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This is a second order, linear, nonhomogeneous, paraboclic
pde with constant cocfficients and lwe independent
variahles.

This iz a second eorder, lirear, nonhomogensous parabolic
pde with constant coefflcientz with two independent
variables.

This is a second order, linear, nenhomogenecus, nyperbolic
pde with constant cesefficients with two independent
variabkles,

This iz a fourth order, nonlinear pde in two independent
variables (nonlincar nde are generally not claszified as
peing parahbolic, hyperbolic, or elliptic or whother thaey
are homogenecus or have constant ceefficlents).

¢ of the interesting things about PIE as contrasted to O09E is
at one generally decsn't £ind a1l the solutians te o PDE Like

¢ does in OLE. To find all the sclutions to w_ = U, -

res a digression Intoe complex variables. However Lf one
ax t+ bt
i

ies o find solutions of the form one =ees that

2 . . . .
= a . That is, any exponential of the form:
2
ax + a t
a
2 golution. One may try various values of a, especlally

mplex numbers like 1 to arrive at Interesting sclutions.
ter that try adding these solutions together to get still

more solullans.

The answer is yes if G =0 and it is very casy {o prove,

u
X

= 0 implies ulx,y) is any Ffunction of y alone. Try

some like wix,v) = sinf{y), ulx,y} = c.

o
X
ol

uf

y = 0 implies ufx,y) iz Lthe sum of any functien of
. . . - 2
uz any funetion of y. That iz, like ul{x,v) = sin{®) + v°,

®,¥) = nos{y).
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Lezson 2
1. By using a little intuition one may guess at a temperature:

2
uix, k) = o & T sin(ix).
It iz casy encugh to verily that this function satisfier the

heat equatian and the given 3BC.

2. It should be clear from ones Intuition that this temperaturs
u{x,t) will eventually arrive at some temperature that won't

change in time (at Jeast as t » 0}, Henge if we set u, = 0

we arrive at an orcinary differential equation with houndary
conditions in the stsady state temperature Ulx):

— = - = u(a) = 0o U1

which has the solution:

dxy = - L [x -]+ ox .

2'1

3. Betting u® 0 we arrive at the boundary value prohlem for

the steady state U(R):
2ol
of B _Bu =0 ulg) = 2 1y =1

shich has the soluticn:

~*~~—Lv1uh B/u (%) + =inh (3 ~xh].

1nr¢/}u

Hote thal keat will be flowing Io al cach cnd of 1he rod and
vul the lateral sides. Howowver at cach polnt along the vod the
net flow in and out ls zmovo, The reader should graph this

function for varisus values of o and @&,

Uix) =




. - S S I . |

1

) AN
LRI

Diagram of Steady Siate Heat Tlow
2
FIL u. = o ou 0<% <] 0<t <o
T ®K

Bls uf,t) = 0

0 < t < m
u(l,t) = 10

Ic u(x,0) = sin(3x) 0ax <
Hote that the PN is defined only inmide the region 0 < x < 1,
0 < t <@ gince the derivatives u and u don 't make
T plod

sense on the houndaries. Also the Bls are defined for t

greater than zero or elue the BCs and IC would each specify

the temperalure at the polots (t = 0, x = 0) and

{(t = 0, x = 1}
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Lesson 32
—_— e = Temperalure

‘L
b
1. Y e e =

00

-~

I-.
3
X

HNote that the above temperature profiles are drawn so that the
BCs of the prolklen are satisfied fur all time.

2,

k4
>,

Heat flows into the rod at The right hand side at a copstant
rate while the lef* hand side Is kspt at wzerc degress (werc
can stand for any temperature). Keeping the left hand of the
rod at zero actually means 1t will He a heat sink (heat flows
inte that peint.



Both ends are imsulated and 2o the total heat onergy inside the
rod will eventually beccome distributed unifermly.

2

PoE u, =g U 0 o< ow <] S -
t K
a(f,t) = 50

Bls b 0 <t <
u (1,t} = - 2 [u(i,t) - 30]
® Ie

o uf{x,0) = 20 0<x <1
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1.

Losaon Y

Lach term has units deg/sec. The coefficisnt R is a rate

constant for the Tlow of heat acress the lateral boundary and
. -1

has units sec ~.

Same here--each term has units deg/sec,

There i# not mueck change in this derivation from the situatian
vhere k iz a constant.

Thae derivation is similar te the one in the lesson.



leszon &

1. Straiphtforward substitution.

2. Straightlorward substitution.

3, =) =1=EL An sin(nmx)  implies An =

2l

1
z j sin(nix) dx
0

0 no= 0,24,

L
—= 1 = 1,33,
nm

L .
Therefore 1 = ﬁ-[sin(ﬂx) + %—sin(Sﬂx) + % sin{himx) ... .

Siesl Term <
Sl Tusa Terms
Liest Theee Teems

v, Zince the 100 ulx,t) = 2 iz expanded as

u{x,0) = %—Fsiu(ﬂx} +
the sclution is:

th

+

ul=,t) = i—[cﬁ(” sin(rx)

]

—(Q'ﬁ)zt
[~

L3 | e

G, ubs,t) = sin{2m) +

-

1 (3m) %t

— o

3
w2
e—(HJ) t

pn(hﬂ)zt

%—:in(Sﬂx) + o0 ]

sin{dm) + -+ .

sin ()

ein{snx),



[a7]

2 (=]
Expund u(x,0) = % - x° as a sine series E A
3 n-=1 o

sinlmmx)

2 , . .
where Au =2 [ {x-x") alnlnwx) dx. One cen either intoerat:

e

this integral by parts or else substitute y = amrx

new integral which one can ook up From the tablec:

. 7o
f v sin{y) dy [ %" ain(y) ay

In eithor case:
. BLL - cos(nm}]
n (nry? '
Thal is:
2 Jl‘{sinﬁwx) ; sin(3mx) sin(smx)

XRoo® = T 27 155
|

and hence the selution is:

2
1 eu(Bw) +

2
I 10 A S, 1
K sinlux) + e

EJ(X,L') = —3 [;.

l

and gl a

sin(3mx) £ -+ ],



Lessan &

.o Hpite  ulx,t) = A{t) x o+ BlL) (l—xl + Ulsx,t}

’ ﬂ

S{x,t) = steady astale transicnt

and susstitute S(x,t) dinte tha NCs to find Af{x) and B{L)
Dolng this gives

nley = 1
ACEY = 2/{L-h}
Henee the solution ul(x.t) is

ulx,t) = 2x/(1-h) + (L-x) + Ulx,t}
= 31 - (1+h/1-h)x + U(x,t)

Substitating wi{x,%) 3into the TAVFE we get the transformed
problem for U(x,4)

- = a4t
PLE U =a” 0
t

®
20s u{o,t) = 0
U{l,t) = o

ic U, 0} = sin(2rx} +(1+h/1l-hdsx - 1

3 R gix)

which has the solution (by separation of variables
o0
Wx,z) = © a
ol
n=1

2
(o)t
@ ( ) sin{nmx)

Hance the solution of the original preblem is
ulx,t) = 1 - (1+h/1-hdx + U{x,t)

Z., The steady stale is obviocusly S{x,t) = x and so we write
ulx,t) = = + U{x,t), Substituting this inte the problem gives

FOE U, = 0
t HHE
. Uo,t) = 0
Bes pae) = o
o

Ic Ulx,0) = x° - =x



This ia the zams TIBYP as Problem £, Tesson 5 (except that the
IC have opposits signs which means that the two answars have
opposite signs). In That lescen we solved the prablem by
separation of variablss. Using thal result:

2 2
ST T B Gt
Ulz,x) = — [= G sin(mx) + EJ-‘? 8 DA sinfamx) 4+ o=+ ]
0
arul nenoe s
2 L7
g o -(m . ) .
ulx,t) = x - — [a (Mt sin{mx) + 51? & (3m) 7t sin{drx) + -« 1.
Ml \___’\r_\_/ ;
ateady state transient

Ty oul{x,t) = S5{x, ) + U(x,1)  whare
A, 01 = ACEY w + B (1 -=x}. Sukstituting S(x,*} into the

BC we gol
A{£) - Blt) = 0
[ACEY - B{t)] + b A(t) = 1 .,
Solving For A{T), B{t) gives.
A(t) = B(t) = L/h

i)
. . X 1 .
and hence S(x,t) = Tty (1-x} = 1/n



Tlence the

Lezszon 7
1. The mclution iz,
¥ (ries2)”
. ~(oun/2)7 ,
ulz,73 = 1 = sin(nrx/2)
i
a=1
whor \ (summed over the
o , . odd integers)
a =2 [ x sinlnrg/2) dx &
B o
2, The general aclution of ¥ + A ¥ = 0 ds.
¥x) = o, sindh ok 4 e, couva .
Substitutling this expression inte the BC givesn:
X(O) = C') = 0
(o) = uiﬁ\- cosvh = 0 = cosda = 0

R T 1752 TR T - TN TR
LA = (nnf2)2 no= 2,3,5, -+

@igenvenors are.

