of "potential-differences" equals zero) to the loop, and
conclude that the voltmeter V; measures the magnitude, and the polarity, of the "voltage
drop" IgR;. On the other hand, the loop containing V; and R; links the solenoid and
therefore is acted on by the Faraday emf: in this loop, V; equals the sum/difference
(depending on sign conventions) of IgxR, and d®/cdt. Likewise, for the loop
containing the two voltmeters, we have |Vjl + [V5l = [d®/cd1l, independent of the Rs.
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The underlying physics can be understood in more detail by noting that a conservative
(Coulomb) component of E exists, produced by charge on the circuit wires. This
charge is distributed in such a way that the foral field steers the current along the wire.
That is, the line integral of the total field, IE-d!. ‘must be zero along a piece of
(resistanceless) hookup wire, and has the value IR through a resistor (see Prob. 1-34).
The integral through a voltmeter is the "voltage" indicated by the voltmeter. The term
"potential difference" een Points a and b) refers to the integral of the conservative
component, AD = -L con*d€ [Eq. (1.13)], while one uses the term "emf" for the
nonconservative component, € =+| Epon*df). Since the total field,
E = E¢on + Epon, is negligible along a piece of hookup wire (e.g., between Point a
and the upper terminal of Ry), it follows that Egoq = —Epon within the wire. That is,
the potential difference A® and the emf £ are nonzero and equal for a piece of hookup
wire. Because they cancel, they can both be ignored as indicated above.

See Romer, Am.J. Phys. 50, 1089 (1982), and Purcell (Pu85, Problem 7.27).

4-5. We can regard the coordinate £ as a
vector quantity directed normal to the turns of
the toroidal winding. Then the emf induced

in the turns within the element 2¢ is IC/Q
d€ = OB B gt = ) B L®-dp

where we assume that B is spatially uniform over the (thin) cross section S, but make
no restriction on the orientation of B or its variation along £ Now, integrating around
the loop, Ampere's law gives

$B-ar = g,
Therefore, the induced emf is

en = 524

A discussion of experiments using this device is given by Heller, Am.J.Phys. 60, 17
and 274 (1992), and 61, 1045 (1993). Note that the actual device requires the retum
lead to be threaded back through the solenoid to cancel the signal induced in the axial
component of the helical winding.
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4-6. We have axial symmetry. Paraphrasing d
the solution for Prob. 4-2, we have _)_| ' g

—_—
B= Bosiﬂlﬂt
—_—

Ego(r.t) = _2%9_3_

wBg
(firstorder B) ~ 2 T COSO!
From Ohm's law, Eq. (1.81), the current density is —_—
J(r,t) = oE = - O%Q-rcosmreg

Note: From Prob. 1-17, the second-order magnetic field at the center of the disk, due
to the induced current, is

a
B® = 2.%.2‘:-[. Mdr =

nado ®
r - - 2
0

Bg cosmt

Thus if madowyc? is not small compared to unity, the current density will be modified
from that driven by the (first-order) externally applied field B() = Bosinwt. The
system is then subject to the "skin effect” discussed in Section 5.6. For an extensive
discussion of eddy currents, see Smythe (Sm89, Chapter 10).

4-7. (a) The mobile charge carriers (electrons) carried along within the wire are
subject to the Lorentz force F = gu X B/c [Eq. (1.52)]. The work done on a charge
q as it is pumped through the element is dW = F - d{, and the emf is defined as the
work done per unit charge. Thus,

u
d€ = T = 'E XxXB-dt
Note: There is a seeming paradox here because magnetic forces, being perpendicular to
the displacement of a moving charge, can in fact do no work on the charge! When this
primitive "generator" drives a current, the current experiences a magnetic force, and the
agent causing the motion does the work against this force. See Griffiths (Gr89,
Section 7.1.3).

ket g
(b) For the rotating spherical shell, Dw

5l 9
u = @asinfe e _b*
? sl
dt = adOeg

egX e, eg = cosf
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and the emf between pole and equator is
2 n/2 2
emf = ‘M—C&J. sin@ cos8dO = Olt%g_
0

Positive charge is pumped from the poles to the equator—i.e., the equator is the
"positive" terminal of the generator.

4-8. The charge carriers (conduction electrons) are in equilibrium between the
magnetic force qu X B/c and the electrostatic force gE produced by charge distributed
on the sphere. Consequently the difference of potential between the pole (6=0) and a
point on the surface at polar angle @1is

@ (r=a;0) = -IE-d! - +—cl—juxl!-d£

2 [
ma_cljﬂ J sin@ cosf 4@
0

2
—i"—';-cﬁ“-a - cos26)

27B0 [Po(cos6) - Pa(cos6)] ®

The final expression is cast in terms of Legendre polynomials using Egs. (3.41). The
potential at the equator (6= 7/2) equals the emf calculated in Prob. 4-7.

From Egq. (3.39), the potentials inside and outside the sphere that match this
boundary condition are:

o(r<a = 2520 [y - (£ @
o(r>a) = 250 [[?)Fu - (E]’Pz] ®

Now, equation (3) represents the external potential of an axially symmetric charge
distribution composed of a monopole and a quadrupole. In the context of this problem,
we assume that the rotating sphere has no net charge, and therefore there can be no P
term. It was an arbitrary choice to take ® =0 at the pole. If, instead, we take the
potential zero at the zero of P (that is, where cos26 = 1/3, or 8= 55°), then (1)~(3)
reduce to:



D (r=a)

2
- 2280 p,(cost)) a

®(r<a)

2
-2l @

O(r>a) = - ﬂ’g_?m [f)’ Py 3)

Adding a constant to the boundary condition at r = a does not change differences of
potential between any two points on the sphere. The exterior potential is now that of a
pure quadrupole.

e The charge density on the spherical surface is now, from Egs. (1.14) and

P:(8) = 7= [Er>a)- Edr<a)],.,,

waB SwaB,
= - —Ql‘;m (+3P2+2Py) = -3570LP, @)

The rotating charge constitutes a system of current loops, which turn out to have dipole
and octupole magnetic moments. The associated ("second-order") magnetic field
produces an increment in emf and potential, which is negligible so long as
(wa)? << c2.

4-9. Each element of width dw and
length [ constitutes a "moving wire"
which, from Prob. 4-7, generates the
emf

_ uBgt
€= c

which pumps charge through the magnetic-field region. The conductivity of ti: sheet
allows this pumped charge to flow as an eddy current around the magnet's "footprint"
in the manner indicated in the sketch. To proceed further, we need an estimate of the
effective resistance of this distributed array of current paths. The current density within
the footprint should be fairly uniform (except for fringing effects near the "#' sides),
and the effective "internal resistance" (within the "battery") can be estimated as

£

Riae = O (cross section)  owh
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We may guess that the effective resistance of the external portion of the circuit is of this
same order of magnitude (the paths are longer, but wider). Since the internal and
external resistances are in series, we can write the total effective circuit resistance as
Riot = Rint/ @, where the coefficient ¢ is of the order of /2. Thus the total magnitude
of the eddy current is

_ € _ achwBou
" Rudo c

As this current flows through the footprint, it experiences the Lorentz force
[Eq. (1.54)], in the direction opposing the velocity u,

. I£xB _ _aohleo!u

F c = c?

It turns out that the fringing fields, and the resulting distribution of current density, can
be calculated for this geometry with some rigor, giving

= L 1 1)_1
a = 1-2u[4mn A+Aln(1 +Az)-Aln(1+A2):|

where A = w/¥, the aspect ratio of the footprint. For a square footprint (w = 4),
indeed a = /2, precisely. See the paper cited.

4-10. (a) Using a Gaussian pillbox with one face within the field-free interior of
one of the capacitor plates [see Fig. 1-11 and Eq. (1.84)], the uniform D-field inside
the capacitor is related to the surface charge density by D = gE = 4np, = 4nQ/A.
Thus the displacement current density is

19D 1.d
E_&_=A_?%

Integrating over area (and neglecting edge effects!) gives the total displacement current
as dQ/dt, which by definition is the current I flowing into the capacitor.

(b) If Q is the total charge on one plate of the capacitor, however distributed, then by
Gauss' law the total D-flux through a closed surface surrounding the plate is
(1!4n)ID-n da. And hence the time derivative of the total flux is dQ/dt = I.
However, the surface S in Fig. 4-2 is not closed. To close it, construct a conical
surface S’ extending from the contour I"to the point where the circuit wire connects to
the left-hand capacitor plate. The displacement current through § will be less than I to
the degree that there is displacement current through §’. If there is a significant electric
field outside the capacitor, then there is a corresponding displacement-current correction
for the surface in Fig. 4-1.
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The existence of "fringe" fields outside a capacitor, and indeed in the vicinity of the
"hookup wire" of a circuit, can be tricky. See Solution for Prob. 4-13.

4-11. We assume the medium is free space,
g=pu=1. Calculate the electric flux at the
instant when the particle is at z=-zo by _ _o 5 _ _ __}
integrating the Coulomb field over a spherical cap “
bounded by the circle and of radius (a2 + zg2)1/2:

4

1o/
I D-nda = J‘m- j . [ 2m(a? + zo?) sinf d6
0

(a2 + z0?)
1
= 2nq J‘

d(cos8) = 2mq [1 —"0—2]
/(a2

" (a2 + z0?)V

Now generalize this result, noting that as the particle moves from z = —eo through 0 to
+oo, the flux

Z
ID-nda = 2mngq [l +m:|

grows continuously from 0, through 27g, to 4ntg. Therefore the displacement current
is proportional to

=%

4 5 = 1 72 z
d:I D-nda = 2mqg [(az + 2212~ (g2 +zz)m] at

= 2% G2 4 oypn”

For nonmagnetic materials and in the absence of conduction current, the integral form
of the Ampere-Maxwell law, Eq. (4.17), reduces to

tﬁn-d: = %%In-nd.ﬂ

Using the usual symmetry arguments (see Prob. 1-19: because the direction of the
magnetic field is azimuthal, and its magnitude depends only upon radius, the line
integral reduces to elementary multiplication), the magnetic field at the circle is given by

2ng __ &

(Bg)(2ma) = = (@Z+22)32 "
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au
B = qE—(auzz)me" €Y}

The moving-particle form of the Biot-Savart law is [Egs. (1.36) and (1.49)]

B = duXe
cr?

Here, r = (a2 + z2)1/2, and the sine of the angle between u and e,, implicit in the
cross product, is a/r. Thus Biot-Savart reduces to

ua au

B = qt,: 2 ¢o = % —(az + ) eg 2)
in agreement with (1).
4-12. If the time-variations are slow I > - R
enough that we can neglect Faraday
induction, the electric field is essentially @ ¥
conservative and @E-dl= 0. That is, the A+ S Y ]
potential differences must sum to zero around V. == e i &
the circuit (Kirchhoff loop rule): 0

Vo—RI—% = 0

where C = ena?/4nh (see Prob. 1-7), and I = dQ/dt. Thus we have the differential
equation

d 1
RE+ 40 = Vo
The solution satisfying the given initial condition (Q=0at¢=0) is

() = CVo (1 -e"RC)

(a) Since C = Q/A® and A® = Eh, the electric field within the capacitor (neglecting
edge corrections) is

v
E(®) = %e, = Z(1-e"RO)e,
where e, is the unit vector along the axis of the capacitor as shown in the sketch.
(b) The magnetic field is azimuthal within the capacitor and can be found from the

displacement current using Eq. (4.17) and symmetry arguments (see Solutions for
Probs. 1-19 and 4-11):



(Bo)(2mr) =

B(r,e) = %‘;% re/RCepy = Ez%:fz. reRC ¢q

Our neglect of induction neglects the electric field associated with this time-varying
magnetic field, as well as the magnetic field produced by the current dQ/dt in the circuit
leads. In circuit terms, we are assuming that the circuit has negligible inductance.

(c) The Poynting vector, Eq. (4.66), is

S(r) = ZEXB = S0 20, (1) eRC e x ¢

Vo2
moh? r (c—rﬂtc - —ZMRC) (~e,)

The exponential factor rises from zero at =0 to a maximum of /4 at t = RCIn2,
and then decays back to zero as t — oo. The Poynting flux carries the field energy
radially inward as the capacitor charges. The Poynting flux-lines outside the capacitor
originate at the battery, following paths determined by the geometry of the circuit leads.

(d) The field energy stored in the capacitor is found by integrating Eq. (4.70):

U@ = 8‘—,_,:_[ (eE? +i—2)dv

&Vg’na? /RCY2 &% Y awrc ¢
7 T e A Smu (wmc . 0'22"”"

= Lovge [( -mac)l * g [_)2 —IMRC]
- Sevez (1- e~/RC)?

Dropping the magnetic-energy term follows from our neglect of magnetic induction,
i.e., treating the electric field as conservative. We see here that this is equivalent to
assuming that the transit time for electromagnetic effects to cross the capacitor, a/c, is
small compared to the time constant RC.

(e) The "ground" point of the circuit has not been specified. For convenience, we can
define the positive plate of the capacitor as @ =0, and as the origin of the z axis (see
sketch; the negative plate is at z = +k). Then, within the capacitor,
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z (1 - ¢~/RC)

(f) Since we have axial symmetry, it is convenient to use the circuital law of

Prob. 1-24,
§ A-de = IB +da

The magnetic field is azimuthal and varies only with radius r. We can take the vector
potential to be axial, likewise varying with r, and choose A = 0 at the axis. Use a
Stokesian rectangle with one side coinciding with the axis, the opposite side at radius r
(within the capacitor), and the two radial sides coinciding with the surface of the
capacitor plates. Then, only one of the four sides contributes (negatively) to the loop

integral, giving:

v
®(z0) = -E;z = -3%

ALK = Jng(r] hdr
0

-
;—;% e~/RC J rdr

A(r,p) = - 48}1;C r2 e/RCe,

It is easy to calculate (1/c)dA/dt to show that there is a negligible nonconservative
contribution to E in Eq. (4.42) in the limit a/c << RC. The divergence of A is zero
(Coulomb gauge), which is appropriate in the "slowly varying" limit We could add to
this A the gradient of any function of space and time so long as its time derivative
contributes negligibly to E.

4-13. (a) To the extent that we can neglect @
edge corrections, the electric field within the + =

capacitor is uniform, E = A®/h = Q/Ch. This Vp - €0 .
field drives the current density J = oE., which is l
related to the time-rate-of-change of the charge by 3

B - _0)ma?) = -%%na? = - &

In the final form we have introduced the resistance, R = h/ona?, of the leaky dielectric
filling the capacitor. The solution of this differential equation, for the given initial
condition, is
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Q(r) = CVge/RC m

This is, of course, identical to the charge decay of a nonleaky capacitor connected to an
external resistor R.

(b) The classes of current density are explicit in the right-hand side of Eq. (4.18).
The conduction (free) current density is

y - _1dg,

= = Yo_.-wrc,
ma? dt “* = Rma? b

The polarization current density is, using Eqgs. (1.28) and (1.33),

P _ (e-1\oE _ (g-1)_14d0O
& = |7an | & = |"an )hC a ®

= - [e=1) Yo -wrc,
4n ) hRC *

e-1\ Vo _
- (B3 e e

(There is no current density associated with magnetization here.) The E-field
displacement current density is

10E _ (_1 P _ 1 Vo _uee
nx " (s-l]_éf S L

(c) We use the integral form of the Ampere-Maxwell law, Eq. (4.17), and the usual
symmetry arguments (see Probs. 1-19 and 4-11), to find

Bo)2nr) = & (1 Se=1l SL) o e RC (mp2) = 0 @)

The three terms in parentheses are coefficients of the three current densities found in
Part (b). The conduction and D-field displacement currents cancel identically and there
is no magnetic field.

This is not the whole story however. If we assume that the conducting dielectric ends
at the edge of the capacitor (i.e., it is a disk of radius a and thickness h), then the
conduction current is confined within the material, whereas the displacement current
"fringes" out around the edges. Now the total Ampere-Maxwell currents no longer
quite cancel. The magnitude of this residual magnetic field is surprisingly large—it
turns out to be of the order of h/a times the field that would be calculated from either the
conduction current or the displacement current alone. On the other hand, if we
completely immerse the capacitor in a homogeneous leaky dielectric, outside and in,
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then the currents do cancel identically, and there is no magnetic field. See the papers by
Bartlett and by French; also Carlson and Illman, Am.J.Phys. 62, 1099 (1994).

(d) When the capacitor discharges through an external resistor R, the Kirchhoff loop
rule gives

ag . 1 , _
R+ =0
the solution of which is identical to (1) even though the current dQ/dt is in a different

place. There is no longer a conduction current within the capacitor, but the polarization
and displacement currents remain as calculated in Part (b). Revising (2), we have

- An €-1__1) Vo _uRC(pny2
(Bg)(2mr) = F (0—- T =8 )R 5 € (nrs) 2H
- _ 2Vo __urC
B(r,t) = cRazre eg

This field during discharge is in the reverse sense from that during the charging
process, found in Prob. 4-12(b).

4-14. The fields are related to the potentials by Egs. (4.40) and (4.42),

JdA

1
E —graddﬁ—?—;

B curl A

Use of these potentials automatically satisfies the homogeneous Maxwell equations,
Egs. (4.22-23). Substituting in the inhomogeneous equations, Eqs. (4.21) and
(4.24), written for vacuum (€= u=1; p.J represent fofal charges and currents), we
get

L

divE = - V20 -
c

2aivA = 4np 0

1 JE
curl B -

= — V2A + grad div A ++grad§+é—% = t—“] (2)

[We have used Eqgs. (A.29), (A.40), and (A.41), and the commutivity of space and
time derivatives.] In the Coulomb gauge, divA =0, (1) reduces to Poisson’;s

equation, Eq. (1.15),

V2 = - 4np



The solution of this equation is the instantaneous Coulomb potential,

o = [ XD 4y ®
Compare the retarded potential of Eq. (8.4). Similarly, for div A =0, (2) reduces to
va_Elia% = —-4clJ +c1_—grada§ @)
Now let
J =Ji+12
where
curlJ; = 0, div], = 0

Take the time derivative of (3) and use the equation of continuity, Eq. (4.4), to obtain

3<I> diV’Jr’J ’
& = f 4—%‘“’

Ir-r
Now we know that if any vector field obeys the relations
div]; = 4xm a(r), curlJ;, = 0

then by analogy with the electrostatic field [see Egs. (1.14) and (1.21)],
— grad I lﬂidv’
r—ril

_i—ngrad.[d—ll—'lw] ) gy’

Ir-r’|

I

Thus, since divJ = div J’,

and (4) reduces to
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4-15. (a) As suggested, the partially inserted slab amounts to two capacitors in
parallel, so the total capacitance [Prob. 1-7] is
1 wx 1 1 w(w=x)

w
oo =C 5 * = A m[(e-l)x+w]

n

(b) Define the potential of the negatively charged plate as ®_=0; the positively
charged plate then has the potential @, = A® = Q/C and surface charge such that
Jpsda=+Q. Equation (4.83) integrates trivially to

2
g, & %J-p,d)da > loo, = &

(c) Now, the force on the slab is
po_ _d (@) _ , 0dC
* T Tdx\2C) 2C2 dx

= bao2 m(e- 1)

The force is in the +x direction, that is, toward larger insertion of the slab. Note that
the force is independent of the insertion distance x, so long as the insertion is sufficient
to reach the uniform field in the interior of the capacitor. See the cited paper by
Margulies for a more complete discussion.

4-16. Consider a length £ of the wire, whose

l———
radius is @. The resistance is (see Prob. 1-34) Y -
G
t — - G
R = ona?

Since the current density is J = I/na?, the electric field required to drive the current is,
from Eq. (1.81),
J
B =% = G

which integrates to a difference of potential A® = E/ between the ends of the wire.
By Eq. (1.89) the tangential component of E must be continuous across the surface of
the wire. The magnetic field at the surface of the wire is, from Ampere's law
[Prob. 1-19],

=
1
8IR
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Consequently the Poynting vector, Eq. (4.66), is radially inward at the surface,

[ 1 27
S =EEXB =Em(—er)

Integrating this over the surface area 2na/ gives the total power flow

P = (5)(2Ral) = z‘;%zsa: = IR

The Poynting vector associated with the normal component of E, due to charge on the
surface of the wire, represents power flow parallel to the wire and is the mechanism by
which the wire can transmit power from one end to the other. From the Poynting point
of view, the wire acts as a guide for electromagnetic energy. The energy is transported
outside the wire, only flowing into the wire as needed to provide the Joule heating. See
Heald, Am.J.Phys. 52, 522 (1984).

4-17. The relation
%(%uu%%—)q- RIZ-EI = 0

is the circuit analog of the integral form of Poynting's theorem, Eq. (4.69). The time
derivative is the rate of change of energy stored in the inductor and capacitor. The
familiar /2R term represents the rate of energy dissipation from the circuit by
conversion to heat in the resistor. The £/ term is the power delivered to the circuit by
the driving emf €. The sign of this last term is reversed from that of the Poynting-
vector term in Eq. (4.69) because, by convention, the surface integral of S is
calculated for power flowing out of the system.

4-18. (a) From the definition of the
magnetization M [Sec. 1-6], a uniformly
magnetized sphere has the total dipole moment
m = %%3Mj. Its external field is then given
by Eq. (2.64) as

3
B(r.0) = 4—’5"—;'-’-51 -,_1-3-{2cosﬂ e, + sin0 ep)

where 8 is the polar angle from the axis defined by Mp. This formula turns out to be
valid everywhere outside the sphere, not just at large distances. To prove this in full
detail, apply the Legendre-polynomial expansion, Eq. (3.39), of the magnetic scalar
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potential [Sec. 2.7] to the regions inside and outside the spherical surface. Observe
that the magnetic surface charge, p; = n+ Mg = Mo cos6, which provides the
boundary condition at the interface, implies a uniform field inside (H = -?Mn,
B = +85M)), and the given pure-dipole field outside [see Probs. 1-13, 2-24, and
3-25).

With the charge Q distributed symmetrically over the conducting sphere, the external
electric field is the same as the field of a point charge,

E(r) = %c,
Therefore, the Poynting vector [Eq. (4.66)] is
S(r.0) = %E XB = ‘jchoa3%sin0e,

That is, electromagnetic energy is flowing azimuthally in the space outside the sphere.
(Inside the sphere, S =0 because E = 0.)

(b) Where there is energy flow, there is also momentum. By Eq. (4.108), the density
of the field momentum is g = S/c2, which in this case constitutes the angular

momenitum

L' J-r xgdv = e, ” (r $in@) (9—3“!3"—3 %sin&](Zurz sin@ dr d6)

3 oa
= e 252;"‘%& J; :—za'r J-: sin30 d6
2
- fnQMo ., M

If angular momentum is to be conserved about the suspension (z) axis, then when Q is
changed, the sphere itself must acquire mechanical angular momentum. That is, if we
remove the charge Q through the fine wire (moderately quickly), then the sphere will
start rotating about the vertical axis. (Because of the elasticity of the supporting wire,
the sphere would subsequently undergo torsional oscillations.)

To see how the torque is delivered to the sphere, consider the forces on the surface
current created by the changing charge. Assume that, at any instant, the charge is
distributed uniformly over the sphere. The amount of charge below the co-latitude @is
then

0o(6) = £ 2n(1 + cos6)



The total current crossing this latitude is then I = dQg/dt, and the surface current
density is
_ _dQgdt
K(0) = 2na sind 0
This distributed current experiences a Lorentz force in the magnetic field, producing the
torque
1

T = Tjrx(KxB)da

1+cos6)dQ/dt
-2 [ (asin6) [%( - ] (8"“3""5"] (2na? sing d6)

2 x 2
= —-e, 4—“—33‘:&0-%? J-D (14cosB) cosf sinf db = 8n_£;c£p_ [— ‘%%) e, 2

Since T= dLgn/dt, this torque drives the sphere to acquire the angular momentum (1)
lost by the electromagnetic field.

This is a version of the famous "Feynman disk paradox." As noted in the text
(footnote, end of Sec. 4.6]), there are many discussions in the literature of similar
systems with Poynting energy and momentum arising from "static" electric and
magnetic fields. The particular geometry chosen here allows relatively simple
quantitative evaluation, but it leaves some loose ends [see Pugh and Pugh, Am.J. Phys.
35, 153 (1967)]. Since the mass (moment of inertia) of the sphere is an independent
parameter, there is no automatic conservation of energy between field and matter;
presumably this is accomplished by Poynting energy flowing axially in or out of the
system along the suspension wire. Also, the symmetry of the system does not give a
simple mechanism by which the torque, which acts on the "free" conduction electrons,
is communicated to the rigid atomic lattice of the sphere.

4-19. Using Gauss' law, Eq. (1.6), with symmetry arguments (see Solution for
Prob. 1-4), we find the electric field:

anpo 3 (r<a)

§ E-da — E.r) (4nr?) = {
4npg 4T“a3 (r=a)

4T“Po”:r (r<a)
E ={

3
2 po e (r2a)
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(a) By integrating Eq. (4.70), the electrostatic energy is

2 2 = 46
Ues = ""-é—ndv = ﬂgl&-(i}pu) [Iar24nr2dr+j %4nr2dr:|
0 a
2002 (g5 250245
- PR (e wr) < Tepge g

(b) The potential inside the sphere is, taking ® = 0 at infinity as required,

o(r) = —J’rE-dr = —45%0-['[Baﬁadr+'l’rrdr:|
oo L a

o [z 2 -]

'4-'-1!:3“1‘1(3¢:2 - ,.2) (r<a)

Now, using Eq. (4.82), the energy is

Uiy = %j p® dv = "B J-“ (3a2 - 12) 4nr2 dr
0

25,2 5 16n2002as
=4L3go_(a5_aT}= 6x’poia ®

which agrees with (1). In Case (b) all the energy is localized within the charge
distribution since p(r) is zero elsewhere. In Case (a), 5/6 of the energy is outside the
charge distribution.

4-20. From Egs. (4.70) and (4.40), the magnetic energy is

1 1
Up = EJVH'B dv = EL,H-curlAdv

The identity of Eq. (A.38) gives
H-curlA = A-curlH + div(A X H)

The volume integral of the second term on the right can be transformed to a surface
integral by the divergence theorem,

lediv(A XH)dv = 45 (AXH)*nda
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If we assume that there are no radiation fields at infinity, then at large distances
H o< 1/r? and A o< 1/r, with da o< r2. Thus when we let the volume V include all
space, the surface integral vanishes. Using Ampere's law [Eq. (4.24) with negligible
Maxwell induction), the surviving term gives

| 1
Um = ﬁIVA-curlH dv = %JVA-dev

4-21. The electromagnetic momentum density is

- LExB = -1 L singe, x (ux
§ = g = Imc ASind e x(u e,)

e2
v (a — cosfO e,)

where @ is the angle between the velocity u and the radial unit vector e,. When we
integrate this expression over all space, the transverse components of the e, term will
cancel out, while the components in the direction of u survive. Thus,

- 20) = —% u sin?
g = guey = 4“62’4!1(1-1:05 8) = 4M2r4usm9
Then integrating, the total electromagnetic momentum is

Pfield = e,,j gu 2nr2 sin@ d@ dr
- € % gics =1 - 2
= w“J-os‘““eJ’Rﬂd' = 3c2R,“

If we now equate this to the observed "mechanical” momentum, m.u, we find
2¢2
(Rf)dynamic = 3m,c? = z_,;rn

where rg = e2/m.c? is the parameter defined following Eq. (4.87), such that
(Re)static = %ro. The slightly different numerical coefficients are dependent on our
model putting all of the electron’s charge on its "surface” [see Feynman (Fe89, Vol. 2,
Chap. 28)].
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4-22. (a) Equation (4.91) reduces to

D, Poa Pab Pac \ (Ga
@y, | = | Pba Pob Pbc || 96
D, Pea Pcb Pec gc

The given quantities are ®, = ®.=0, and g5 = Q. The unknowns are g, and g..
The matrix equation stands for three simultaneous equations, of which we only care
about the first and third (the middle equation, for ®;, is not useful because @, and ppp
blow up to infinity in our idealization of a "point" charge at b). Thus, we need to
evaluate the six p's in the first and third rows.

The diagonal elements, p,, and p,., are easy because we have spherical symmetry when
the charge on the "point" at b is assumed to be zero. Put a charge O, on the inner
sphere, with no charge elsewhere, and find the potential of the inner sphere to be
@, = 0/a. Do the same for the outer sphere (which we can assume to be of zero
thickness). Thus, immediately,

1 1
Paa = 4~ and p.c = e

The elements p,. and p,, are also easy. Put the charge on a and find the potential of ¢,
or vice versa. Either way,

1
Pac = Pca =

The tricky ones are p,p and pcp, which call for a charge placed at the asymmetrical
point b. But because of the reciprocity (symmetry of the p matrix, which is not to be
confused with the symmetry of the geometry!), we can instead find pj, and pp.. That
is, we can put the charge symmetrically on one or the other of the spheres and find the
potential at the mathematical point b. Thus,

1 1
Pba = Pab = J— and  Phc = Peb =
The first and third equations can now be written out explicitly as:
1 1 1
0 = E‘h""gQ"‘EQr
1 1 1
0 = Sdat+ Q2+ ;g
These equations are readily solved to give:
_ a(c-b) _ c(b-a)
9a = ~Fc-ay 2 M4 dc = -Foga) @



Note that the sum of the induced charges is equal and opposite to the given 0—that is,
the total system is electrically neutral. The system has no external field, outside the
outer sphere. Therefore, to compute the potentials with respect to infinity (as required
in this formalism), we do not need the assumption that the outer sphere is "thin" so
long as we understand that ¢ is its inner radius.

(b) Using the limits suggested, with a/b and ¢/b — 1, the solutions reduce to:

h -
qda = - th and 9c=—hLQ

This geometry appears to lend itself to the method of images, but summing the infinite
series of images-of-images turns out to be difficult. For yet another approach, see
Purcell (Pu85, Prob. 3.24).

4-23. Let the charges have equal magnitude Q, with the separation 2d. To find
the force on the right-hand charge, enclose the charge with a Maxwellian surface in the
shape of a hemisphere of very large radius, with the plane face lying in the midplane
between the charges, as shown in the sketches.

(a) For charges of opposite signs, the field in
the midplane is normal to the surface. Using
cylindrical coordinates (r,8,z) with origin
midway between the charges, the vector sum
of the fields of the two point charges is

E(z=0) = (rz—i% e,

where the axial unit vector e, points to the right
in the sketch. The midplane's contribution to
the force on the contents of the Maxwellian
surface (i.e., on the right-hand charge) is

= E2
Fmidplane = Imidph“ T'nda = -e; J’o EZ'M dr

d
= —e;dez ’ '(-,-1’.1';#)3 = —ez(_z%

The corresponding integral over the hemispherical surface goes to zero because
T o “1/r* while da o< r2 at large distances. Thus Frgplane is the entire force on the
right-hand charge, in agreement with the elementary Coulomb force law.

65

The direction of this force is easily inferred by the "furry rubber band" analogy (at the
midplane, the field-lines want to shrink along their length, hence the enclosed right-
hand charge is attracted to the left). Formally, the outward surface normal n points in
the negative z direction at the midplane. In Eq. (4.110), the stress tensor has been
diagonalized by assuming that the field is aligned with the "x3" direction, and the T33
element has the positive sign. Therefore, the direction of the T-n vector in this case is
parallel to +n = —e,. If, instead, we were to surround the left-hand charge with the
Maxwellian surface, then the outward normal n would be in the positive z direction—
the integrated force would now have the same magnitude, but (correctly) the opposite
sense.

/

(b) For the same-sign case, the midplane
field is radial (in cylindrical coordinates),

R S
The midplane contribution is now

Fmidplane = + €; 02 J; (,-2’..‘.—;2)3 ~

g

The magnitude is straightforward (except perhaps for an unfamiliar integral). In this
case, the outward normal n remains in the negative z direction (for right-hand charge
enclosed). But now, since the local field is tangential to the midplane, a negative
element, Ty, or Ty, in Eq. (4.110), applies. Because these are diagonal elements, the
operation T-n gives back a vector in the negative-n direction, i.e., the direction of +e;.
Much more simply, one can invoke the "furry rubber bands" (in this case, the "fur"
wants to push the field-lines apart, and hence the charges repel).

4-24. The magnetic field at the surface of a column of radius a carrying current /
is, by Ampere's law (see Prob. 1-19),

21
B = = &0

where eg is the azimuthal unit vector of cylindrical coordinates. The Maxwell stress
tensor, Eq. (4.111), says that this field conveys a stress of magnitude

I
8t T 2mcla?
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Because the field-lines are tangential to the surface of the column, the magnetic stress is
a pressure, not a tension—that is, the field exerts an inward force on the column. The
system 1is in equilibrium when this external magnetic pressure equals the internal
particle pressure—that is, for the special current Jequis such that

2
Lo’ _ 7 =

212 Tequit = V 2rc2a?nkT = \2c2nSkT

where S = 142, and S is the number of particles per unit length of the column.