Xu(x) = sinlnms/2) n o= L3, rer .
Bere p(x) = 1, gix) = 0 and »(x) = 1.
3. Heroe tne cigenvectors ans unfx) = cop(nrz) n o= 0,1,2, -
{note that n beging with mere here) and hence The solution ls-
o z
Ty
wlx,1) = ¥V & e LI cos(nnzg)
Lo
n=0
Whare
L = .
a, = 1/2
-l i
a =2 ] xcos{nmx) dx = = n= 1,2, «-v .
n 2
0 (nm}
That is:
. LI (s 1 ( )'
i L o 1 —(nr
als,t) = =« — 7 = 7" t analmix) .
2 2ot 2
™ on=l n
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Legmon 8

. Llweri2)/z

1. Substituting wulx,u} wix,%) inlto the original
I8YP  gilves:
PLE W =
- e
wil,t) = 0
BCs )
wil,t) = o
Ic wix,3) = 1
whiich has the solution (be separvation of variables});
wiz,t) = E a e_(nﬁ} t sindnm)
n=]
I 5} no= 2,4,
a = 2 [ =inlamx) dx =
0 .
o no= 1,3,
Mence:
" O—(x-t/?)/? @
ulx,t) = — 7 EL/{2neid] sinli2n-1)mx
n=1
2. Let ulx,t} = % + U{x,t) and by substitution into the TEVP
gilveu:
PLL u =10 -1
t X%
ata,t) =0
Bz (0,
Ull,t) = 0
s U(x,03 = -x
. -t
How ol Ulx,e) = o w{x,t) 1o got:
FDE W= W
T XX
Bes w{0,t) = 0
Wi, 1) =0
e wlx,0) = -»

which can be solwved hy separation of variables:
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Honee

S

£ L
m

i~

els, by = x k — lain{mx) - T ain(2Tx)

—ainldre) - -0 ]

2

Ore could checl This answer o sse 1% 1t satizsfies 311 Four
condy Llons (the PBE, two BC and the TC).  The major JifFienlty
with thls zeries 1z fhat il ccnverges wvery slewly.

solution oan esaxily Do goon Lo bed

N -1 ;
ulx,t} = a = wix,T)

o
-LwloE . . R . s \

whore w(x,t) E () sin{ ). lence hy zolving this o L

directly hy separation of vardablss once should arrive at:

(T
=]

ui{x,t) = sinfnwx)



1h
Tesson 9
L. Here the eigenfunctions of the related homogenzcus problem are

X (x) = sinfnmrx)

n
ard #o -
1 n =23
fq(f) =
' o ow# 3

To find ufx,t) =

1

T (t) zinln x) we must solve,
]

+ T T, =0 q?
- Tyt

Ay
- f) = R S
' (3m)

TSEO) =0

Ppty m’r = o
| n n -p T (0) =0 RGP I
'[‘n( Q) =0 n

2
(AT
[

Henee ui{x,t) = L ainfmwe) + -—=—e [3 - T ominf3uxd.

The temporature profiles ook like ain(me) when v = 0 and
gradually look more and more lilke:

b sin(3mx)

(3m)*
5 U T (%) = 1 [ —ﬁQt
. Heve Ll = ;E- 1L -e ]
1 ~amy e
T(t} = [1 1
B (?ﬂ)?
and =so
1 —ﬂ2t 1 . —(“ﬂ)zt
u{x,t}) = =11 - e 1 sinlr=} + - 2-[1-& < 7 sin{2mx}.

" £2m)



d.

2
fepe T 40m T =1
Fierg f1 L

Tl(ﬂ} =y

. 2
T {n) T =0
I e

no= 2,3,
T {0) = a
n i
Wwhors  a are: the coefficients in fhe owoarsion fop tha 10
n
(i)
L= b a sin{amx),
e n
=1
That 1=«
M nom 2y, e
a_ =
n 4 . .
Hﬁ- n=1,3,5, --+ .
3 aTsl 2 2
flamces by = Lm0 S
ll L}y = g . :5 -
Z
4o - {(nm)7t .
T (Y = == oz 2,5,b, e
1 ol
llenee -
T it
u(x,tl = {W o T+ —E-[l -2 " MY miaf{wx)
i —Lnm , -
P 5 = g7 sininre) .
i P ot
373
Here the eigenfunctions acc Xn(x) = sin(lnx) where AU are

the roots of tan(A} + A = 0. Hence fl{L) =1, fn(t) =0

n = 2,3, --- . llenece 5
__A I
ali,t) = 5 (1 - ™Mb

32

1

] siu(klx) .

Let ufwx,t) = (=2t} + Ulx,t) where

Sla,t)y = altdhe + B{x) (L-%). Subslituling 8(x,t) Into the
B gives B{t) = 0, A{ty = cos{t} and so

ufx,t) = x cos{z) + Ulx,1), BSebstituting his inlo the
arigingl problem gives.

w



PDE U _=1u + % sin{t}

T nH

do,t) =0
Bla

UCL,t) = 0
Ic 0x%,0) = 0

and expandicg the right nand side

¥ ain{t) = f1(L) sinf(med o+ fz(t) sind 2w +

mliwea 3
fn{t) B f ® ain{c) sinlmmx) adn
0
+1 2 .
-0 = ain(n) 0o o1,7,3,
nmw

From this Uhe solullon i=:
a0
D, 1} = 5 Tj(t) sinf{nmy)
a=L -

whioe
2 n 2
o = - —— ginl(|
1n boATTY 'Tn {-1) - sin{L)

LD(G) =3

Solving this gives:

1 ji.jl p~(nn)£(t—t)
nn -
8}

TH(D) = (-1} sin{T) dv

= this ean he cvaluated
and thus:
A
u{x,t) = x com(t) + E Tn(t) ain(nmx)
=1



[esgan 140

1. Straightforward inbtegration Ly parta.

2. Mullipiy each gide of the eguation by the intepralion
Facton 2. a
[N o
'!J(t) EE
and Lhen inlegrate he cquation.

3. Taking the cosine traustform {(the sine transiorm dossn':
work For thls vsroblem hacause of the derivative 3C) of the 1BVD
we have

clt 2

_ a2r - TR S -1
e o L—T'_I' UK({;,L) - @ U(E)] = Ul
o0 1
. Z o
oiay = H'I H{l=-2) cosfux} dx = E_J cos{wx} dx
0 [
. 2 zin w
= =

where U{(f) = ﬁ;{n} . Herce we must =olve

%%-+ el o= g

Uln} = 2 sivw/irw

which has the solution

2 . — 1 e z
WLy = %= gine e (o)t

it
and zo “he solution is

2 71 (ou )2
. =L s N
ulx,t) = - j = oalnw e * ainfux) dw
x

One must either £ind ths inverse cosine tranaform of U(L) from
the tables or else evaluate the Integral for u(x,t) aumerically
an a cemputer.



18

Lezuon L1

1]

0 m o= 0,04, ..
a =0 Hq = .
- g i
Seem o= 1,3.5, e
nw Prraa

1. 1 . .
o slnl3me) + = sin(Emd + 0],
2 3

and henoce  Flu) =

Tha mawtoolrh curve ls represcented by-

£iny - %—-f.’nfﬁxfh) - %—sin(?wx/L) + % sinidmx/LY - -]

nliating each aide of this extresslcon gives.

T

i)
Et{x) = 2 eos(ux/L) - cos{2x/L)Y + cos{3ne/n) - 7,

Irforlunately this equatien dosan’t make any sense beoause
Er{x) (heing the derivalive of vhe sawtootih cupve) iz zevo
excent alt the jump polntz whaile the ripght hand slde (the cosine
serics) will not converge to anyithing.  In other words it is
passiole ve difFerentiote an infinike sewies which represents
@ Function Term by torm and pet i new serics tral deoosce'l
renresent the devivative £7{x),

*
|




4.

cl
Can
o
|Peer] =\
F{g) =

1o~ 1f

*
3
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Lesson 12
L. Straightforward integration.

2. Tlementary provetties of Inteprals,

3. The tranztormed nraoblem ia

which has +he molutian:

oy 2 2.2
U(E,t) = SEDYT e

4
NG

2 2
1 e—(a T4.253
2

which has tho invorse transform:

. 2
ulx,tl = --*—-iw——-ed[x SEhaTE +1)]

st o+ 1

?

One can check the answer,

4. Use inrtegratiou by partsa.



Lesson L3

1. Inlegrate by varis.

2. Taking zhe Taplace tranaform of rthe PIR we have:
2
. 47
all -+ minfz) .« a? 5
dx
winieh has Lhe general soluclion:
= %/ -3 o
(=) = o Pv’_ /G o, B Y b
1 ?
Since  Ulx} wust ke bounded (or clze ulx,t) will He
unberandad o [zl o+ 9 we have 7,78, =0 and so
Ulx) = s;n(xg
st o
Finding the wnverse gives.
. -1, . -1 1
wix,t) = & 0%, = sint) S_ { *75}
3+ o
?t
-
= sin{x} e .
due should cheok this answer.
. The tTransformed proplem is.

L
oy = 5 .
5+ L
which has the solution:
Ulx,u) i o XYE



Taking the inverse Laplace transform (using bhe convolution
principlel;

2
sl -0 ®/ut
= i

2vhr: 3

nix,t) = sinfcy %

A Y oosh s A
o Ufe,) = {‘—V—t— s l}
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Lesson T

1.

Proof 1z cxazctly Like the one in Lhe lesson cxcept one leswves
cut the step of multiplving anc dividiog by 5.

Puhamel'':s Principle savs  Iwix,t) is Uhe rvesponze duc ko BC

w1, =) = &3] )

1
nlx,t} = f w{x,t-1) £{7) dr
[

hence “he tonperature response al the point ul.5, T_) can bo

arproximated by some numerical vrula {say the traperoidal rale).
Thatl 1s:

+
n
u{.s5, tn) = wl., 1n—1) FlT) 42
6]
Ll
= — [w F(u | @ { DO L+ o
5 [ Hf(Ll) | zdnulf(Tg) + Wy ( n—l)

+w F(r )},
1 I
By Duhamel's Veinciple

ufsx, ) = f wix,7-7) cos(T) dI1
0

whers

5 L7
Llllu e-(nﬁ) t sin{nme}
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Lesson 1b

1. The transformation 1 = +, £ = x-2t gives the new problem,

ul{&,n) = sinli)
. . -7 . ) . I
which haz =elution ul{i,r) = = zinlf).  Hence the solution
to our problewm is:

-1 . .
ulx,t) = & * sin{x-2t) .
One should cheek the selotlon.

The transformation o{x,t) = efx_t) wix,t) pives the new

nroblem:

[

wlx,0) = ain(x)

which has the solution:

w(xst) = ¢ b sin(x) .

[lena ulx,t) = e(Xht) e't sin(n) = e(x‘?t} sin{x)y .

o)

3. uflx,r) = e_(XEZL)

4. Twvaluata the integral in thes hint and substitute & = 2 - v,
T = 1, (One geta:

2
11(}{ ‘t) = ,..__,]-_,_ P"(X—V‘t) a"‘l(].‘l'i-!]:}‘.;)
’ /T %6t



&t acuatlon of (16.2) with respect ta *
pecl to ®x. Multiolying the first by

Ditferentiate the LI
and the second with ros
L and subtracting gives:

AU O P E A S 1
R BT KX ®

Jow using the first equation of (16.3) soive foo 'ix and

substitute inte the above cquabion, This alves the
result:
v - Liw o+ [RC 4 LU v + REw =G,
: s

The wave Initially looks like s=in{ux) DLul vibrazes to zoero
Cue =a the [rletion term -u .