Now suppose an external power supply drives a current larger than loqy;. If the initial
particle density and radius are ng and ag, the column will be compressed such that
nS = nonag? remains constant (conservation of particles—density goes up as radius
decreases). This adiabatic compression raises the temperature T of the particles. In
principle, the compression continues until the temperature rises enough to reach the
equilibrium I = Jequi1. More practically, the system is vulnerable to instabilities. For
instance, if there is an initial perturbation along the column where the radius a is less
than nominal, the locally greater field pressure makes this dimple grow larger ("sausage
instability™). If the axis of the column is slightly curved, the magnetic pressure is larger
on the inside of the curve than the outside and the deformation increases ("kink
instability"). For further discussion, see Reitz-Milford-Christy (Re93, Sec. 14-6).

4-25. (a) As worked out for Prob. 2-25, the reluctance of the electromagnet is,
with no gap,

c £+d
K=E;ui

where £is the length of the U-shaped magnet, 4 is the length of the "keeper" between
the magnet's poles, A is the cross-sectional area of both, and p is the permeability of
the soft iron. According to the magnetic "Ohm's law" [Eq. (2.81)], the field produced
within the iron circuit is

_ M

= AR

where NI is the "magnetomotive force" (ampere-turns) in the winding.

B

The Maxwell stress tensor, Eq. (4.111), gives the stress communicated across a free-

space gap (of negligible thickness) between a magnet pole and the keeper. Thus, the
magnitude is

F=-=2L4-= L

= T 8mA g2
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_ N22 | 4npA P o 6
= 3 [c(!+a‘) (= 1.96 x 106 dynes)

which agrees with the result found for Prob. 2-25. The direction of the force is of
course attractive, as can be seen by imagining the field-lines, perpendicular to the gap,
to be stretched rubber bands.

[Note: The analysis leading to Eq. (4.111) assumed the absence of any magnetic
materials. More generally, the elements of the magnetic stress tensor have the
magnitude BH/8m, as can be inferred from the more general energy-density formula of
Eq. (4.70). Usually, as in the present example, we are interested in the force between,

not within, ferromagnetic objects.]

(b) We assume that the permanent magnet has uniform magnetization My parallel to
the axis of the rod, which has length £ and cross-sectional area A. With no keeper,
there are fictitious magnetic poles, g* = £MyA, at the ends of the rod (elsewhere,
divM and M'n are negligible). With the highly permeable keeper in place, an
essentially equal magnetization is induced in the keeper, producing poles that cancel
those of the permanently magnetized rod. That is, with the keeper in place, there is a
negligible pole strength anywhere. With no free currents present, it follows that the
H-field is very small throughout the system. (What residual H-field there is, is in
opposite directions in magnet and keeper: "backwards" in the magnet, and "forwards"
in the keeper.) The B-field, created by strong Amperian currents, Mxa, at the surface
of the iron, is by no means negligible, and is essentially equal in both magnet and
keeper. (B is "forward" —i.e., continuous—in both regions.)

Therefore, the constraint line on the state of the permanent-magnet's iron, which was
found in Prob. 2-24 to be B/H =-2 for a spherical specimen, here becomes
B/H — —oo. Thus, in the present problem, the relevant parameter of the permanent
magnet's hysteresis graph is its remanence [i.e., the B intercept of Fig. 1-10(b)]. We
conclude that, B = B,,, = 4tMo = 1.3 x 104 gauss throughout the magnetic
circuit, including the (vanishingly small) airgap between magnet pole and keeper.

Now it is easy to use the stress tensor to find the force with which the magnet holds
one end of the keeper:

2 4
Brem & (1.3x108

2
F = By £2USS)~ (0.8 cm2)

= 5.4 x 106 dynes

which can be compared with the 1.96 x 106 dynes found for Part (a).
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5-1. Substitution of the assumed fields in Egq. (5.1) gives
P’ =0

where the prime denotes differentiation with respect to the argument (x — V). Thus P
is at most a constant, which is not a wave field of the assumed form; hence P = 0.
Equation (5.2) gives a similar conclusion for S.

Substitution in Eq. (5.3) gives

ex €, e,

curlE = | addx 0 O = -R'ey+Q'e,
P Q R
= \’_:E V(T'ey + U'e,) m

Similarly, Eq. (5.4) gives
Ven (-U'ey+T'e;) = -2V (Q e, + R e)) )

The y components of (1) and the z components of (2) require

£=_'\Js_,u‘l»’=_ c
T c @V

Thus the propagation velocity V is required to be equal to o €M, and the relation
between R’ and T integrates to

R = -T
Similarly, the z components of (1) and the y components of (2) require the same V, and
Qg =U
Thus only two of the six functions are nonzero and independent.

5-2. Maxwell's equations (5.1-4) are replaced by (4.25-28). (With no material
medium, there is no distinction between tozal and free charges and currents.) Taking
the curl of Eq. (4.27) and using the expansion identity of Eq. (A.40), we have
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curl curl E = grad divE - V2E

= -Lawn® - _ L Zuns
Invoking Egs. (4.25) and (4.28), this becomes
grad(4np) - VIE = -0 % [CL (%+ 41:])]
Rearranging,

VIE-5%7 = 4n(gradp + % E) o)

Similarly, taking the curl of Eq. (4.28),
curl curl B = grad divB - V2B
JE

= %curl—;+4c—“curl] = %—%curlE+%’£curlJ

Invoking Egs. (4.26) and (4.27), and rearranging, we have

0 - V2B = %%[——;—ég)+%£curl.]

1 3?B 4m
= V2B -z "= —?curlj 2)

These are the inhomogeneous wave equations, with the source terms involving p and J
on the right-hand sides. In Sec. 8.1 it is shown that a general solution of such
equations [such as Eq. (8.6)] can be written in the form of a volume integral over the
sources [such as Eq. (8.4) or (8.21)], provided that the integrand is evaluated at the
retarded time. That is, we can immediately write down solutions of (1) and (2) as

j grad’p(r’,7) + cLaJa—” rt,r
E(rp) = - "

= dv’
Ir = r’l

cL curl’J(r’,7)
B = | v’

Ir - r’l

where r’ and r are the source and field coordinates, respectively, and 7=t - Ir-r'l/c
is the so-called retarded time. Better solutions of this sort are discussed in Sec. 8.2.
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5-3. (a) The divergence of all four wavefunctions vanishes because the vector
components are in the x and y directions, while the magnitude depends (spatially) only
upon z. For E,,

€x ey €,
curlEp, = Epsinwt [ 0 0 dok
sinkz coskz 0

= Eqsinot (k sinkz e, + k coskz e,)

while for By,

_ La%t& 2 - *cl.—Eo (- @ sinox) (sinkz e, + coskz e,)

c

Thus, Eq. (5.3) is satisfied so long as k = @w/c, which is what was implicitly
assumed. A similar calculation verifies the Maxwell curl equations for B, and for both
Case-B fields.

For the wave equation, the operator V2 simply multiplies each wavefunction by —k2,
and the second time derivative multiplies each by —?. Thus, again, the wave equation

[Eq. (5.5) or (5.6), with £ =y = 1] is satisfied for each field so long as k = a/e.

(b) Since E and B are parallel, the Poynting vector (c/4nu)EXB [Eq. (4.66)] is zero
in each case. The energy density [Eq. (4.70)] is

E,y = EIE(E,F + B,2)
= 81_:|:E°2 (sinzwr + coszmr) = -SIEEOZ
and
Ep = sl—nEnz (coszkz + sinzkz) = 81—“1503
That is, in both cases the energy density is a constant, independent of space and time.

(c) Case A is circularly polarized in space,
with E and B 90° out-of-phase in time.
That is, at a given position z, both fields
oscillate in a fixed direction; this direction
describes a corkscrew as z varies.
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Case B is circularly polarized in time, with
E and B 90° out-of-phase in space. At an
instant of time, both fields lie in a plane
independent of z; this plane rotates in time
at angular frequency @.

Both cases represent standing waves. With a little imagination, or exercise with
trigonometric identities, they can be written in the forms:

Ep, = £2n_ [cos(an - kz) ey + sin(@t - kz) e,
{ — cos(@t + kz) ex + sin(@r + kz) ey]
Bsr = —%9— [cos(mt — kz) ey — sin(@t - kz) e,
cos(wt + kz) ey + sin(@f + kz) e;]
Egp = —%0— [cos(a}: — kz) ex - sin(@1 — kz) ey
{ cos(wt + kz) ex — sin(ot + kz) ey
By = %— [cos(mr — kz) ey + sin(@1 — kz) e,

- cos(@t + kz) ey — sin(@1 + kz) e;]

These forms can be recognized as the superposition of two plane traveling waves, each
of which are circularly polarized [compare Egs. (5.26-27)], but which are propagating
in opposite directions. The terms with the argument (@t — kz) advance in the +z
direction; the corresponding terms of E and B are equal in magnitude with vector
directions such that ez X eg = +e,. The terms with (@t + kz) advance in the —z
direction, with vector directions such that eg X eg = —e,.

Circularly polarized traveling waves have the property that their instantaneous Poynting
vector is constant in time (the Poynting vector of linearly polarized traveling waves is
"lumpy"—it rises and falls each half-cycle). Thus counter-propagating circularly
polarized waves, of equal amplitude, carry energy continuously in opposite directions,
and the net Poynting vector cancels to zero, as we have already seen. On the other
hand, the energy density of each traveling wave doubles in the superposition.

For further discussion of these special cases, see Zaghloul and Buckmaster,
Am.J.Phys. 56, 801 (1988), and Shimoda, et al., Am.J.Phys. 58, 394 (1990).




5-4. (a) The scalar wave equation is

1 2¥
Y = - =

vy T 0

Saying that the wavefunction ¥is spherically symmetric means that it is a function only

of r in spherical coordinates; therefore the Laplacian operator reduces to [Eq. (A.52]
1 2 ¥
2 - 2
Vio a2 [’ ‘a?)
Applying this to the given function,
vy, = % g [,.2 (_ % s l%')ei(kr-mr)]
= lﬁ [0 + ikC) + ik(- C + ikCP)] '™ = _ g2 w,

The second time derivative is easily seen to be —a?'¥,. Therefore the given function
does indeed satisfy the wave equation so long as k = a/c. To construct a solution of
the vector wave equation in the form e; ¥, we must use a Cartesian unit vector
because non-Cartesian unit vectors (such as e, eg, and e, of spherical coordinates) do
not commute through the spatial derivatives in V2.

(b) We take the vector function A, = e, ¥;(r) to be a solution of the wave equation
for the vector potential, Eq. (4.57b). Note the mixed bookkeeping, that the vector
component is in Cartesian (or cylindrical?) coordinates, while the functional
dependence is in spherical coordinates. To work out the curl, it is easiest to express the
unit vector as e, = cosfe, —sinfey. Then, using Eq. (A.50), the corresponding
magnetic field is

e, €g Lo
rZ sin® rsin@ r

B; = curl A; = a d
’ 2 26 0
¥.(r)cos@ -r¥(r)sin6@ 0

r

= 3'-_9- [% (- c =29 5ing) - ‘-:?_9 (£ eilkr-a0 cos 9)]

=2c (- ik + %) sin@ e'*r-00 = _jk2¢ [% + &-:?] sin@ eikan ¢

And then the associated electric field is
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e €9 Lo
r2sin@ rsin@ r
E; =%curlB, =—i— % % 0
0 0 rsin@ By(r,0)

[

i |_e d _eg 3] SPTIE S PP :'(kr—n.u)]
k [ﬂ sin@ 96 ~ rsin@ or [C( ik + —-|[sin*6 e
» iCe, g om % 2 cos@ elkr-an

kr2
iC eg 1 ¢ : 1 . i(kr—ar)
=y [[0—er+ ik [— ik i Ils:nee

iCk2 [- @')—2 + (;?] 2 cosf eikr-oM ¢,

+iCk? [— = - &i;}-i + (k:'_ﬁ] sin@ elkr-an ¢

With iC — pgk, these are precisely the fields found in Egs. (8.42-44) for an
oscillating electric dipole. See also Souza, Am.J.Phys. 51, 54 (1983).

5-5. From Eqgs. (5.3—4), so long as € is not time-dependent (and u = 1),
curl curl E

= —%c:urlfzalEL = -%—%(curln) = —5%

The expansion of the double curl is given by Eq. (A.40),

curlcurl E = grad divE - V2E

When the medium is inhomogeneous, divE is no longer zero [Eq. (5.1)]. In order to
invoke the more general Eq. (4.21), use the expansion of Eq. (A.35),

e€divE = div(eE)-E-grade — -E-grade¢

Thus the wave equation for E becomes, replacing Eq. (5.5),

VZE-C—“;‘?% = -grad[g%”on) )
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Similarly, using Eqgs. (A.40), (A.36), and (5.2-4), we have
curlcurlB = graddivB -V2B —» -V2B
= %curl[& a—g) = % %(eurl E) —%a-gx (grad &)

= wie O —é—(curl B) x (grad ¢)

Thus the wave equation for B becomes, replacing Eq. (5.6),

2
V2B _%% = - [gg:_d_&_!)x (curl B) 2)

When either (1) or (2) is written out as three scalar equations for the Cartesian
components of the vector field, the right-hand sides couple the otherwise-independent
simultaneous equations.

When £ = £(z) and E,B have no components in the z direction, then
grad £ — (de/dz)e,. The right-hand side of (1) now vanishes, and the right-hand
side of (2) reduces to

ey €y €

1 d _ _1 dedB
“TENX |0 0 %] =TT

z

5-6. The proof is essentially trivial: the right-hand side is the distributed
multiplication of the complex function F with the real quantity (G + G*) —that is,
twice the real part of G. Then the (implicit) real part of the product picks up only the
real part of F. With the explicit factor of 1/2, the result is indeed the product of Re[F]
times Re[G], which is the intended meaning of the left-hand side. The point of the
problem is to display the notational code whereby an algebraic expression with one
implicit real operator (the right-hand side) stands in the place of an expression with two
implicit real operators (the left-hand side). These shorthand conventions are used glibly
in the literature, often with idiosyncratic variations. Readers must be prepared to
supply the proper interpretation from the context.

5-7. (a) Using the time-average product theorem [Eq. (5.42)] in the form of
Eq. (5.50), with H — B for a nonmagnetic medium, we have for the superposition
of Waves 1 and 2:

Chapter 5

(8§12) = é (e:EQ + eyEfe+ia) x ((&,EQ — e Efe-i®)
= 'SEﬁ (esEQ x eyE — e ,E x e Ede-ic
+ e,Eetia x e,E] — e,Efe+it x e,Ede-ia)

gz ex [ED? + (ED?] = (S1) + (S2)

That is, the two cross-terms vanish because e ;X e, =e,Xe, =0, and the
remaining terms correspond to the Poynting vector of the two waves taken separately.
(Remember, we want only the real part of the result of the calculation, which in this

case is trivially the result itself.)

Because these two waves are linearly polarized at right angles, they propagate
independently of each other. However, depending upon the phase difference o, the
superposition can represent linear [cc= 0 or =, Eq. (5.34)], circular [a = +r/2 with
E{ = E3, Eqgs. (5.35-37)], or elliptical polarization [Egs. (5.38-41)].

(b) For Waves 1 and 3 (using the identity e*/® + e-i® = 2 cosa),
(S13) = E%t- (&) + e,Efetia) x (e,EY + eyEfe-ia)

= ﬁ%i (exEQ x eyE{ + e;E{ x eyEe-ia

+ e;EJe*i® X eyE] + e;Efe*ia X e,Efe-i%)
= g=e: [(ED? + EQ EY (e*ia + e-ie) + (E9?]

= (S1) + (S3) + sine, 2E{ E§ cosa

The two waves in this case have the same linear polarization, and interfere
constructively or destructively depending upon the phase difference o. The resultant
amplitude is related to the amplitudes of the component waves by the law of cosines
(see Fig. 11-4).

(c) In this case the complex-exponential wavefunction is not the same in the two
cases, and we must include the spatial factor eti%z explicitly in the time-average product
theorem:

(S14) = é (e:Efe*itz + e,EQe-ikz) x ((e,Efe-ik — e,Efetiks)
F— % (exE?e-H'kZ b4 eyE?c—sz — exE?e'H‘kZ x eyE?ei-l‘kZ

+ e;Efe-ikz x e,Efe-ikz — e Efe-iki x e,Ee+ike)



Siﬂ: e, [(E?)Z n (qu])z (e“ﬂz = e-mz) = (E?)zl
= (1) - (S4) - gz €z 2i (E)? sin(2k2) reqiiue O

In this case we have two waves of the same amplitude and polarization, but traveling in
opposite directions. The superposition is a standing wave. Thus their individual
Poynting vectors cancel, and the "interference" term contributes no time-average
because there is no real part of a pure-imaginary quantity.

To find the time-dependent energy density, we use the result of Prob. 5-6. The electric
portion of Eq. (4.70) is:

1

1
EEZ = W(El +E4) (E;j +Eg4+ E* + Eg*)

= 16 [ EY (2 coskz) e-ior] - [ e, E (2 coskz) (2 cosan)]

1
realpare 27 (E 9?2 cos2kz cos2wt

Similarly, the magnetic portion of the energy density is:

1 1
8—1:82 = W(B]+B4)'(B]+B4+Bl*+ﬂ4*)
= llﬁ[e, Ef (2isinkz) e-it] - [ e, EY (2i sinkz) (<2i sinwr)]

1

rul_gm on (E 9)? sin2kz sin2et

The electric and magnetic portions are out-of-phase by 7/2 in both space and time. The
sum is:

£ = 81? (E? + B?)
= é (ED)? [(1 + cos2kz)(1 + cos2ax) + (1 - cos2kz)(1 - cos2an)]
= 4}—“ (E9)? (1 +cos2kz cos2ar)
Similarly, the time-dependent Poynting vector is:
S(z.1) = SI—n(EI +E4) X (B) + By + By* + By*¥)
= 5‘; [ex E? (2 coskz) e-i@r] x [e, EY (2isinkz) (-2i sinw)]

1 ; .
reaﬁm 4 ©z (E ?}2 sin2kz sin2 wt
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5-8. (a) Consider a Cartesian volume
element of dimensions dx by dy by dz=cdt
(see diagram), through which radiation flows
isotropicly. In the time dt, the amount of é‘
energy that flows out of the dx—dy face, into the A‘(’] —Vx
element of solid angle €2 in the z direction, is 0‘-6—

(E)dx dy cdt (%]

That is, the wave Poynting vector [energy per time per cross-sectional area] in any
particular direction in this region of space, has the magnitude d(S) = (c/4n){E)dS2.
Thus,

49 - m 0

Note that there is no power flowing in exactly a given direction, but there is a finite
amount into a small-but-finite solid angle AL2.

Now consider an element of area dA in this region. For radiation flowing at angle 0
with respect to the element's normal, the area projects as cos@dA. Therefore this
portion of the radiation contributes the power

d2Pg(6) = dS (cosOdA)

The total power flowing in one direction is, using (1) and dQ = 2 sin8d6,

dpP = .[ hemisphere d2P3(8)
¢ /2 ) z
= an(E) J- (cos8 dA) 2n sinfd@ = ——(E)dA
0

That is, the power-per-area for isotropic radiation crossing a surface in one direction is
v 7 S R @

Equation (5.54) says {S) = ¢ (). Now this dP/dA is almost the same quantity as the
Poynting vector (S} —the difference being that dP/dA represents radiation flowing in
all directions within a hemisphere whereas (S) is the time-averaged magnitude of the
vector S which represents collimated radiation flowing in a particular direction.
Equation (2) differs from (5.54) by the factor of !/4.
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(b) At the distance of the Earth, the Sun's radiation is essentially collimated (i.e., the
Poynting vector has a well-defined direction), and the Poynting vector and energy
density are related by Eq. (5.54), {S) = ¢(E). Close to the surface of the Sun, for an
element of area dA parallel to the Sun's surface, the radiation can be assumed to be
isotropic over the outbound hemisphere, but zero over the inbound hemisphere. Since
only half of the fully isotropic radiation is present, the (‘E) in Eq. (2) is only half as
large for the same outbound dP/dA. Thus, with rs = radius of Sun,

2 dP _ 2 (Sp)amrg2

(I':)Snn's surface — ¢c dA T ¢ 41“.52

_ 2(1.4x 106 erg/cm?-5)(1.5 x 10'3 cm)®
(3 % 1010 cm/s)(7 x 1010 cm)?

= 4.3 erg/cm3

A quick approximation to this result can be got by simply pretending that the radiation
at the Sun's surface is radially outward, and using Eq.(5.54) with
{S)sun = (SE)rE2/rs2. This just misses the factor of 2.

(c) The root-mean-square amplitude of the electric field is, from Eqgs. (5.53) and
(5.55),

Eyms = \ 4n(E) = V4n(4.3 erg/cm3) = 7.3 statvolts/cm

In Gaussian units, the magnetic amplitude is the same although reckoned in different
units,

B,ms = 7.3 gauss

(d) From Appendix D,

300 volts] (102 cm

Epms = 7.3 statvolts/cm (l Starvolt ) = 2.2x 105 volts/m

1 meter

- 1tesla ) _ 4
B.ms = 7.3 gauss (——-——-———104 gauss) = 7.3x10-4 tesla

As a check, for SI units (see footnotes near end of Section 5.1),

5
[Em = 22X10° _ 5. 108 m/s = ¢

By 1 T 7.3x10-¢

Note: The component waves in different directions (near the Sun), and of different
frequencies, interfere with each other, so that the instantaneous amplitude of E and B at
a particular point can be very large (or small). However, the components add
incoherently, which allows us to treat the time-averaged total energies (in () and {S))
as simply the sum of the component energies (see the discussion in Sec. 11.2). That
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is, the rms amplitudes E,,;s and B, [Eq. (5.55)] are well-defined in this case, but
peak values Eg and By [as in Egs. (5.51) and (5.53)] would not be.

5-9. (a) From Eg. (5.60), the radiation pressure for a wave at normal incidence
is

p o= (5

When the wave is incident obliquely on a target surface,
at angle 6 from the normal, then a unit area of the surface
intercepts an area cos@ of the wavefront. The component
of the resulting force normal to the surface brings in a
second factor of cosf. And the force is doubled by the
reaction from the reflected radiation. Thus the pressure
normal to the perfectly reflecting surface is

a5

pn(68) = 2cos20p = 25?— cos28
There is no tangential force on the patch of area: the reflecting wave undergoes no
change of momentum in the tangential direction (the incident wave tends to push the
patch forward, while the reaction to the reflected wave pushes it equally backward).

(b) When the plane wave is incident on a reflecting _\ / -

sphere, the radiation pressure on an area element da
produces the force of Part (a) in the inward-radial
direction. From symmetry, the only contribution to
the net force on the sphere is the component of this
radial force in the direction of travel of the incident
wave, which brings in yet another factor of cosé.

Thus 7 \ -
Fwﬁzﬁgs = Ip,(ﬂ) cos® 2nR2sinfd0
5]

2 12 2
= 42RXS) J" cos30 sing dg = TR
0

(¢) For a perfectly absorbing sphere, the wave momentum is completely transferred to
the sphere. The easiest approach in this case is to observe that the sphere presents the
cross-sectional area TtR? to the incoming wave, and therefore the total force is simply

nR2
Fuggns = p #R? = HCE



which is the same result as the reflecting case. More laboriously, we can paraphrase
Part (a) to see that the normal force on a surface element da is dF, = cos20 p da [no
factor of 2], and the tangential force is dF; = sin@ cos@ p da. Then paraphrasing
Part (b) the net force on the sphere is

x/2
I (cosO dF, + sin@ dF;) = S?— Jl (cos38 + sin20 cos@) 2nR2 sinf d6
0

which agrees with the simpler calculation.

It may seem strange that the same force is obtained for both the reflecting and absorbing
cases. The reflecting sphere reflects the incoming radiation in the "backward" sense for
polar angles less than nt/4, but in the "forward" sense for angles between 7/4 and ®/2.
The net momentum of the reflected radiation turns out to be zero. So the net
momentum exchange between wave and sphere is the same in both cases.

To extend this analysis to cases other than the idealized limits of perfect reflection and
absorption, one needs to take into account the fact that the reflection may be diffuse to
some degree, rather than specular. That is, the incoming plane wave, from a well-
defined direction, may be reflected an as ensemble of partial waves in various directions
(within a solid angle of 2x). See discussions of Lambert's law in an optics textbook.

5-10. (a) The gravitational force on the particle of radius R and density p is
- GM ranp,
Fg; = ry? ( 3 R ) P

where r;, is the particle's distance from the Sun, G is the universal gravitational
constant, and M is the Sun's mass. From Prob. 5-9, the force due to radiation
pressure is

2 2
F’=1tRS _a:R_(4P)

c - ¢ nrp?
where P is the total power radiated by the Sun. The ratio of radiation to gravitational
force is then

F, _ __ 3P
Fg = 16mcGMpR

Note that the particle's distance from the Sun cancels out; both forces are inverse-
square. Thus, the (outward) radiation force dominates only for

3P

R < TéncGMp
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(b) To evaluate the constants, Newton's second law for a gravitational circular orbit
gives

2n _GMm
niFE|r. Ta

from which we obtain Kepler's third law in the form GM = (2r/T)2rg3 where
T=1yr=3.16x107s, and rg is the Earth-Sun distance. Also, P = Sg 4nrg?
where Sk is the Poynting flux at the Earth's orbit (see data given in Prob. 5-8). The
condition for radiation dominance is then:

3512
E < 16n2cprg

3(1.4 x 106 erg/cm2-5)(3.16 x 107 5)?

= -5
T672(3 x 1010 cm/s)(2.5 glem)(1.5x 1073 cm) ~ 2-4* 107 cm

The gravitational force dominates unless the particle’s diameter is less than the
wavelength of visible light. Alternatively, instead of a sphere, suppose the object is in
the form of a very thin sail, ---.

5-11. The Joule-heating term of Poynting's theorem, Eq. (4.67), is

J-E=J-(%]=%

This result can also be found from 2R by the arguments of Prob. 1-34.

In terms of the complex propagation constant, k= a+ip, using Egs. (5.71-72) and
(5.80), we can write the wave fields as

E - Ege-B¢
ck -
B - ?XEQC B¢

where it is understood that each expression is multiplied by the complex wavefunction
exp[i(al - w]. Using the time-average product theorem, Eq. (5.46), the Poynting
vector for waves in a conducting medium is then

(S) = ZEXH*
= ﬁ(Egg"ﬁ‘)X (ﬂ—cmf‘ erx Eoe"pCJ
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c?
Snuw

k* Eq2 e-2P e;

c2
real part Srp@ a Eg?e-2Bl e,

Evaluating at = 0 where the peak field amplitude is Ep, and using Eq. (5.74b),

2

div(S) — a48) _ -2apB Sxuo

S
g

Eg2 e-2B¢ 4'_=)0 - %G'Enz

The root-mean-square current density is related to the peak electric field of the wave by
1

1
Jrms = ﬂjpeak = ‘J_EGEO

so that div(S) = —J;ns2/0, the time-average Joule heating. The & E)/dt term in
Eq. (4.67) is zero because the time-average energy density (‘E) for a damped wave is
constant in time (but not in space).

5-12. 1f £=iNix=i(1+i)x/N7Z, then

E2 = ix2 4 = — x4 £6 = + j x6 &8 = 4+ x8, etc.

Substituting in the given % series and separating real and imaginary parts, we have

. r /2)4 /2)8 | (=2 /2)6

= ber(x) + i bei(x)
If, instead, &= Vix = (1 + i)x/\2, then
2=+ ix2 54 =—x4 &6 = — jx6 &8 = + xB, etc.
That is, the even powers are just the complex conjugates of the former values. Thus,

Jo(ix) = ber(x) — i bei(x)

5-13. From Eq. (3.103), for kr>> 1,

Jo(kr) = ‘\/% cos(kr - ’41)

When kr — \iu = (1+iul\2,
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+i[(1+DuN2 - n/4) + e—i[(l+f)uNZ - m]]

BOTu) 52 & (e 3 |

1 _un2 —i(uN2 - n/8)
- '\l T e

which is equivalent to the complex conjugate of Eq. (5.121). Putting u — V2r/8,
and wiping off the phase, we have

o) -

Therefore, the ratio of the current density at radius r to that at the surface, r = rg, is

L)

]

- ,\/ T V5 o g~lrorE
r

The final approximation follows because, when & << rg, the current density is
negligible unless r = ry. The result is identical in form to Eq. (5.103) with x replaced
by the radial penetration, ro—r.

5-14. From Eq. (5.121), for u >>1,

ber'u = o \I.—_z[cos[%— 8)_Si"(ﬁ_ E)]
bei’ u ::r:u ir; [sin[—j‘_i- + %J— cos(%— %]:I

Substituting these asymptotic forms in the quantity in parentheses on the right-hand
side of Eq. (5.120), we note that the common factors of v \2mu cancel, leaving

() = 3 cos()[sin() + cos()] — sin()[cos() — sin()]
- [sin() + cos()]? + [cos() - sin()]?

= (.
2

ol

-

Sl=




5-15. The algebra is easier if we use the complex-exponential notation, writing
the magnitude of the applied field as B(¢) = Bg e~® (with By a real number). The
field within the tube is Bj, e-io", with By, understood to be a complex quantity because
in general it will be phase-shifted with respect to By. This oscillating field induces an
emf driving current azimuthally around the wall-of the tube,

EW = ——%-4-9-“ = +i7mua35ine-fﬂ

The resistance of a length £ of the tube is R = 2na/ohf, Therefore the current per-
unit-length is K(f) = E/R¢ = (iwoah/2c) Bi, e-i%. The current-bearing tube is like a
solenoid, the field of which is (Prob. 1-20)

Biupe e-i0t = ﬂ:?& = izﬂ—:z‘m—hgi,e“'m

Now the applied and induced fields superpose to produce the net internal field, that is,

Bin = Bo + Bpe = Bo'l-l'm—zfin
Therefore,

Ein = 1 1

B 1 - i 2nwoah/c? 1-iah/&

where 6= cN 2rnow is the skin depth. In magnitude,

1

5
S S
1L+ @we2 = % ah

This shielding is only algebraically small, compared with the exponential shielding of
Eq. (5.103). Further details are discussed by Fahy, Kittel, and Louie, Am.J. Phys.
56, 989 (1988).
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Chapter 6
6-1. From Egs. (6.10) and (6.12), the power reflection and transmission
coefficients are
O
ny+ny) "’ n \n2 + ny
These are equal when

(nz-n1)2 = 4nng = a2 -6nany+ny2 = 0

5.83
—:2- = 3+2Vy2 = {
! 0.172

The two ratios are reciprocals of each other, so they represent the same relation looked
at from opposite sides of the interface. Transparent materials with such a large ratio of
refractive indices are not generally available at optical frequencies. And also, in
practice, there are usually at least two interfaces, with air as the common medium on
both the input and output sides. More practical schemes use a thin layer of a very good
conductor (Ag or Al —see Sec. 6.4), or multiple layers of dielectric spaced so that the
weak reflections at each interface interfere constructively.

6-2. Now H =B/y, and Eq. (6.3) is replaced by H = (1/n)e3 X E, where
n=u/n= v /e is the wave impedance of the medium [Eq. (5.29)]. Therefore, we
simply substitute n = 1/n in Egs. (6.6) and (6.7), to obtain the amplitude
coefficients:

St
I
S|

I
=
=
1
S
a1

M2 ™
2
B _ M - _2m
B L, 1 = m+m
m ™M

The same substitution in Egs. (6.10) and (6.12) gives the power coefficients:
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- [£4] - oy

R m1 + M2
M2 ™
1 2
r = M|__m_| _ _4
11,1 (M + m2)?
m\m M
6-3. we analyze the system in terms of five h =l n
waves, labeled as shown, as an extension of 1~ 2 Y\s
Fig. 6-1. Choose the sign convention that all @ @
H-fields have the same sense. To Egs. (6.1) ——2= —_—
and (6.4) we add @
. 0] [©)
E3 = - e, EJeih-® — | —
E4 = + e, EJ ko ‘x'f
H; = e, n3 E? gil-kaz-0f)

H; = e, n3 E2 ei(+k3z—mr)

> -
%‘/310 h d

The boundary conditions at z =0 are

E§-E{ = Ef-E} O
m (B +EY) = na (B +E3) @
And those at z = h are
B ettt _ E e-ikah = EQ etiksh 3
ny (B e*itsh 4 E§ e%2h) = py EQ e*itsh @

We have four simultaneous equations from which we wish to calculate the reflection
coefficient R = |EY/EJ|%. Eliminate E from (3)~(4) to obtain

8 = 5 (Ji)e ®

Add and subtract (1)—(2) to obtain:
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2E) = (”%]53 - (1-'%)5? ©)
2E) = - (1—-';—'2-)5‘3 + (l+%ﬂ£? )

Equate the ratios E3/E$ from (5) and (6)~(7) and rearrange to obtain

B2 —7n1), n3 —ny etiZkoh
E _ \m2+m n3 + n3 ®
E} 1 4+ (B2=n1Yn3 =17 ) +izksh
np+npjny+ng

Define the single-interface amplitude reflection coefficients:

= N2—B1. = B3-RJ
"2 = ma+nn’ T23 = n3+ny ®

And finally calculate the power reflection coefficient of the slab by multiplying (8) by
its complex conjugate to obtain

2 _ rlzz + r232 + 2ryarsacos2koh (10)

R =
1 + ry22ry32 + 2ryarascos2kah

E§
Now, both numerator and denominator have extreme values when cos2koh = 1. In
particular, the reflection goes to zero when 2kph is an odd multiple of 7 and ry2 = ra.