This problem describes the mation of a vibrating string
(initially at rest) that is being given simple harmonie wotiosn
at the right hand =ide. The motTion iu comn?icated hut one can
imagine the waves moving down the string from right te lafte-
bouncing off *nhe leff hand ond (which 1z fixed at zerc) und
coming back (only to collide with waves coming from the other
direction). One can solve This problem analytically Yy clither
the Laplace transform or Dubawsl's principle.

. axtht | .
Substituting ufx.t) = o into the wave equatian
2 ? .
u EIRY one has H = a  or D = t a3, Iilonce
X Lt
alx-7) alutt
ulx,t) = ¢ and u(x,t) = & { )

are sololions for any constant &, The sum is alse a solution
and so we have more solutions:

af w1} aln,t)

u(x,t) = o8 t o, e i

1 Z

Later we will see that the wave squation has more soluticns

than rthis.
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1.

™3

oz

%21

Straightforward subskitution. The reader should use the
general formula for differcntiation whore the limits are
variables:

W) .
d o) ds = QBLRY pioyy L Ak oy
o . gls) ds = " glLix)] e glhalxy].

Straightfovward funetional substitution.

. o 2
alx,t) = é—[e_(x_“) 4 o (xt)7T
Hat ; n 2 Y
ulx,t) = % i,t utfi,o) af = é—fe"(x_‘) - Q—[x+;} iR

Stpiightforward ulgebra,
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2
= E{(X)='3 -

Apply equation (18.8) in the text with f{x) = wa’

) and the dmaginary wave (2 < 9) will can-
each other, The »eal
g the boundary at x = 0

o veal wave (x>
=ach other oo they pass throuogh
thar the wave hittl

{ roratation is
will relflect and csucel wilh he dinconing wave.

a. %‘[f(xﬁct} + f{rtet)] x> oot
wlx,2) =
%‘[f(x+ct) +oFlat-2)] % < et
L.

=0 |==| =4 =1
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Lesson 19

draw his/ner own graphs for this lesson. The only
thing to check is that all the boundary conditions of the graphs
agree with the problem and that the string should have a downware
Toree whenever Lhe concavity is negative.

The reader can



recson 20
—m

N

Observe that the second tevm vibrales threc times faster Than
the first term, The solution is poriodic with pariod
[{fundamentzl Frequency) T = 2T,

al®,t) = [géa] gin(3rz/n) sin(3nclsn)

For A > 0 if we substitute X{x) into lhe BC

¥(0) = ¥(L) = 0 we have X{x) is identically zerc. Also
note that the zmolution T{L} {8 not pericdic in time if

A > 0 which must be the casc In our problem.

ulx,td = sinfir/L) [ein(3mot/1) + cos{3maz/T0] .

n+l  %h

= m o= 1,3,5, .-
(nm)*

(-1)

B =0 all o .
n

2

4 . . -
Hence uf{x,t) = —g-sln(ﬂx) cos{mt} - Jﬂl-31u(3ﬂx) sin{dut)
kil N

+ gin{omr) sin{swey + -+ .

Hote that the higher frequencies ave multiples of the fund-
amental froeguency. This will give some indlcation of what the
string locks like for t > O .
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Lesson 21

1, After separation of wariablos we have-
™+ A% s 0
X(iv) _ A? < -0

which have solutions:

T{t) = & 2in(At) + B cos(it)

¥x) = € sinfyAr) + D cosldit) + F sinh{ /ALY + b cosh{/At).

Substituting these into the RO gives.

o

uf=,t nzl Xn(x) [an san(lnt) + b“ coa(lnt)]
where

A (x) = C sinlVh x) + D cosl/A %) + T sinh{yVk 2) + F cosh{ /L x)
n a n n byl n n n T

and
C = - E = -foos(¥L )} + cosh(/x V1
tl n T Il
D5 - F = [siné¥/} )} + ainn(/% )]
1 T 11 11

~and Rn are the reots of the equation.
cosh X + cos X sinh % + sin x|
sinh ¥ - 8in x cosh ® b cos X

The A“ consritute a sequence of numbers converging to
[$

infirity (found numerically). Flnally to Find the coefficieuts
a and bn we Aubstitute uf{x,t) into the o to pgete

m

ul{x,a) = £(x) = n§1 b X (x)

ut(x,OJ = g{x} =
n

Aoa X {x)
L rnn

[ e 1
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The Sturm-Tiouville thecry (extended to fourth order) says that
the Xn(x) are orthogonal and satisy-

1 =0 m#un
J LS (x) ¥ (%) dx
g T £0 m

1
=

Hence we can 7Zind the coefficientzs a , b from the ecuations:
n’ n -

1 1 1
[ ol ¥ (%) dx J £ % G dx
A = n _.U. .'| ____ —— . 1] 3 T R
T Loy T 2
J o=y dx [ x(x) ax
0 o a n

Thesa, of course, would have to be found numerically with a
computer.

wlx,t) = sinfmx) (cos{mit) + L sin(7t)] .

T

. 2 .
u(x,t) = b cos(ni) "t ain{nmx)

L
|':"-—’18

wWhora

1 .
b= 2 | (1-x%) sin(omo) dx .
" 0

Tae natural frequencios are the eigenvalues of:
X(iV) _
*(0)
X
*(1)
X(1)

(iv) - EQX =0 is:

L [E]

El
Lo T o R N e

il

The general solutien cf X
X(x) = A sint/ax) + B cosl{VAx) + € sink(#Ax) + D cosh{ //Ax)

and substitution into the IC glves:
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sintVa)y - sinh(/A) cos(¥VRY - cash(¥M)
:0_
~[ein(vAY + sink(vA)] Leosldd) + coan(y3)]

Heneo the natural Frecuencies ave the proots of the above
=quATion.
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55

e ¢ o= (a0t and

Bepnos  u,

“
oo
®X

are Croanatorsmed oo The Sdme

Lt Ulx,t) = A ufs, )

gl

ol Yhese Lranslormations we get

c
—
—
i}
—
n

T u{g,0) =

Straightiorward aub

F¥ilh respeet to rhe
the wave is ona.

Try L= kx.  lepee

we get the new equaticr:

U+ ovu
Iz B

oo w/L we have.
- u o= fafL
. W (/L) ",
= [T 7
e [J,, ) ‘1”
T E,b - {1/L) e
= {af ,r ,
e {117 11&,.'
Locomes  u_ o © Upe e
Wy .
£ = (/L) =
2
o= LY e
[ S 0
'|_ 0 o« T &
0
T/l 0§ <]
slhitution.
new Lims scale o= ol
u_ =1, i = kau
x f.; ! 5.;
=1 +VlLl =+ U, =
T T Ty

T

and Ll

I

Lhe velaclly ol

- 0

IF we pice k

Liv

33
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1.

Lesaon 23

a) elliptic
b)Y hyperhelic
c) elliptic
d} elliptie
e) eliiptic

UJse thea chein rule.

2 . C o s
G - 4aC = 2L, Tho characteristic squations arc-

ay

= 12

dx /

dy

P

dx

and so the characleristic cooedinatos dre:

,1
1
=
I
n1

The canonical equation is an

The alternate canonical equation iz u - =



Lesazon 24
1. If we differenkiate

., xtet
ulx,t) = *t—f $#la) dz  with respect to f,
¥

&
-t

using Lelbnitz rule (ses ovoblsm 7) wo gob
1 -
ul(x,v) = 5 Fbixtaty + gls-ct)].
“.  Iaterchangivcg the I, the selutlen fo
=

Yer T Vaw
ul(z,0r =10
ut(x,ﬂl = x

i 1 ETE
L ulx,r) = bl f £ i, = xt, Hence if we differentiate this
X-.

with respect to t we get u = % which is the salution to

u = u
tE X

@, 0) = x

ut(x,U) =0,

3. SBlnce the solutlon is ulx,y,z,t} = t @ pne adn see the
i?itial disturbance vegion {which is the unit spheve) gives
rige to an outwardly propagating annulus. Each poirt  (x,y,z)
O?tﬁfde the unit sphere will suddenly experiencs a disteibu-
tion--will be in a disturbed state for & lewgth of time 2/x—-
then  ulx,y,2,t) = 0,

trailing edge of the
disturbance

initial disturbance
region (initial
exploslon}

outwardly moving aanulus

leading edge of the
disturbance
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In this case each point (x.v)} outside the unlit cirele will
suddenly exporicace a shock and as time gets large the solu-
t1on ulx,y,t) gradually goos to zero. The solution would
look more or less like a circular wave alter dropping a pebhle
in a lake,

The sojulicn hare iz the DTAlembert =solution
ko

1 *
ufx,n) = Sa f u_t(S,O) Az
e

af

o

and has been solved in Tesson L8,

Imagine & single Initial disturbance ar the origin {(0,0).
Since Huygen's principle doesn’™t hold in lwe dimensicns thic
means that afier a given length of time any other polnt  (x,v)
will suddanly cwpericnce a shock due to this disturbance and
then pradually die out as Uime gets large. The reason lhe
shock gradually goes to 7ero 1= because the orlgin in two
dimensions can physically be interpreted as an infinite line
peraendicular Lo the xy plane and the points in the xy plane
are in reality being disturbed by all the peints along this
line. Az time Inereases all polnts aloug this line will be
disturbing the point {%,y} and as time increases it ls the
pointa Further away that are doing the disturbing,

i
i

Leibnitz's pule tells how to differentiste an integral with
respect to t  where the limits and the integrand can depend
on t. Direct application of the formula glves:

4 xtet
FI fla) ds = o (f{xtet) + ¢lx-cl)] .
T ox-ot



Lesazon 27

1. 3elve far An = Clul from.

dn ()
e ()T A () =0
dl 1
1 no=0,l
f’\.ﬂ((]) {0 omos 2Lu,5,0,
3 n =3
Hanca Ao(t) =1 .
-
'XL(L) =
A (L) =0 STV O S
n
oy . b -{3m
f\S(L) =5 s}
Hancoe PR (qﬁ)?t
ulx, b} = 4 + o "t osom(mx) + .5 e cos{ Jux)
2z, Solve the problem{s):
dB“(t) 9
— (e} Bn(t) = ln(i)
F (o) =0
n
Lo geals
a2 o8g
B o) = G~(una) I: f . {n7n) = I (s) da
n n
0
lNence Lhe solution is-
ufx, L} = X Bn(t) sin{nmx}
=k

3., Inlagrate hy parts.

4. 1 n 1
Boo= 5 n=2=23
Il

0 all other n's



5., A

6.

38

1

1l

2 f % cos(ume) dx = Integrution by parts
0

Solve:

dn_{t}

Ly 2 -
dg——+(nn) Bét)—

1 n=1
B (0} =
n #] noT Y0,

for Bn(t) and then substitule into:

Bm o+ 1

(—T)n+l {onm)y o # 3

ulx=, L} = E B () sin(nnx)
n=1 u
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A

Nivoect substitulion.

The problem with the nonhomnogencous PDE (and homogenccus I0)

can be soalved by Lhe finite Sine transtorm te gel:

1
w {®, Ly = - s Leos{3ne) - 17,
L (3u)2

The solution of the h
can be solved Iy Separ

LETHIOUS PiE (and nonbomogencous TG
{ion of Variables to get:

2
et L R
u?(x,t) S sinfmx)
Hence the solutien ulx,t} of our problem is the sum of these
two funclbions.

al U 1 u,

homogenaeous ).

Is a solution (the equation is linear and

1) u ot

honogeneous ).

iz nel a selution (the equation is not

n} u, + v, ig a soluticn (the equation 79 bLinear and
homogencous ) .

4} u, + u is net 4 solution (lhe equation is nol linesar).

In each of the [our subproblems et one of the four equatlons
be noenhomogansons and the other three homopeneous.

Mullipty each side of lhe eguation by the integrating factor:

-
a(t) = Q—(un) T

te g2l the solution:

2ot 0
RO L L A

0

You- -this can Le veriTicd by direct substituticn.
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Lesson 27
1. The selution is a moving cosinc curve ulx,t) = cos{x- 1),

2. ulx,t) = --%— ain(x/t}
2

5. ulx,y,t) = e—[(x—at/a)?+(y—bt/c)2'l - dt/fe

2,
H. ulxat) = Flr-1) e & /2

5. ulx,1} = F{(2x-y, 2x-y) e—?(y--vx)
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best Lo draw the chavacleristic curve starting from ezch

i
nitial polok =x .
o

BENTEN

T
— X,

ﬁh,x
X O X

-]

a} if x < 0, then rthe characteristic curve iz
[%]
Ta find the constant for the curve

®x - p{ult = = - .
at (xo, 4) we 1t T =0 and find o = ¥ - Hence the
ki
characteristic curve stariing from  x ia.
o)
P

than the characteriastic curve ls

by if = » 0,
[al
- H = x -xT=u
w - plult = x x5
curve slarling at (XU, 0} we let t =0 aund Find

llenee the chavacteristic curve ularting from

T find the constant for the

[ L (w-x ) .
“ Lo
(=]



bz
2, fluy = % u3

&

X, 0

3. The preblem we must solve Js:
PDpE u +u o+ ku =0
ES L

e u{x,0) = $hix)

which has the sotuilon:

=kl
uix, 1} = plxz- ot e -
", The problem we must =molve [a:
I
T I + -
uX 111_ Tt 1 v
Ic wlx,0) = plx)
which has Lhe solutlon:
ulx,t) = -lndt+3) + i~ 1)
5. Given u = ¢{x-glult) differroliate cach side of the equialion
with respect to 1T and =
B LN T = &' - 1
u o [-g G L] u, = [, g, ).

Substituting into u_ + pludu wo pote
; : e



Lesaon 2%

1.

wn

o 0 1 0 0 0 -l
4= 11 v o =10 o o c=1{0 Q0
2
W o1 - -L 0
1 1
S = 3 ¥ = X = -1 b
1 1 o 2 2 Ly

Thao lransformaticn u = Pv o will transForu ui_ + A

Fhe cqualion: Ve + J"wx =40 whera:

1 1 3 0

llence the new cguations area:

Hvl avl

ot + 3 (‘]‘( =0 el Vlf){,t) = L[J(X—Gl.‘)
BV? 8v2

b s =0 = (L) = Gkt

Multiplyiog Py we haves
u](X,f) T ohlx-3t) ¢ plx+ 1)
u, (e, 0) = 240~ 31) - 2p(x ¢+ 1)
Direct substiluticm.

Lirect sobztitution.

= 0

43

into
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anmom 30

1.

N

3.

Dipcct substitation,
Dircet auhstilulicn,

The solution iz

ety = Y A 3 (ko p) san{k 1)
L ¥ 2 [#111]
Tl
where
1 2 2
AL {) r(1-rt) g e v) dr /T 0 )

These Integrals would have o be cvaluatezd oumerically on a
compuler.  The value of ,Ji(kum) can be found in rabtes.
For exampla Jf(kul) = Jf(?.ﬂ) which cau be feund in most
talles.  One weould not have Lo lock wery hard lo flod ao
exizsling compufoer program lo svaluate these cocfficients.
Most computer librarics would condlaln a program Lo Find ihe
expansion:

Elry = % A F (k1)

1
oo
n=l

for arbilrary TMunctions f(») 0 < v < 1. ‘the reader can con-
sult his/har compuler cenloy and inauire ahoor applicd

mathematios packages,
ufr,t) = J0(9‘HP} aos(2.40})
ulr, L} = J0(7.Qr] cos(2.4L} - .5 JG{B.GSP) cos{8.65L)

+ .24 Jq(lﬂ.93r) cos(Le.a93L)
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Legeon 31
2 7
1. = —
w7 Lurr ton ]
. 2 1
7.0 = o |u + > u ]
T rr T
2
. du 1 du . ) . . N _
R > Yoo G 1s Laplace's equalicn that depeods only on .
de -
. ; . dv 1 s
If we lel v - du Lhis equation hecomes —— + = v = 0 which
dr drr o
has  the selution w(r) - ¢ L Heneo the general =solutlon
T

to Lublace's eguation is
ulr) = A+ B L
r
ulr) = & + B/,

Sinee =0 Torall x and y, wach polnt on the

u bou
®X VY
surface u(x,y} * v Is cgqual to the averape of Its ncighbors

on a circle arcund  {x=,y).

Slraightforyard subhstitution.



u7

Lesson 32

1.

=1

The r dependence in the solution s Vinear and the solutien
lurts out Lo be uf{e,0} = ¢ sin(l}., There s no reason o
helieve a person should have this kind of Intuition but
thinking what the selutien should lock like is uscful. ‘the
readeyr should Imagine what this surface looks 1ike.

Mo since the wet (lux is oot zero.

Just remember the solution u  doesn't bhave Lo be equal to
3in{f) on the houndary but if u is lessz (greater) than
ain{0) heat will Ilow in {out) so that the sleady state solu-
tion will lend Lo fullow sin(@). If 1L is big the sclution
u  on the boundary will for all practical purposes be egual
to  sin(0).

Satting u and Uit equal to zZero we get.

2

du

L ruc=o0
2

dx

wld) = 0

ul) = 0

which har the solulion wa(x) = 0. this is nol surpriaing
since the PDE describes a vibrating string under the influence
of a Friction term -u, . The solution o this problem starts

at: win{3nx)  and vihralos to zers.

Can we find surfaces u(r,0) and constants A so that at
sach point {r,8) +the Laplacian (measures the degree of
curvalure of the surface) 1s proportional te -u? The answer
is yes if we plck the proportiomality A appropriately (roots
of Reszel functions}, In fact we =aw what those surfaces
Umn(r,el looked like when we studied the civcular vibrating

membrane {(Lesson 30).

We are teying to find the steady state solution {(say temper-
ature) inside a square thal is insulated on Lhe two lateral
sides and the top is fixed ut one while the bottom is in
contact with a medium of twe degrees (or whatever). One can
imagine the direction of the Flow of heat {(from bottom to top).
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Trggon 33

1. Direct computation,

2. ar wie,£) =1 + v sin{8) + f‘— cos{0}
Z
By oulr,%) = 2
cd o sale,8) = v osinf{d)
3 ulr,0) = o0 sin(a)
3. ulp,B) = glsin(O)
1"2
4. uir,8) = T sin{z0)
5. ulr,0) = Z . [an cazfinf) + bn ainlud)l
n-{
Whasre
a = 1/fw
2
Al o= 3,8,5,
a =
h -——i; no= 2 U,05,
min -t}
142 noo oL
noo=
Il
a n# i
Homioe
r 2 .1 112 r‘q
C = = gin(f ZTs - = cos(2R) - —— cos{t
ulp,8) 5 Sin{8) + = [2 = o0 (28) 5 ©° {na)
i
-

T AR
It will be hzlpful to use the formulas.

3in{A)} coz(B) - f=in(A+B) + =in(A-B) ]

ein{A) sin(R) = [cos{A-B) - cos{A+D)]

TN

cos(60Y - -],



(-4

19

POISSON KTDRNEL = —~—~~——-——~————-——-2 = —
BT - 2vR cos{0-n) + o 167

where P ois the dislance from (v,8) to (1,0).

—{r ) :(3R/9J?ﬁ)

(lJaz)

Henee ithe graph of the Polsm=on kernel will look like:

Polsseanm HKermel

N

J [ { ] N Q{
Q arss w 3N/ 2

bircet substitution of u  inte the problom.

Dircet substitution of u  Inte the problem.
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1. ulr,8) = [- % i -;-i:-] aos(H) + [?TI - %J sin(4).

2. a) uir,8) = 1

b)Y ur,B) = i + —‘—3 ens{36)
o

) ule,0) = % sin{g) + j§ cos(30)

14
d) ulr,8) = i + i "l— sin{d) B sind30) + ..-.]_I__ sin(S8} + «-.7
2 T 5
ar St
3. u(e,8) - - 2 sin(o)

Y. Direct substitution.



les=on 35

1. Direct substitution.

_ dd dx

. ad R
" di - -sin{¢) = x = coa{d}.