That is, when

2ksh = 2n 25k = mx = h=m% (m odd)

Ao
np—ny _ n3-ny _
na+n;  n3+ny = ny = \mn

where Ay = 2nc/w is the free-space wavelength. The slab thickness k needs to be an
odd number of quarter-wavelengths (in the medium), and the refractive index of the
slab needs to be the geometric mean of the indices of the input and output media. The
suppression of reflection is least wavelength- (frequency-) sensitive for m = 1. This
of course is the principle of coated optical lenses.

6-4. we write a straightforward program to evaluate Egs. (9)-(10) in the
preceding solution. For example, in TrueBASIC:



REM Program to calculate and plot reflection from slab
OPEN #1: screen 0.1, 0.91, 0.1, 0.9

SET WINDOW O, 0.6, 0, 0.08

BOX LINES 0, 0.6, 0, 0.07

DATA 1.2, 1.5, 1.6

FORI =1TO 3

READ N2
LET R12 (N2 - 1)/(N2 + 1)
LET R23 (1.5 = N2)/(1.5 + N2)

FOR J = 0 TO 20
LET H = 0.03 *J
LET CH = COS(2 * PI * H)
LET R = (R12"2+R2372+2*R12*R23*CH)/(14R12"2*R23"2+2*R12*R23*CH)
PLOT LINES: H, R;
NEXT J
PLOT
NEXT I
CLOSE #1
END

The output, with added labeling, is:

0.08

0% 2=1.0, 1.5 /
nz = 1.0, 1. \

o 0.25 h/lambda 0.5

6-5. Symmetry considerations suffice to establish that k; and k; are vectors in the
plane defined by kg and the normal in Fig. 6-2. For example, if an argument could be
presented that k) has a component perpendicular to this plane, then the same argument
could be used to show that it has an equal but opposite component. Hence no such
component exists.

For an explicit algebraic proof, let the origin lie on the interface and consider points on
the interface specified by r = (x,y,0). The superposition of the three waves must
satisfy the boundary conditions at all points on the interface at all times; consequently
the phases of the complex exponentials must be equal, leading to a generalization of
Eq. (6.18),

ko'r-owt = k;j*'r-wt = ka°'r - ot 1)
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To show that k; lies in the plane of incidence, which is defined by kg and the interface
normal n, we must show that

ki+-(kgXn) = 0 (2)
Use the BAC-CAB vector identity [Eq. (A.19)],

nXmXr) = (n*r)n - (m*mn)r = -r

ko*r = —-kp*nX(nXr) = —(kgXn)*(nXr)
With a similar relation for k; * r, the first equality in (1) can be written
(koXn-k;Xn)-(nxXxr) =0

Now in general the factcr (nXr) is not zero, nor is it perpendicular to the first factor;
therefore the first factor must vanish. Taking the scalar product with ko,

ko*(koXn-k;xXxn) =0

and permuting the factors by Eq. (A.18), we obtain (2). The analogous argument
holds for k.

6-6. The ray from Point P at (x;,y1,2)) crosses the interface at (x,y,0) and
proceeds to Point Q at (x2,y2,22). The optical length is

L = ny [@-x)2+ (-yn? + 212]"2 + na [(x=x2)2 + (y-y2)? + 2,2]'72
)
Fermat's principle states

8L = %%aﬂ‘%ay =0

Because dx and 8y are orthogonal, each of the partial derivatives must vanish
separately:

gf—; = n (%LJ- ns (’%ZJ = 0 V)
gm0 o
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where r; and r; are the Pythagorean quantities in (1). There is no loss of generality
(and the interpretation is clearer) if we orient the x and y axes, and place the origin, so
that both y; and y; are zero. Then it is easy to see:

(a) Equation (3) requires y = 0. That is, the
rays must lie in a plane.

(b) The geometrical ratios in (2) can be
written as sines (see figure) to yield Snell's
law,

K--—r

P

ny sinf; = nj sin@;

We have shown that if the crossing point (x,0,0), determined from Egs. (2)—(3), is
displaced slightly to (x+&x, 8y, 0), then L does not change to first order. The only
relevant extremum in this example is of course a minimumn.

6-7. In matrix form, Eqgs. (6.24-25) are

)" ()

By Cramer's rule and Snell's law [Eq. (6.20)],

1 -1
[cosﬁo g—fcosﬂz ]

_ cos8y — (na/ny)coséy
E = cos8y + (na/ny)cosBy E}

_ sinéycosy — sinfpcos 6y E§ = sin(6; — 6q) E§
~ sin@cos8y + sinBycosh, = sin(@2+ Op)

B 2 cosfp E§ = 2 5iné, cosfy E§

= cos8y + (na/ny)cosBy sin(82 + 6y)

) (7

Similarly, Egs. (6.30-31) are
cosfy cosby
-1 E%
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from which, using standard trigonometric identities,

_ (na/ny)cos@y — cosby
B = (na/ny)cos@y + cos, E§

_ sin26p - sin26; E§ =

tan(6p — 67) 3
~ sin26g + sin26;

tan(Bo + 67) ©

B 2 cosBy EE -

= (na/ny)cosBy + cosé,

2 sin@; cosfy E§
sin(6; + 6p) cos(62 - 6p)

6-8. As in Prob. 6-2, we make the substitution 7 — 1/7] in Egs. (6.15-16). But
Snell's law, Eq. (6.20), is not affected. With the notation a = 712/7; and
B = cosby/cosBy, Egs. (6.26-27) become

- €06 — (11/1)c0s6; E§ = a-p EJ
1= cosBp + (M/n2)cosy a+fp

_ 2 cosfy _ 2
B = cosBg + (1M11/12)cos8, E§ = a+p E}

Similarly, Egs. (6.32-33) become

B = {li/f2)costy—cosé gy _ 1 - ap E§

~ (m/m2)cosBp + cosb, 1+ap
e 2 coséy _ _2a
B (M1/n2)cos 8o + cosb, E§ = % apEg

Note that & is determined by the ratio of the impedances (‘\fﬁ:} of the two media,
while B involves the ratio of the refractive indices (‘JE), in addition to the angle of
incidence. Matching impedances (771 = 7)2) gives no reflection at normal incidence,
but not in general at oblique incidence.

The power transmission coefficient T is computed from (S;)m/{S¢)n [see
Eq. (6.36)], where the time-average Poynting vector is (S) = (c/8m)ExH*
— (c/8m)(Eg%/n)ex [Eq. (5.51)], and where the dot product gives e;*n = cosf.
Thus to write T in terms of the ratio of E-field amplitudes requires the coefficient

(/) cosé, _ B
(1/m) cos@y =~ «




6-9. From Eq. (6.32), the Brewster
condition is @y + 6, = w/2. At the first
surface, the angles of incidence and
(suppressed) reflection are 6y, and the
angle of refraction is 8;. At the second
surface of a plane slab, the roles of 6 and
6, are reversed, but the Brewster condition
remains satisfied.

6-10. Fora ray passing from a medium with index #; into a medium with index
ny, the condition for total reflection is [Eq. (6.41)]

n; sin@; > nj = "f]- < sinf,
The Brewster condition for total transmission is [Eq. (6.34)]
ny sin8; = ny sin(%—el) = nj cosf = = = tan@,
If these conditions were to occur at the same time, we would need

tanf; < sin@

But, since 6 is a first-quadrant angle, this inequality (which amounts to cosé; > 1) is
never true.

6-11. Because the reflection coefficients are reversible, the required diagram is
merely a distortion of the abscissa scale of Fig. 6-5, using Snell's law to transform 6
to 8. The diagram in the next column is reproduced from (E£85, p.276). For an
index ratio of 1.5 (~glass/air), the critical angle is 42° (on the glass side), and
Brewster's angle is 34° on the glass side or 56° on the air side.

6-12. The k, in Eq. (6.54) should be starred; Eq. (6.55) is missing a factor of Q.]
Implicit in Eq. (6.46) is the complex conjugate of the vector propagation constant,

k" = k; [-sin6,, 0, (c0s6)"] = k, (-W, 0, -iQ)

where W and Q are defined in Egs. (6.43) and (6.47); W and Q are real (and
positive) under the conditions of total reflection, and W2 — Q% = 1. Similarly,

E, = (QE), E, &% WE)

where § is the phase of the perpendicular component relative to the parallel
component of E,. Now (tediously!) expand (S,) as given in Eq. (6.54), to obtain
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E 1 plane of incidence E |l plane of incidence
1 F 1 h_'____T_-___,_._—
L T L
incident ¥
from air side i i g
L . i
1
5
L
[
incident i
from glass side
-
6-12, cont.

Re (S,), ~ -W(E,2+E,)
Re (S;), ~ 2QWE E, sind

This energy flow parallel to the interface is of significance for finite geometry, as
mentioned at the end of Sec. 6.3.

6-13. The sign convention of the formulas in the text is defined in Fig. 6-1: an
amplitude reflection coefficient of +1 actually signifies a phase reversal of m in the
reflected electric wave. For a conducting medium, the notation is [Eq. (6.68)]

k=4 =n(+ix)

gle
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Thus the amplitude reflection coefficient, Eq. (6.56), is

(n—=1) + inx
(n+1)+inx

E} A+l
_ (n2=1+ n2x?) + i(2nK)
(n +1)2 - (nx)?

The phase angle ¢ is given by

2nx
ang = 231 + nZn2
Now, for a good conductor [Eq.(6.57)], x > 1 and n —» c/@d >> 1.
Consequently,
2nk K

w = (+)0

tang =
For the sign convention of Fig. 6-1, ¢ — 0 —that is, the incident and reflected
E-fields are equal and opposite to produce a standing-wave node at the surface of the
conductor.

6-14. For the cases of Table 5.1, § << & = ¢/2nv, and the approximation of
Eqgs. (6.62-63) is good. With n; =1 and o(Cu) = 5.2x 10!7 s-1, we calculate
T=2\vo

Case v (Hz) % (m) é (mm) T=1-R
1 103 48000 2.1 8.810°8
2 104 4800 0.66 2.8 10-7
3 105 480 0.21 8.8 10-7
4 106 48 0.066 2.8 10-6

6-15. From Eqgs. (5.82-84), (5.101), (6.68), and (6.73a), for a good conductor,
x— 1, n > %/6>>1, and y— 1/2n. Therefore, from Eq. (6.72),

cos28; = 1 = P2(1 - x2)sin28y + i 2xy2sin26p
- l+ilz-(§]zsin290 = 1
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Accordingly, the parameters defined in Eq. (6.73b) are ot — 1, ¢ — 0, and
Eq. (6.78) has the limiting value

1/2
N(8p) — l:sin290+(%]2:| = ‘% >> 1

From Eq. (6.80),

sinf; — sinfy << 1
.7/}

which implies that the planes of constant phase are nearly parallel to the interface even
when 6y approaches /2.

Under the same conditions, the coefficient in Eq. (6.75) is
2,a (xcos¢ + sing) —
[

That is, the attenuation distance is that for normal incidence, essentially independent of
the actual angle of incidence.
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7-1. (a) The electric field of a long straight wire, carrying (free) charge per-unit-
length p,and immersed in a medium of dielectric constant &, can be found easily from
Gauss' law for D, Eq. (1.82), as E(r) = D(r)/e = 2p#er e, (cylindrical
coordinates—see Prob. 1-5). To find the difference of potential between parallel wires
with equal and opposite charge, it suffices to integrate Eq. (1.13) along a radial line
common to the two wires. Let this be the x axis, with the origin at the center of the
negative wire and the center of the positive wire at x = +d. The potential difference is
then

A® = ®(d) - ®(0) = -J‘H[Ag%'l—%"—'fll)dx

- 4en(te) g2, 4oen(4)
£ E a

a d>>a

[Long straight wires do not allow the convention of taking the zero of potential at
"infinity" because of the conflict between axial and radial infinities. Thus, Eq. (1.21)
is not helpful. Note also that the influence of one wire's charge on the other spoils the
azimuthal symmetry assumed in deriving the field of one wire; but the limitd >>a
allows us to neglect this correction (otherwise, see Prob. 2-7).] The capacitance per-
unit-length is defined as the ratio of the charge per-unit-length to the potential
difference,
£
Co= % = Th@m

The inductance per-unit-length, with g =1, was found in the Solution for
Prob. 4-1(b), using a simple application of Ampere's law, Eq. (1.37). In the
presence of a magnetic material, the appropriate form of Ampere's law is Eq. (1.93) in

terms of the H-field produced by free currents. But the Faraday induction, Eq. (4.9),
depends upon the B-flux, where B = yH. Thus the inductance is multiplied by p,

L, = i‘cg ln[%)

Therefore we have:
V = 1 e W e
VLAC, eu
. 4.ln . (4 4 d
Z0dpar.wire = \/T:f; = E\/% l"(TJ =en 'ﬂ[“a—)
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where n is the refractive index of the medium, and 7} is its wave impedance. The speed
V =c/n is of course the speed of plane waves in an unbounded medium with these

properties.

(b) For the coaxial geometry, the capacitance per-unit-length for £= 1 was found in
the Solution for Prob. 1-7. Now we have

E
Ct = T

and Prob. 4-1(a), modified for p # 1, gives

Ly %-;-‘ln(%]

Thus,
o e el &
VLAC, el L

@ = VE = 2En(2) = Znu(2)

7-2. (a) Dimensionally, capacitance is [C] = [Q)/({E]-[length]), where the
electric field E derives from Coulomb's law. In SI units, Coulomb's law contains the
coefficient 1/4ngy (= 9 x 102 m/F), in place of the unity coefficient of Gaussian
units.” Thus,
Csr= _mz’(fwi) (SI)

where the permittivity £ is now understood to include the constant . Similarly,
inductance is [L] = [emf])/[current]. In Faraday's law, [emf] = [@,]/[time], the
coefficient 1/c in Gaussian units is replaced by unity in SI. The magnetic flux,
[D,] = [B)-[area] derives from the Biot-Savart law, in which the Gaussian coefficient
1/c is replaced by the SI coefficient yg/4n (= 10-7 H/m). Thus we multiply by
(c2up/4T) to obtain

L= {‘Eln(—z-) (SI)

where p is now understood to include the pp factor. Thus INLAC, = li'\la_y =c/n
as before (with n = v EW/Epltp in SI notation). And the characteristic impedance
becomes
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g 7 1 [u ., (b 1 b
@eorx = V& = ﬁ'\/% ln(T) - ﬁnln(——‘;—J (S1)
In free space, the SI wave impedance is 1 = 7p = \Iﬁofsu = 377 ohms.

(b) We can now solve for the braid diameter of RG-358 coax,

2b = 2a cxp[—z:;—?l‘\/% = (0.085cm) exp['z-g-%ggl JTB‘] = 0.30cm

(c) The wave speed relative to free space is V/c = 1/n = 1 &,. For the
polyethylene dielectric, we have V/c = 11/2.3 = 66%.

7-3. (a) The notation of the outbound and reflected waves, of voltage and
current, is defined in Eqs. (7.12-13). Equations (7.15) allow the voltage amplitudes,
V4, V_, to be expressed in terms of the current amplitudes, I,,I_. Therefore Eq. (7.14)
can be written as

Zy ( Ietike _ ]_e-itt) = Z ( Ie+iké 4 ;_e-m)
Similarly for Eq. (7.16),
Zo(Uy-1) = Zg (I, + 1)
Both equations can now be solved for the ratio of current amplitudes,

L _ Zoeti—Ze+it  Zo-7Z, ;
I, = Zoe ™+ Ze® = Zo+ Z, M

Cross-multiplying and rearranging,

Zy ( zoeﬂ'k!_ Zne-‘“— zleﬂ‘k!_ Z;e—'m )
= Z; (_ Zoetikl — Zoe-iké 4 Zie+ik _ Z Ie—:'u)

Zo (i Zo sinks—-Z  cosk?) = Zg (- Zo coskl+ i Z; sink?)

which rearranges once again to Eq. (7.17). For Eq. (7.18), using the first form of
1,

L Vet I_e-ike [Zoe“""— zleuu]e-iu Z- 2

SV,erikl = [ etk = T|Zoe#l 4 Zie-ikE | e+l = Z; ¥+ Z
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(b) For Z; = 0, Eq. (7.17) reduces to Z, = —i Zg tankf. For Z; — oo, it
becomes Z; = +i Zoftanké. Since Zg is pure-real (for lossless lines), these input
impedances are pure-imaginary, meaning that the current and voltage are 90° out-of-
phase. Our sign convention in the complex exponential for time, e-i*, is the reverse of
the electrical engineers' usual convention, e*/@. Therefore, our positive-imaginary
impedance is a capacitive reactance, and negative-imaginary is inductive.

(c) For lines whose length is much less than a wavelength, we have k£ << 1, and the
tangent can be replaced by its argument. Thus, for the short-circuited line,

Z, » -iktZy =-i (oVLLy) z'\/ g:{ = —ioLy

where we have used k = /e = @LA,. This is just the reactance (more familiarly,
+jwL) of a length £ of a "lumped" inductor the inductance of which is L, per unit

length.

Similarly, for the open-circuited line,

.Z_o_= . '\*L{g _ |
Z;, > -Hkl +|( cht)f +l_—&)C£’

This is the reactance (more familiarly, —j/@C) of a length £ of a "lumped" capacitor the
capacitance of which is C, per unit length. The results agree with the elementary notion
that a loop of wire is inductive, while a pair of insulated conductors is capacitive.

7-4. The problem is to use Eq. (7.17) to find a length £ and a characteristic
impedance Zg such that the physical load resistor, Z; — R), appears to the generator as
the desired matched load, Zg — Rjn. All quantities are now real except for the
explicit i in the formula. To provide a real Z,, the numerator and denominator of the
fraction must have the same phase. In general (independent of k#), this would require
Zy/Z; = Z)JZy, which gives Z; = Z; and does not solve the problem. The same
unacceptable result occurs for special values of £ such that tank/=0. However, for
values of £ such that tankZ — (+)oo, then Z, = Zo?/Z). Accordingly, we choose:

2 S
7 and Zo = VRinR:

k£= ﬁ !:

i1
2
Higher odd multiples of A/4 would work also, but would be more frequency-sensitive.
Note that this is the transmission-line analog of the suppression of optical reflection’
discussed in Prob. 6-3.




7-5. (a) If we assume that the inner conductor carries a charge per-unit-length pg,
an elementary Gauss'-law argument (see Prob. 1-5), gives the electric field, from
which we can compute the difference of potential A® between the coaxial conductors:
b
2p¢ = 20¢,,(b
J“. P dr|- - lna

E(r)=3£{-e, = Vv, = lA®l =

Therefore, we can write the field as

Vi 1
E(r) = ln_(hfoa_) i

(b) Ampere's law gives the magnetic field as (see Prob. 1-19)

B() = 40 -eo

(c) The spatial dependence of both fields is the function y(r,z) = eik%/r, in cylindrical

coordinates. It is difficult to compute the Laplacian directly because the non-Cartesian
unit vectors e, and eg do not commute through V2. Instead we use Eq. (A.40),

V2 = graddiv - curlcurl

with the operators expressed in the cylind:iqal-coordinate basis, Eqs. (A.44)—(A.46).
The divergence of B is trivially zero since the only vector component is eg but there is
no functional dependence on 8. The divergence of E also vanishes because the 1/r
dependence cancels out before taking the r derivative. The curls are:

PR
cur!(e,gf;ﬁ) = % 0 % = eg ik e%ff
c:,j 0 0
= & uE
curl [eg‘g] = }% 0 _i_ S gikz
2ok

The second curl simply interchanges the vector components once again:

ik ik
curl curl [e,. 9—:_-—‘) = - (ik)? (e, %]
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curl curl (eg ??) = - (ik)? (eg '%h)

Therefore,

V2E = -curlcurlE = - k2E

V2B = —curlcurlB = - k2B
Meanwhile, the second time derivative /3¢ of both fields is elementary, amounting to
multiplication by (-iw)2=-w2. Thus the wave equations, Egs. (5.5-6), are
satisfied by these wavefunctions with k and @ linked by the standard dispersion
relation, Eq. (5.12),

k2 =%w2

(d) The time-average Poynting vector for these fields is

(S(M) = E (‘;—*)

€ (Yo \(20)L e ses) = Voo L
8n (]n(b/a)J [c a(erxes) = Zmnam 28
The total power transmitted in the space between the two conductors is

b
P = J. (S(r)) 2rrdr = lz'VOID = Vimslrms
a

which of course is the result expected from elementary circuit theory.

7-6. L N
'\"\ \ \\ onsw':l@cf’wn’fs

2toice-vreflected
wi¥/%ie wn vAwn wn o e U N

once-veflected "3

As in Fig. 7-4, it is useful to represent a wave train by a ray (sometimes called "wave-
normal” because the ray is perpendicular to the wavefronts). Let the "original" ray
strike the upper wall at Point A, at the angle 6 with respect to the wall's normal. The

Chapter 7



84

ray is reflected at the same angle and strikes the lower wall at Point B, where it is again
reflected (parallel to the original ray). We want the phase of the twice-reflected ray to
match that of the original ray carried forward to Point C. If the separation between the
walls is b, we have:

b
@B) = cosfBg

A

%ﬁ% = cos[2(§- 60)] = - cos26p = sin26y - cos26

To match the phases, the excess distance must be an integral multiple of the
wavelength,

= (AB) - (AC) = [1 - (sin260 - cos26p)] = 2b cos6p

b
cosfy
which reduces to Eq. (7.25) with k = 2n/A. Depending on the polarization, the wave
undergoes a phase shift of either 0 or & at each reflection, or 0 or 2x after the double
reflection. This amounts to an offset of n by unity. In either case, n =1 is the
smallest integer (largest 6) to give constructive double (hence, multiple) reflections.

7-7. The decomposition of total fields into longitudinal and transverse components
is stated in Eq. (7.41). Because these components are orthogonal,

E‘B = E,B,+E,-B;
For either TE or TM modes, E B, =0. For TE modes, from Egs. (7.60) and (A.18),

k k
Ew'Buo = 7Ewn-(e:X Ex) = 7re;(EoX Eyp) = 0

A similar result follows from Eq. (7.61) for TM modes. Thus, E < B vanishes in
general.

7-8. (a) The wavefunction has the form given in Eq. (7.35), e®s=®), Therefore,
the phase velocity is upy = @k, VA, = cAp/Ag = cko/ky. By Eq. (7.30) or (7.38),
kg? = ko? — k.2. And for the rectangular TE;o mode, from Egs. (7.73-74),
k. =w/a. Therefore,

— Cko = £
Vko? - (nla)? V1 - (Ao/2a)2

uph
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(b) Substituting the fields of Eqs. (7.75) and using the time-average product theorem
of Eq. (5.46), the energy density is [Eq. (4.70)):

(E) = 7= (B-E* + B-B*)

+ st o ([ (] () + o))

Integrating over the cross section,
energyper _ | ¢ I”
(um‘t lcngth) = Jl’,‘= é ’_,n(z)l 0 dx dy

b poy |(ka} , (kea
32n (B ) [[ I 1
(Time-averaging automatically averages the waves spatially in the z direction, so this is

equivalently the space-average energy per-unit-length.) Using Egs. (7.31) and (7.74)
to evaluate kg = 2nt/A;, we find

(e o r - @ LGPl - ()

—that is, the electric and magnetic contributions are equal. Rewriting in terms of
EY = (koa/m)BO,

2
161: Tor 2P (Eo )
Dividing this into the power from Eq. (7.79), we have
___power 1
energyﬂenzih = ¢

which is the group velocity, ug, = ¢ sin6y. Thus, in agreement with Eqg. (7.33),
Ag &a] 2
Upp Ugr = |C c = ¢
e = (0 3) (%

7-9. (a) From Eq. (7.73), the cutoff frequencies for the mn modes in rectangular
waveguide are

(energy per
unit length

2 2
, c m: n
Lmn  _ = LA
2n Vmn 2 2" 2



where, in the present example, a = 2.286 cm and b = 1.016 cm. For TE modes, at
least one of the mode integers must be greater than zero (for TM modes, both mode
integers must be greater than zero). Thus the lowest mode has m =1, n=0, and can
only be TE. That is, the so-called dominant mode is TE,q, and it propagates at
frequencies above

o = (2.998 x 1019¢cm/s)
10 = 2 (2.286cm)

= 6.56 GHz

Since a is more than twice b in this case, the second-lowest mode is TEzg, which

propagates above
vao = 2vyo = 13.12 GHz

[For the TEg; mode, vo; = ¢/2(1.1016) = 14.75 GHz. For both TE;; and TMy,
Vi1 = (c/2)[1/(2.286)2 + 1/(1.016)2]'2 = 16.15 GHz, etc., etc.] Thus, nominally,
the single-mode bandwidth is the factor-of-two ("octave") from 6.56 to 13.12 GHz.
Practical application, however, is usually limited to the band 8.2 to 12.4 GHz because
the imperfect conductivity of the copper walls causes significant loss at the low end
[and limited power-handling ability—see Part (b)], and excitation of the almost-
propagating higher modes is troublesome at the high end. Note that the single-mode
bandwidth is reduced when a < 2b; thus most commercial waveguides are rectangular
rather than square.

(b) Equation (7.79) relates the transmitted power P to the peak electric field Eg. In SI
units,

Pio = 1- (&f Ea

where 1g = 377Q is the SI impedance of free space. At the low end of the single-
mode band, where 19 — 2a, the square-rooted quantity, and hence the power-
transmitting capacity, go to zero. At the nominal high end of the single-mode band, we
have

V3 (30,000 V/cm)?

Ppax(Ao=a) = 2 "4 (3719) (2.286¢cm)(1.016cm) = 1.2 megawatts

Not only does the power rating change significantly with frequency within the single-
mode band, but also it is reduced by the likelihood that reflections will set up a standing

wave. If the constructive interference (antinode) is limited to the maximum electric
field, then the one-way power is reduced by up to a factor of four.
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7-10. (a) In Egs. (7.75), first make the substitution i(koa/m)B® — Eo. That is,
the coefficient of Ey is defined to be Eg. The coefficient of B, then becomes —inEy/koa
= —i(Ao/Ac)Eo, using A, = 2a from Eq. (7.74). And the coefficient of B, becomes
(~ikgalm)(~inEg/koa) = — (Ao/Ag)Eo. Finally, taking the real part of exp[i(kzz— @r)]
gives cos(kyz— @), while the real part of —i expli(kgz— )] gives +sin(kgz — w1).
The results are then as stated.

(b) The wall currents are related to the tangential magnetic field at the wall by
Eq. (1.95), with B — 0 inside the "perfectly conducting” walls. Thus, at the broad
"top" and "bottom" walls (parallel to the x-z plane), the components of surface current
are:

K: = :t%i B,(y=0,b) = iﬁ%EDCOS(%“x'JSiH(kSZ—mI)
K, = F 7= B:(y=0,b) = i%‘%ﬂ-E“ sin(%x-]cos(kgz—mt)

In the middle of a broad wall (x = a/2), K, goes to zero, while K is a maximum.
Since the wall current is purely longitudinal here, a narrow slot will cause neither
reflection within the guide nor radiation outside. [The + comes from the reversal of the
normal n in Eq. (1.95) for the opposite walls at y =0 and b —a detail that doesn't
concern us here.]

At the "side" walls (parallel to the y-z plane),

A .
Ky = iﬁ Bz(1=0,ﬂ) = % ﬁED sm(ksz-ﬂll')

K: = (P = By(x=0,a) = 0

The current in the side walls is purely transverse. Accordingly, one can cut a thin
transverse slot (i.e., in the y dimension) at any point along the waveguide without
perturbing the wave inside the guide, or allowing radiation outside. [For the side walls
at x=0 and a, the reversal of n and the value of cos(mx/a) — *1 cancel, so the
currents are in the same sense in both walls.]

7-11. The force-per-area is given by an element of the stress tensor, Eq. (4.110)
or (4.111), evaluated by the field formulas of Prob. 7-10. The directional sense of the
force is given most easily by the "furry rubber band" analogy.

(a) For the "top" and "bottom" walls at y = 0 and b, the electric time-averaged force-
per-area is
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G = i (EEraaa, = Tk smz(m)

The electric force-per-length of waveguide is then

dF, a dF,
—_— -
dt % dA dA 4x = 321:E° s

where we have used the shortcut that the average value over an integral number of half-
wavelengths is (sin2u} = {cos2u) = % Since the E-field is normal at these walls, the
rubber-band analogy says that the walls are pulled inward by the field.

(b) Similarly, the magnetic force-per-area is

dF, 1
Lim = o By 2O + Bixy20)D),e0 s

s o) (2]

And the force-per-length is

J' a‘Fm

L g2 Ao o depa
321 Eo [(%)2* [A, ]“ = mpkoa

with the final simplification coming from Eq. (7.29). Since the B-field at'the walls is
tangential, the force is outward.

(c) The aggregate electric and magnetic forces on the broad walls are equal and
opposite, so the net force is zero. Note, however, that the attractive electric and
repulsive magnetic forces-per-area do not cancel point-by-point.

(d) For the side walls at x =0 and a, the E-field goes to zero, and there is only an
outward magnetic force:

dF,,

I = G (Ber2Phns = 16 &Q B o
dF, _ (b dF, _ 1 (A 2
de = ) dA aA P = 16::(,1,,]250 b
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(e) Section 7.2 showed that the boundary conditions at confining conducting planes
are met by the superposition of a pair of plane waves, each of which is traveling
diagonally and reflecting back-and-forth between the two walls. In fact, the example
treated in that section is precisely the TE;o mode in rectangular waveguide, with the
plane waves bouncing off what we are calling the "side" walls of the waveguide.
(Because the dimension b does not enter the field formulas nor the cutoff-wavelength
formula, this mode is compatible with b — ¢0.) For the TE;¢ mode, the waves do not
reflect off the "top" and "bottom" walls. Thus it is physically reasonable that there
should be an outward force on the side walls, but no net force on the top and bottom.

This argument can be quantified by application of Prob. 5-9(a), which showed that the
radiation pressure normal to a reflecting surface from a plane wave incident at angle is
given by p = (2(S)/c)cos26, with the factor of 2 coming from the superposition of the
incident and reflected waves at each point of the surface. If we regard the TE;o
waveguide case as the superposition of two plane waves, each with amplitude Eo/2 and
incident at the angle 6 (Fig. 7-4), the radiation pressure on a reflecting wall is then

p= %qg%ﬁgﬁcos%o = 127[1 - (%T]Eoz = liﬁ [%)ZEoz

where we have used Eqgs. (7.28-29). The radiation pressure (2) agrees with the
Maxwell stress (1).

7-12. As shown in Egs. (7.52-55) and Sec. 7.4, TM waves are determined by
the function Ef,_’(x,y). The solution that satisfies the boundary condition, Eq. (7.68), is

E)(x,y) = E° sm( :x)sin(%‘z)

Equations (7.52-55) then give:

oE? .k nx) .
B = k%kx—a}‘- = rﬁma—Eﬂcos(m ]sxn(ﬁbﬂ]

C

i oE? .k, nm . (mnx nmy
By = gaks 3y = *E;%TE“S‘“[T)C"S[:;J
o _ . i, 9B _ _kogo
By = ~gakogy = — ,E
0 - A, 9B _ kogo
By = gzkoox = & E



The cutoff frequency follows from Eq. (7.64) by the same argument leading to
Eq. (7.73), with the same result,

2 b
m n
@Dmn = cke = TcC F-I' %)

The integral indices m,n must both be greater than zero, or Eg vanishes; thus the
lowest mode is TM;. The ratio of cutoff frequencies is

1 1 1/2
@TMy) _ @+ %) i} \/ 1 +(a_)2
1 b

@(TE10) 1
a

The lowest TE mode assumed a > b; thus the lowest TM-mode cutoff is at least a
factor of Y2 higher. More typically, a/b = 2, and the ratio is about V5.

7-13. For cylindrical coordinates appropriate for a circular cross section, using
Eq. (A.47), Eq. (7.63) becomes

[% + l;ga,%%q- kaJBQ(r,s) =0

This Helmholtz equation is similar to Laplace's equation in cylindrical coordinates.
From Sec. 3.5 we have the solutions, regular at the origin and periodic in 6,

BYr,8) = BY Ju(kcr) cosm® ¢))

The boundary condition, Eq. (7.67), is
oB? oB?
nls = or

which becomes, for a waveguide of radius a,

= 0
s

[$mn] _, = o

The nth nonzero root of dJ,(u)/du can be designated up,; thatis, k.a = upy.
Consequently the cutoff parameters are [compare Eq. (7.74)]:

u 2na c
k. = _%n Ac = Uy @, = 2wV, = 2 Ymn
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[The boundary condition for TM modes in circular waveguide requires k.a = Vpp
where v, is the nth root of J,,(v) =0.] From tables such as (Ab65, pp. 409, 411),
we find that the lowest root is

uyy = 1.841 = @ = 1.341‘?—J

To find the other field components, we must rewrite Egs. (7.46-51) in cylindrical
geometry, using Eq. (A.46):

»

lrae_,kgp:g:ikus?, ()
ik B - 92 kg By ©
RO - L5 = ks ®
lr%%g--ik383=—fk05?- ®)
ikg B - 22 o ik Eg ©
P38 -5 5g = ikl @

From (3) and (5), using k.2 = ko? - k2 from Eq. (7.38), we obtain:

B = (ke Sk b 5F)

By = é(ko%@:hkgl;%?—]
And from (2) and (6),

B = (et 50 )

o= (e )
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Now, for the TEy; mode, E2 = 0, and BY is given by (1). Thus:

-0 B0 J\(ker) sin®

E?- kcz r

- ‘T’?— B? Ji(kcr) cos@

= tke po jitk.r) cos®
k. BZ

ik .
B = -;—czﬂ;Bng(kcr) sin@

where J{(u) = dJ\(u)/du = Jo — Jy/r. The J; function, up to its first maximum, is
qualitatively similar to the sine function between zero and /2, while Ji is similar to the
cosine. Since E, varies as Jy(k.r)/r, it is a (finite) maximum at r =0, and then
decreases somewhat as r — a. Meanwhile, Eg is also a maximum at r = 0, but goes
fully to zero as r — a. Representative E-field lines are shown in the sketch. As in the
rectangular TE;o mode (Fig. 7-6), the field magnitude is greatest at the central plane,
tapering to zero at the sides. The field-lines are no longer straight, but bend to meet the
wall perpendicularly. The magnetic field-lines are in loops similar to those of the

rectangular mode (see Fig. 7-6 again).

N
_—

E-field of TE;;

7-14. A resonant cavity requires constructive interference of waves reflected back
and forth between the ends. Thus the round-trip 2L must be an integral number £ of

guide wavelengths,

2nl
2=t28 =g

From Eq. (7.30) or (7.38), the waveguide dispersion relation is

ko? = ke + kg?
[()- 174
(=g - won? + (£ m
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In rectangular waveguide, the cutoff wavenumber for the mnth mode (either TE or TM)
is given by Eq. (7.72),

2 m2 n?
(k)2 = 2 [g + -55] @)
In circular waveguide, from the Solution for Prob. 7-13, the cutoff wavenumber is

2 U,
(kdua” = (—;ﬂ]’ €)

where u,,, is the nth root of dJ,,(u)/du = 0 for TE modes, or of J,,(u) =0 for TM
modes. For the lowest mode (TEy;), t4m, —> 1.841. Substitution of (2) or (3) in (1)
gives the required formula for the resonant frequencies.

7-15. (a) The cutoff frequencies are given by Eq. (7.73),

2 2
m n
Omp? = m2c2 (§+ _Ez)

Construct a graph plotting (mmc/a) on the

horizontal axis and (nnc/b) on the vertical axis. o eee enve
For each pair of integers m,n, place adotonthe wre %2 * ¢ * ¢ * *
graph representing a possible TE and TM mode . IPr el trew
(the dots on the axes are only TE modes, since | SR 2t
the TM boundary conditions require that both m e alieinl sl
and n be nonzero). The mode-dots form a w) 2 ARl Vil
rectangular grid on the graph, and the length of /2 R
the radius vector to a particular dot equals the vV:-°°°"y-
cutoff frequency @, of that pair of modes. Ry /o

The modes whose cutoff frequencies are less than @may lie inside the quarter-circle of
area T®max2/4. The cell-size of the grid of dots is (nc/a)x(nc/b). Therefore, if we
neglect the “statistical noise” introduced by the discreteness of the cells, we can estimate
the number of modes with @, < Wy as

- ROme24  _  _ab 2
N = 2-502ab = 2mc2 Pmax

(b) For the rectangular cavity, we generalize the argument to three dimensions using
the resonant-frequency formula of Prob. 7-14, which says that we plot (#tc/L) on the
third axis. Now the number of modes up to some frequency @is approximately



dna?

abL

8
— 3
? e YmeYe 323
(aIb L

and the density of modes (number of modes between @ and w+d®) is

dN _ abL
do ~ n2c3

N =

w2

This analysis is often used in statistical mechanics to estimate the number of states
available to a system up to some maximum energy, or analogous constraint.

(c) If each mode in the volume V = abL has the energy kT, then the electromagnetic
energy per-volume, per-frequency-interval dv = da¥2r, in the cavity is

dE _ (kT)2m)dN _ 8zkT ,
dv ~ (V) do - c3

The equivalent energy density, per-wavelength-interval dA = (c/V2)dv, is

dE _ 8n=kT
da ~ A4

[Historical note: Sir James Jeans’ contribution to the Rayleigh-Jeans formula for the
classical limit of blackbody radiation was to note that Lord Rayleigh forgot to divide by
8 in computing the volume of the octant of a sphere! The Rayleigh-Jeans spectrum
shows the famous "ultraviolet catastrophe"; this failure of classical physics led to
Planck's introduction of the quantization of electromagnetic radiation.]

7-16. When a is a vector of fixed direction and magnitude, it commutes with
derivative operators with respect to both space and time. Thus, if the scalar function
y(r.f) is a solution of the wave equation,

1 32
Vig-5%GE = 0

then so is the vector function (ay). The divergence of (ay) will not be zero, in
general. However, the curl is a linear operator that also commutes with V2 and #/of2.
It follows then that the vector function curl(ay) not only is a solution of the wave
equation, but also has vanishing divergence because of the identity (A.42). Such a
function is an acceptable electric or magnetic field obeying Egs. (5.1-6). This
argument can be extended to the field curl curl(ay), which represents a different

divergenceless wave field.
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For sinusoidal time dependence given by e-i®, the wave equation reduces to the
Helmholtz equation,

Z
Viy = -%y = -2y

Now consider a possible field Ej(r) = curl[ay(r)] (omitting the time factor e~ on
both sides for convenience). Another possible field is Ey(r) = curlE) =
curl curl[ay(r)]. By the double-curl expansion identity [Eq. (A.40)],

E, = grad div(ay) - V2(ay) = grad div(ay) + k2 (ay)

which in general is an independent function (i.e., not an algebraic multiple of E).
However, because the curl of a gradient vanishes [Eq. (A.41)], yet another curl
operation gives

E; = curlE; = curlcurlE; = 0+ k2E,

Similarly, E4 = k2E,, etc. Thus, while the single- and double-curl operations on
[ay(r)] give the independent fields E; and E;, higher-order multiple curls are
redundant in the sense that they simply reproduce E; or E; multiplied by the constant
scale-factor k2. (In this context, the scalar wavefunction yis sometimes called a Debye
potential.)

7-17. Equation (7.102) defines the parameter V in terms of the refractive
properties of the cladded fiber (n; and A), the fiber radius (@), and the operating
wavelength (Ag). For V — Viax = 2.405 for single-mode propagation, Eq. (7.105)
calculates the maximum fiber diameter as 2a = 4.69 pm. We now need to solve the
dispersion relation, Eq. (7.99), rewritten in the form:

x5 _ Y ve-x? k(i)
Jo(X) Ko(Vvxe)

That is, we have used Egs. (7.100-101) to cast each side as a function of X in the spirit
of Fig. 7-8. We can now use the approximations (7.103-104) in an iterative program
to find the root X that satisfies this equation:

REM Iterative program to find root of Eq. (7.99)
DEF J(X) ! = X*J1/J0
LET N1 = X + 0.82*%(X"2)*SIN(2*X) - 1.83*X"3 + 3.26*X"4
LET J = X * TAN(N1/(2 + 0.74*X"2 + 3.26*X"3))
END DEF
DEF K(Y) ! = Y*K1/KO0
LET N2 = 1 - 1.743*Y"2 + 6.56*Y"3 + 13.12*Y"4
LET K = N2/(LOG(1.135/Y) + 13.12*Y"3)
END DEF
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INPUT PROMPT "For V = ": V
DO
INPUT PROMPT "Try X = ": X
LET Y=SQR(V"2-X"2)
PRINT (J(X) - K(Y)), ¥
LOOP
END

Visual inspection of Fig. 7-8 suggests that the root is near X = 1.7. A few iterations
finds:

for V=2.405: X =1.653 Y =1.747 [J(X)-K(Y)=-0.0004]

These approximation formulas typically leave an error of ~0.01 in the X root. For
higher precision, one can use sophisticated software, such as Mathematica:

In:=
yvix_] := Sgrt[2.405"2 - x"2]
FindRoot [ x*BesselJ[l,x]/BesselJ[0,x] ==
y[x] *BesselK[1,y[x]]/BesselK[0,y[x]],
{x, {1.6, 1.8}} ]
Out=
{x -> 1.64657}

For the weakly guided LPq; mode, the electric field in the cladding is mainly that of
Eq. (7.88) with Jo — Kg and k. = y= Y/a. The Ky function is roughly the
decaying exponential e~ [see (Ab65), Fig. 9.7 and §9.7.2]. Thus a rough estimate
of the penetration of the guided wave into the cladding is given by 1/y= a/Y. In this
case, (4.69/2)/1.747 = 1.342 pm.

With the arbitrarily chosen lower-frequency-limit corresponding to twice the
wavelength at which the LP;; mode cuts in, Ag — 21p, and V — Vppa,/2 = 1.2024,
The approximation formulas give:

for V=1.2024: X =1.134 Y =0.400 [J(X)-K(Y) = 0.0006]

(Mathematica gives X = 1.13581.) Now, 1/y=a/Y = (4.69/2)/0.400 = 5.86 pum.

From Fig. 7-4 and Eq. (7.26), the angle made by the multiply reflected "ray" with
respect to the waveguide-fiber axis is the complement of 6. That s, it is given by the
inverse-sine of k/kg = (X/a)[(2nIAg) = AgX/2ra. Numerically,

. 2.6)(1.134
at Ag = 2.6 pm: sm_l[%(%lﬁ;_fz)l]

11.5°

8.4°

]

; 1.3)(1.65
at Ag = 1.3 pm: sm-l[%?@x.m)l]
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The curves in Fig. 7-9 were generated from Eq. (7.88), the corresponding Ko
version, and the linkage provided by Eq. (7.98), using numerical approximations for
the Jp and K functions:

DEF J0 (X) ! maximum error *0.00005
IF X<=3.47 THEN
LET J0=(1-0.208827*X72+0.00621*X"4)
/(1+40.04103*X~2+0.000967*X"4)
ELSE
LET A=X-PI/4-1/(8*X)+0.06/X"3
LET J0=SQR(2/(PI*X))*(1-1/(16*X~2)+0.08/X"4)*COS(A)
END IF
END DEF

DEF KO0 (X) ! maximum error %0.00012
IF X<=0.605 THEN
LET KO0=LOG(1.123/X)*(1+0.2367*X"2)+0.27*X"2
ELSE
LET KO0=SQR(PI/(2*X))*EXP(-X)
*(1+0.21432/X)/(1+0.32987/X)
END IF
END DEF
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8-1. The electric flux through a stationary spherical surface of radius R, centered
on the instantaneous present position of a fast charge, is

_ . _ = e(1 — B2) i
= éE nda = L Rz(l-ﬁﬂsinzﬂ)mznk sin@ d@

= 2me(l - B?) J du
p=Pcos@ B 2 [(l—ﬁzj +#2]3J2

- 2 (o) it |, = 4

) [0 + " |
We have used integral tables (such as Dwight §200.03) or the substitution
H2/(a2+u?) = V2. The dependence on f§ cancels out identically. Note that the field is
evaluated at the flux surface at one instant of time, i.e., simultaneously in the frame of
the stationary flux surface.

8-2. For B=u/c << 1, Eq. (8.64) reduces to

B o= [an (a-R)(BXR) axn]
= €|R3 c2R3 2R?

where KR = R — B*R — R. The first term is simply

X R
B, = e%" ¢))]

Now compare the magnitudes of the second and third terms,

By _ (affc?R) _ B
B3 (a/c?R) ~

Thus, when u << ¢, the third term dominates the second. Similarly, compare the
magnitude of the third term to the first,

By . (@R _ aR
B, (B/R?) Be?
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Therefore, the first term (1) dominates the third (and a fortiori the second) for small
accelerations such that a << uc/R. [In ignoring the trig functions hidden in the dot and
cross products, we have lost the exceptional case of locations where R happens to lie
along the line parallel to B: then By and B; vanish and only B3 remains. But even
then, for small a, B3 (anywhere) can be neglected compared to B, at locations that are
not close to this line.]

Now, the specifications of the moving charge are equivalent to [see Eq. (1.49)]
eu— eS 5%, 1ae @

Making the substitution of (2) into (1) gives the integrand of the basic Biot-Savart law,
Eq. (1.36). The unretarded integration over the elements d¢ in Eq. (1.36) requires
that the transit time, L/c, of electromagnetic effects across the linear dimension L of the
circuit be small compared to the period, 1/a, of time variations of the current /(f)—that
is, I(#) must be slowly varying such that @ << ¢/L. When retardation is significant,
Eq. (1.36) fails and Eq. (8.30) is needed. See also Prob. 4-11.

8-3. With the equivalences eu — (psdH u LI

— I d¢ [Eq. (1.49)], Eq. (8.79) becomes 1
J’Idzxn(l-ﬁz) a

cR3(1 - B2sin26)>? g

" dL L%

a
K= siny’ gt= 1';1112lﬁfd"“r
Thus,

I siny siny ady
wor B (l'ﬂz)_‘-‘_“ 2 ) G- psinio " (sinzw)

Sln
-y J - prsiney2 ¥

- (Ii_ﬂﬂz) [(1—52)(1 P2 + p2)1”? Ip o

Here, the substitution g = Psiny leads to the same integral as in Prob. 8-1. And
again the dependence on B cancels out identically.
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8-4. The nontrivial time derivatives are tabulated in Eqs. (8.56-61), with
ot,/ot = 1/K from Eq. (8.62). With n=R/R, Eq. (8.54) expands as follows:

E_ [ 1_6[4]
e = |[kRZ|Y c &
n 1 Jn 1 2 1 KR
= KRZ t cKR'&* ~ KR ?g - (-B) xRy "ot

B-n)’n + (1 - B+m)((B-mn - B)

S o pne -2

1
K(KR)2 { (1

=m [l - 2Bn + (Bn)2 + B-n - (B-n)2 + Bon - B2 + %)

c2

= (n-B)(1-8) + (n-B)Y5F) - 1 -Bm(7F)

With a little foresight, the latter two terms can be recognized as the BAC-CAB
expansion of R X ((n—B) X a)/c?, in agreement with Eq. (8.63). We'll believe that
the same kind of tedium would transform Eq. (8.55) to (8.64).

8-5. The Feynman formula contains a second-order time derivative while
suppressing the explicit velocity-dependent factors B =u/c and K =1 - Bn. The
strategy is to rework Feynman's derivatives into a form with the factor KR in the
denominator. Thus we make the formal expansion:

RJd(n) _ R 2(nm 1
FE(F)“ F"&(ﬁ'x'i]

Using Eq. (8.59),

1 @n 1

2o = ?%[%) = %(cKR((p“)“‘ﬂ))
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% 5 () + B ;(KR] ';%[g%) @

Now, since K = 1 — B-n, the third term of (1) cancels the first term of (2), and the
second term of (2) cancels part of the first term of (1). The second term of (1) can be
evaluated by Eq. (8.57). Thus the full Eq. (8.54a) becomes:

- e L3[R & -1 130R)
e S3 () L300

which is Eq. (8.54). Feynman's formula is often written with the notation of a total
time derivative, d/dt, which presumably is intended as a signal that the derivative is
with respect to the time ¢ observed at the (fixed) field point, rather than the retarded time
t, of the (moving) source charge. It is, nevertheless, a partial derivative in the sense
that it is independent of the spatial coordinates r at the field point [see, e.g.,
Eq. (8.56)].

8-6. For B << 1, the acceleration portion of Egs. (8.63—64) reduce to:

E, = E_-;-Enx(nxa)
B, = nxE, = zpnx (nx(nxa)

= ék-((n-(nxa))n—(n-n)(nxa)) —Ez—lﬁ(nxa)
The radiation Poynting vector is then

S = £E.xB, = -74-1—:'3%( (nx (nxa)) x (nxa))

= —In%zﬁz—((n-(nXa))(nXa)—((nxa)-(n)(a))n)

+“f3—m]nxa|2= &—-f;?mxalz

That is, only the component of the acceleration that is perpendicular to a particular
direction contributes to the radiation in that direction.




8-7. (a) The triangle OQP is geometrically similar to the diagram representing the
vector addition u; + at=uy. That is, the side QP has the magnitude (a7)At. The
perpendicular separation of the radius QS from PR is then a7 At sin8, where @ is the
angle between the acceleration a and the direction of radiation being considered.
Therefore the field-line kink between R and S has radial and transverse components in
the ratio

E _ cT _ c
E, = atAtsin® a At sinf

(b) We use Coulomb's law to evaluate E,, and substitute At — r/c, to obtain the
transverse or radiation electric field as

a rsinf :
E, = c—z}qi = %Slna

(c) Inferring the associated radiation magnetic field, B; = n X E;, we obtain the
Poynting vector,

c 2 .
S = zzE/xX B, = a%E,zn = Z%z-smzen

where n is the outward unit vector parallel to @S. The power through an element of
area dA is P = S dA, and this area subtends the solid angle df2 = dA/r2. Therefore,
the power per-solid-angle is

dpP 2q2

a _ 28 = 49 in2

aa =T s = 4m35m6

which is Eq. (8.88). The result holds in general (so long as u << ¢) because the field
amplitude formula is linear in ga, superposition holds, and an arbitrary acceleration can
be modeled simply as a succession of impulses. For further discussion, see the
references cited in the footnote following Eq. (8.89).

8-8. The angular dependence in Eq. (8.96) is

ar sin2@
an (1-PBcosB)’

The derivative with respect to 8 goes to zero when
(1-PBcos6)5 (2sinb cosf) = (sin26) [5(1 - BcosB)*(B sinb)]

3Bcos28 + 2cos@-58 = 0
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1+ V14158
cosOpax = 3B

(The other solution of the quadratic is spurious. For small B, the limit is c0s6max —
2= Omax = 3B.) Now for large B, approaching unity, let f=1-a, where is a
small quantity. Then,

=1+ (16 - 30a + 15a2)'"2

c08Opax = 3 (1 - @)
a1 e - ]
- 3(1 - a)

= (l—*}a+---)(l+a+---) = 1 -ja+

The cosine expansion for small angles is cos@— 1 — %92 + =+=. Thus,

1-—
elmnr.2 a lia = Omax = 'J _ZE

A similar first-order expansion in terms of o’ = 1 — 2 gives Bmuz = ia’z, and
hence Bmax = $V1—B2. Since (1 - f2) is larger than (1 - B), this latter is a poorer
approximation. Jackson (Ja75, Eq. 14.40) quotes the inferior form, probably because
it is more neatly expressed in terms of the relativistic parameter ¥.

8-9. The angular distribution is given by Eq. (8.96),

daP _ éa? sin2@ ] o)
dQ = 4ncd | (1 - BecosB)d

From Egq. (14.42), the relation between velocity and kinetic energy is

2 1

B L= 0+ Tmary

For T =100keV and m.c?2=511keV, we have §=0.548. The function in
square brackets in (1) is plotted below for this velocity (the plot is a figure of revolution
about 8=0). From Prob. 8-8, the radiation is a maximum at 8 = cos~10.819
=35.0°. Note that the angular dependence involves the velocity but not the
acceleration, while both parameters determine the magnitude of radiated power.
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8-10. The total power is

_ dP _ €2a? (*®  sin?0 =
P = I(dﬂ]dﬂ . . (l_ﬁcose)sznsmedﬂ

- e2q2 1 - p? d
p=cos8 2(.‘3 (1 _ﬁp)s K

From integral tables [e.g., Dwight, §90.5 and 92.5],

_ e2a2{ 1 [ 1 e 1 ]}”
- apa-Ppur * B [T 20-Pu? T 30-PuP ~ 30-Pu? -1

222 1
33 1-p)

This result for collinear acceleration can be compared with Eq. (8.107) for acceleration
transverse to the velocity.

8-11. (a) For constant deceleration in a time 7, w/c = = Bo(1 — /1), and the
acceleration is lal = ag = cfy/7. Using Eq. (8.97), the total energy radiated (per
electron) is then

_ _ 2e%2a¢? (Bo__1 g
= [ppyar = 252 e 5 4B

_ 2e2p, B
- gc‘ro[ql_ﬁz)z""S(l Bt 16 AE)]&

| e [ B3R, 3 (1480 o
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(We have used integral tables, such as Dwight §140.3.)

(b) By integrating Eq. (8.96) over time, we get the average angular distribution (i.e.,
the distribution pattern produced by the beam):

aw _ ar - 2B Po___ 1
aq = _[ (m)‘” = tnce®in0 j (1= Beosty °°

+ otz

dmes i0°0 4 cos6 (1-fcos6)

_ 2By | sin26 1 :| @
= 16mct | cos@ | (1-PocosB)* ~
(c) For T =100 keV, we have S =0.548 (Prob. 8-9). Thus,

cBo _ (3:101%m/s)(0.548) "

= 19
g - w - (1025)080cmis?) - 17X 10

The quantity in the square brackets of (1) has the value 6.43. Using
€2[Gaussian] = 1.44 x 10-7 eV-cm (Appendix C), the coefficient of (1) is

2By _  (1.44-10-7eV-cm)(0.548)

- -7
19ct = 12(3-100cm/s)(10-1%5) = 2-2% 1077 eV

Thus the total energy per electron is about 1.4 x 10-6 eV, an insignificant fraction of
the incident energy (most of the electron's energy goes into ionizing the target atoms).

The angular function in the curly brackets of (2) is plotted below for fy = 0.548. The
maximum is at @ =46°. The contribution of lower-velocity radiation causes the

angular distribution to be less sharply forward-peaked than that of Prob. 8-9.

B P et
T .? x " 4 = E
‘.. E 7‘ S
2 = =E==5
a7 i e




8-12. 1f we neglect the radiation energy loss, then u is related to r along the
trajectory by
2
%muoz = ]2-mu2 +Ze

r

As a perturbation, the energy lost to radiation is given by the nonrelativistic Larmor
formula, Eq. (8.89), as

But,
__ 1du_2z2
@ ="md " m
2Ze2

“ mr

Because of the reentrant path, we calculate the integral during the outbound segment
from ryin = 2Ze2/mug? to r — oo, and double the result:

2e2 (zﬁ]’ 2 J"' dr
AW = = [ = | = —_
33|\ m ug e "(1 ~ Eu:in}”z

Let x = 1/r, and dr = -dx/x2, to obtain the integral

X,
o~ dr max x2dx X512 2X32 max
J- P J (_—x_]l_”: [—2Imm;3[T— 3 +x”2)]:
Piatta

Xmax

o 16, 5 . 16 mug?
15 ~max 15 | 2Z¢2

(where X = 1 — Xx/xpax, as in Dwight §191.21). Thus,

_ 2e% (Ze2Y 2 16 (mug?Y _ 8mug> _ 16 Bo® ¢y,
AW = 3c3(m ug 15 (2Ze2 T 45Z3 T 45 Z (i”“‘ﬂ)

Since by hypothesis B = ugp/c << 1, the perturbation approach is justified.
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8-13. The geometry is defined in Fig. 8-7, and the radiation pattern is given by
Eq. (8.106). (a) For the orbital plane, the azimuthal angle ¢ is 0 or , and 6
measures the polar angle from u. Inspection of Eq. (8.106) shows that the
dependence on ¢ and @is such that we can suppress the double-valued ¢ and interpret
0 as an azimuthal angle in this plane (i.e., 0< @ < 2n). Figure 8-9 plots the
magnitude of dP/d2 as a function of @ with u (to the right) and a (up or down). The
pattern is symmetrical about the u axis, and the numerator simplifies to

(1 - BcosB)? - (1 — B2)sin2@
= (1-2Pcos6 + B2cos26) - (1 — B2)(1 - cos28)
= - 2BcosB + 2 + cos2@
= (cos@ - B)2
Thus in the orbital plane the angular dependence reduces to

dP’ o [(c0s6 - )2 )
(dﬂ sl (1 - Bcos®)’

The nulls occur when cos@= B, and for the examples of Fig. 8-9:

cos-1(0.7) = 45.57°
cos-1(0.9) = 25.84°

cos~1(0.1) = 84.26°
cos-1(0.3) = 72.54°
cos-1(0.5) = 60°

(b) The maximum value of (1) [and of the full Eq. (8.106)] occurs for 8 =0, for
which (dP/dQ)max = 1/(1-B)3. Let & be the value of 8 at which the intensity falls to
one-half of maximum, so that the beamwidth as defined is A6 = 2a. Expand the
cosine for small angles (cosa— 1 - %—az) to write the half-power condition as:

(1-%e2-8°
(1-B+5Ba2’  200-P)

Cross-multiplying and discarding terms beyond o2, we have
201 - B[ (1 - B2 - 21 - ByGed]| = (1 - B)° +5(1 - B*(}pe?)

(1-8)° = (1-p)*(2a2+ 3pod)

1-8

(A6)y.g plane = 20 = 2
u-a plane 2+5§ﬁ

- 2—}{3\11-,6 = 0943V1-p
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In the plane containing u and the normal to the orbit, we have @ =% or 3&. Again we
can suppress the double-value of @ and treat 8 as an azimuthal angle. Equation (8.106)
reduces to

(B)oen = T @
dQ ormal (1- ﬁcos&)’
In this case it is easy to write the half-power condition without approximation,

1
(1 - Beosa)®

2(1 - By’
1/3
doid = Tm2 ﬁgl-gg R ¢ L 1%;1 -B)

For small angles (such that cosa — 1 - %al), we have for the beamwidth normal to
the orbital plane

(A0)pormal = 22 = Z‘J 2(2'5 -E)U -B)

- V8@ -1nV1-8 = 14421 -8

For instance, for =0.9 (for which the small-angle limits are not very precise), we
have

(Ae)u-a plane = 17° (Ae)aormal = 28°
Thus as f— 1 the radiation pattern forms a "headlight beam" in the direction of u, but

the beam is somewhat narrower in the orbital plane than normal to it. 'The effect is
sketched in Fig. 8-8 (which is drawn for §=0.9).

8-14. From Eq. (8.106),

dP
P = J‘ (m)dﬂ
&2a? x L 1 (1-p)sin26cos2g in0do d
= m [ (l _ﬁcosa)3 = (l — ﬂCOSO)S ]Sll‘lﬂ P
=0 =0

Carrying out the straightforward @ integration, and substituting x = cos8, we have
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+1
_ e2a? 1 1-2) 1 - x2 ]
P=5a _[1 [(l-ﬁxﬁ'( 2 ](l-ﬁx)s e
_ea| 1 e\ 1 L,,LL]“
=3B\ 2 )|t E T2 T Ixe T axe 3
where X = 1 — Bx, and we have used tables such as Dwight §90.3/.5 and 92.5.
Now note that
[LI' _ (1) - (1-p)"
X", (1-p%)"

After laborious but straightforward manipulation, the quantity in curly brackets
simplifies to:

4
{.“} = 3(1 _ﬁz)z

and the result agrees with Eq. (8.107).

8-15. With a = w?p, the energy radiated per revolution is

2r  _ A4nelaip? 1
o 3¢ q-p

AW = P

Now @ = Bc/p, and the relativistic kinetic energy is T = mc2[(1-2)"2 - 1] (as in
Prob. 8-9). Thus,

o 4me? 3 b %
AW = & ﬁ'(wﬁmc2

In the highly relativistic domain, 8 — 1 and T >> mc?, so that

2
AW — 4“; _1_....(_._1:..
p

From Appendix C, e2[Gaussian] = 1.44 X 10~7 eV-cm, and the coefficient is

_ 4m(1.44-10-!13 MeV-cm)
= 3 (0.511 MeV)*

= -12 M
= 8.85x10 MeV3




Examples:
(a) T=20MeV, p=50cm = AW =0.028 eV
(b) 1000 500 17.7 keV

8-16. (a) We have a = @?p and nonrelativistic kinetic energy T = %maﬂpzm
13.6eV. We can write the nonrelativistic Larmor formula, Eq. (8.89), as

p = B (T
T 3p2 |mc?

8(1.44-10-"eV-cm)(3-10%mys) (_13.6
3 (0.53-10-8cm)? 511000

= 2.9x 1011 eV/s = 0.46 erg/s

(b) For a classical electron in a circular orbit, the potential energy is the negative of
twice the kinetic energy, so that the total energy is

&2 e?
w T-—"— = ~-T = ~3=
P 20
Thus,
d_W___P _81?_5 WY (W 32cW4
& = = 3 €2 mc? 3e2(mc2)?
and the time of decay is
dw 3eXme)? (= dW
A;:Idl=—J‘T=' 32¢ we
Wo=To
mc2)?
= * 32cTy?
1077 .
= (144107eV-cm)(0.S1110%V)2 _ | o 0 gy

32(3:10'%m/s)(13.6eV)3

This calculation, of course, assumes a strictly classical (nonrelativistic, nonquantum)
model.
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9-1. From Eq. (9.16), the power radiated by a time-varying dipole is

, 2P

c3

From Eq. (2.22), the dipole moment of a system of particles of equal charge-to-mass
ratio g¢/m is

P =2ﬂ. gara %Zam.r& = IMri

where M is the total mass and rzy, is the position of the center of mass. Thus,

w _ dp _ g, &ry
P = a7 = mM G2

If the center-of-mass is unaccelerated, there is no radiation.

9-2. Let the origin of coordinates r and r’ be at the center of the sphere. In the
retarded-vector-potential integral, Eq. (9.1),

Awn = L I W slerle) 4,

Ir -
the radially oscillating charge constitutes a spherically symmetric current density,
J = Jo(r't=ir=rlic) ey

By symmetry, when we integrate over the sphere for a particular field point r, the only
nonvanishing component of A must be in the r direction. That is,

A(r,t) = A(r,0,p,0)) = Ag(r,0) e,

Indeed, topologically, it is impossible to have field-lines of any spherically symmetric
vector field that are anything but radial ("you cannot comb the fur on a sphere without a
cowlick”). From Eq. (A.51), it follows that curl A vanishes identically. That is,
there is no magnetic field or any sort, radiation or otherwise. Without a magnetic field,
there can be no Poynting vector, and hence no radiation. The topological argument can
be applied directly to the magnetic field—and since there is no magnetic monopole
within the sphere, there cannot be even a radial B-field. Note that the electric properties
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of the system are described by a purely monopole moment, which remains constant in
time. By symmetry, all higher-order electric multipole moments are zero.