. ad
7. Ume the chaln rale -+
A

3. Direcct substitution.

Y. cos(3h) =0 cosa(¢) - 3 cos(g)

oy ] . 3 3
= (8/5) 5 [5 cas () - 3 coa(d)] - i cos(p)
3
= g P lcos ¢) - = P, (cos @),
5 73 FE
Hence
8 3 3r
ufr, g} = T F’S(CO-.- Y - ey Pl(co.s $}
! . 3
= ~:—r‘3 [s cosa (g = 3 coal(g)]) - = coslh)
1
5. ulp,g) = 7 3, r P“(cos i
=0
where
9041 /2
a = 2l B (eoe ¢) sin(d) do
n 2 1
0
r
2 -
Sl J’ I (cas 4} sin(d) 4 .
miz n
These integrals can be avaluated but ope mighl want to use a
compuler to evaluate them numerically.
B wleyd) = =+ 5 cos(g)
.oouwlr,g) = - r2 cos .
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fesaon 36

1. The total oulward {lux acrosa the sphere of radius v is

2 . 2
=L u, Henoo 1F we sl -Wir w0 = g wo have
; r
-0
U e L.
2
f W

and =0 we havie

ufr) TI%‘-\“
1 1 1, L1 1 . .R
2o GOGYLENY = g In(E) - o i“('ﬁ) - 57 In(pd
_] rii_'. X3 l—Il
3. ulx,y) - —-Jflj [ in(z) dE an
G -

. Place positive charge=s at (£,n) and (-£,-1) and negatlve ones
at {-£,n) and {&,-1) so that Green's funcrtion will bha:

R, R

1 2 My
Glx,¥,E,n) = 5= Inj—rs
27T _Rl R3

. xyd

T
W /// R,
(.‘f,f‘.\ ./ " « 1§ )
:

/ \ (-

C-f-n)




o
o

Try LLP(P) - Arvz. Fubstituting this into the FOE we got
up(l"] = % L“Q. If we now let u = w 4 %# 1‘2 wo aee that w
will =atlsfy the problom:

Vzw -0

w(1,0) = - -i— + 5in(8)
and hence  wlr,0)} - - %+ r =in(l). llence bhe solutlon:

ulr,8) = 11; (r‘2— 1Y + r sin(0).
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Tesson 37

Z
1. HWrite E{ath) = £(x) + h F'{x) ¥ I%—f”(x)
]?
S(xeh) = ) b FUx) r e £

Adding these fwo equations and sclving lor £"{x) we got:

£7(x) = 5 FECxib) - 2 T(x) b £(eb)] .
k
2. 8] 0 8] 2 [#] 1]
o L2ve (21RO 3 LLOB LLOB 0 L LT 30T 0
L2116 ,216 0 PR .37 8] L3073 0323 0
LBEG L BRE HE6 L ARG LHEG O VHBG
initiallize interier firat iteration serond 1 borabion

grid poiats to be
average of the BC

The numbers are converging Fairly Last--but one should pealize

they are oot converging to Lhe solulion of the DR at thase
points but to the solution of the diflerence cquation thak

approximates the FOE., IF we wani a beiter solubion we must use
more grid points. Tf would be a pood cxperiment o double the

ounber of grid points and ses 17 the numbers converpe to the
samse values as Lhey do thereea.,

L 39
3. P11 J N S L e L T ol A
ul,] 2 [UL+l,j i=1,] ‘L,JTl L,j~l| boi,]
where f, . = [(x,.y).
i,i
b u, . = ~—:1ﬁn-|u. NS i u, RN .
1.7 Hhev) T, %l i,it i+1,1 i-1.]

2 :
5. Uze the usual replucement formala for ¥u = 0 fo eslbimate
interior grid points and Lhe finille difference formuila:

=u

. Lot kg,
1,1 1,n-1 gl

to fint Lhe bousdary potentials,

[R{1s
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1.

o
A

Straighiforward computation.

T
u(x,L} = &

2
1

Tt
ginfme).

Mere or less the same as the paraholic flow diagram.

Direct computation. The necessary equations have been derived

in

the losson,



Straightforward computat ion.

The [inite diflTerence formula for the PRD will e the same

in the lesson.,  The BC bocomos:

whore g, = alik}. TFor each value of {ime we would solve

equations for u, 1. srry 1, o The BC at x
s . 1.7

Same as lLhe prohiem i
eqguallon would be slightly délflercnl.

The motocular form 1s-

Direct use of The formila: In the Lesson.

1

n-1

lessan except Lhat the differeuse
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3

Hote thal as tiwe Increases we can approximate the solutian
faiviy accurately from the firsl twe terma:

o]

) 2 2-.
nlx,t) = = |_'e_([m) g e_(gmlj t sin(3mx}t .

0| e

sin{ix) +

Henee if xw = .5 we have:

—(uu)zt
@ -

|~

2
Lol Ty

uf b t) = % [ 3 1.

Ua can now find o that witl it this curve 1o the olhrmerved
daly points.  This would be a least sguares problem (see

problem 2}, There are compater programs available thal it
curve= like This Lo arbitrary data vpoinbs,

pss)
BEI

Differentiate

31 EE .
2’%5—} = 0 and seive for a aud b,

Ore car design an experiment to measure the concentration at
difFerent values of 1 afler it has come to a steady state
{zome sort of optlcal device). We then it {least squares) Lhe
theoratical zolution ufr,=) {(which iz known) to this data by
picking the proper choice of D. We then sclve For the molee-
ular weight algebraically from this value of DL
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Tesson 41

1. a) parabolic--canenical
b} hyperbolic—-nob canonical
) elliptic--not canonical
d)  parabnlic--canonical

2. The pew coordinates are & ~y - 3x and 75 - v and the
lrunsfomed cquation is:

. 2.
3. The new coordinates are £ = v and n = x /2 and the Crans-

formnd equalion 1s:

U, + 1 o o .
I T



L.

Apply the technique in 1he lesson directly to the Fupclion
. sin(x) . . -
[(x}) = = {nole this funclion iz vesitive Tor 0 < % < 1),

)

modified 1o take care of more general {unctions.

=0 but it ocan be

The method in thiz Jezson arsumes

= 3rf + 0 mod 7. The sequence ol random integers starting

.o
1+b

from zerc iz 0,4,2,3,6,1,0 = repaabs,

1 =1

Sel

Bet SUM = 0

ey E b i
Caopatrate RJ, RQ, 13, Ku
{between zero and  one
T 2 ] 7
_(Hl t R, R?)
La Ru, <@ ’ Y

{.%‘UM - BIEM 4 JJ
\___H_i_m

T=HM"

{M - pumher of tomses)

IHTEGRAL = SUM/HJ




G0

One can change Lhe value of M oand Tind new cstimates for tha
integral. The value of the iplegrol will stabilize as ¥
gets larger and largsr.

4, Goooerate Rl" R7 random numbers hetween vero and oone. ¥
R] + ‘19 < L owe keep the peint, otherwise gencrate another tao

mumbers. Conlizue thisz process.

5. Goenerate a pandom manbher o hetwoeen 2ero and one. Yet:

[ 0 < < 25
W= 1 AT S
2 P AT LI S

6. Ceaeralc two random nunbers O < < 1 and 0 < 8 < /2 and
!

. [ 1, ,
ity = r - ==in(0) <0 or v, = v+ = =iu{0) > 1 In the
-l 2 £ 2
diagram beolow consider the necdle crossing one of the Tines,
"
Compute the Iraction of feosses po lThal Lhe needle cronses a
;

. . o~ - .
Tine and then estimale b from the orquation o= Trat is,

Iine

necdle ‘—(‘"—b

8 Yo # Tt % nin) !
A
v, T or - = sin(h) L
L [ A - . A
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Lessen 43

e finite differcnce approximation beeomes {(after szolviag for

RE

. . + x? {u. +u }
u L. 1,0 1 113,73

2 0L+ xj]

Henue the problem of golng From u, . to one of ite four
a
is the comfficients of the corresponding terms.

the confiicicats are nonnegabtive and sum to onc,

nreighbors
¥ote that

Tha Bls uw{l,t) = 0 gives us Lhe difference equation
. o, = G
1,0 ’1,1’1——1
starting at (1,n1 should be egual to the average ceward
starting at {(i,n-2}. This gives 1he stratepy of a reflecting

bousdary.  That is, 11 the wing hits the 3ine 2 = 1 he
automatically bounces hack.

and hence the average reward of the wino

The {rank-Hicolson welhod gives us the difference cquatlons:

L. = L - + F . . P .
u.LH_,‘] i e Fl,7-1 2 u.1.-1-l,']1-k 3 u} ,3-1
+ T .o 1 R
1y u1,} P& “ls}+l

whore Lhe PE arve nuabers computed feom the ccelfficientsz in
the DL and cepresent ithe prababilities of soing to the oor-
respordding peinte.  One could modify the BOs  of thiz prablem
te solve problems with Tinx across Lhe houndarics

{derival ive BOJ.

R T

I+L,5+1
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Tesson

/ i . .
Lo T{m,y,y'Y = ¥l 4 oyt and mo the buler-Lagrange equalion is:

S BV (R AN

Y ds Tyt dx
J_+y'?

Hence solving this ODT along with the BCs y(D) = 0 and
vi1) = 1 we get yix)} = x. Since J[y] is the tunctional
for the lengih of the curve belween Twoe points and since the
ond points here are (0,00 and (1,1} this answer iz not sur-
prising. The functional cvaluated at this minimizing curve
should be @2,

2, my +tky=0

3. The Ruler-lagrange souation here fu -2y ~ 2y" = 0 which
simplifies to y" + y = 0 and along with the Bls  ¢{(0) = 0
and y(m/2) = 1 we getl: y(x) - sin{x). The functional
evaluated at this minimizing corve is  Jlsin =] = 0.

. Direotly analogous to the single lolegeal problsm in fthe
Lesson. Mow, however, all funclioons depend on lwe Independeot
variablon,



[Eke]

Lesson 45

11 Z 2
Io o Hul = f § Lol +n + 20l dx dy.
oo ¥

2. Let z(t) = (1- =} y{1t}., Hence =' = -y + {1-%x} y' aud =zo
we Tind 2z thalt winimizcs the transformed integral:
! PRy 2! 7
I=z] = f {-l = X—'_ T or Tt g dx
0 ! (L -=)Y"
and then let v o= I—%~; . The peint is that we can use the

wmathad of Ritz ou the funetion 2{t} since it satisfies
{0} = #{(1) = 0,

3. 'lhe reader can do this.