9-3. At small distances r from the dipole (but still large compared to the dipole's
structure size—to avoid significant contributions from higher-order moments), the
inverse-square term of Eq. (9.27) will dominate over the inverse-first-power
(radiation) term. We also assume that the time-variation is slow enough that we can
ignore the retardation between the dipole and the field point. (Both assumptions are
equivalent to r << ¢/@, where @ is a frequency characteristic of the time-variation of
p-) Then,

P ..
B - pe sinf ey
The argument leading to Eq. (9.23) expresses the equivalence between a time-varying
dipole and a current element,
p =1dt

where d{ is the (infinitesimal) length of the dipole and current element, and the vector
notation has been added. If d£ defines the polar axis of a spherical coordinate system,
then df X e, = sinB ey, where 6 is the polar angle. We can now substitute to obtain
Eq. (1.36),

B_)lldl:_:ec
c r

9-4. (a) As shown in Eq. (9.2), the radiation portion of the magnetic field can be
obtained from the vector potential by

1 dA
B = — cBRX
If the currents that contribute to A depend on time as €%, then the time derivative
reduces to algebraic multiplication, d/dt — —iw, and @/c = k is the wavenumber of
the wave of this frequency. In this case, we have
Bad = —2nx (~iwA) = iknx A o)
Similarly, the Poynting vector of Eq. (9.4) becomes

wk
Sm=%(3,,d)2n = -‘-‘*E'nxAlzn
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(b) The sinusoidal current given by Eq. (9.52),
Jadv' - e3I(x3) e P dxj

is one-dimensional in space, eliminating vector complications in the integration of A.
The retarded time is #, = t - Ir-r’l/c. Thus, we have

m —ioy +iolr-rlc
A= J- E%R}-dv' - e;3 fl(x;)e £ dx4

cR

The time factor e comes outside the integral, as does R — r in the paraxial limit
[Eq. (9.55)]. The cross product in (1) gives n X e3 = —siné ey, where e3 defines
the polar axis of a spherical coordinate system, and n = e,. The resulting evaluation
of (1) is identical to Eq. (9.58).

9-5. (a)Let ¥ = t—r/c —that i,  is the time 1)
at which signals would have to leave the center of the >
dipole to reach the field point at the time t. Now, for
a compact dipole (£ << r), the upper charge (labeled +9(£0)0
+q) is closer to the field point by the distance 3
Ar = (#/2)cos@, and its retarded time is later, V)
t; =1t + Ar/c. The lower charge (-q) is farther,

and its retarded time earlier, by the same increments. "%('t"-)
The retarded scalar potential is therefore

®(r,8.0) = Z l}g]‘ = +Q('; t g:-/C) + -4’(:’:2:/6)

(a2 + i) (1 + 5F) ) (a1 -0 (1 - 57

r r

- +

where we have used a first-order Taylor expansion to represent the time-offsets in the
numerators, and likewise to move the spatial-offsets from the denominator to a factor in
the numerator. Multiplying out, the zero-order terms in Ar cancel, the first-order terms
double, and we discard second and higher orders in the limit as Ar = (#2)cos@ — 0.
The result is:

o - 2._"}_’[9%_&4_41‘:&'1] = lcosﬂ[ggﬂ+‘i—£_g]

r

If desired, we can substitute g(#')Z— p(r), and g(£) £ — p(?).



(b) The Lorentz condition is
. 1 2P
divA = - i 3
In this case, with the dipole oriented along the z axis,
; ad (p p 1dr 1 (w0
divA = E[%?%@(‘?a&) £ ;(P(ﬂaz]
But dr/dz = 2/r = cos8, and 9r'/dz = d/dz (t — r/c) = — (1/c)cosB. So,
divA = - [ﬂcr%l"' ﬂc%.l )cos&

Since dr'/dt = 1, this is transparently equal to —(1/c)(@/0t) of the scalar potential
calculated in Part (a).

9-6. we wish to expand Eq. (9.59) for r’ <<r,

’ 1/2
Ir-r] = (r2-2rr+r2)2 = r(l - 2%"’%)

There are two small quantities in the square-root, one of order r’/r and the other (r'/r)2.
The mth term in the binomial expansion will contain "small" terms ranging in order
from (#/r)™ to (¥/r)2m. In the present case, we seek a result that includes all terms up
to order (r/r)2. The ordering is more visible if we introduce the unit vector m = r/r.
Then,

o’ 1/2
[1-2'“' +—'%)
=

r

o A L )
=1 + %[—znr +r—2J + %

ez 5 -

]
P
]
3
+
(T
|
|
ooj
|
[ %]
5
H\
+
—
&

1 - —':—coso + lz-riz(]-coszﬂ) + O[%)

where 8 is the angle between r’ and r or n (see Fig. 9-8). Multiplying through by r
(and substituting sin?8 = 1 - cos26), we have Eq. (9.60).
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9-7. The integral in Eq. (9.64) is, with x = x,

0 +d/2
j sin(3kd + kx) e *x0t0 dx 4 J sin(3kd - kx) ebeos® dx
~df2 0

If we substitute x — —x in the first integral, we see that its value is identical to the
complex conjugate of the second. Using 2i sinu = e*it — e-i%, the second integral
can be evaluated as

+df2
% -[. [e‘md—b) - e‘“"(w_h)] c—l‘b:coss dx
0

ok e—&d{:msﬂ)_l] ohd [cw%du«cosaa_,]
= T2k 1 + cos@ 2k 1 - cos@

The sum of the two integrals is then twice the real part of this second integral,
cos(3dcos6) — cos(3d) i cos( $kdcos6) — cos(kd)

k (1 + cos®) k (1 - cos@)
2 [ cos(3kdcos) — cos(¥d)]
- k (1 - cos28)

Substituting 1 — cos20 — sin2@ in the denominator and inserting the coefficient from
Eq. (9.64), we obtain Eq. (9.65).

9.8. From Eq. (9.66), with %d = 3n/4,

2
dP [cos(%%osﬂ) + ;}5]
a2~ sin@

The angular distribution is similar to, and midway between, those for m =1 and 2
(see Fig. 9-9). ,

4
r

'
1
i
1
!
i
]

N
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9-9. Equation (9.46) for the Hertzian dipole of infinitesimal length £ with
Iy — I to flag this case, is

nl,2 :
% = ?é— (%)2 sin2@ (4))

while Eq. (9.66) for the linear antenna of length d, with Iy = I, is

4P P ccs(%kdcosﬂ)—cos(%kd) ’
aQ T 2nc sinB @

Now the quantity in large parentheses approximates for small kd as:

[1 - & (3kdeos6)’] - [ 1 - & (3ka)’]

sin@

— 2
> &k [Le“]l == (ﬂ‘ sin26

sin@

That is, the limiting value of (2) for small kd — 2n#A is

3r.2 4
&, [ﬂ sin26 @)

Both formulas have the "sine-squared" radiation pattern characteristic of dipoles. The
difference in the coefficients arises from the labeling of the assumed currents. The
Hertzian dipole assumed a current of spatially constant amplitude I along the length £.
The linear antenna assumes a sinusoidal distribution of current—zero at the ends, and
rising to the antinode-amplitude I of the standing wave (which is physically present
only when #2 A/2). For £ << A, the actual current varies linearly from zero with the
spatial slope dI/dx = kI, and the average current is YkI)(42) = (n/2)(YA)]>.
Substituting this equivalent-spatial-average current for I} in formula (1) reproduces
formula (2”), and the two models are consistent.

9-10. The total power is found by integrating Eq. (9.69) over solid angle,

e " cos2(rcos6)

e L SinZ0 2m sin@ d6

P =

[substitute u = cos®, and use the half-angle identity, 2cos?(3nu) = 1 + cos(mu)]
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_ I (*! 1+cosmu
ZCJ- 1 - u? ol

[expand denominator in partial fractions]

1 +1
{;ﬁ[j* l+cosuudu+J' l+cosnud“]
-1

= 4c 1 +u : 1 -u

[with the exchange u <> —u, the partial integrals (limits —1 to 0 and O to +1)
interchange values, so the full integrals are invariant to this exchange, and hence equal]

_I? J"‘l 1+ cosmu

1 +u

[substitute z = m(1 + u)]

2 (2mq _
_ % J' 1 zr.:osz dz
0

%[o 577--- + In(2m) - Ci(2m) |

2
=1 2438.)

where 0.577--- is Euler's constant and Ci(x) is the so-called cosine integral, for which
numerical tables exist. See (Ab65, §5.2 and Tables 5.1 and 5.3). Alternatively, the
integral could be evaluated by numerical methods.

Since Iy is the peak current at the feed point at the center of the antenna, the radiation
resistance is, converting to SI,

2P _ 2.438 ergls 1 watt Y3-10° statamp ¥ _
2 ~ [3.1010 statamp? | 107 erg{sI 1 amp = 73.1 ohms

9-11. For the same current amplitude at the drive point and the same effective
current distribution (including the image current), the radiation pattern is identical to that
of the half-wave antenna, Eq. (9.69). However the radiation occurs only in the half-
space above the conducting plane. The integration over solid angle spans
0 < 0 <7/2, and the total power radiated is one-half that of the isolated half-wave
antenna, Eq. (9.72). Consequently, the radiation resistance is %(73.1) = 36.5 ohms.




9-12. The feed point is an antinode of the current standing-wave; the ends are
nulls. Beyond the ends, the sense of the current reverses with respect to the wire but,
because the wire is folded back, the current sense in space is the same as on the driven
side. Thus the current distribution in the added wire is identical to that in the driven
portion (again with an antinode in the center). Since the currents are a negligible
distance apart, the system is equivalent to a single half-wave antenna with twice the
current and hence four times the radiated power. Consequently, the radiation resistance
is four times that of the single antenna: 4(73) = 292 ohms.

9-13. Because of the phase change, we no longer want the absolute value in
Eq. (9.64).The revised integral is (with x3 — x):

+df2 3
J sin(%ka‘ - kx) e ikrcosd 4,
—d/2

We restrict discussion to the case where d = mA/2 = mn/k (withm =2, 4, 6, -++),
for which the integral becomes

ey

—-mn/2k

+mn/2k

sin(kx) e~kxcosf 4,

(using 2i sinu = e*# — -4, and integrating,

sin[ 4mn(1-cos6) | sin[ dmn(1+cos6) |
" k(1 +cosB)

=i COS(%'"“) k (1 - cos@)

_ cos(%mn) 2cos(12-m1:) sin(%mncosﬂ)
= -i

k sin28

Note that cos2(dmn) = 1. Inserting the coefficients from Egs. (9.64) and (9.66), we
obtain Eq. (9.76).

9-14. From Eq. (9.46), the maximum radiation of the infinitesimal Hertzian
dipole occurs at 8= n/2. Comparing with Eq. (9.47), the directivity is

P _ - (TI?8 3¢A22 \_3
="Plan ~ 2cA? | \an2i22 ) ~ 2
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The same result could be obtained from Egs. (9.35)—(9.36). For the center-fed half-
wave antenna, from Egs. (9.69) and (9.72),

- I (2 \_ 4 _
Gjama = 4n (21“’) (2'44102) =543 = 1.64

9-15. The total power radiated by the point quadrupole is, from Eq. (9.123),

2
P = %dﬂ = i%gnﬁ J’n (sin26 cos26) 2 sinf d6
0

wsQ2 [+ @502
= e J._l (1-ut)u?du = Z353

The maximum radiation is at @ = 45°, for which sin28 cos26 — i—. The directivity is
then (Prob. 9-14):

afQ? \ (2405 15
Gquadrupole = 47 [5_129155) [TQZJ = 3= 1.88

9-16. The current in the circuit is

. EO e—hm
e —-1@or _
0= 1™ = Ru+Fi

The time-average power delivered to the load
resistor R; is

En?R;

3Rine + RD)? ®

P(R) =(I?)R; =

Varying R; with Ry fixed, the maximum power occurs when

d R

P AN—" . | TR
dR; (Rin: + R))?

(Rine + R)2 (1) = (R) R(Rime+R)] =

Ri = Rint

Substituting this optimum in (1), the maximum available power is
Eo’Rint &?

Pmax = SR+ Rud? - ®Rim

If preferred, one can use the root-mean-square emf, Exms = E/N2.
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9-17. The system is equivalent to the superposition of two oscillating dipoles,
differing in phase by 90°. (a) In the plane of motion, an observer "sees" only the
component dipole oscillating perpendicular to the line of sight (the parallel component
does not radiate in that direction). The radiation is linearly polarized. (b) The
radiation along the axis of rotation has twice the intensity of a single linear dipole since
both components contribute. Their fields are orthogonal, and the radiation is circularly
polarized.

Quantitatively, we can write Eq. (9.15) as
@ _ 1 - 2 Y\
aa = gz |1 x nl @ %

where n = e, is the unit vector in the direction
of radiation. Using the Cartesian axes shown,

¥
\
p(t;) = qd (cosat,, sinwt,, 0)
p(t) = — w%qd (coswt,, sinot,, 0)
With the polar axis parallel to z, and @ = 0 along x,
= (sinfcosg, sinfsing, cosf)
Therefore,
Pl Xn = - w2qd { e, cosO sinwt, - e, cosf coswt,
+ e, sin@ (sing cosar, - cos cosor,) }

The time-average of the magnitude squared is
(l[’fl] x niz) = w4q2d? (%coszo + 1cos26 + %sinzﬂ)
= Lwiq2d? (1 + cos20)

The radiation pattern is then (with & measured from the normal to the plane of rotation):

dP wtqd?
0 = _Sqit{.‘_3(l + cosze)
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The total power radiated is:
4q2d 40242
P = “’—L—f (1 + cos26) 21 sin6 d6 = m—a‘iai

Comparison with Eq. (9.20) shows that the total power of the rotating dipole is twice
that of the oscillating linear dipole of strength pg = gd.

9-18. The first form of Eq. (9.105) is altered by removing the phaseshift of t7
in the second term in curly brackets, equivalent to reversing the sign. So the sine

changes to the cosine,

2 :
Eg = -2 m—c%n-sinﬂ cos(%sinﬂcostp) P

and the angular distribution is

(& - -

To examine this three-dimensional pattern, we plot in three orthogonal planes:

smzo cosz(% sinecosq)

x)—x3 plane (8= n/2, @ is angle from x, axis; see Fig. 9-17):

i), = < (E)

x1-x3 plane (¢ =0, 0 is angle from x3 axis):

dP. in20 cos?( Bsi
(d.Q - oc sin%0 cos (gsms)

x2-x3 plane (¢ = /2, 0 is angle from x3 axis):

dP .2
aa),, oc sin“@
Most of the radiation is along the x axis. There is no radiation along the x; and x3
axes, and only a very small quadrupole pattern in the x;—x3 plane. This is much like
the pattern of Eq. (9.106), shown in Fig. 9-18, except with the x; and x; axes
interchanged. That is, the text case is end-fire, while the problem case is broadside.
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I —
= % sin2@ [l + sin(gsinﬂ cosgo]]

To examine this three-dimensional pattern, we plot in three orthogonal planes:

x1-x3 plane (6 = /2, @ is angle from x; axis; see Fig. 9-17):

dP ;
(31_2)12 o< 1+ sm(gcostp)
x1-x3 plane (@ =0, @ is angle from x3 axis):
dP . 2 : ;
<d.(2>|3 o< sin“@ [l + mn(%sme)]

xy-x3 plane (¢ = n/2, 6 is angle from x3 axis):

dP e A
(d.{2>23 sin“@
(lags) (leads)

9-19. The geometry is similar to that of +imh} e—t"lt'ﬁ[. The main lobe is in the +x; direction, rather like a tongue in the x;—x3 plane. There is

Fig. 9-17, but with A = A/4 and phases in no radiation in the —x; or x3 directions.
quadrature (e*™4), The geometrical phase ekl ==t ' ==
offsets are (see Fig. 9-14) 4

¥

¥ 4 cosy = F 4 sin@ cosg@
2 8
i

and the equivalent of Eq. (9.105) is %2

By = m—@;r sin@ { cxp[{— "%sinﬂ cosg+ %)]
T n iox
+ exgl | + g sinfcosp - 7 || fexp(-iax)
2
— 2%*;10- sin@ cos(z—csinﬂ cosp — %] °"p(_"ax’)

The angular distribution is then

2 452 )
(%) = r’-'is’_ﬂ <E32> = m_zjéc%__ sin20 cOsi(%smﬂ cosp — %]
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9-20. The subsidiary maxima are extrema of Eq. (9.116). It suffices to find the
extrema of the square-root [den num’ = num den’]:

) |§)eo2)] - 0 [@) (3]

%] N tan (g) 1)

An approximate solution of this transcendental equation can be found by linearization.
To avoid an infinity in the expansion, rewrite in terms of the cotangent,

veafte) = cufg

Let a/2 = ug+ £ (with £<< 1), and Taylor-expand both sides:

N2 1
Ncm(Nuu)-me = ctn(ug) —ms

ctn(ug) = N ctn(Nug)
E = - Nz 1 (2)

sin2(Nug) ~ sin2(up)

Now let ug = jr/2N, with j=3, 5, 7, --- as suggested in Eq. (9.119). The formula
reduces to:

e ctn(jn/2N)
& = = N2 [Usin2(jn/2N)] &

For instance, for N=7:

J ug £ ug+ € Neln
3 0.6732 =0.0270 0.6462 -0.060
5 1.1220 -0.0101 1.1119 -0.023
7 1.5708 1] /2 0

If higher accuracy is desired, the improved value ug+€ can be substituted for the
original ug, and Eq. (2) iterated [e.g., the second-order error for j = 3 turns out to be
+0.0003]). The significance of the first-order £'s can be seen by expressing them as
fractions of the period between the subsidiary minima, A(a/2) = /N, as given in the
final column above. For instance, the j = 3 maximum is shifted 6% of a period back
toward the preceding principal maximum. The maxima at j=9 and 11 are shifted
forward toward the next principal maximum, symmetrically with j =5 and 3.
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9-21. For the end-fire array, the terms of Eq. (9.111) have alternating signs:

iy
1 — eia 4 e2ia _ ... + gWN-Dia = (=€) =1
(-eia) — 1

giNa2 (_])N-lg+iNai2 4 g-iNal2

iN-1)ar2 Cos(Nad2)
e cos(r2) N odd
B . _i(N-1)ar2 Sin(Nay2
—-ie cos(cl2) N even

Picking up the angle-dependent coefficient in Eq. (9.111), the radiation pattern is
proportional to

Na/2
P cos(§cos6) { c:i:Eng
daQ sin@ cos(a/2)

For A=n/2, and in the midplane 8 =n/2, & = kA sinf cos@ — = cosg, and the
pattern reduces to the array function

dP cos(%“cos@)
dQ cos(fcosp)

The L'Hépital limit for both odd and even N gives principal maxima of magnitude N2
at @ =0 and 7 (the end-fire directions). The pattern is qualitatively similar to the
broadside case but considerably broader. This case for N =35, and that of the bottom
curve of Fig. 9-21, are compared in Cartesian plots in the adjacent column.

9-22. From Eq. (9.15) or (9.46), the Hertzian dipole pattern is proportional to
sin26. The maximum power occurs for 8= % =90°, and half-power at
sin20;, = 1 = 612 = 45°

So the full beamwidth is 2(90- 8,,2) =90°. For the half-wave antenna, from
Eq. (9.69),

cos?(§cos 1) B
sin26y;; o



9-22, cont.

Again the maximum occurs for 8=90°. With a few strokes on a pocket calculator
(remembering that /2 — 90° in degree mode!), one finds: values of the left-hand side:

B2 50° -  0.483
51 0.501
52 0.519

So the beamwidth is approximately 2(90-51) =78° For the N =5 array, from
Eq. (9.115) or (9.116),

.« 2 inc
sin”(5'cos@12) - Lep
sinz(JZIcosq’m)

The maximum of 52 occurs for ¢ = 90°. Again we calculate the left-hand side for trial
values:

PntT9° > 114
79.5 12.3
80 13.2

The beamwidth is approximately 2(90 - 79.5) = 21°.
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9-23. The identity of Eq. (A.61) is obtained by substituting A — @c, where ¢
is a constant vector (and ¢ an arbitrary scalar function), in the conventional Stokes'
theorem, Eq. (A.54). The vector ¢ can be taken outside both integrals and, being
arbitrary, canceled out. Using this identity, Eq. (9.125) can be transformed to an
integral over the area of the current loop:

Eg = %’j} § - sina(t - R/c) d¥

- g’f:L. grad’[sinaxt - R/c)] x dS’

where dS’ is a vector element of any surface S bounded by the current loop I. The
gradient operator (here with respect to the source coordinates r’) works only on
R=Ir-r'l,

grad’[sino(t - R/c)] = cosa(t - R/c) (— %) grad’(R)

= sina(t - R/c) [- %) (- eR)

(See Prob. 1-22.) Now, if we assume that the current loop is compact so that its
dimensions are small compared to the radiated wavelength, we can neglect retardation
and put R — r, the fixed radius from the "center" of the loop to the observation point.
Thus,

Eng — %ﬁcosmt’ nx I ds
where ¢ =t — r/c is the retarded time at the loop, and n = e, is the unit vector in the
direction of radiation. The integral is now simply the oriented total area of the current
loop; if the loop is not planar, the magnitude is that of the maximum projection on a
plane, and the direction is normal to that plane (in the right-handed sense). This vector
area relates to the vector magnet moment of the loop by Eq. (9.121). With obvious
notational adjustments, the general result (1) reduces to Eq. (9.131) for a circular loop
of radius a.

In the present case, we can write

m(e) = 102059 [ 4

Ewa - - [6]xn

which can be compared with the formulas for electric dipoles, Egs. (9.11-12).
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9-24. As in Prob. 5-4, we take the vector function e (C/r)expli(kr—wt)] as a
solution of the vector wave equation. Again, note the mixed bookkeeping, that the
vector component is in Cartesian coordinates, while the functional dependence is in
spherical coordinates. To work out the curl, it is easiest to express the unit vector as
e, = cosfe,—sinBeg. Then, the resulting electric field is

e eg [
r?siné rsin@ r
E, = curl[e,%(n] = a d
2 2 g
Y (r)cos@ —r¥(r)sin@ 0

= %’; [g (- € &*=9 sing) -

% (% eilkr-an ¢ 9)]

= £ C [_ ik + %J sin@ ei(tr—wr) = —ik2C [ 2] sin@ e_,':(l:r-».‘.nlr) e

r

*

And then the associated magnetic field is

e €9 £o
r2sin@® rsin@ r
B, = ——g—curlE, = H_i_ 2 d 0
or 26
0 0 rsin@ E(r,8)
_ _ i | e d e Fl L . ap itkr-0)
= Sy [rz sind 96 ~ rsind . [C( r Js"' g

a iCe, ik - l 2 cos@ eitkr-on
kr2
+ ‘-(;“.ﬂ [[ - lﬁ) + ik (— ik + %]] sin@ eikr-29

i(kr—ar)
iCk2 [(kr)2 (kr)g] 2 cosBe e,
+ iCk2 [l . 2 ] sin@ ef*r-@) ¢,

(er2 (kr)3

With iC — [m]/@c, the 1/r radiation terms in each field agree with Eq. (9.134).
These are the complete fields of an oscillating magnetic dipole. They are the dual of the
fields of an oscillating electric dipole, with B, — E,, and E, — —B,,.
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Chapter 10

10-1. The geometry and notation for a linearly polarized incident wave are shown
in Fig. 10-1. The scattered intensity for "unpolarized" incident radiation is calculated
leading to Eq. (10.12). To find the state of polarization of the scattered radiation, we
compute the components of the scattered electric field parallel and perpendicular to the
scattering plane defined by k and n. According to Eq. (9.13) the scattered amplitude is
proportional to sinf eg, and therefore the components are:

Ej) o< sinfeg- ey
E, o sinfeg-ey

To work out the scalar products of these unit vectors, we must reconcile two sets of
angles: @ and y are the polar and azimuthal angles, respectively, of the observation
direction n with respect to the incident direction k as polar axis, while @ is the polar
angle of n with respect to the polarization direction (E). Let y be the azimuthal angle
(around E) associated with the polar angle 6, with ¥ = ©t/2 at the k axis. Designate
the polarization (E) axis as x, and the kxE axis as x; (the k axis is x3). Then match
the components of the unit vector m on the three axes, reckoned in the two

bookkeepings:
e; (E) cosf@ = sing cosy

e (kxE) sin@ cosy = sin@ siny

e;3 (k) sin@ siny cos¢p

We can now write out sin8 eg, first in 6,y bookkeeping, and then convert to @,y
bookkeeping:

sinf eg = sinf [e; (- sin6) + e; (cos6 cosy) + e3 (cosbsiny)]
= ej(sin2@ cos2y — 1) + ez(sin?@ siny cosy) + e3 (sing cose cosy)

More directly,

ep = e (cospcosy) + ey (cospsiny) + e3 (- sing)
ey = e (-siny) + ey (cosy) + e3 (0)
Carrying out the scalar products, and simplifying, we find:

E) o —cosp cosy E, e siny



The time-average intensities for random incident polarization (i.e., averaging over y)
are then:

Iy =< cos2g{cosy) = %cos2p

I} o< (sin2y) = -21
A measure of the degree of polarization is Iy/I) = cos?@. The scattered radiation is
most strongly polarized when observed perpendicular to the direction of propagation

(i.e., ¢ = n/2), where it is linearly polarized perpendicular to the plane of k and n.
The scattered radiation becomes "unpolarized" as ¢ — 0 or 7.

10-2. Using the quantum-mechanical polarizability, & = 2{103. in the classical
Lorentz model, we get
V2met
SO, R i L I &R
gt = =3 ( = Wy = 3

The actual Lyman-alpha frequency is

o = W _ 3 me*\ _ 3met

W an T an2) A
The scaling with fundamental constants is the same; the numerical coefficient of the
classical model is wrong, but not by much:

@ _ 82 _ s,
O 9

10-3. we require the extrema of the real and imaginary parts of the refractive
index, from Egs. (10.31-32). The extrema of (n —1) are [using den - num’ =
num - den’, and suppressing the subscript on fql:
[(@a?-a2)? + 420?](-1) = (@ -w?)[2(w -0?)(-1) +4/%]
@04 - 204202 + (0o - 4f20,2%) = 0
01322 = 02 F2Bwg ("n-1" extrema) (1)~2)

The extremum of nxis:

[(@a2-02)? + 4B202](1) = (0)[2wd~0?)(-20) + 8f20)

107
304 - 2(0g? - 2P2)0? — @4 = 0

w0y = {0’12‘252)+2(a;a‘-wa2ﬁ2+ﬁ4)“2

= Wgt - P+ ("nx" extremum) 3)
Now substitute (3) in Eq. (10.32) [we omit all coefficients not involving @],

1 - B212m42% + -
(nK)max o (B2 + )2 + 4B2%(wg? - B2 + )

— _-_l L] )
= 432%2(1 + 4_;32_&# + ) @)
Similarly, substitute the extrema frequencies (1) and (2),

(1 Fflog + )
(2Bwa)? + 4% (wa® F 2P 0q)

(nK)y2 o=

o wa(l :F ﬁ;ma + '") (5)
T 8wl F Plag)

Thus, for both extrema, formula (5) is one-half of formula (4) at least to order (/@)
The full width at half intensity is, from (1)~(2),

W-@) = Og [[l + %’EJUZ - (l - %E)m:l = 2B [1+ 0B

("4

10-4. We can choose to express the propagation properties of a dispersive
medium in terms of either the phase velocity Vyp = w/k, or the refractive index
n = c/Vpy, as dependent variable—and choose either the frequency @ = 2nv, or the
wavelength A = 2n/k = 2nVp/@, as independent variable. There is only one degree
of freedom in this family of variables: the derivatives are total (not partial), and can be
thought of simply as ratios of differentials. Using Vpn(®), we can express the group
velocity as:

_do _d - dVppdo _ @ dVpy
Ver = gx = ax®Vew) = Ven+ k5 0k = Vb + 00 Ver
Von
= V., = —— (0]
8 @ dVp
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Using Vpn(A):

dVpndA _ 2ndVon( A2
Vgr— dk(kvph) = Vph+k di dk V +T dA [— ﬁ]
dv,
= Vpn - A28 @
Using n():
1 _dk _d(mo\_n, od _ 1 _odn
Ver do " dw\c ) ¢ cdo Vpn  nVprnde
Von
= Vg = ___.:) pm 6))
1+ F %
And using n(A):
d (ke _ ¢ dn dA 2nnV, 1\dn( A2
Ver = ﬁ[?) =ntke (“ _2)4‘2235 = Von+ _Tnh(‘ E]d_( 2:;)
= Von (l + %%) (4)

For "normal" dispersion, dn/de and dVy/dA are positive, and dVp/dw and dn/dA are
negative (or zero). Thus, "normally” we have Vg < Vpp.

10-5. we have (always) Vph = ¢/n, and (in this case) Vg = ¢2/Vpp = nc.
Substituting in Eq. (3) from Prob. 10-4,

= d@n?) - 2de = In(1 _1,,2] = In(a?) + In(a)

@
= 1'12=l—L
aa?

where In(a) is the constant of integration. This special case occurs for propagation in
hollow-conductor waveguides [Eq. (7.29)] and in ionized gases [Eq. (10.71)].
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10-6. 1t is easier to work from Eq. (10.36) than from (10.37). Divide the
summation into two series (for which Ay < A and Ag > A, respectively), and expand

binomially:
Aa
n=1 +zlu2pa(l—— —lzpﬂ[ T
o
1
=1+ Zkuﬁpa + l—zzz.gpa + Ilzzlaﬁp, +
o a a
- lzzpp & ;.42Ji 26 SRR

The summations are the coefficients in Eq. (10.39).

10-7. The linear regression (least-squares) routine on a scientific calculator for
(n—1) against (A-2) gives the coefficients:

A = 2.87902 x 10-4

AB = 1.6184 x 10-4
whence B = 0.5621

The root-mean-square and maximum deviations of the ordinate data points (n~1) from
the fitted line are 5 and 8 units, respectively, in the decimal place beyond that given in
the data. Thus the formula is as accurate as the precision of the given data warrants.

10-8. From the results of Prob. 10-6, the coefficients in Egs. (10.39-40) are
related, for a single resonance at Ag, by:

A =A2p B = Ao

Nfqe?
2nmc?

where p [Eq. (10.35)] is the effective electron density (Nfy), multiplied by universal
constants. Thus,

AB:AQ“p} { A/B=p =

143\1/2
Ao = (%) = 87.9nm = 879 A



This is in the ultraviolet, far beyond the short-wavelength end of the visible region at
400 nm. Similarly,
Ne? (1.360 x 104>

pi= 2tmel = 1.05 x 10-14 = 1.762x 106 cm-2

and thus, with fo=1,
e _ 2m(2.998-1019cm/s)2(1.762-105cm-2)(22.4-103cm3/mole)

m - (2.893-1014esu/mole)(1 g-cm3/esu2-s2)

= 7.70x 1017 esu/g

(The final factor in the denominator reconciles the Gaussian unit of charge, the esu,
with its cm-g-s equivalent—see Prob. 1-1.) The modern value of the electron's e/m is
5.27 x 1017 esw/g. The Faraday constant, F = Nae, is a macroscopic quantity,
which can be measured to high precision in electrochemical experiments. One might
argue that the hydrogen molecule should be counted as having two electrons. That
model would reduce the calculated e/m by a factor of 2, which then becomes too low.

10-9. From Eq. (10.23), where @q = Y K/m is the resonant frequency,

= (e2/m)E
P = (wp2-w?)-i2f0

From Egs. (9.15) and (10.8),

at(e?mc?)?

do 2t .
E) = g (BF) S0 = oo+ o

This cross section exceeds the linearly polarized Thomson cross section of Eq. (10.10)
by the factor

~ ot
T (@o2-0?)? + (2Bw)?

Since the "atom" is assumed to be isotropic, the same factor multiplies the unpolarized
cross section, Eq. (10.11). The angular distributions are unchanged. As a function of
@, the factor F has a maximum at

-t
T w? + 2p2 o

where it becomes

Fmax

o?
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which is very much larger than unity in the typical case of weak damping. On the other
hand, far enough below resonance that @? << ax?,
ot [21::: 1

a* T o) A

F -
Air molecules have effective resonant frequencies in the ultraviolet, and this limit
applies. The A dependence of scattering of "white" light from the Sun produces the
blue color of the sky, as discussed in Sec. 10.2.

10-10. (a) According to Eq. (10.9), each molecule scatters the power oS,
where o is the cross section and S is the incident power per-unit-area (Poynting
vector). If there are N molecules per-unit-volume, then the volume consisting of a unit-
area times the propagation distance d{ scatters the total power (6S)(N d{). This
represents a loss of directed power-per-area, and therefore the Poynting vector of the
beam decreases according to

ds
EE__UNS = h = oN

(b) From Eq. (10.41) [and Prob. 10-9], in the limit @y = @ >> @,
8w (4n2e?Y 1
ORayleigh = 3 |mag?| 2%

To calibrate the molecular resonance @y, we use Eq. (10.31), which reduces in this
limit to

—_— 2nNe?
= s
Thus,
, - 8n (4n2e g n-1)2 32n3(n - 1)2
3 m 21:Ne2 2.4 3N.J.4

(c) Experimental measurements of h and n— 1 (for a given 1) determine the particle
density N. The experimental pressure p and temperature T can also be measured. The
ideal gas law is usually written as pv = RT, where v is the volume per-mole, and R is
the gas constant per-mole. But R is the product of Boltzmann's constant k and
Avogadro's number Ny, and our particle density N is Ng/v. That is, we can write a
"particle" form of the ideal gas law as p = NkT. Thus k = p/NT, and Loschmidt's
number is given by
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Nr =N (%ﬂ) (Tlo] [=2.7x101% ¢m-3]

where pg = 760 torr = 1.013 x 106 dyne/cm?2, and Tp = 273 K. If we measured
the mass density p, and knew the molecular weight W, then we could determine
Avogadro's number Ny = WN/p.

10-11. Equation (16) of Example 3.3(a) gives the magnitude of the induced
dipole moment as p = Ega®, where we now identify the applied field Ep as that of the
incident wave. From Eq. (9.13), the electric-field amplitude is

3
B = %sino w “fz—fso 5ind

which is proportional to the volume, 533113. From Egs. (9.20) and (10.8-9), the total
cross section is

10-12. we evaluate E.r of Eq. (10.43) as the average of the molecular dipole's
field over a spherical volume equal to one molecule's share of space:

L Edipole dv _ 4mps3 _ +§£ p
Vmolecule LN 3

Egeir =

The final step follows from Eq. (1.22). Thus, in Eq. (10.47), n=4n/3. An
elaboration of this argument is given in Sec. 9.13 of the first edition (1965) of Purcell
[Pu85], where space is divided into cubes rather than impossibly packed spheres.

10-13. Equations (10.44-45) and (10.47-48) relate P and E in terms of the

polarizability o as::
P
N = P = 0Enq = ofE+4EP)
= p = N2 g
1-%Na

Equation (10.46) relates P and E in terms of the dielectric constant £ as:

g-1
4n

P = E
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Therefore, the relations between the "macroscopic” £ and the "microscopic” Na are:

Na _ &-1
l—?Na 4n

" 4N _ l+3_.fNa
1-4%Na 1-%Na

g=1 (10.52)

—

e-e(‘*‘._{‘Na) = 1+2(433Na) = “Ne = :;2 (10.49)

10-14. (a) Substituting in p = a(Ecay-p + Ecav-gy), we have

(-DE _ f 21 (¢-DE _ 3¢ o
4N (2e+1)a® 4nN 2e+1

(e-1)2e+1) = 4nNa[2—(¢f—,J\h13L2 + 35]

which rearranges into the desired formula.

(b) If the Béttcher formula is to reduce to Clausius-Mossotti, Eq. (10.49), then

(e-1)(2e+ 1) -1

3(e-1)2 " e+ 2
9¢ + 2nNa>

3(e-1)2 4n
2 = — a3
282 4+ 5+ 2 9¢ + NG = 3 @

-
=N

That is, the formulas coincide when the volume of the "Béttcher sphere” equals the
volume per molecule. Clausius-Mossotti determines a from the inter-molecular spacing
(independent of molecular size), while Bottcher determines a from the molecular
diameter (independent of the inter-molecular spacing).

10-15. We calculate the molar refractivity from Eq. (10.54),

n2-1W

m T h+23

Using data from the liquid phases, together with the handbook molecular weights:



W(g/mole) Ap(cm3/mole)
acetone 58.08 16.177
ethyl ether 74.12 22.524

In the ideal-gas approximation,

W _ (22410%m3Y T Y760 torr
s = mole  \2732K)| P

Furthermore, the vapor phase is dilute enough that we can use the approximation

273 2
22 4 103

which is known as the Biot-Arago formula. The results for our example are:

nt+2 Ap
n+1 W/6

n-1 =

T(K) p(torn) n
acetone 273.2 67 1.000095
ethyl ether 273.2 180 1.000357

The agreement to 1 or 2% in (n—1) is impressive since we are comparing the properties
of liquids and dilute gases, which differ in density by three orders of magnitude.

10-16. By dimensional analysis,

N electronsY _ (1 electronYN4 moleculesYd gYmole
cm? ~ | molecule mole cm3 \W g

- Nad
= N =Ty

It follows from Egs. (10.51) and (10.53) that contributions to (n2-1)/(n%+2) are
additive, and therefore

Do - Shh
n2+2 - aNA

where Ng is the number of molecules (atoms) per unit volume of the species with
refractivity Aq, and Ny is Avogadro's number. For a mixture, we define the bulk
refractivity Amix by:
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QN . = DB,

where YN, is simply the total number of molecules per volume. For two constituents,
for instance, the effective refractivity is

- M
Amix = Ni+Ny

Ay Az

N1+N2

For further discussion, see Born and Wolf (Bo80, Sec. 2.3.3).

10-17. Table 10.1 gives refractivity data for HO and O;. We can infer the
refractivity of Hy by considering it to be a mixture of H>O and "negative” O;. From
the resulis of Prob. 10-16,

A(Hy) = A(H0) - 2A(0y)
= 372 - 2405 = 1.70

The formula in Prob. 10-8 gives ny — 1 = 1.390 x 10~ for A = 589nm. Thus,
from Eq. (10.54),

_ NA n2-1
AH2) = NisTRy 232

- (224 103""‘3) [2 (1.390-104)] = 208

The agreement is only fair in this case, but note that we are treating components of a
highly stable molecule as a "mixture". It is not surprising that these components no
longer act independently.

10-18. From Eq. (16) of Example 3.3(a), we find that a conducting sphere,
when placed in a remotely imposed uniform field Eq, acquires the dipole moment
p = a3Eq. If we take this "remote"” Eq to be the "local" molecular field Epq of
Eq. (10.43), then the polarizability [Eq. (10.44)] is @ =a3. And the molecular
density is N = 1/d3. Thus Na = (a/d)3, which substitutes in Clausius-Mossotti in
the form Eq. (10.52) to give the desired result. The quantity f= 4% a/d)3 is the
fraction of total volume occupied by the spheres; in terms of this the formula is

ol 2
£ g2

The identification of the "Eq" of Example 3.3(a) with the "Epq" of Eq. (10.43) is
legitimate only in the limit where the lattice spacing is much greater than the size of the
spheres—so the formula can be expected to become increasingly inaccurate as f
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approaches unity. However, note that € — oo as f — 1, which is the appropriate
limit for a homogeneous conductor in spite of the nonsensical model of filling all space
with spheres. A more sophisticated analysis, and applications to microwave lenses, are
given by Collin (Co91, Chap. 12).

10-19. (a) Let y = poEmot/kT, and u = y cos@®. Then we can write the
denominator integral as:

+y
e 2E f M du = 2= (c"? ) = 2 ginhy)
y y

The numerator integral is:

+
num=2—fJ‘ ue"du:g-;![ue"—e"]”
b y =

=X [y cosh(y) — sinh(»)]
Thus the effective polarization is
PO) = Pus[coth0) - 3] = Puu2)

where Pg, = Npgeg is the saturation polarization when all dipoles are aligned with the
applied field.

(b) The Langevin function is similar 1+ ---=----------———~-—1 3
to the familiar function (1-¢7), in
that it starts from zero (for y = 0),
increases linearly at first, and then
approaches unity asymptotically as ¢ r . : T
y = oo: 0 2 4 5 6 8 10

=
2
=

The power series for the hyperbolic cotangent is:
1oy ¥
coth(y) = 5 +3 - 25 + 945 ~
Thus the 1/y term cancels, and the first term of the Langevin power series is y/3.
(c) In the linear regime (weak field and/or high temperature), the permanent dipoles

have an effective polarizability P/NEmo = Poy/3Emor = po?/3kT. Therefore, for a
medium whose molecules are both deformable (induced polarization with polarizability
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op) and alignable (with permanent moments pp), we substitute & — & + po?/3kT in
the Clausius-Mossotti formula, Eq. (10.49). By measuring the dielectric constant as a
function of temperature and plotting (e-1)/(e+1) against T, the two phenomena can be
distinguished. In the dielectric case, both contributions are positive; in the magnetic
analog, the two effects (dia- and paramagnetism, respectively) have opposite signs.

10-20. 1 the low-frequency, high-electron-density limit @ << v, << @y,
Eq. (10.68) becomes:

A w,2
- e Mg
n = 1 (@ + ivy) M
12 =
2 1+i _|o
= Y+ 1 —2 —
¢ a:ve 1-;— N2 mv,(]""v,"' )

The wavelength in the medium is given by

2n_ o w,2 (7]
X = 2 vl = 2|22 (1 —E+---) @

where Ap = 2nc/w is the free-space wavelength. The amplitude e-folding distance
(attenuation length or skindepth) is given by

%=-‘:—’lm[ﬁ] \lzmv (l"'ﬁr:."' ]

2c2v
5=\ 2X [1-;,—% ) 6)

Now from Egs. (5.77-79), for highly conductive media, the complex index is related
to the real dielectric constant € and conductivity o by

.4n0
E+ i D ()]

m>
]

So in this case, comparing (4) with the limiting value of (1), the conductivity is given
by:

ang _ 2 o o2 _ Ne2
w"lm[?']_’mv, = = Zmv. " mv,



which agrees with Eq. (10.62) with the equivalence 7= 1/v. [Egs. (10.64) and
(10.69)]. In terms of this conductivity, the leading term of (3) is

2c2v. Y @,? c
4= 5 =
Wy 4nv.Cc A '21: ow

which agrees with Eq. (5.93) for nonmagnetic media.

10-21. The electron density is

N = [Lelectron 6.02-1023atoms/mole Y 10-3torr Y 273K
B atom 22.4-103cm3/mole ) 760torr | 295K

= 3.27 x 1013 electrons/cm3

From Eq. (10.69), the electron plasma frequency is

n\1/2
L - ;—5[4"5‘“’ ) = 513GHz
This is much higher than the wave frequency at 10 GHz. If we assume a negligible
collision rate, we are in the evanescent domain. The refractive index of Eq. (10.68) is

essentially pure-imaginary,

2
A= n(l+ix) - i %’,—- = i%=i5.l

The wave amplitude decays as exp(—nxwz/c), and the penetration depth for 10% power
is

_ In(10) _ n0)(@), _
Az = 2nKkayc 4 (o,,‘l = Gdlcm

where A = 3.0 cm is the wavelength of the incident wave in free space. Note that this
attenuation occurs without energy dissipation. That is, if an antenna could be immersed
in this plasma, it would not radiate; the signal would be totally reflected back along the
feed line to the transmitter. If the wave were incident on the plasma from free space
outside, it would be totally reflected at the boundary layer where the electron density
equals Negi(®).
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10-22. From Eg. (5.80), for instance, we have
By = i e XEp

where A is the complex refractive index, and Eq,Bo are the vector field amplitudes of a
wave propagating in the ey direction. Thus using the product theorem of Eq. (5.50),
the time-averaged Poynting vector is

S) = ﬁ [Re] E x B*

s é [Re]ﬁIEolz

From Eq. (10.68), 7 is purely imaginary for the evanescent domain such that
Ve << @< @)p. Since the real part vanishes, the Poynting vector is zero.

10-23. Numerically, the electron plasma frequency is

172
9 . L(M{) = 8979 Hz \’N[cm-3]

2n 2l m

For N ~ 1 electron/cm?, @)p/2% ~ 9 kHz. Below this frequency, the electrons are
able to move to shield the interior of a plasma-filled region from impinging
electromagnetic waves. Above, the inertia of the electrons prevents this shielding.

10-24. Converting the variables in Eq. (10.72),

N = [m@2Y_e Y2me¥ _ =
o = (41:02 ronc2 \@iy) — rodo?

10-25. From Eq. (10.71), the refractive index for the ionosphere (neglecting
collisions and the Earth's magnetic field!), is

n(z) = ‘\’l-%@%

where N(z) is the electron density as a function
of altitude z, and N, is the electron density
for which the plasma frequency equals the
frequency of the radio wave, Eq. (10.72). For
a beam (ray) launched at angle 6 at the Earth's
surface, where the electron density is
negligible, Snell's law [Eq. (6.20)] gives
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sinfy = [I - A—I;—,E—i_lt]m siné(z)

As the electron density N(z) becomes substantial, 6(z) increases; that is, the wave is
refracted toward lower density. When &(z) — /2, the beam becomes horizontal and
then continues back to the surface of the Earth. For this reflection from the ionosphere
to occur, N(Zmax) must be less that Npay; thus,

. _ N!ng!} 12 - E
sinfp = [1 - N ] sm(z)
N(zmax) = Nerit (203290 < Nmax

For given ionospheric conditions (Nmax), we get reflection of the highest frequencies
(largest Ngp) for large launch angles 6o, with the maximum effective 6 = 75° at the
lower boundary of the ionosphere. Thus reflection occurs for

N,
Neit < ;s—z'}}:;

= o g 2Wm) o 40 Npw

c05B0max

For a typical value of Npax ~ 106 electrons/cm3, we have @,/2n ~ 9 MHz, and
wave frequencies below a¥2m ~ 36 MHz are reflected. For vertical incidence, only
frequencies below ~9 MHz are reflected.

Because the direct "ground wave" dies out rapidly, ionospheric reflection ("sky wave")
is essential to long-distance radio communication. Radio waves launched at large 6's
are returned to Earth at a considerable distance from the transmitter, leaving a ring that
receives negligible signal. To reach medium distances requires smaller &'s, for which
frequencies ~30 MHz will pass through the jonosphere and be lost.

10-26. Erom Prob. 10-16, the atomic density is

_ Nu8
N ="y

where Ny is Avogadro's number, 8 is the mass density (from Handbook of Chemistry
and Physics), and W is the atomic weight. The critical wavelength A, corresponds to
the electron plasma frequency @, of Eq. (10.69). If there were one electron per atom,
then

A = 2 _ nme?) _ 3.34-10cm-12
T @,  (Net ) N
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Since A, e< 1/4N, the effective number of free electrons per atom is

_ | Adealc)
et = [A,,(obs)

w P N(calc) Ac(calc) Nett
Li 6.94  0.534g/em® 4.63-1022cm-3 1.56-105%cm 0.58
Na 2299 0971 2.54 2.11 1.01
K 39.10 0.862 1.33 2.92 0.86
Rb 8547  1.532 1.08 3.23 0.81
Cs 13290 1.873 0.85 3.65 0.69

10-27. Equations (5.20-21) show how the operations of divergence and curl act
on wavefunctions of the form of exp(ik-r) —namely, div — ik- and curl — i/kX.
Therefore, we can write Maxwell's equations [Eqgs. (4.21-24)] as:

k-@'E) =0 ¢))
k-B=0 ()
kxE =B 3
kxB =-J%-E @

[The free current Jy= oE, driven by the electric field, and the associated free charge
py determined by the equation of continuity, i@wpy= divJy= o divE, are hidden
inside the imaginary (conductive) part of & We assume that no other free sources are
present.] Now cross k into (3), and then substitute (4):

kx(&xE) = %’i‘:xn - -;—‘f‘é-E

Writing the propagation constant k in terms of the refractive index fi = (c/m)ﬁ, we
have

AX@XE) = -3'E
The left-hand side expands to (iE)f — (7)?E. Because of the anisotropy, we no

longer have E = 0, in general; nor can we cancel out the E. As noted, when Eis
written out in terms of its Cartesian components, we have three coupled, linear,



homogeneous, algebraic equations for those components. The determinant of the
coefficients must vanish, giving the dispersion relation which relates the three
components of 1 to the nine elements of &. To solve the determinantal equation, let
i = 1l e,, where e, = (& 8,7) is the unit vector in the direction of propagation (thus
0o2+2+p2 =1). For a given e, the dispersion relation is then a biquadratic, i.e., a
quadratic in 7.

10-28. The refractive indices for the two circular polarizations, neglecting
collisions, are given by Eq. (10.78),

2
A =13 W,
(The case of no magnetic field follows with @, — 0.) Since 732 is either positive- or
negative-real (neglecting collisions), propagation is either unattenuated or evanescent.
Conditions when the refractive index goes to zero are conventionally called cutoffs;
conditions when its magnitude goes to positive infinity are called resonances. In this
case the cutoffs occur for

(0]} } _ Fo +\’m52+4m,,2
[0 F] - 2

with the subscripts 1 and 2 standing for the smaller and larger cutoff roots
(corresponding to the upper and lower sign, respectively). We have the following table
of cutoffs and resonances:

cutoff resonance

upper sign o = o (none*)
lower sign W= an W=
(w — 0)

no By 0=0, (none)

The resonance for @ — 0 is nonphysical because our model has neglected collisions
and the motion of the positive ions (*when ion motions are included, there is an upper-
sign resonance at the ion cyclotron frequency). Propagation can be described in terms
of frequency bands as follows:

@ upper sign lower sign

< o evanescent propagating
@) & o propagating propagating
W, & 3 propagating evanescent

> @ propagating propagating
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When there is no magnetic field, we have @y,@; — @. The wave is then evanescent

for @ < wp, and propagating for @ > @,. The graph following illustrates n2

numerically for the special case of @, =3@).
L 1 L

4 \\ 7 I

3 "*-,_____f/ B
nz nt I

2_ —

1 | =
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—1 t re
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10-29. (@) Asin Eq. (10.20), the binding of the electrons to the atoms adds the
Hooke's-law term Kr to the equation of motion (10.73),

mf + Kr = —¢E - %i-xBo

But with ¥ = —@?r and w2 = K/m, we can write this equation as

2).. .
m(l—a—;,qz—)r = -eE—%rXBo

That is, all of the analysis of Sec. 10.5 can be retained if we simply substitute
m — m(1 - wg?/@?), from which [Egs. (10.69) and (10.77)):

@?
W, = O [—mz = moz]
Therefore, Eq. (10.78) becomes [with the original definitions of @), and @]

2
512 = l_—ml?_.__._
w? - wp? + wo,

(b) As discussed near the end of Sec. 10.5, a linearly polarized wave can be
represented as a superposition of two counter-rotating circularly polarized waves,
which in this case travel at different speeds. Consequently, their relative phase changes
as they propagate through the plasma, and the superposition constitutes a linear
polarization whose plane gradually rotates.
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(c) Introducing the mean index nn and the difference An = n, — n_, the two indices
can then be approximated by

m2 = 72+ 27An

=1-=

2 1 2 2
2% 2{1 * 2mc 7| = 1+ :?]ﬂ 7 By~ 0% 7
w* = @y (] 0 W — @ (moz - &)2)

where the final approximation follows so long as e, << |®? — @¢2|, which is
consistent with the hierarchy for optical frequencies in typical materials in laboratory
magnetic fields. Thus for the propagation constants,

ke = T+ M = 2(7 £ An)
we have

Ak =

=B

T = 1 @y — 2 0200, \+
2| @02 - 02 + 0,2 | (wg? - 02)*

_ w,2 00, %
2(@o? - 02 + wp?)(Wo? - ?)

Now consider a wave that is linearly polarized along e, at z=0. From Egs. (5.36),
we can write this wave as a superposition of two circular polarizations as

E, = % Eg [ei(hz—m) + e:‘(t,z-m)]

= Ep e/®™ cos(Ak 2)

Ey m I.% Eo [_ ei(t,z—m) + ei(l:_a:—m)]

= Ep & sin(Ak 7)

Thus, in a propagation distance L, the plane of polarization rotates (in the same sense as
electron gyration) by the angle

D200, i
2(wg? - 02 + @p?)(We? - 0?)

AO = AKL =

Since @, = eBg/mc, the Verdet constant for this model is
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202 (e/mc2)n
2(@p? - 02 + wp?)(Wo? - w?)

V =

The corresponding result for a plasma is obtained by letting @o — 0, with the
frequencies now ordered as @2 > w,? >> @2

10-30. (a) Before the displacement, the uniform electron density corresponds to
a negative charge density of —Npe, which is neutralized by a background of fixed
positive charges (atomic ions) with the charge density +Nge. In a slab of thickness dx,
the perturbation &(x) produces an incremental electron charge density of 3N =
—Nod&/dx. Since the net charge density was originally zero, the perturbed charge
density is p = —e &N, and we can write Gauss' law as:

. E d
divE = 4np = %}“ = 41cN035

which integrates immediately to E, = 4nNge & (the constant goes to zero because we
assume there is no field in the absence of a perturbation). The electric force on each
electron is then

Fy = —eE; = —4nNge? &
which indeed has the form of a Hooke's-law restoring force.
(b) Neglecting any damping forces, F = ma can be written for the typical electron as
m&+ 4nNoe2 § = Fext m
where Fy is the external force producing the initial perturbation. When Fey, is
suddenly removed, the reduced form of (1) is the standard differential equation for
simple-harmonic motion, & + @,2§ =0. Physically, each layer of displaced

electrons is attracted back toward its equilibrium position; then, because of the
electrons' inertia, each layer overshoots the equilibrium and oscillates at the plasma

frequency @,.

10-31. (a) Far from the perturbing charge Q, the electrons have density No, and
we take the scalar potential to be @ = 0. Therefore the density of electrons near Q is
N(r) = No exp(e®/kT) = No(1 + e®/kT + --- ), where @ is the locally perturbed
potential. If we assume that the neutralizing positive charge is effectively immobile,



equivalent to the constant density Np, then the net charge density in the vicinity of Q
becomes p = —e(N — Ng) = —Noe2®/kT. Poisson's equation for spherical

symmetry reduces to:

_ 1d(,dP) _ 4nNoe?
VO = —4np => Mr[rz dr)_ Noe”

For the suggested form of solution,
ld(,dQe™) 14 g (L1 _ 1
,adr[’zdr r )-ﬂz[’z‘?‘ “ R o

Therefore, the suggested solution works if we define the parameter Ap such that

kT
. —.
Ap 4nNge2

The result is the ordinary potential of @, Q/r, shielded by the exponential factor
exp(-r/Ap). At distances beyond a few Debye lengths Ap, the plasma electrons hide the
presence of the excess charge Q. For further discussion, see Meyer-Vernet,
Am.J.Phys. 61, 249 (1993).

(b) We have

kT _Y4nNoe? kT
pay = '\/[4n~°e21_m&) *Nm

There are several "thermal velocities" for a Maxwellian distribution—the average, the
root-mean-square, and the most probable—all of which have the form Vk7/m but with
slightly different numerical coefficients depending upon the criterion used to quantify
the distribution. Thus, aside from the precise criterion chosen, this is indeed the
"thermal velocity" for the electron gas (note that m is the electron mass, not that of a
neutral gas molecule). Since the velocity of sound in a neutral gas is also of order
VkT/m, we can surmise that plasma oscillations at the cyclic frequency @),/2r can
propagate as traveling waves with a wavelength of the order of 2rtAp.
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10-32. (a) A damped harmonic oscillator, driven at frequency @, obeys the
equation

P+ 2BF + wptr = Ae™

where, in this case, we evaluate the damping coefficient as 28 = #m =
2e2a?/3mc3. The steady-state solution is:

- A i
T (wt-w?) - i2Bw

r

the amplitude of which is

A —> Al2ag
[(wog__m;)z _ (250,)2]1:2 P<<ay? [(mo— w)? + ﬁz]m

The half-power frequencies are then given by wp— @=*p, and the width of the
resonance is

Am=2ﬂ=m

3mc3
(b) In terms of wavelength, A = 2rnc/@,

2nc
ALl = (—)-m—oiAw

4me? an
3mcz = 370

= 1.18x10-2¢cm = 1.18x 104 A

Note that @y has canceled out, so that this "natural linewidth" is independent of the
x-ray wavelength Ag.
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Chapter 11

11-1. 1n the coordinate system of Fig. 6-2, the incident and reflected wave
vectors are

ko = [ex (-sina) + e, (cosa)]k
ki = [e; (-sina) + e, (- cosa)]k

With E perpendicular to the plane of incidence (Fig. 6-3) and for reflection from a
perfect conductor (nz — <), Eq. (6.26) gives EY = —E3. Thus,

Eoi = —eyE} exp[i(- kx sina + kz cosa - )]

EL + e, EJ exp[[i(- kx sina - kz cosa - )]

The photographic emulsion is sensitive to
<IEOJ_ + EU_P) = (]e, EQ [-2i sin(kz cosa)] exp[i(- kx sine - mr)]l)
= 2 (E)? sin’(kz cosar)

Because of the square, the periodicity Az of the distance of the blackened strips from
the reflecting plane is given by

A
2 cosa

kAz cosda = 1 = Az = (¢))]

Thus, for &= 45°, the blackened strips are farther apart by the factor 1/cos(45°) = V2,
compared with normal incidence [1/cos(0) = 1, Eq. (11.4)].

For E parallel to the plane of incidence (Fig. 6-4), we have from Eq. (6.32) for
reflection from a perfect conductor

Eg (ex cosar + e, sina) E§ exp[i(- kx sina + kz cosa — 1) ]

Ey = (-e cosa + e;sina) Ef exp[i(- kx sina - kz cosa - o1)]

(IEoy + Eyl?)
=2 (E%)2 [cos2a sin2(kz cose) + sin?a cos2(kz cosa)]

= 2 (58)2 [cos2a sin2(kz cosa) + sin2a] ,Fse (1‘:’3)2
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Here the E, and E; components produce respective interference patterns that interlace.
In general the components are of unequal amplitude, but for & =45° the components
are equal and the total (IE,IZ) is spatially uniform. This result may be understood
geometrically by noting that, for this particular angle of incidence, the incident and
reflected E; fields are orthogonal and thus have the resultant (peak) amplitude of V2EJ
at all locations (time-averaging the square of the field then removes the factor of 2).

The effects are reversed for the magnetic fields. An additional experiment by Wiener
used this fact as further proof that photochemical processes depend upon the electric
field. See Born and Wolf (Bo80, Sec. 7.4).

11-2. The oscillating function
[Re] A e-i* = [Re] A0ei? i@ = A0 cos(at— ¢)

where A = A%’? is a complex amplitude (carrying phase information), can be
visualized as a radius vector of length A? rotating clockwise in time in the complex
plane. The orientation at ¢ = 0 is determined by the phase ¢. The projection on the
real axis is the physical meaning. The operation of adding two-dimensional vectors
commutes with the operation of projecting them onto the real axis. Therefore, if we
wish to add two or more oscillatory quantities, of different amplitudes and phases but
of the same frequency, we can first add them as vectors in the complex plane (at a
particular instant of time and, in the case of waves, at a particular position in space).
Then the projection of this resultant rotating vector on the real axis is the desired sum of
real parts.

For example, the adjacent diagram 5.7 (=4
represents the sum of the two fields of E/r/ ,T\ﬁn"dl
Egs. (11.5). By the law of cosines, / # B 2
the square of the resultant amplitude is -"\q i

(B2 = (E9)* + (B8)* - 2 EE3 coslm — (¢2 - 9]

With cos[n—(¢2—¢1)] = — cos(¢—¢;) = — cos(A¢), and the intensity definitions of
Eqgs. (11.9-10), we obtain Eq. (11.13).

11-3. Let's agree that ¢; =0, that the phases are numbered in order of
increasing magnitude, and that the increment from one phase to the next is no more than
180°—thus restricting the phasor diagram to a "convex" polygon. We will not count as



distinct a rearrangement of the order, nor the possibility of adding an arbitrary multiple
of 360° to any of the phases. Equal amplitudes obviously require phasor arrows of the
same length. (a) A null resultant requires that the three arrows, placed head-to-tail,
close to form a triangle. There is only one way to do this under our rules: an
equilateral triangle. The phases of the waves' are uniquely 0, 120°, 240°. (b) For a
null with four phasor arrows of equal length, we have an equal-sided parallelogram,
with the phases 0, ¢, (arbitrary but less than 180°), 180°, and ¢; + 180° (the special
case of 0, 180°, 360°, 540° is a reordering of ¢ = 180°). With five arrows, there are
two classes of configurations, each with two degrees of freedom, in general: the
possible deformations of a convex pentagon, or of a "star" configuration. Etc., ...

2 4
YN 4 LYl 2
5
1 1 !

11-4. Consider the displacements of the virtual sources in Figs. 11-9(a—c) as the
real source S is displaced toward the top of the diagram. In frames (a) and (b), the
virtual sources, S1 and Sy, are displaced by nearly equal amounts—both downward in
frame (a), both upward in (b) [the figures exaggerate the angles involved]. Thus the
interference pattern at Q keeps the same fringe spacing, but the entire pattern is
displaced. For a primary source whose width is comparable with the fringe spacing,
the pattern at Q is smeared out.

In the case of Lloyd's mirror, frame (c), upward displacement of the real source §
displaces the virtual source (below the mirror, not shown) downward. Accordingly,
the spacing of the fringes at the observation plane changes (decreases) somewhat, but
the center of the pattern at Q) is not displaced. The fringe visibility degrades as the
observation point moves toward @5, but the fringes remain distinct near Q;.

An alternative way to state the same argument is to note that, in the case of frames (a)
and (b), the path lengths from the virtual sources to Q change in opposite ways (one
increases, the other decreases), and thus the differential path changes significantly. In
frame (c), both paths change in the same way, and the differential path remains constant
to first order. This topic is discussed by Born and Wolf (Bo80, Secs. 7.3.2 and
7.3.4).

11-5. (a) We draw rays representing a plane wave incident at the glancing angle
6, and reflected as a plane wave at the angle 6,. Let the distance between adjacent
atoms be 4. The incoming wavefront coinciding with atom a intersects the other ray at
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the point p, and the outgoing wavefront
coinciding with atom b intersects the
other ray at the point g. If the scatterings
are to interfere constructively in that
direction, then the respective path-lengths
pb and ag must differ by an integral
number of wavelengths,

pb - pb = d (cosB) —cosy) = tmd

where m is an integer or zero. If d is much larger than A, there can be several values of
6, for a particular choice of ;. But when d = A, typically, the only condition for
constructive reflection is with m = 0 —that is, 8; = 8, the usual equal-angle
condition for specular reflection. With the whole plane of atoms spaced uniformly, all
scatterings are in-phase and add coherently, giving a substantial reflected amplitude
even when the scattering by a single atom is tiny. Note that the equal-angle condition is
independent of the atom-spacing d. Furthermore, it holds for constructive interference
from a two-dimensional array of atoms in the reflecting plane even when a principal
axis of the array is oblique to the plane of incidence.

(b) Now we have two planes, separated by
the distance d [which may or may not be the

same as in Part (a)]. The incoming and\ | /
outgoing wavefronts coinciding with atom a _©_¢ \g*
¥

intersect the other rays at the points p and g,
respectively. Now, if the scatterings are to
interfere constructively, then the excess path-
length by way of atom b (that is, pbq) must be
an integral number, m, of wavelengths,

;‘,E=2f§5=2¢fsin9=mﬂ.

If many planes are equally spaced, the reflections from all planes will add
constructively. Combining Parts (a) and (b), we have the conditions for the
constructive interference of scatterings from every atom of the three-dimensional array.
The convention of measuring angles from the crystal planes rather than their normal
(thus giving a sine rather than a cosine in the Bragg formula) is in fact consistent with
the convention of measuring from the normal to a one-dimensional diffraction grating,
as in Sec. 11.8 [compare Eq. (11.62), and Prob. 11-14]: the normal of the crystal's
"grating" is tangential to the crystal planes. The conditions for constructive reflection
from a three-dimensional grating are more restrictive than for a one- or two-dimensional
grating in the sense that only a discrete set of incident angles work. See further
discussion in, for instance, (E£85, Sec. 10.10).
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11-6. From Eq. (11.42), the transverse coherence length of visible light from the
Sunis
A 500 nm

Lie = 36, ~ 0.009 rad = 006 mm

Thus the pinholes would need to be closer together than this small distance.
Alternatively, the Sun's light could be "spatially filtered" by a single pinhole used as a
secondary source to provide a much smaller A@; (see Fig. 11-14). The Sun's light is
of course broadband: for visible light, the longitudinal coherence length [Eq. (11.40)]
is of the order of one wavelength. Thus the "white-light" interference fringes wash out
quickly beyond first order, unless a wavelength-selective filter is used.

11-7. As discussed following Eq. (11.37), the interferometer can be adjusted to
give either circular fringes ("bull's-eye" pattern) or parallel-linear fringes. Moving the
mirror moves the fringes; a particular pattern is essentially duplicated by a mirror
displacement of A/2 = 295 nm—the periodicity of the primary intensity variations of
Fig. 11-15. With the Na doublet, for certain path differences A the bright fringes of
one component coincide with those of the other component (left and right margins of
Fig. 11-15), while for other A's the bright fringes interlace and the "visibility" of the
interference disappears (center of Fig. 11-15). The analysis leading to Eq. (11.47)
applies, with €= Jf(kz = k;) = m(AA)/A2. But note that the periodicity of the
envelope occurs for an increment in €4 of % (not 2xt). Thus a full cycle from full
visibility back to full (or from non-visibility back to non-visibility) requires a mirror
displacement (= A/2) of n/2e = A2/2(AA) = (589)2/2(0.597) = 0.291 mm. The
numerics plotted in Fig. 11-15 are for ko/e = 16.3; for the Na doublet, k¢/€ =
2A/AA = 1974 —that is, the Na case has vastly more fringes between visibility nulls.