4. This proof Iz exaclly like the proof in the last lesson except
that single integrals are replaced by double Integrals.

i. To molve the Dirichlet problem by the finite sine transform
{on %) we get:

7
d un(y) 5 1 n=1
- (M2 (y) =
dy~ 0 n= 2,3,
{0y -
n
u (1) = 0
n
] -
Solving this we get Ul(y) =aed yne —-j;
n-
u) (0) =0 n o= 2,3,
n

and so taking the inverusc snine Lransform we have:

uly,y) = Ul(y) sinfmx)
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How that we know the solution we can

Fron the equation:

Fled the potential cuerpy

[, ”
Jtul = [ f fui Fula o u sin(m)} dx dy .
00

Most likely this integral will havo

to be evaluated numerically,



leszon Wb

i

2
Set Lhe coafficienl of L, €, &7, --- egual to each other on
both sides of the PUR and BE,

Same as in prchlem 1.
Il we substitule

[i L 2
u +u, = eos{d) +_(r - e -x)

o \ 35 o cos{76)

into ‘Jzu-*ru2 and uf{1,0) we will see that u(l,8) = 0 and

- . 2 2 . , P .
that the funcrion Vu t u is very small inside the unit

. 2 . . .
cirgte 0 < p < 1, Tho term o will gontals nipe torms Lut

can be evaluated nevertheless,

T =oblve the BYP

Viu = n<p<tl
uf{1,0) = - sin(A) cos{(H) 0 <8 <2u

we First transform this problem Lo one that has zero BC by
making the fellewing tran-formation:

ulr,0) = - =inf8) cos{®) + Ulr,R8) .

Hence the new ftunction Ufr,8) will satisfy the RVE:

2 1
a = e ey PR
i P2 pos(28) 0 " : (wa've used a
trig ldentity
u{l1,0) =0 0<6 <2, here)

We now solve this problem by writing
H{r,8) = Uh(v,e) t UP(T,H) whore Uh(r,ﬁ) is a general Form

=

. . 2
of the zelution of the homopgencous equation V'u = 0 and
Up(r,O) iz a particular solution of the nonhomogenescus oqua-

tion. A genepal form of Che homogeneous eguation {Laplace's
equation) Is:

o

U {r,8} = f ! la cos{nd) + b sinlnd)]d.
h néﬂ n n
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One can casily verify Lhal this sum salis=fies Laplace's equa-
for any choilce of the conslants s and b_s. To [ind

1 T
Up(r‘,B) we try:

Up(r,@} - A can(20}

1
{we pgenerally increasce the power of r by Lwo) and see & = —i—
Ilugging Uh arndd UP inte the eguation (I = Uh + UD we havér
IS 1
U{r,0) = N la cos(ul) + kB sin(ng)] - cos(20)
nZo n n h

and by substirtuting this into the DBC U(1,8) = 0 we see

az = 1/ and all ithe olher a]q ad bow are zero.  Hence we
[ n —_—

have the solution e, B):

2
Ur,8) = il‘-l-- cos{28) - i—coa(?ﬁ)

and se finally Lhe =olulion u{r,0}

2
Wi,y = - ainle) cos(a) + %T cos{P8) - %‘COS(?U).

Henee the Tivab iwo terms in the approximation are one Fourth
ol the above lerm plus v cozs(0). One would have +o use a
computer to see how well this function approximles the
deformed boundary problem

5 .
70 = 0 0<T‘<:1+-L—LL—:-;in(8)

u(l + & sin(@&), 0} = cas{8).
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&7

Lasson 47

o -7—~— and henee the mapping iz conformal except al
2 -1
z =+ L. IF one writes the mapping in real form:
u = lop il
Rz 41
=L s -0
u = tar -
' b1

one can show that the upper kalf plane maps into the given
region,

s 3 16,3 3 3i0 :

fioite w= 2 = f{re’l =01 e and so the Flrast guadeant
in the =z plane maps into the flest three quadrants of the
W plane.

Tre transformed problem is-

aV

wiich has the =soluilion:

21 -1 2v
ulu,v) = - tan {—-5-—-5——
wo+v -1
P At 7. - 2
¥riting Lhe lransfornation w = 2 in real Yorm u = %" - ¥y,
v = 2xy one has the zolution of the original problem.

. _ 1 -] Yoy
i,y - tan { TR ) .
(x =y )" + uxy" -2
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", The mapping w - log{z} waps the wedge i our preblem Into
the region:

o= "/y © < 4}“—
NGNS I k
‘ but b0 | PO

(22

d =0 0

) . . . fhw
It is ¢lear that the trassformed solulion is  ffx,v) = o atid

o If we weits the transformation w = log(z) Jn real form

w - oleg (=), v o= tan_l(y/x) = B we get the solution:

B,0) = B

m
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Additional Lesson A: Control Problems In PDE

PURPOSE OF LESSON: TO SHOW HOW CONTROL THEORY ENTERS INTQ PODE
THEQRY AND, IN PARTICULAR, TO SHOW HOW THE TEMPERATURE OF AM
INSULATED ROD CAN BE CONTROLLED BY PROPER TEMPERATURE CONTROL OF
ONE OF THE ENDS OF THE ROD. MORE SPECIFICALLY, WE WILL FIND THE
BOUNDARY CONTROL f(t) [IN THE |B¥P

PDE b, =u 0 < x < 0 <t <
t %X
u fo,t) = 0 {left end insulated)
BC x
u{l,t} = fle} (right end controlled}

F
—

Ic ulx,0} 0<x <l

THAT MAKES THE TEMPERATURE u{x,t} GO TO ZERG IN MINIHUM TIME.
WE DO THIS BY USING THE LAPLACE TRANSFORM AND A FEW IDEAS FROM
CONTROL THEORY.

Lesson A: Control Problems in PDE

One of the recent developments in PDE theory has been determining
boundary conditions in initial boundary-value problems so that

the solution of the problem performs {n some desirable manner.

One should refer to reference 2 of the recommended reading list
for additional Information. Typical problems of this kind arise
in the steel industry where the boundary temperature of the ingots
is controlled so that the steel inside the ingots Is heated
rapidly but uniformly. Another example would be instilling, by
some means, small vibrations in a telescopic mirror so that the

effect of atmospheric disturbances on incoming 1ight is decreased.

Hinimum Time Problem: One interesting problem that we present

in this lesson is determining the boundary temperature of a rod so
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that the initial temperature goes to zere fn minfmum time.
Mathematically, this corresponds to finding the function F(t]
{control function) that makes the temperature u(x,t}, described
by

POE u, = u 0 < x <t 0<t <
t XX
u {o,e} = 0 (1eft end s insulated)
{n BC x
u{l,t) = f(t) {right end is controlled)
I ulx,0) = 1 0 %<
go to zero [u{x,t} = 0] in minimum time.

The solution of this problem is found in reference 3 of the
recommended readings, and the followlng discussion continues
along the lines of that article.

We start by transforming the problem into an ODE by means of
the Laplace transform

"
Ulx,s) = lnG,0) = ] ulx,t) et de
GO

This transform was dlscussed in Lesson 13 and converts the

original problem (1) to the new BUP

OGE —= = 3 -1 < x <1

(2)
duf{oy 0

BCs dx

u(ny = Fis)

This problem can be solved very easily; the reader can verify that



the selution is given by

{3) Uls,x) = Sosh¥d + [sFls) - 1] coshys x
s coshvs

Geperally, the next stop is to find the inverse Laplace transform

and, herce, the solution. However, since cur goal here 's to find

the boundary function f{t}, a short digression Follows.

CONTROL THEORY

The function f{t) 1is called the control function and 1s always
restricted to a given class of functions (like smooth functions,
integrable functions, piecewise continuous functions and so forth.

in this probiem, suppose we pick the control from the class of

bang-bang controls. That is, we assume the control function f(t)

can take on only two extreme values (which we pick as +1 and

-1}. In other words, our control action will look something Jike
the graph ia Figure 1.

f(t} = boundary temperature

+1

v
I3

Exampie of bang-bang contrel

Figure |



72

Therefore, in order to control the rod temperature so that it goes
te zero in minimum time, we must find the switching times € Eys
t3, st of the bang-bang control. This will tell us when the
boundary temperature should change from 41 to -1 {or vice
varsa) .

The idea for finding ty, t N is based on a simple

2’
principle of the Laplace transform which we now present.

Property of the Laplace Transform

If git), 0=t < isa functlon that Is zero for all t

greater than some fixed number T, then the Laplace transform

G{s) of glt} is a bounded function of s in the complex plane.

Examples b.ogit) =1 0<t<m G(s}) = 1/s
fnot zero for t 2'TI Ihot bounded]
1 D<t <l ! -
2. glt) = 6s) = L 11-c8]
8] 1 < ¢t <« w

~ .

[zero for t > T] [6(s) is bounded]

By using this property one can present the following argument.
Since we want the sotution u{x,t) to be zero for t greater than
some T (T as small as possible), one picks the switching times
By tys ovn 50 that U(x,s) is bounded. The interesiing point
here 1s that the denominator s cosh{s has zeros at the values

)

1 2
Ko -(k - EJ w2 k=1,2,3, ...

and, hence, in order for Ufx,s) to remain bounded, the numerator

must also be zero at these same points. That is,
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(1) s, Flsd =1 = 0 k=12, ...

which give us necessary equations Tor the Infinite number of
switching times. We approximate this control function f{t) by
finding the first n switches t]. tz, PP tn and then turning
the control f{t) to zers. The temperature uf{x,t} will
hopefully be close to zere if we pick n Jarge.