11-8. From Eq.(11.56),

vJC? + §2

V(4) = P

Therefore, Eq. (11.52) can be written
X4 = P{l + V(4) [__g____ coskod - ——S—— sinkoA
NCr+s2 NCi+s2
= P[1 + V(4) cos( 8 + koa)]
where tanf = S/C. The envelope is obtained by putting cos(6+kp4) — 1, so that
ﬂg‘l = 1+ V(4)
Chapter 11

Thus V(4) is the envelope of the normalized intensity curve J(4)/P, measured against
its average value of unity.

11-9. Using Eq. (11.49),

J(A)—-%J(O) = 2 J-" Io(k) [1 + coskA) dk - J’“ Io(k) (2) dk
0 0

=2 I“ Io(k) coskA dk
0

The Fourier transform, Eq. (B.12a), is then

A = 2 J” [rfo(k') cosk’A dk’] eitd 4 A

0

We can interchange the order of integration if we distinguish the dummy variable
k — I’ in the k-integration from the coefficient k of A in the complex exponential of
the transform integration (this latter k remains as the argument of the final result).
Consider the integral,

I“cosk’d et dA = %J‘w [eik+r)a 4 ¢itk-1D4] g4

In turn, consider

J‘-H-eimd dA = D];_[nw i_:_;‘_(eimb - e—imD) = zplilnp. %

This limit is zero unless m =0, in which case it blows up. That is, it has the
properties of the Dirac delta function &(m) discussed in Sec. 1.9. To normalize the
delta function ip accordance with Eq. (1.97), we find from tables [e.g., Dwight
§858.601] that : (sinmD/m)dm =%, 0, or — §, as D is positive, zero, or negative.
Since the integrand is an even function, it follows that (for D > 0)

I Tdm = =® whence [ T(——)né'(m)

Finally we put the pieces together to establish that

4o
J’ cosk’A e*4dA = m[8(k+k’) + &(k-k)]

-0



Consequently, the Fourier transform becomes, using Eq. (1.98),

A(K) = 2n j "Ik S(k-K) dk’ = 21 Io(K)
1]

Thus a numerical calculation of the Fourier transform of an experimental measurement
of J(A) - }J(0) yields the spectral intensity function o to within a scale factor.

11-10. The situation is shown in Fig. 11-16(d). We have

100 = tofexel (& + 2EP/a2] + exp|{£ - 23Jrat] |

where a2 = (8k)%/4 In2 as in Case II of the Example. Let u =&+ 38k/2. Then for
the respective Gaussian curves, from Eq. (11.53a),

+ou "2
P=P,+P =4l e.xp(- -&T)du

= 4\raly

(using tables, such as Dwight §860.11). Similarly,
CHA) = 21 J-“ex;{- 525) cos(ud ¥38k A/2) du

Expand the cosine by the formula for sums of angles (e.g., Dwight §401.03-04) and
use the fact that the cosine and sine are even and odd functions, respectively, to reduce

the integral to
= 4Ipco 3 8: A]J."exp[- —:;] cos(uld) du
0

242
= 2Vnal exp(—af)ms(sa,fd)

(Dwight §861.20). A similar argument gives

2 A2
S: = F2Vmal exp(—af)sin(aazde
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Thus C=Cy+ C_=2C¢,and S =S, + S_=0. Finally,

) ' 2 A2
VCc2 + 82 _ exp(_ a44 ) Im(:s 5: A)l

Vi4) = 5
which is the visibility curve plotted in Fig. 11-16(d).

11-11. The intensity distribution function is

1 = {m( g yoxg- @;&&ﬁ]}

ol

where o = (8k)2/4 In2. We use the subscripts 1 and 2 to distinguish the two
components. The integrations are similar to those for Prob. 11-10. We get:

2
P = P+P = (l + %)ZIQJ‘WGXP[- %]du = 3vral

a
u

Ci+C; = [1 + Lcos(2 aka)]zﬁafoexp( 2"‘2]

ta
L}

S1+85 = [0 + %sin(2 8k A)] 2Vnaly exp( azdz)
Finally,
V4) = _—“C;"'sz = [§-+ cos(2 8k .f.'t)]”2 % cxp(— 9_334&)

The function oscillates between the envelope curves exp(—024%/4) and
Jexp(-02424).
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11-12. The sum of a finite geometric series can be proved by induction to be

a(l —un
a+au+aut+ - +aut-l = im)—

In this case, a — 1 and u — ¢™?. The rest of the manipulation is written out in
Eq. (11.58). When the argument of a sine is close to an integral multiple of =,

sin(mn + £) = sin(mr) cos(g) — cos(mm) sin(e) = (-1)"e (e<<1)
Thus, since Nv approaches a multiple of © whenever v does, the limit is

si{n Nv) 5 Nv =N
sin(v) v—omn y

If we define the intensity at the principal maxima as I, then Eq. (11.60) follows.

11-13. (a) The condition for the maxima of Eq. (11.61) repeats Prob. 8-20,
with a/2 — v. (b) For large N, the numerator sin(Nv) oscillates much faster than
the denominator sin(v). Thus the maxima are largely determined by the numerator
alone (i.e., when Nv is close to an odd multiple of 7/2), except close to a principal
maximum (where v = mm, as in Prob. 11-12) where the maxima that might be
expected at Nv = Nmn £ %1: are suppressed by the principal maximum. Thus, in the
domain 0<v<m, the subsidiary maxima occur for Nv = 3x, 3m, ---, (N = %),
(N - Dn. There are (N —2) — L= N -2 terms in this sequence. The subsidiary
maxima closest to a principal maximum have Nv = %n:, whence sinv = 31t/2N, and
W = (2/3m)2 = 1/22. The subsidiary maximum closest to halfway between principal
maxima has v = /2 and IsinNvl = 1, whence I/l = 1/N2.

11-14. (a) In Eq. (11.57), the incremental phaseshift A¢ from one slit to the
next now consists of two portions, kd sin8; on the input side and kd sin6, on the
output side. That is, A¢p — kd(sin6; + sin62), and Egs. (11.59) and (11.62) are
modified by the substitution sin@ — sin8; + sin6;.
(b) The generalized grating equation can be written

d [sin(é — 63) + sin(67)] = mA
Differentiate with respect to 6, setting d&d6; = 0 (with fixed d, m, and 4),

cos(8—02) (0-1)+cos(B2)(+1) = 0 = cos(8;) = cos(d- 6,)
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Since 6 and 6, are first-quadrant angles, the extremum is the symmetric condition
6, = 8- 6 = 0y, and it is easy to see that this is a minimum of 8. Accordingly, in
this case, 2d sin(8/2) = mA. The advantage of this arrangement is that only one angle
() need be measured with high precision (since § is independent of the grating's
orientation to first order). Otherwise, one must measure two angles with high
precision, even when 6; is nominally zero. Note that Bragg interference, Prob. 11-5,
occurs with the minimum-deviation symmetry.

11-15. From the grating equation (11.62), the third-order yellow components are
centered on an angle such that

dsin® = mA — 34, = 1731 and 1737 nm

Meanwhile, the fourth-order blue line is centered on 4A; = 1743 in these units. From
Eq. (11.66), the finite number of slits broadens the principal maxima so that the

resolvable AA is given by

m Adges = % - % = 14.5 nm (yellow), or % = 11 nm (blue)

Thus not only do the two yellow components merge to form a single unresolved line,
but also the comparably blurry blue line falls essentially on top of the yellow "singlet"
(the superposition appears as a strange-looking pink to the human eye).

In the seventh order, 74, = 4039 and 4054 nm, a difference of 15 nm. So this is the
lowest order in which it should be marginally possible to see that the yellow line is in
fact a doublet. (There is no confusion from visible lines in another order.)

In the 17th order, 174, = 9809 and 9845, while 184, = 9830. Now the two yellow
components are well resolved (but with indistinguishable color to the human eye), and
the bright green line appears neatly halfway between them!

11-16. The factor T in Egs.(11.76-81) is replaced by (1-R - A).
Consequently, Eq. (11.85) is multiplied by the correction factor

LoR<A Y (1 c B u [kl

1-R - ~ 1-R | T+A
It should be noted that, when significant absorption is present, there are usually
phaseshifts other than 0 or = in the reflections. Accordingly, the incremental phase

difference of successive reflections, given by Eq. (11.72), includes an additive
constant. See Born and Wolf (Bo80, Sec. 7.6.1).




11-17. The condition for a bright transmission fringe in a Fabry-Perot
interferometer is given by Eq. (11.86),

2nd cosé, = mA
where n is the refractive index, and 6 is the angle with respect to the normal, in the

space between the reflecting surfaces (see Fig. 11-20). Differentiating and eliminating
the order m,

_ |46 _ m 2nd cosé,) _ ctnb
“’F-"'ld,ll"zndsine,[ mA )‘ 2

In most practical embodiments, the medium between the reflecting surfaces is air, and
6, is essentially the same as the external (observed) angle 6p. Similarly, combining
Egs. (11.62-63),

Dy = [dsins)_&ﬂ

gralng = g cos@| mA |~
Fabry-Perots have their maximum dispersion for small angles (i.e., close to the axis of
the system), while gratings have their maximum at large angles (6@ — n/2). But
gratings diffract only a small amount of light into high order, while Fabry-Perots are
best used close to the axis. Thus, in practice, Fabry-Perots yield much higher
dispersion (e.g., for looking at the "fine-structure" of a spectral line, or at Zeeman
splitting). On the other hand, Fabry-Perots operate in high order (d >> 1), where the
presence of many wavelengths at the same time can be confusing. One could use a
grating in low-order to pre-select a particular spectral line for analysis by a subsequent
Fabry-Perot. See also the following problem.

11-18. (a) The cited equations are

A _ 1 _ 2 A _ 2nndcoséy VR
A ~ m 2ndcos6’ Al)es A 1-R
and so
F= A _ VR
(M)res 1-R

(In practice, the achievable finesse of a Fabry-Perot is limited by the flatness of the
plates.)
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(b) The corresponding relations for a grating, using (m+1)A = m(A+AAs;) and
Eq. (11.66), are

A _ 1 _A
T =m0 B TN
from which
(Agsr =N
(A)res

Typically, a grating's N is substantially greater than a Fabry-Perot's .

11-19. The full width at half maximum is the 8¢ of Fig. 11-24, which is given
by Eq. (11.90) as
4 _ 2(1-R

r=2=% =-—

=" S = 2(1-R)
o

where the approximation assumes that the reflection coefficient R is close to unity.

The instrument's resolvable wavelength increment can be expressed in terms of the
resolving power R defined in Eq. (11.92) as (AA)instrument = /R When a spectral
“line" has fine structure that spreads it over the wavelength range (AA)jipe. its
longitudinal coherence length is given by Eq. (11.40) as Ly = Ag2/(AA)jine. If the
Fabry-Perot is to resolve the fine structure, we require

(AA)instrument << (AA)iine

where again we have assumed that both ncos6, and R are close to unity. The quantity
2nd/(1 - R) can be thought of as the effective distance that a monochromatic wave
bounces back and forth between the mirrors before escaping from the Fabry-Perot.
When the coherence length of a wave train is longer than this parameter, the F-P
presents it as an unstructured "monochromatic” line whose breadth is determined by the
instrument. If fine structure is to be resolved, the parameter must be larger than the
coherence length of the composite "line", the degree of inequality being determined by
the amount of fine structure to be resolved.
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Chapter 12

12-1. A straightforward binomial expansion gives

8(p) = (Z2+ p2)'2 + (Z2 + p2)' 2 - (Z + Zy)

=Z(l+%%—i-%p )+zo(1+2% ]3'%+ -—)—(Z+Zo)
> 3z + )0 - o
From Eq. (12.21),
48)- st 42
from which Eq. (12.22) follows. The integral in Eq. (12.23) is
[ cmran = LT = k(e - cmein) = Zay

n-1

since et™ =—1. The integral in Eq. (12.25) is

N N2 —inNR2
inn 5 _ 1 pr.re VN _ 1 ¢ inn _2 imvn(et -
J-ue d’n—m[e _in(e -l)_ne oF

0
_Z_ N - N
_n(ﬂ sm(—z)

since ™2 =, In the res_ults of both ingegrations, when n or N is non-integral, the
complex terms (~1)" = ™ and (i) = ¢™2 are simply phase factors of magnitude
unity, which wash out in the intensity (proportional to the absolute square).

12-2. Equation (12.14) reduces to Eq. (12.15) for the case of an incident plane
wave. The term 1/Z; disappears in Egs. (12.19), (12.21), and (12.24). Equation
(12.22) becomes da = tAZ dn. In Egs. (12.23) and (12.25), we make the
substitution

A"Mb’
Z+2Zp vo e
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Because the denominator factor (Z + Zp) has gone away, the intensity Io in
Eq. (12.26) is no longer dependent on either the ("infinite") input distance Zg or the
(finite) output distance Z.

12-3. (a) Generalizing Eq. (12.21) for large angles, but putting Zo = Z,

7 = VZo+p,2 + NZ24p2 - (20 +2) - WZ24+p,2 - 2Z
= Z2+p,? = [Z+"3'

from which the area of the nth zone is

A2
Moy = wp2-paid = n2E + 22 ) E - ip e
ﬁ + n-1)%E 16

(b) For the nth zone, the radii r = rg in Fig. 12-7 can be closely approximated by
Z + (n - DA/, Similarly, (e, - eo)'n = cos + cosf = 2Z[[Z + (n - D).
Thus the relative amplitude contributed by the nth zone is very nearly

A e 2Z (RA/2)[Z + (n - HA/4] _ TAZ
= Z+(n-Yas| [Z+ (n- DHaap (Z + n A14)?

The final approximation follows because we assume Z >> A (but not Z>>nAi !).

12-4. (a) The assumptions are equivalent to |dA,/dnl << A,, and
d2A,/dn? > 0, where A, is the amplitude contributed by the nth zone. From the result

of the preceding problem:

1 |dAaf

dn

_(Z+nA4? _12mAz (A)_ __ A
nAZ (Z+nAl4)3\4 )~ 2(Z+nAld)

This is at least as small as A/Z, and goes to zero as 1/n when n >> Z/A. Similarly,

A, nAZ A 3nA3Z
dnz = (-2)(-3) Z+n ;u4)4( )7 = 8(Z + nAla)*

This is indeed positive, and at least as small as (/Z)3.



(b) An estimate of the magnitude of the sum of the terms grouped in parentheses is

given by
J‘- 1d%A,\dn _ 3nAZ (= _1 . _ 1A
o G2 )2 T 78 0(z+u)4"'8z2

So even this sum remains very small. Therefore the two groupings bracket the
magnitude of the total signal A as

Ay +Ayn sk % {2A|—A2—;N_|+2AN

AI+AN}
2

2

(c) When N is even, we can again group the series in two ways:

% Mg [%l—Az +A—21J+ (14-3-_,14+4.5.J+...+AM+AN

2 2 2 2
A A A A A A
= a - (Foase ) (Boase ) - B
which brackets the amplitude as

A|+AN_1-—2AN=A|-AN 2A1 - A2—-Ay A1 —-An
{ 2 2 }““‘“{ 2 =72

When N — oo, then Ay — 0, and A — A1/2. Since the paraxial approximation
holds for the first zone, Eq. (12.23) shows that one-half the contribution of the first
zone is precisely the unobstructed wave.

12-5. (a) Assuming the paraxial approximation, Eqs. (12.19) and (12.21)
continue to hold with the understanding that we are now talking about linear strips
whose boundaries are measured by the one-dimensional Cartesian variable p. Since the
strips are of indefinite length perpendicular to the diagram, we normalize the amplitude
per-unit-length in that direction. That is, the element of area da reduces to the element
of width dp, doubled because we count the pair of strips on both sides of the symmetry
plane as part of the same zone-element. Thus, rearranging and then differentiating
Eq. (12.21),

_‘\/ 12 _ a4 _ .‘f L)
p(n) = zﬂ_'_z);n = da—>2dp-2£dn-2 Z%E;ﬁfdn

In contrast to Eq. (12.22) for circular (annular) zones, the "area" of the linear zones
depends upon n even in the paraxial approximation.
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(b) The diffraction integral corresponding to Eq. (12.20) is now proportional to

-[ er'l:52dp oc Iefﬁn éd"

We use a proportionality because it is tricky to write out the full expression for the
diffracted amplitude in this case. [The appropriate wavefunctions, replacing Egs.
(12.6) and (12.13), are now cylindrical waves varying as 1/Jr, rather than the spherical
waves varying as 1/r. The coefficient of Eq. (12.20) would have to be modified
accordingly.] Now, make the substitution n — v2/2, so that for the nth zone
[analogous to Eq. (12.23)]

2 —
J"' eitn L g J’(m oi(m/2)v2 .\/ 2 2vdv
Jn - v:i 2
»1 217

Except for the factor of V2, this has the desired form, which anticipates the
conventional notation of the Fresnel integrals discussed in Sec. 13.1.

12-6. (a) Let the amplitude of the incident plane wave be yp, from which its
intensity is Ip o< wp2. This is of course the intensity at the point P for a very large
aperture. For an aperture exposing one Fresnel zone, from Eq. (12.23), the intensity
is 4l [e< (2yp)2]. If the exposed zones of a zone plate are forn=1, 3, 5, --,N
(and paraxial conditions prevail), the contributions all add constructively and the
intensity at P is

o (N; lzon - N+ 12

When N is large, this intensity is very great, but it falls rapidly away from P (both
axially and radially) because the hardware boundaries of the zone plate no longer match
the geometric zones for the displaced point (see Fig. 12-12).

(b) From Eq. (12.21), the given radii p, = ‘\J nAZ are the zone boundaries for an
incident plane wave (Zg — o) and a "focal point" P at the observation distance Z.
But now consider a second observation point, P’, at the distance Z/3. Then the open
aperture between the axis and p; = Y AZ exposes three zones at P’, which deliver the
amplitude (+2-2+2)yp = 2yp. More generally, with respect to P’ the zone plate
exposes zones 1-3, 7-9, 13-15, ---, and masks zones 4-6, 10-12, -+-. The intensity
at P’ is now approximately (NB)ZIO. (Note that at the observation distance Z/2, the
zones are paired, and there is zero intensity on axis. At distances of Z divided by a
non-integer, the phases from exposed sets of zones are scrambled and the intensity is
typically of order Ip.) Generalizing this argument, we see that there are subsidiary
"focal points" at Z/k, for odd k, with intensities of about (N/k)zlo.
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(c) Returning to Eq. (12.21) and assuming that a spherical wave is incident from a
source point at the distance Z,

A_(1L, e 1,1_2
2 —(z+zo) T T ntzepd
For an extended source (subject to the paraxial limit), each pixel in the source plane at
distance Zj maps to a corresponding pixel in the image plane at distance Z. Thus the

principal "focal image" of the zone plate obeys the standard equation for thin lenses of
focal length f= p,Z/A.

12-7. The function of the lens is to convert
plane wavefronts into spherical wavefronts
converging on the observation point P. The
aperture plane coincides with a wavefront of the
incident wave. The variation in r that must be
included in the phase factor e™*" can be identified
with the incremental path & between the aperture
plane and the diffracted plane reference wavefront.
Since the ray passing through the center of the lens
is undeviated, the angle between these two reference planes is tan-1(x/f) = x/f. More
generally, the direction cosines of the parallel diffracted rays, which are gathered by the
lens and focused on P, are [compare Egs. (12.32)]:

=X = X
a=~% B=7

The incremental path §is a linear function of the aperture coordinates £,7. Thus, the
expression for r, replacing Eq. (12.33), is

r=f+af+pn

The diffraction integral is now of the Fraunhofer form, Eq. (12.37), with Z — fin
the coefficient. Note that the use of lenses implies the paraxial approximation in order
to avoid the lens aberrations of geometrical optics. However, so long as the aperture
width is small compared to f, one can tilt the lens to observe diffraction at a large angle;
the obliquity factor 3(1 + cos6) then would appear in the coefficient.

12-8. The wavelength of visible light is about 550 nm. Let's use the engineers'
criterion cited in the footnote to Eq. (12.34), R = 2D%/A. For a narrow slit of width
D =0.1 mm, we have 2D?/A= 3.6 cm. So source and observation distances of a
few centimeters are sufficient. With D =2 cm, we have 2D%/A = 1.5 kilometers; a
lens is almost surely required (or one can rule the grating on a concave mirror). If
D = A2, then 2D%/A = A/2, and Fraunhofer conditions pertain beyond distances of
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the order of the size of the antenna itself. For the FM radio band, v= 100 MHz, and
A/2=15m. (Note: In diffraction theory, the Kirchhoff boundary conditions,
discussed in Sec. 12.2, are valid only for apertures of width D >> A. But radio
antennas can have well-defined current distributions with D< 1.)

12-9. Using (den)(num)’ = (num)(den)’,
the extrema of sinu/u occur when

(u)(cosu) = (sinu)(1) = tanu = u

This transcendental equation has no root in the
first quadrant (other than u = 0), but beyond
that there is a root as u approaches 3n/2, 5n/2,
etc. To evaluate the shortfall, rewrite the
equation as

B -

ctnu =

and let the roots be at uy, =%m1t —&n (Mm=3,5,7, --). Now Taylor-expand each
side to first order:

ofF) - sy (o) = s = ) o)

2/mn

= &m 1- 2/mm)?

As fractions of the period (1) between subsidiary maxima, the results are:

m En/T
3 0.071
5 .041
7 .029
9 .023
12-10. (a) The diameter of a circle such that 3/2 J_ﬁ'

times the circumference is VI is given by 3nd = To.

The resultant chord of this phasor is the diameter,
corresponding to the intensity d2 = (2/3m)2lp = Ip/22.

The actual maximum resultant occurs with the spiral d
slightly unwound: the resultant is then less than the

diameter, but the diameter is bigger (this is the m = 3

case of the previous problem).




(b) By the law of cosines,

(V1) = R2+R;2—2R RycosA
and this holds for angles A¢ that are
greater than 2x (the sketch illustrates
A¢ = %n). But under paraxial conditions,

the radius of curvature is constant: that is,
R1 = Ry = VIo/A¢ = VIp/2u. Thus,

(&) - (3]

12-11. The nulls occur at u = m=n (mn=1, 2, 3, «++), so only the Si function
contributes. The desired evaluation is

mE z
%L (i—“;ﬂ]’ du = %Si(‘bm)

Table 5.3 (p. 244) of Abramowitz and Stegun (Ab65) gives Si(mx):

= 2R2[1-cos(2u)] =

m Si(2mmr) (2/m)Si
1 1418 0.903
2 1.492 950
3 1.518 .966
4 1.531 975
5 1.539 980

Series expansions suitable for computer evaluation are given in A&S's §§ 5.2.8,
5.2.14, and 5.2.34-39.

12-12. (a) The angular size of the diffraction pattern, measured from center to
first null in each dimension, is Aa = w/ka = A/2a by AB = n/kb = A/2b. That is,
the area on the observation screen illuminated by the aperture is proportional to

AcAB = 7

which, in turn, is inversely proportional to the aperture area S = 4ab. Given that the
intensity of the pattern is proportional to 52 [Eq. (12.50)], but this infensity (power per
area) is spread over an observation area proportional to 1/S, then the total power
observed is directly proportional to S, consistent with conservation of energy.
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(b) Using Egs. (12.48) and the integral relation given in the preceding problem, the
integral of Eq. (12.49) over its entire diffraction pattern is

Pow = || Ky dx dy = [2,: L ,rOJ"'" (_.L‘a]zdua J’ ("‘“T:h duy

(M @b (Mb]z [wol? - 28i(ug—>00) - 2Si(ug—0) = dab lyol* = Pinc

where Pj; = (incident intensity) X (aperture area) = power entering the aperture.

12-13. The mirror reflects back the diffraction pattern that would be produced by
an aperture of dimensions 2a X 2b. In Eq. (12.50), finc = |yo|? is the incident
power-per-area. An area ASp in the observation plane (in this case, at the radar
transmitter-receiver) subtends the solid angle A2 = AS,./Z2, and receives the power
Prec = IpASrec (assuming A2 << 1). Thus,

4n P—'“’—I_n‘:n 4n |! (40!?]“

12-14. The revision of Eq. (12.38) gives the integral

.Lr A e-“(hinﬂ)ﬁ dE

(a) For cosine illumination, we have:

has +n/2 .
J COS(%) e—l(hille)ﬁ dg = %J‘ cos(y) e~i2uin)y dy
/2

- -

where y = n&/2a, and with u = kao = kasin@ as before. From integral tables [e.g.,
Dwight §576.1], this equals:

L i) - [
= | T-ume |’ y Y v T LT-Cumy

cosu
= 1= o[

where Iy is the maximum intensity at u = 0. Compared with the uniformly illuminated
slit [Eq. (12.41)], this has a broader central maximum and reduced sidelobes.
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(b) With infinite limits, the integral is the Fourier transform of a Gaussian function:

oo oo
f ¢~52a? o-ilksin®)f g Ju e 572 [cos(ksin@ &) - i sin(ksin@ £)] d&

Since the Gaussian is an even function, the integral of the sine term in the Euler
expansion of the complex exponential vanishes. From tables [e.g., Dwight §861.20],

+oo - . =
J- e’fz"z"zcos(ksinﬁf)df = -\ffa g~ {kasin€P2  _ 1’5‘,3—"’&

-0

= I =1 e
The amplitude and intensity functions are also Gaussians, the famous case of a function
that is its own Fourier transform. The standard deviation of the intensity Gaussian is
o, = 112,

(c) The Fourier transform of the sinc function (once again an even function) gives:

J’ +ee sinwgn Qaa! eihsin®)s gz _ 'r_ s’i—“(u%l cos(ksin® &) d&
L 0

a (lul = kalsin@l < m)

Dwight §858.701 {

ar? (lul = )
0 (lul > n)
Iy (lul < )
= I =
0 (lul > w)

The amplitude, and hence the intensity, are box functions of width —x < u < +x [see
Boas (Bo83, pp. 651-2)]. This case is just the Fourier-inverse of the uniformly
illuminated slit, whose diffraction pattern is the sinc function of Egs. (12.39) and
(12.41).

12-15. We wish to expand the exponential in Eq. (12.59),
a 2n
we) = C f pdp f e *Poost dg
0 0

where the p-dependence of the ¢ integral is part of the integrand of the p integral. The
expansion of e* is:
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xm
cx=1+x+§22+%‘x3+---= il

The p integration of the mth term is
* +ldp = ;amz
5 pPrEeP = T

From symmetry considerations and tables [Dwight §858.44], the ¢ integration is

r“ { 0 (m odd)
cosmpdp =
(m-1)!n
0
mt dmopzma "
Thus the mth term in the series for yis
c ko (a_"‘*_f) (m-1)! =
m! m+2 (%my (%m_l)l 2m-2
_ 4 22-1)!
w21 TC D GRaO oo AT D)
(Gka6)2
= ma’C (-1} A+1D)! A

From Eq. (3.95b), we find the Ath term of J,, is

(%u)u.u
D T A

The two series match for n=1 and u = ka6. Thus we confirm Eq. (12.65),

2J(ka
wo = nac 21020

12-16. In Eq. (12.37) or (12.53), the integrations over the two Cartesian
coordinates & and 1) are independent except insofar as they may be coupled by the limits
on the integrals—that is, by the shape of the aperture. Suppose we stretch or compress
the aperture by a factor b in the £ direction. That is, the limits on the £ integral are
miultiplied by the factor b,



Thnin bEn(m)

Now, substitute the new variable & = &b, and the integral becomes

Tl Emin(M)

This integral has the same formal limits as the unstretched prototype, Eq. (12.53).
Therefore, it is identical to the prototype except that it has been multiplied by b, and o
has been replaced by batin the exponent. Accordingly, the diffracted intensity I’ for the
stretched aperture is

I'(e,f) = b2 Kba,p)

where I(e,B) is the intensity pattern of the original unstretched aperture. Now, o, are
the direction cosines measuring the location of the observation point in the x and y
directions, parallel to & and 7, respectively [see Fig. 12-13 and Eqgs. (12.32)]. With
the factor b multiplying ¢, we require a smaller excursion in x (for b > 1) to reach a
given feature of the pattern—that is, the diffraction pattern has shrunk by the factor 1/
in that direction.

As a special case, note that a circle stretched uniformly in one direction is an ellipse,
and thus that this theorem gives an easy way to find the diffraction pattern of an

elliptical aperture.

12-17. The subsidiary maxima of Eq. (12.67) are at the extrema of J;(u)/x,
@) = ()

where the prime signifies the derivative with respect to the argument ». The recursion
relation of Eq. (3.109) gives

uly —nly = —uldpyy = uly =) -uly

Thus the extrema of the amplitude function occur at the roots of J>(u) = 0. These are
the maxima of the intensity function, whose minima (nulls) occur at the roots of J;.

12-18. In the assumed small-angle limit, the annular element of area in the
observation plane is dQ = 2x r2 sin6 d@ — 2rn Z2 @ d8. Thus from Egs.
(12.66-68) the power diffracted within the conical angle ) is
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P(6y) = (—';_-’ZET lwol® J'o" [%"39)]1 2m 22 6 d6
0
= mlyl? [V HEW g,
0

The coefficient is simply the power incident on the aperture. The integral can be
evaluated using recursion relations [see Eq. (3.109), or alternatively Eq. (3.113)]:

wly = nl+ulyyy = J; ==l
’ J_L - ’
uly = nlp+ulpq = T =J-J
Thus,

2J (J;)(%]du = -2_[ (JoJo’ + JiJ1’) du

= ~[Jo2 + 12]™ = 1 - Jo(kath) - Jy2(kab)

The values of ug = ka8 for the nulls of J; (i.e., the centers of the dark rings) are
given preceding Eq. (12.69). From Abramowitz and Stegun (Ab6S, p.411), we
have:

dark ring ka6 Jokab)  1-Jo2
1 3.832 -0.4028 0.8378
2 7.016 0.3001 0.9099
3 10.173 -0.2497 0.9376
5 10
ka8,
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12-19. The lower limit of the integral in Eq. (12.63) is replaced by the inner
radius b of the annulus, with the resulting intensity, in place of Eq. (12.67),

10 = [vor- v - (][ 24880 2G0T

If we put b = ra (and u = kBa as usual), this becomes

0 - (][22 2]

The nulls occur at
Jiw) = rd(ru) )
The subsidiary maxima are given by
@[N'@) -2 '] = [J1w) -2 Ih(rw)]
Using Eq. (3.109), this condition can be written
L) = r2Jy(ru) )

The transcendental equations (1) and (2) can be solved graphically or by linearization.
For instance, putting u = ug + £, we expand (1) as

Ji(uo) + J\'(uo) (6) = rJi(ruo) + r2 Jy'(rug) (€)
Thus, again with the help of Eq. (3.109),

_ J1(ug) — r Jy(rug)
LJotuo) - 82 - 72 | soruq - 1220

E =
Tup

For r = 1/2, for instance, a rough graph from tables (Ab65, p. 390) shows that the
first root occurs somewhat below the first null of J; at 3.83. For up= 3.2, we get
£=-0.055, and hence the first dark ring at u = 3.145 or @ = (3.145/2n)A/a =
0.50 A/a. Compare with u = 3.83, and 8= 0.61 A/a, for the full circular aperture.

By similar linearization, we get u = 4.82 for the first root of (2) with r=1/2. The
relative height of the first subsidiary maximum is thus

Iw) _ 1 27 () 2Jy(ru)
o = (x-rz)z[ 1@ _ 2 21 T - 0.09%
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which compares with the relative height of 0.018 for the full aperture. Thus
obstructing the central portion of the aperture has improved the resolution, but reduced
the intensity of the central maximum and increased it in the subsidiary maximum—that
is, the contrast has been reduced. For further discussion see Born and Wolf (Bo80,
Sec. 8.6.2).

12-20. From Eq. (12.70), the Rayleigh criterion for the resolution of a circular
aperture is
A
A8 = 061 e

The dark-adapted human eye has a diameter of about 6 mm. Thus the telescope
provides an improvement by a factor of about 60/0.6 = 100. The resolutions are:

550x10-"cm
Abye = 0'61(-W] = L1x10%rad = 20secof arc

ABictescope = 1.1x106rad = 0.2 sec of arc

The Earth-Sun distance (the so-called Astronomical Unit) is 1.5 x 103 cm. A light-
year is (3.0x1010cm/s)(3.16x107s) = 9.5 x 1017 cm. Thus the distances at which
the double star system would be resolvable are:

. (1.5%1013)
&Y (1.1x104)(9.5x1017)

= 0.14 light-yr

telescope: 14 light-yrs

Alpha Centauri is at 4.3 light-years; Sirius is at 8.6. For further discussion of the
resolution of the eye, see Miles, Am.J.Phys. 58, 552 (1990).