To find the expression for F(s}, remember the control f{t}
is assumed to be bang-bang {it's obvious the control starts at -1

when t = 0 for our problem), and, hence

Fle) = -6(t) + 2 €(e-t)) = 2 E{tmty) + oo+ (D)7 Elemr )

LA E{t-t )

where E(t) 1s the simple off-on switch at zero

0 t<0
E{t) =
1 t>0
See figure 2 .
b F(r) n =14 in this example
+] f———— —mr—
last switch turns off
control
t t t t
1 2 3 b .
N R L

Graph of a Typical Bang-Bang Control
Figure 2
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Since the Laplace transform of E(t-a) Is
ClE{t-a)) = 7°°

we have

(5) F(s) = $If] = - Sl+§e'5ti SRt

+ (-l}n %-E-Stn~l + {-I)n+] é e-Stn

Substituting this expression in squation (4), we get the desired

set of equations for t}, t t

gr oeer g Lo

2-2 1Y w2 Ly ()" e =
_ e 4 L =
2-2¢ 2%+ 2e %20 + 1) 2'n 0
(6]
2 -2t 4 2e nt2 - + (-13" e nfn = 0

The authors in reference 3 of Other Reading have solved this
system of equations numerically for various values of n, and some

of the results are given Tn Table |

t 3
t] t 4 t t

n 2 3 5 6

1 0.281

2 0.315 0.346

3 0.318 0.362 0.372

4 0.319 0.365 0.382 0.387

5 0.312 0.3606 0.385 0,393 0.3395

& 0.319 0.367 0.386 o, 395 0.400 0,402

Optimal switching times for a different number of switches
Table i
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The temperature corresponding Yo these controls can be found
either by Tinding the inverse Laplace transform of Ulx,s) or by
solving the original problem numerjcally using our optimal
control. The authors in reference 3 of the recommended reading
found the analytic solution from a table of inverse Laplace
transforms, and the results are given in Figure 3

contral with n = 2 switches,

for the simple

Figure 3 gives the temperature for
various values of time.

switches at
ty = 315, t, = 346

Controtled Solution for Two Switches

Figure 3

One can surmise from Table 1 and the above Figure 3 that the
bang-bang control with switches at t] = ,319, t2 = L3867, -

tg = 402 will do 2 good jeb in driving the solution to zero.

The final time t, = 402 corresponds to the time when the right

hand control f{t) is set to zero. 1t is also true that the

vafues of the switches, L, get closer together as we add more
and more switches.

Hotes

1. If the right end of the rod were held at temperature zero,

the rod would also go te zero, but not nearly so Fast. MNote,

too, that after the last switch, the right end of the rod is
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held at zero.

2.  We might try to use thls same approach to control the

vibrations of a vibrating string. That is, vary the positicn

of the right end of the string so that the string comes ta rest
in minjmum time.

3. The reader shouldn't get the impression that the minimum

time problem is the only problem we try to solve [or that the

control is always bang-bang). Reference | of the recommended

reading list gives many ather objective functions that occur in

applications.
4. We could also change the contrel problem thai we solved in

this lesson, so that the boundary condition on the right-hand
side of the rod {x=1) was
u (1,0) = (1)

In this way, we will be controliing the amount of heat fiux

at x=1 instead of the actual temperature. The authors in

reference 3 have also solved this problem.

Problems

1. Graph the optimal boundary-control uf{t) for n=h wusing

the data of Table !, Draw rough graphs of the controlled

sotutlon for t = 0, 0,1, 0.25, 0.37, 0.40 .

2. Show that the solution of the BYP (2} {s given by

coshd3 + [sF{s) - 1] coshv
s coshis

U(x,s)

for t = t} when n=i.

3.  Solve the system of equations (6)
What would the graph of

Does this answer agree with Table | 7

this controt fupction F{t) ook Tike ?
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4. What system of algebraic eguations would you solve to find
the cang-bang control f{t} that sends the solution to the

foliowing problem to zero in minimum time 7

= < <t <
FRE u, U 0 < x| v} w
BCs ufo,t} = 0 0<t<w
ux(l,t] = f(¢t)
i1c ulx,0) = % 0« x <1

Other Reading

1. Operatlonal Mathematics by R. ¥V, Churchill. McGraw Hill,

1972, One of the best applied books on integral transforms,

contains many worked examples,

b.  Distributed Parameter Systems edited by W. H. Ray and

D. 6. Lainiotis. Dekker, 1978. A comprehensive review of
madern control theory in PDE.

3. Time Optimal Control of a Linear Diffusion Process by

R. M. Goldwyn, K. P. Sriham, and M. Graham. Soclety of industrial
and Applied Mathematics, Journal of Control (5) No. 2, 1967,
p 295.

#ER
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Additional Lesson B Potential Theory {rewriting BYPs as

integral eguations)

PURPOSE OF LESSONM TO SHOW HOW THE FOLLOWING BYPs:

7w = 0 inside a reqion D in 2 dimensions

(n u=f on the boundary C of D {Dirichlet Probles)

2 ¥iu o= D inside a region D In 2 dimensions
2
%%— = q on the boundary £ of D (Neumann Proplem)

CAN BE SOLYED IN FAIRLY GENERAL DOMAINS D BY LOOKING FOR THE
SOLUTHON IN TERMS OF THE SURFACE POTENTIALS:

{3) Win,y) = f yils) gﬁ'(‘“ %-) ds  (double-layer potentiall
C

f ofs) In % ds {single-Tayer potential)
C

(4) Vix,y)

THE IDEA 1IN SOLYING PROBLEMS ' AND 2 (S THAT BOTH 3 AND & SATISFY
724 = 0, BUT NOW WE MUST FIND THE SURFACE POTENTIAL DENSITIES
pls) AND o(s}) (in the integrals 3 and 4} 50 THAT THE BCs u = f,
aufan = g ARE SATISFIED. BY SUBSTITUTING 3 AND 4 IN | AND 2,
RESPECTIVELY, WE ARRIVE AT TWO FREDHOLM FNTEGRAL EQUATIONS FROM

WHICH WE CAN SOLVE FOR ufs) AND ufs) .

Lesson B: Potential Theory (rewriting BYPs as integral equations)

In previous iessons, we solved Laplace's equatlon with boundary
conditions

u = f on the houndary {Dirichlet BC)

(1) u g on the boundary {Neumann BC)
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ir regions D that were very simpie (inside a circie and In the
vpper half plane}. There are methods for solving these problems
in more general regions of space; chapter 7 in reference 2 of
the recommended reading discusses the method of Balayage, the
Peron-Remak method, Tntegral equaticns, Dirichlet principle,
finite-difference methed, and confermal mapping. In this kook,
we have already discussed conformal mapping, finlte differences,
and the Dirfchlet principle. We will now discuss the method of
integral equations that consists of converting Dirichlet and

Yeumann problems inte integral equatlons {of Fredholm type)

and then selving these problems. The actual solution of our
integral equations will be left to the next lesson (Lesson C).

To begin, however, we must introduce the concept of surface
potentials and discuss their properties. It turns out that the
solution to the Neumann Problem will be a single-layer potential.

Kinds of Surface Potentials

furface potentials come in many forms. We will discuss two of
them, the single-layer and the double-layer {most common kind).

First, the single-layer potential.

Single-Layer Surface Potentia} Suppose we have a single chargs

{we restrict ourselves to two dimensions) +g at some point
@ =(g,m} . From what we already know, the potential at any

other point P = (x,y) due te this single charge is glven by

ulx,y) = q ln(%& {(logarithmic potential)}

where 2 = (x-E£)% + (y-m)? .

How, suppose instead of a single charge located at one point, we
have a continuum of charges with charge depsity of{s) along a
curve (Figure 1}.



Q= (E,ﬁ}

(s} = charge density
at s

Single-Layer Surface Potential

Figure 1

We can Interpret ofs) as the charge in a very small line segmeat
{centered as s} divided by the length of the segment. If we
pass to the 1Imit by letting the length of the line segment go to
zero, we would arrive at the exact value of of{s). MNow, to find
the potential at any point (x,y) due to the entire charge on ¢,

we merely sum the potentials due to each charge on the curve o

get

(2) Vix,y} = | ols) 1n(%9 ds
C

See Figure 1 . This is the singie-layer potential due to the
charge denzity on C, and later we will see how the solution to the

Neumann probiem

viu o= 0 in the region 0
%% = g on the boundary of D

can be represented in terms of this potential. The general idea
is that the single-layer potential satisfies Laplace's equation
for any ag(s}, but we must find o(s} that satisfies the 8&C

gu/In = g. |f we substitute the single-layer potential in the
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Heumann BC, we will arrive at a Fredholm Integral equation from

which we can solve for o(s) . Now we will discuss the second

surface potential.

Jpuble-Layer Potential The double-tayer surface potential

is a little more complicated. We start with two charges, a
positive charge +gq and a negative charge -g located at a
distance d apart. See Figure 2 .

'r” - P = (x,y)
(0,d/2) 4 +g

.
B r

-q § (0,-d/2)

Two Charges Giving Rise to a Dipole Potential
Figure 2

If we want to find the potential field due to these two charges
and if we are located far from the charges in comparlson to
the distance d between the charges and calling p =qd (dipole

moment}, we can write

Wix,y) = q lim [ln(%-) - ln(%—)]
d+o 2 i
- B 1 _ 1
= g lim [in(z) LICH)
2 1
= u & '“(ia (definition of
an r

n=0 derivative)
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whare 2 = % + {y-n)? .

We can find an alternative form of the dipole potential by

evaluating this derivative to get

. Y cos 0

Wix,y) =

where r Is now the distance from the dipole center (the origir

in Figure 2 to the peint P}). That s
ro= (%% o+ yz]llz .

The reader may find Tt useful te graph this dipoile potential in

three dimensions.

We now place dipoles along a2 curve € and aliow the dipole
moment density ui{s) to vary. See Figure 3. The dipole
dansity wu(s) <can be interpreted as placing dipoies along the
curve, each with [ts own dipole moment, and then finding the
density of these dipoles in a manner similar te the single-
tayer density. We will et the sign of u(s) be positive if the
inner charge is positive and negative if the inner charge is
negative. Hence, a uniform density of ufs} = 1 on the boundary

means all inner charges are +1 and all ocuter charges are -1,

dipole density
negative 4

at this 2
paint T
5

s increases

o t:er dipole density
counter- ole
clockwise positive at

i this point
direction

Potential Field due to a Double-Layer Surface Charge
Figure 3
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To find the potential due to this double-layer density along €,

we merely sum the individual potentials due Lo each dipole to get

Wix,y) = f u(s)gﬁ-ln(v}) ds
C

_ J w{s) cos & ds
C r

This compietes our introduction to single and double-layer

potentials. We will now (without any proofs) list some properties

of these two potentials and describe what these surfaces look
tike, We then show how these properties can be used to copvert

the Dirichlet and Neumann problems to lntegral equations,

Properties of the Single-Layer Potential Vix,y} = j als) ln{%& ds
C

Suppese we have a swmooth curve C contalning a region D  and

suppose we have a single-layer density of(s}) distributed along €.

The following are a Few properties of the single-layer potential
Vi)

V. Wix,y) satisfies Laplace's equation %2u = 0 jnside and
outside the curve C.
2. The potential surface V{x,y) is continuous acraoss ¢C.