12-21. Details of the resolution of a microscope are complicated [see Born and
Wolf (Bo80, Sec. 8.6.3), and Higbie, Am.J.Phys. 49, 40 (1981)]. However, a
heuristic argument based on reciprocity suggests that the minimum angular separation
of resolvable structure is approximately that of the Rayleigh criterion, A@ = 0.61/a,
where a is the radius of the objective lens. Compound microscopes are usually
operated with the object very nearly at the focal distance f from the objective lens.
Therefore the linear separation of resolvable points is about

Ax = f20 = 0614



The ratio of focal length to diameter, f72a, of a lens is known as its speed or "ffnumber”
and is limited to values greater than approximately unity for practical lenses because of
aberrations (the oil-immersion technique can do somewhat better). Thus we conclude
that the microscope can resolve structure in the object plane that is somewhat larger than
one wavelength. This is about three orders of magnitude larger than the interatomic
spacing of the material of the pin.

A tolerable image of an alphanumeric character can be made with a 5 x 7 matrix of
dots. Therefore we conclude that a legible character requires approximately
35 x (1.2)2 = 50 square-wavelengths, or 50 X (550x10-7)? = 1.5 x 10-7 cm2.
If we take the proverbial "head of a pin" to have an area of 1 mm?2, then we can put
about 10-2/10-7 = 105 characters, or ~2 x 104 words on the pin. This is about 30
pages of double-spaced typescript text. An electron microscope (deBroglie wavelength
<< visible wavelength) could do better.

This exercise (traditionally phrased as "how many times can the Lord's Prayer be
written on the head of a pin?") is of contemporary relevance in connection with the
achievable density of integrated-circuit electronics since the circuit designs are
transferred to the silicon chips by optical or electron-beam techniques.

12-22. For the circular aperture, the "saddle" occurs for u = 3.832/2 = 1.916,
whence J1(1.916) = 0.5807, and from Eq. (12.67),

Ig _ - (25,(1916)F _
e 2[ 1.916 = 0735

The analogous situation for linear slits occurs for u = ©/2, whence from Eq. (12.41),

%:z(ﬂm’é@]" =-.;:‘5=0.311

For the Fabry-Perot, Fig. 11-24, the saddle height is 2(-%!0) = Iy by definition. In this
case the adjacent peaks are greater than Iy. From Egs. (11.88) and (11.90), the peak
height is

: 1
lo + (A¢=2mx+3¢) = Io [l * T+ asin’(mn + 5¢12):|

1 6
= Ih|l + ———| = 2y
[ 1+ a@N a)z] 2

So here the valley to peak ratio is 5/6 = 0.833.
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12-23. (a) As discussed at the end of Sec. 12.8, the effective area of a
paraboloidal antenna is typically about one-half of its geometric area,

Ay = '% (%dzz) = 35m?
and the required Poynting intensity is

P2 = 14x103 Wim?
2

S =
(b) Using the Rayleigh criterion of Eq. (12.70) to determine the illuminated area, and
translating into the current notation,

D2 = of
3" AbRay = I.22dl

2.44ch _ 244(3.0x108m/5)(36x10°m)

= = @x10951)(2.5x106m)  ~ 26m

In practice, because this antenna is is nonuniformly illuminated by its feed, the radiation
pattern to the first nulls would be somewhat broader than D (see Prob. 12-144). But
we probably want the nulls to come some distance outside the service area anyhow.

(¢) From Eq. (12.68), with the total radiated power P = 1a?|yy|2, we have

2 2
S@-h) = Ip = (% £ o Mok

= 4(chVg _ 4[BOXI0NE6x109 _
= P u(fd, S - n[ @x109026 | @107 = 0IW

(d) If we ignore diffraction and assume that the satellite antenna delivers all its power
uniformly over the circle of radius D at the distance h, then from Eq. (9.77) its
directivity is

4n h? 16A2
Cr =m=4“[m)-ﬁ-33°°

From Eq. (9.84) or (12.52), and the rule of thumb that the effective area is one-half the
geometric area,

Jz‘(:“dlz) = A = Gigg

43 he _ 1.80hc

= dy = oD - /D = 19m

Chapter 12
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This is about 35% less than the value estimated in Part (b)—good agreement
considering the crudity of both calculations. Writing Eq. (9.87) in a mixed form
appropriate to our given parameters, we have

Pre _ GiA2 _
Pirans 4mh?

(6hUD?)(nd2/8) _ dp?.
4mth? T 2p?

2P,D2 _ 2(0.5x10-12)(2.5x106)2

a7 = @r = 07w

= ngﬂplg

which agrees fortuitously well with that calculated in Part (c). The result when cast in
this form is intuitively obvious: we are spreading the transmitted power P; over the
service area of the order of D2, and capturing the small portion P; in the receiving
antenna's area of the order of d>2. Note also that this is a very modest power, so it is
not difficult to provide a terrestrial signal P> that is a couple of orders of magnitude
above the threshold value.

12-24. The deBroglie wavelength is Agep = /p = h/N2mE, where p is the
particle momentum, E its (nonrelativistic) energy, and k is Planck's constant. The
energy of a photon is E = hv, where v is the (cyclic) frequency. Thus the wavelength
of an electromagnetic quantum of energy E is Aem = ¢/V= h¢/E. For equal energies,

h? he h
E= ode? = 1w = MeB? = z5im

The coefficient h/2mc = A¢ is known as the Compton wavelength. By Newtonian
mechanics, a particle whose deBroglie wavelength is equal to this coefficient would

have the energy

E=12%=(%C—E=2mc2?

But this violates the nonrelativistic assumption. Thus, under nonrelativistic conditions,
we have Ac << A4e, and hence Agep << Aem- Since the energy of the incident
particle or photon is limited by the possibility of destruction of the target material, an
electron microscope will generally operate with a shorter effective wavelength, and
hence higher resolution.
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13-1. (a) From Egs. (13.7):
dC ds .
£ - o(p). 5 - n(59)
= slope=j—sc=tangu2)

Since the slope of a curve is the tangent function of the angle @ that the curve makes
with the horizontal axis, in this case 8=§u2.

(b) A small increment-of arc length, As, subtends the angle A8 = As/R at the center of
a circle of radius R. The angle A@ is also the change in the angle of the arc over this
increment. That is, A@/As — d6/ds = 1/R. Applying this relation to the Cornu
spiral, with u measuring arc length along the spiral [Eq. (13.9)],

= \ds du U

Here, R and u are in the normalized units of the Cornu spiral. But because of the linear
relation, the equation holds for R and & measured in any length unit.

(c) In an inertial frame, an object moving with speed V on a (locally) circular trajectory
of radius R has the centripetal acceleration of V2/R. Therefore, a person of mass M
riding in the reference frame of the train experiences the centrifugal force MV2/R. For
constant V — V), there is no tangential (frontward/backward) force. When the track
is laid out as a Cornu spiral, with u = up + Vpt, then the sidewise force is

M;TW — EMVg2(ug + Vi)

13-2. From Eq. (13.12), the opaque strip has the normalized width
Au = W[\ AZ/2. The amplitude received at the observation point consists of two
signals, one from each side of the obstacle. Formally, for a centered observation point,
the diffraction integral, Eq. (13.6), breaks into two: one with limits from u — —eo to
u; = —-Au/2 and the other with limits from u; = +Au/2 to # = +c0. These signals
can be represented by phasors, one drawn from the limit point in the third quadrant of
Fig. 13-2 to the point where u = —Au/2, and the other is from the point where
u = +Au/2 to the limit point in the first quadrant. By symmetry, the two phasors are



parallel (i.e., have the same phase), and have the same magnitude. Thus the intensity is
four times the square of the length of one of these phasors:

e - §o {[1-cep] + [4-ses]'}

The normalization, Iy o< 2, comes from the square of the phasor between the two limit
points, as in Eq. (13.11). Since the length of the chord from the point where
u = Au/2 to the limit point decreases monotonically, so does the intensity as W
increases.

If one wishes to consider non-centered observation points [located by uceq(x) of
Eq. (13.13)], then the limits u] = ucen — Au/2 and uz = ugen + Aul2 are no longer
symmetrical, and the two phasors have neither the same amplitude nor the same phase.
The computation is tedious but straightforward:

1w ) = 2 { [4- ctwn) + cwn - (- D)
+ [4- w2 + s@n) - (- %)]2}

Can you see Babinet's principle lurking in the comparison of this expression with
Eq. (13.11)?

13-3. Fig. 13-1, let the opaque "knife" extend from & = a3 to +oo, and hold
the observation point at the reference line, x = 0 (that is, we'll move the knife-edge,
rather than the observation point). Then in Eq. (13.11) u; = —oo, and
Uy = ag/‘\’ AZ/2. Geometrically, in the Cornu plot of Fig. 13-2, the intensity is
proportional to the square of the chord that extends from the limit point in the third
quadrant to the point defined by u; (the observation point is in the geometrical shadow
for negative values of uz). From the graph, we see that the maximum of this chord
occurs near uz =+1.2. A reasonable approximation is to find the point where the
slope of the spiral is 135° (45° in the second quadrant): from Prob. 13-1(a),
Bus2 = 3m, or uy = V3/2=1.225. A rigorous solution requires calculating the
maximum of

Iw) = 2 {[4+ can]? + [1+ 5w ]?}

From tables (Ab65, p. 321),

uz Ouz) S(u2) Iup)/Iy
1.20 0.71544 0.62340 1.36966
1.22 70212 .63831 1.37042
1.24 .68769 .65216 1.36905
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Interpolation gives u; = 1.217, and a maximum intensity of 1.37044/y. From
Eq. (12.21) (with Zy — oo, and p — a3) and the concept of linear zones developed
in Prob. 12-5, the zone parameter at the knife-edge is n = a2%/AZ = u3%/2 — 0.741.
A value close to 3/4 is hardly surprising in view of the discussion in the paragraph
following Eq. (13.17) (the —-45°-slope condition is precisely the 3/4-zone condition).

13-4. We can use Egs. (13.18-21) to approximate the Fresnel integrals in
Eq. (13.11). The raw abscissa in the frames of Fig. 13-4 is X = x[(W/2), so that the
geometric shadow edges come at the same place (X ==+1) in each frame. The labeling
shown is ucen = XV2N, from Egs. (13.12-13) using Au = V8N from Egq. (13.17).
Thus, uy = Ueen — Aul2= (X = 1)V2ZN, and us = (X + 1)V2N.

Step size: From the figure, we infer that there are N cycles of oscillations within the
"geometrically illuminated" range AX =2. That is, the major oscillations have an
average "wavelength" of 2/N, but this wavelength is not at all uniform and there is fine
structure upon the major oscillations. Something like 16 points per average-wavelength
would capture most of the structure. We'll use 32, that is, a step size 8X = 1/(16N).

Range of abscissa: For large N, in the wings of the pattern, the upper limit is
essentially at the limit point up — +o, and the lower limit u is in the spiral close to
that limit. Therefore the magnitude of the phasor is essentially the radius of curvature
of the Cornu spiral at u;, which was shown in Prob. 13-1 to be R = 1/znu.
Therefore,

(N i N [
Iy — 2(mu;) ~ 4m2N(X-1)2

If we arbitrarily choose the criterion that the relative intensity is 1% at X = £Xp,y,
then

_ 100 _ .16
Xmax = 1+‘\l4ﬂzN-l+W

Further discussion of practical computations of Fresnel patterns, including for the
circular aperture, is given by Heald, Am.J. Phys. 54, 982 (1986).

The numerical case suggested is for a slit of size N zones where, from Eq. (13.17),

w2 (2x10-3m)?

22Z ~ 3(500x10-°m)(1.00m) - 2

N =

The real-space coordinate x in the observation plane is related to the normalized
coordinates by:
Chapter 13
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x[-g-') - Xx1mm

=3 Ugep X 0.5 mm

% = { Wi2
The following program uses the graphing syntax of TrueBASIC. This version chooses

an appropriate abscissa scale for each N value; it could be modified slightly to give a
family of patterns all with the same X scale, as in Fig. 13-4.

REM Fresnel diffraction by slit of N zones
REM Abscissa X = x/(W/2)
DIM X(500),I(500)
OPEN #1: screen 0.1, 0.9, 0.1, 0.9
LET N = 2
SUB FRES(U, C, S)
LET SU = SGN(U)
ABS(U)

! (increase dimension for N > 10)

Ispecify zone size
!subroutine for Fresnel integrals

LET U =
LET F = (1+0.882*U)/(2+1.722*U+3.017*U"2)
LET = 1/(2+4.167*U+3.274*U"2+6.89*U"3)

SU * (0.5 + F * SIN(UU) - G * COS(UU))

G

Uu = PI*U~2/2

c

S =80 * (0.5 - F * COS(UU) - G * SIN(UU))

END

LET = SQR(2 * N)

LET DX = 1/(16*N)

LET = INT((1 + 1.6/SQR(N))/DX)
LET XMAX = NX * DX

SET WINDOW -XMAX, XMAX, 0, 1.8

BOX LINES -XMAX, XMAX, 0, 1.8

PLOT LINES: -1, 0; -1, 1; 1, 1; 1, 0

Istep size
!max number of steps

!"geometrical® limit

LET X(250-J) = -XX 1"250" is one-half
LET X(250+J) = XX ! of "500" dimension
LET Ul = (XX - 1) * RN

LET U2 = (XX + 1) * RN
CALL FRES(U1,C1,81)
CALL FRES(U2,C2,52)
LET I(250-J),I(250+J) = 0.5 * ((C2-Cl1l)"2 + (S2-81)"2)
NEXT J
FOR J = -NX TO NX
PLOT LINES: X(250+J), I(250+J):
NEXT J
CLOSE #1
END

The output for N = 2 (with labeling added) is shown in the following column.

13-5. The ray vector Vp [Eq. (13.30)] just as it exits the left-hand lens in
Fig. 13-9 can be written as
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AV
v

RS

-1 0 x/(W/2) +1

13-5, cont.

(]

where rg’ = dr/dz = tana is the slope of the ray with respect to the axis. Traversing
the axial distance L and passing through the next lens (of focal length f), the ray vector
is multiplied by the matrix product [Egs. (13.31) and (13.33)]

wo (1 O 1 L
wm = (a)or) = -4 1 -

A similar matrix product N,M transforms the ray vector to the value as it exits the third
lens (focal length f>, which is a duplicate of the first lens). That is, one full cycle
through the unfolded equivalent of Fig 13-9 is represented by the matrix product

1 L 1 L AB
NMNIM = 1 L 1 L|= [ ]
Al RN\"RA'°A €o
where:
= L o _L
A-l_fl B—L-I-L(l fl)
1 1 L L L L
C='E'T[l -E) ‘“‘E*(’ -EI‘ -f—.)

If we label the entrance plane by the index s, and the exit plane by s+1, then the matrix
operation Vg3 = N2aMN M V; is equivalent to the pair of equations



Arg + Bry )

Ts+l
rs’ = Crs + Dry ¢}
Now we seek a recursion relation between ry, 5,1, and ry;2. The key is to note that we
can express s’ in terms of unprimed r quantities in two different ways. We can solve
(1)~(2) for
; D
rw’ = Cry + 5 (ren - Ar,) ©)}
And we can rearrange (1) and increment the index to obtain
¥ 1
Tsel = '§(ﬁ+2 A Arﬂ-l) “
Equating and rearranging,
re2 — A+D)rgy1 + AD-BCO)rs = 0
One coefficient is

- 2L 2L L2
AtD = 2=~ R T Ih

which is symmetrical in the two lenses, fi and f3, as it should be for a full cycle. The

Alg+ (&) -7
[o+ of -2 - £(-2)

(- -2l -A) - A
(A £ ] o[- -

AD-BC = [

4]

= [insert handwork above]

Thus we have verified Egs. (13.36) and (13.40). The condition for an oscillatory
solution of the recursion relation is that cosf of Eq. (13.40) is bounded between the
limits of 1:

L L2
-1 < l_f_l_fz 7z < +1

Add +1 to each of the three quantities, and divide through by 2, to get
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L L L2 L L
0 < I_E_z_ﬁ*-ms (I—Z—flIl-zfzJﬁ 1

With the translation back to the equivalent mirrors of Fig. 13-9, 2f — R, we have
Eq. (13.41).

13-6. (a) The stability test of Eq. (13.41) gives

L L 30} _
[1 —R—III 'ﬁi) [1 - 75]2 = 036

Since this lies between 0 and 1, the system is stable.

(b) Equations (13.55) give

- = LR=-L) _L
-5 =+ = gLR-2L -2 15cm

which is obvious enough from the symmetry.

(c) The simplified form of Eq. (13.56) for symmetric mirrors gives

'\l 130)(150-30) = 30cm

= '\/;‘;L (2R-L)

Therefore from Eq. (13.45),

7
I ’% - ’5632.8x11=0- )30 _ 0246 mm

(d) Although there are phase corrections near z =0 [given by the 1 term in
Eq. (13.46)], the modes are quantized such that the axial mode number is a large
integer n that is very close to L/(A/2). [The situation is analogous to the Fabry-Perot
interferometer, as in Eq. (11.87).] The the resonant frequencies can be written as

f"=1£n==u%

and therefore the spacing between modes is

c 3x10%m/s

& = 3¢ = @E0em) = SW0OMHz

with n = 2(30)/(632.8x10-7) = 948,000.
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Chapter 14

14-1. The Galilean transformation considers time to be universal; no distinction
is made between the ¢’ and ¢ of Eq. (14.1b), and the invariance expressed by
Eq. (14.3) follows essentially trivially: Equation (14.1a) can be written as a vector
equation,

X = x-wvt

The first time derivative gives the velocity transformation,

»

o =u-Yv

and the second time derivative gives the invariance of acceleration, so long as the
relative velocity v is constant.

Now, when we include time as a fourth dimension and compare the four-dimensional
coordinates in two frames, the formal relations between partial derivatives are given by
Egs. (14.5a-b). The total time derivative, which figures in the velocity and
acceleratjon, is then given by (summation convention with j= 1, 2, 3)

d d  dx; @ d d
G=atdaon - Aty

which leads, for instance, to the identity

d d CAY
u3=3x3= E-I-ujxjg—ug

Expanding in terms of primed coordinates, using Eqs. (14.5a—b), we obtain a similar
identity,

uz = [(%— v Bx'i;) + u3 (f;]](x'g + vt')

In general, to relate velocities (and accelerations) as perceived in the two frames, one
must form a quotient of differentials, as in the Solution for Prob. 14-5.

14-2. From the Lorentz transformation of Eqgs. (14.25), we get in place of
Egs. (14.5a-b):
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Thus,
F-rF- e v 3o
R A A A
and

Thus the d'Alembertian (wave-equation) operator is indeed invariant.

The transformation of the acceleration is calculated in Eqgs. (14.100). Since the
acceleration is not invariant, neither is F = ma.

14-3. If tanhe = sinha/cosha = B, and cosh?e — sinh2a = 1, then

sinhe = —B— = 9B

Ny
1 -

cosha = —— y 4
V1 - B2

With these substitutions, the given equations reduce to Egs. (14.25). From the
definitions of the circular and hyperbolic functions in terms of exponentials, we have:



sinhe = —isin(ia)
coshar = cos(iar)

Thus,

X3 = x3cos(ic) +ictsin(ia)

ict

ict cos(iar) — x3 sin(ic)

which represent formally a rotation in the (x3)—(ict) plane (a subset of four-space) by
the angle icx.

14-4. At time ¢ by the K clock, the K’ clock reads
t = y( - %vr]= t\1-p2

However, as seen by a telescope, the reading of the moving clock is further retarded by
the transit time of the light signal. The reading 7, emitted at K's time ¢, reaches K at
t + vt/c = ((1+P). Thus the K’ reading as received at ¢ is

, o IN1-PB% _ 1-B
b = 1+ g 1+8

An alternative approach is to calculate that, in order to reach K at 1, the signal must have
been emitted by K~ at a retarded time reckoned by K as

t
= = T¥B

= 1Y
= t-

at which time the K clock reads

r,.'=(“‘_ﬁ)'\fl—_ﬁ2=r }—;%

14-5. The position vector can be resolved into components perpendicular and
parallel to v,

X = X1 +X)
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where x = (x*v)v/v2. From Egs. (14.25),

XL = x1 Xy = y(xn-ve)

so that
X = XL +X) = x+[%(7- 1) - 71]7
Similarly,
r = 1’[’ = E;,'xu] = ‘Y( - "‘;z“!)

The velocity transformation is found by computing differentials,

dx’ = dx+[d:;v('7— l) - ydr]v

dx-v
df = y(dl' - c—z)

 a n+[—'¥5!(y—l) - y]v

um = — =
d{ -
(-]

Rearrangement of the factor y= If'\’ 1-f# puts the formula in the form given. For u
parallel to v, the formula reduces to

- lll]—V
"'“"1 Uy
-

which is the well-known one-dimensional velocity addition formula. When u is
perpendicular to v,
’ uy

nl=?—v

where the factor of yis essentially the time dilation between the two frames (there being
no length contraction for perpendicular lengths).
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14-6. The plane wave remains plane because the transformation is linear. The
wavefunctions are:

in K v = yo el
in K’ Y =y

The functions are the same when x,f and x’,¢’ are related by a Lorentz transformation.
We can write the phase factors as:

kx — ot (k, iavc) - (x, ict)

k"x' - &'t (K’ iaf/c) « (X', ict)

By Eq. (14.28), X = (x,ict) is a four-vector. Since the scalar product is invariant,
K = (k,iav/c) is also a four-vector. That is, the components of K transform in a
manner identical to the components of X. Thus we can paraphrase the ¢’ formula in
Prob. 14-5, with t — @/c2 and x — k, to obtain

o (Q u)
2= "Nae ™~ &2

If @ is the angle between k and v, then with k = @/c and B = v/c, we have the
relativistic Doppler formula

o = yo(1-Pcosb)

14-7. We want to find the sum of the three terms of the form JF uwoxy when
A,u,v are permuted cyclically and Fyy = dA/dxy — dA,/dxy. Write the terms out
explicitly:

The derivatives are independent and the order of differentiation can be commuted. For
any given component (e.g., Ay), the second-order mixed derivative (with respect to x;
and x,) appears twice, with opposite sign, and everything cancels. Since A,4,v are
three different indices selected from the four values, one value does not appear; thus
there are four different identities of this form. As discussed following Eq. (14.63),
these represent the homogeneous Maxwell equations, divB =0 and
curlE + B/c = 0.
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14-8. if the four-dimensional gradient is to be a four-vector, its components must
transform in the same way as the components of the position four-vector, Eq. (14.10)
(with implied summation),

o 2 A oy

a"p = va.tv
where yis a Lorentz scalar. By the chain rule for the derivative of a function of several
variables,

oy _ o kv
oy~ oxy oy
From Eq. (14.71a), dx\/ax’y = Ayy. Therefore the gradient does indeed transform as

a four-vector. [In general, the gradient of a tensor of rank r is a tensor of rank r+1, and
the divergence of a tensor of rank r is a tensor of rank r—1.]

14-9. The tensor F transforms according to Eq. (14.73),
Fuv = AuoAvpFop

Similarly, using Eq. (14.71a),

aF’ dF,
_&_{? = arlrlpﬂlvpﬁf 1)

With the implicit summation, the right-hand side is actually 43 = 64 terms! Now sum
three versions of (1) for the three permutations of 4,4, v in the primed version of
Egq. (14.63). The 3x64 = 192 terms on the right can be partitioned into 64 clusters,
each of which has a particular set of values x;0;p, with a common factor Ayxducdvp
multiplying a sum of three permuted derivatives that vanish by Eq. (14.63).
Therefore, the entire sum vanishes, and Eq. (14.63) holds in the primed frame—i.e., it
is covariant.

For Eq. (14.64), the left-hand side is (1) with A = v, so that [using Eq. (14.11)]

oF’ JF,
T =ttt g2

oF, aF,
= 'sm"'-uﬂﬁ = "'1‘6?:2



The right-hand side involves
Ju - Myolo
Thus,

oF’ 4, oF, 47
(5 - o) = G - 2]

If either quantity in parentheses is zero, so is the other, and Eq. (14.64) is shown to be
covariant.

14-10. (a) With the implicit summation over both indices, the operations
represented by the first two quantities in Eq. (14.67) are simply the sum of the squares
of the sixteen elements of Eqs. (14.62) and (14.65), respectively:

FuFuy = 2, 3, FuyFuy = (0 +(B3)? + (-B)? + (—iEp)? + -+
BV

= 2(B\2 + By? + B32 - Ey2 - E;2 - Es2) = 2(B? - E?)
GGy = (002 + (—E3)2 + (E2)2 + (=iB1)2 + ++- = Z(Ez - 82)
The third operation is
FuGuy = (O +(B5)-Es) + (-BED + (EL)iBy) + -~
= —4(E\B) + E;B; + E3B3) = —4E-B
(b) From the transformation equations, Egs. (14.76),
E-B = E\B)+EB+EaBs
= P(E1 - BB2)(B:1 + BE2) + P(E2+ BB1)(B2- BE:) + E3Bs
= ?2(518:+@é2—ﬂ96?2—525282+&32—ﬂﬁ1/52+ By—PPE\B) + E3Bs
= E\Bi+EBy+EB; = E-B

Similarly,
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E? - B? = P(E; - BB;)* + P(Ez + BB1)* + E5
-72(B1 + 552)2 - (B2 - BE:)* - B3
= P(E\%+PB+E+P*B\>-B\*-P2E)>-B*-PPE?) + Ei* - By* = E* - B?
() From Eqs. (4.66) and (4.70), we have (for free space):

S = 3= 2|E x B] ¢cE = z=(E?+B?)

The absolute-square of the Poynting vector's cross-product is most easily evaluated by
noting that, where @1is the angle between E and B,

|[E x B> = E2B?sin?0 = E2B?(1 -cos?6) = E?B? — (E-B)?
Therefore,
4|E x B|?-(E? + B2)* = 4[E2B? - (E-B)’] - [(E?) + 2E2B2 + (B%)?]
= —(E2 - B2)? - 4(E-B)

which is composed of our two invariants. Therefore, S2 — ¢2E2 is also an invariant
quantity. The same result can be obtained by contracting the energy-momentum tensor,
Eq. (14.131) or (14.134)—that is, evaluating the invariant scalar resulting from the
operation Ty, Ty, in analogy with Part (a).

For further discussion of the invariants of the electromagnetic field, see Salingaros,

Am.J.Phys. 53, 361 (1985); 55, 352 (1987), and Zaghloul, et al., Am.J. Phys. 56,
274 (1988).

14-11. Write E’=E’ +E’, and B’ = B’ + B’,, where the subscripts
indicate components parallel and perpendicular to the velocity of the frame X'.
Equations (14.76) can then be written directly as

Ey = Ey
’ 1
E') = y|lEiL + EVXB_L
Therefore, summing, and adding and subtracting JEy, we have:
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E =9+ (1 -y)%v +-5va

The formulas for B are identical with the substitutions E — B and B — -E.

14-12. From Egs. (1.53) and (14.39):

daf___mou | _ 1
d‘[(l —uz)'cz)”z] = Q(E +FuX B)

mgll mo(u-u)u
(1= u2/c)V2 7 c2(1 - u2/c2)’?

= 4q (E + IE o X B )
To eliminate the second term, dot u into the equation, to obtain:

rSpll-2) - Hew - eon

(1 — u2/c2)3/2

m

(I_—uzgcz)w(n'ﬁ) = g(u-E)

Accordingly,

a=u-= —g—(l—ﬁ)m[E - lzuxn - (“—'Eci)l’—]

mo c?

14-13. with y= 1/(1-42/c2)'2, Eq. (14.117a) reduces to:

mO%(yu) = guxB

mo G (r%) = 25
= { m%(ry) = -2Lx

mo%(vZ) = 0

Thus, the parallel momentum, p, = ¥ngz, is constant, and the transverse equations
integrate to:
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Cross-multiply the two equations to obtain
x-x)x+ 0-y)y = 0
= (x-x0)? + ()-y0)? = constant = R?

From equations (1),
R = [%92)2 G2+ 57) =

e - ()

eBc ug?

|
T,

Define the relativistic cyclotron frequency [compare Eq. (10.77)],

& IE
pnoc

Then, R = up/@,. Finally, from Eq. (14.1175) and the fact that there is no E-field,

@ = &Ome) = 0

There is no change in the particle's kinetic energy, and so y and the speed u = lul
remain constant in time. These are the same results obtained in Prob. 1-30 for the
nonrelativistic case, except for the substitution m — pmny.

14-14. Equation (14.104) is
puZ [(il-u')+ (—f““i]

T 33 1-py? c2(1-p)

If the angle between u and u is 6, then

lu x al?> = #2i? sin26
(u-i)? = w2iPcos?0 = u2i?(1-sin26)
Thus the equation can be written:



For u L 1, the cross-product term reduces to fi?/(1-p2), while for u Il i the term
vanishes. That is, the formula reduces to Eqgs. (14.104a-b).

For T = (3-1)mgc? from Eq. (14.42a),

dT _ dT d _ mP d_ _ me? (wi)e mois
= " & dx ™ ﬂuﬁdt?’ = Tu (F_EZ)M - (1-p2

so that the parallel formula can be written
2¢2 d?j]z
PH - 3_3(_

14-15. From Egs. (14.35) and (14.120a-b) we have

KU = (pE +%an,£E'J) - (?‘li i?t')

= 9E + (pu-1J)

But pu is simply a microscopic description of the current density J. Therefore the term
in parentheses is zero. The product of the space part of the two four-vectors is the
force-density times velocity, which is the rate at which the electromagnetic field does
work on the particle. The product of the time parts is the same thing. In the four-scalar
the two terms cancel because of the negative sign from 2.

14-16. The Hamiltonian is defined by
H=uP-L

where from Eq. (14.105) the Lagrangian is

L = -mocz(l -';—:)m + Suhy - e®
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The generalized or canonical momentum P is defined by
aL molj e
Pj = E = El_—;g;.‘:z)TE + E'Aj (1)

—the first term being the familiar particle momentum, the space portion of
Eq. (14.36). The explicit form of the Hamiltonian must contain only the variables (x;,
Pj, 1), and not u;. Rearranging (1), squaring, and summing over j,

_mo’u? €A
1-u2fc2 ~ T

c2 (P -£A)
= u? =
(® - 24)% + mo2c?
== (1 - %Jm = S 172
[® -£A)? + me2c?]
Thus,
23112
H = uij+mocz(I—%) —%H}Aj-l-e@
c(Pi-%4))
= ¢ Pi-%4;) + moc? moe + D
e, 221 ¢4 e 2, 227
[(PaE A)Y+mg2c?] [(P_E A)+mg2c?]

112
= c[(P - ‘%A)2 + mgzcz] + ed

Now, the three-vector generalized momentum, P;= pmqu; + %A;. is the space part of
a four-vector, the "time" part of which can be expressed as

E _iW e, -

T ™ gt i® = E =W+ed
where E is the total energy of the particle in the electromagnetic field, W is the sum of
the particle's kinetic and rest energies [see Egs. (14.43) and (14.46)], and e® is the

energy due to the presence of the field [see Eq. (14.56)]. Since the squares of four-
vectors are invariant scalars, we can write;
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i b
(rnon.'—r—/) = —moZc?
j ) 2 z
= (D - L@ = (P-£4) - 5(z-c0)
= E = c[(P—%A)z+m03c2:|m + e®

Thus, as usual, we can identify the Hamiltonian with the total energy of the system.

14-17. From Egs. (14.54) and (14.56), the Lagrangian density of Eq. (14.123)
can be written in three-vector notation as

’ 1 1
L = cJA- po - -3-1—:(82—}:‘.‘2)
The variations  are performed with respect to the potentials A,®. Thus,
6B2 = 2B-6B = 2B - curl(A)
= 2B; e,-j;,-a%(&oik) [using Eq. (A.15)]

Paraphrasing the argument leading from Eq. (14.126) to (14.127), we integrate by
parts to obtain

= -28,]1% 0A; = +2£gj;% OA

= 2(curl B)-3A

Similarly,
SE? = 2E-(— grad(3®) — %%(SA))
= 23,(-;;1'—],(5(1:) - 1;%(64.-))
(integrating by parts)
= 2[%}6@ & %@gism]

. 1 JE
= Z(dl\rE 5P + E?.EAJ
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Thus we have:

SIL'dvd: - j[(- p +41—ﬂdivEJ 8@

+ (%J - 2 curl B +$a-§)-84\]dvdt =0

Since the variations 8 and 8A are independent, the two quantities in parentheses must
each be zero. These are indeed the two inhomogeneous Maxwell equations.
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