3.  The normal derivative of ¥(x,y) has a jump discontinuity

of 2wolx,y) across [ at the point {x,y)
b, The property
3V, 3%,y - -
lim an(x vl . Bn{x vl wr{x,y)

as  {x,y) > {x,y), holds for points

{x,y) approaching boundary
points  {x,y} from the inside.



an

Properties of the Double-Layer Potential W{x,y) = | u(s)gulnbhds
nor
C

We now Tist four important propertles of the double-layer
potential.
1. W{x,y} satisfies Laplace's equation V7u =0 inside and
outside the corve C.
2, The potential surface W{x,y} has a jump discontinuity
of 2mu(x,y) across C at the point (x,y).

3. The normal derlvative of W{x,y) is continuous across the

curve C,

b,  The property

Win,y) > Wik, v} + wuix,y)

as  (x,y) + (x,7) holds For points {x,y} approaching any
boundary point (;,;} from the inside.
For example, in the simple case, if the double-layer density is

u(g,nt = 1, then the double-layer patential is

2 {x,y) inside C

fos‘:’} = kil (x,‘!] on €
o (x,y) outside ¢

giving a jump of 2%, We now get to the maJor task of the Tesson,

converting BYPs to integral equations,

Converting the Dirichlet Problem to an Integrai Equation

Suppose we wish to solve the BYP

Vi = 0§ inside D

u = *F on the boundary of D



Let us try to find the solution as a double-Tayer potential

d 1
ulryy) = Wboy) = fouls) 3= nln) ds
¥
Since we know this expression satisfies Laplace's equation for

any density uis), we try to find the density 1ls)] that will
satiszfy the BC

Wi{x,y} = f{x,y} on the boundary.

We must be careful here due to the fact that Wix,y) has a

jump discontlnuity across the boundary € {Figure 4.

W(X,\f} :
_\l
|

- * W {x,y)
m(x,y) Ml,

inside {(x,¥) outside €

drﬁﬂ(i.;)

q.::a-l'

%1ice of W(x,y) Acreoss the Boundary
Figure &4

Since we want the solution

surface out to the boundary we replace our BC
ulx,y) = fix,y)

by

Tim Wi,y = fix,y)
{x,y)>{x,y)

or, from Figure &, W(x,y} + muix,y) = Flx,y) .

ulx,y) = Wlxy) to be a continuous

iR

0
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Mow, replacing Wi(x,y} by it's integral form we have

+ mulx,y) = fix,y)

f uis) cos 0 ds
¢ r

which is a Fredholm integral equation of the second kind
(Figure 5).

(,y) = Fixed polnt

o

s increases in the
counter clockwlise
direction

{E.n} = moving point of integration

Yariables in the Fredholm lntagral Egquation
Figure 5

We can now he assured that when we solve this integral equation

for uix,y) and substitute it into
ulx,y) = § uls) Lo intdy ds
' c an r
We will get a continuous function u{x,y} that satisfles:

i) Tiu=20 inside C
T} ulx,y} = fix,y] on C .
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This completes ocur discussion of the Dirichlet problem and how we
can convert 1t to an integral equation. The technique of finding
the solution of the Neumann problem as a single-layer potential
is carrted out in a similar manner. I{p this case, we use the

property

im &ty = B9 - ok,
(x,y)>(,y)

to arrive at the Fredholm integral equation

fols) inth) ds - moli,d) = g(.9)

C
from which we can solve for the single-layer potential aofs).
We will discuss the general nature of integral eguations in

Lesson [.

Notes

1. An integral equation is an equation where the unknown

function occurs in the Integrand {possibly other places too).

2. This method leaves a lot to be desired since it is difficult
to find analytic solutions to integral equations for the general
domain., We may think that all we've done is convert one hard
problem {involving derivatives) to ancther hard problem {invelving
integrals}. This is true Tn a sense, but there is another side

to the story. It turns out that integral equations are better

to work with from a theoretical point of view. Suppose we

aren't so interested in finding the analytic solutlon (maybe we
can't find it) as we are in knowing if there is a solution and
what kind of assumptions of the boundary conditicen and boundary

we must make in order for a solution to exist. It's certainly
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not true that all BYPs even have solulions, and many times, we
would like to know what physical conditions we must assume in
order to get solutions to our equatfon. Integral equations are
better tec work with when these questions about existence and
uniqueness of solutions have to be answered.

t
Problems

1. Prove the alternative form of the double-layer potential

can be written

U cos B

N(Xs‘/) = r

given that we start with the first form {as given in the textj.

2. Plot the dipole potential due to two charges +q and -q at

a distance d apart.

3. Derive the Fredholm Integral equation for ofs) in the
Heumann problem. Praw a picture describing the relevant

variables.

Other ReadTng

i. Partial DIfferential Equations by 1. G. Petrovsky.

Interscience Publishers, 1957. Contains a nice section on
potential theory, describing the single and double-layer

potentials.

2. Partial Differential Equations by B. Epstein. McGraw-Hill,

1962, Chapter 7 of this text discusses many technigques for

solving the Dirichlet problem in general domains.
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Additional Lesson C: Integral Equations

PURPOSE OF LESSON:  TO {NTRODUCE THE BASIC FREDHOLM INTEGRAL
EQUATION

b

p(x) = A [ Kix,s) ¢(s) ds = f{x) a<x<b
a

WHERE THE UNMKHOWH FUNCTION ¢{x) OCCURS UNDER THE INTEGRAL SIGHN
AND TO SHOW HOW THIS EQUATION CAN BE SOLVED FOR CERTAIN KERNWEL
FUNCTIONS K{x,s). IN PARTICULAR, IF Ki(x,s) CAN BE WRITTEN IN
THE FORM (or approximated by}
Kix,s} = ‘; ai(x) bT(S}
i=1

THEN THE {NTEGRAL EQUATION CAN BE REDUCED TO A SYSTEM OF L INEAR
ALGEBRAIC EQUATIONS.

FINALLY, A SPECIFIC DIRICHLET PROBLEM 1S SOLVED BY CONVERTING
IT TO AN INTEGRAL EQUATION BY MEANS OF THE POTENTIAL-THEORY
TECHNIQUES DISCUSSED IN LESSON C.

Lesson C: Integral Equations

Linear integral equations can be interpreted as extensions of
systems of linear algebraic equations to an infinite continuum,
For example, the llnear system of n eguations with n unknowns

*

has the comtinuous analog

B
I Alx,s) T{s) ds = b(x) a<x<b
a

where now the unknown f{s) 1is a function, and the continuous
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variables x and s take the place of the discrete variables |
and j. The equation where the functions Alx,s) and b(x} are
assumed known and f(s) is unknown is called an integral
equation, and it is an example of the general Fredholm integral

equation

|~
k3

iz\
o

[+
(1) d(x) = A [ Kix,s) ¢(s) ds = T(x) a
a8

The general names for the variables are:

f{x) = right-hand side of the integral equation
Kix,s} = kernel of the integral equation
A = known constant (often an eigenvaiue}

#{s) = unknown function (everything else is known)
and a couple of examples are

1
Gix) - [ sin{xs) ¢fs) ds = x? 0« x <
0

glx) - f Q-———-l:iS- = &in x —aw ¢ ¥ <

The last example is a singular-integral equation, singe the kerne)
and domain are unbounded.

We will now find the solution to integral equation (1) for
those cases where the kernel K{x,s) can be approximated by an

expression of the form

"
Kix,s) = & aj(x} bj(s) {degenerate kernel)
j=1

Solving Integral Equations with Degenerate Kernels

Suppose the kerrel Kix,s) in the Fredholm equation
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>
P
o

b
${x) - [ Klx,s) #(s) ds = f(x} a
a
can be written (or approximated} as

Wx,s) = }g} aj(x) bj{S)

Substituting this expression in the integral equation, we get

n b
$(x) - T a.(x) [ b.(s) ¢{s) ds = f{x)
j=1 4 a

or

¢ aj(x} = F{x)

where

b
e, = [ b.{s) ¢{s} ds
a J

If we now multiply equation (2) by each of the functions
by (x},

with respect to x, we get the foilowing system of algebraic

bz(x), ces bn(x) and integrate the resulting equation

equations:

b
(3) [ #(s) b (s) ds - E c. f b, (s) 2 (s} ds = f {s) b,
a j=1 J a a
{i=1,2,...
or in more compact form
n
{4} c, - I k,,c. = f, i=1,2, ... n
i . ij ] i
=1
where
b

-
I
e

bi{s) aj{s) ds

-
"

i J £ls} b, (s) ds
=3

91

) ds

n)
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We can now solve this system of equations (providing it is a
ronsingular system having & nonzero determinant) for the numbers
< and then substitute these values into equation (2} to find
the solution $({x) . That is,

n
{5} glx} = Fix} + » <, a.(x)
T
J
Remember that aj(x) and bj(x) are assumed known [they can be
computed from the kernell. in other words, if the kernel is

degenerate and if there is a solution, then it has the form

plx} = fix) + jg] Cj aj(x)

where the c¢.” are found by solving a system of algebraic

equations, We will now give an example,

Solution to an integral equation

Suppose we have the equation
1

g(x} = [ xs p{s) ds = x? 0 < x <]
0

We know from equation (5) that the solutlon has the form

¢lx} = Flx) + ; c. a, (%)

= x? + ¢ox {c an unknown constant}

and so, substituting it in the integral equatiacn, we get

I
x% + ex - I s {s* + c3) ds = x?
0
Evaluating this integral, we arrive at c¢ = 3/8, and, hence, the

soiution is



We can eastly check this answer. There are more methods for
solving other types of integral equations, and a few of them can
be found in reference 2 of the recommended reading. We will now

use our technique to sclve a problem in PDE.

Dirichlet Probiem

Suppose we wish to solve the Dirichlet problem (which we have

solved before)

FOE Vu = © {inside the unit circle)

BC u(1,8) = £{8) 0 <8<y
We know the sclution can be written as a double~layer potential

1
atri0) = [ B ntg wie) a9

where R* = r? - 2rpcos(8-¢) + p? and u{8) satisfles the

integral equation
1 Ty i 1
{6} "ﬁ*g ‘3-" 'ﬁ* ulg) dp = "‘ﬁ*f(e) 0 <9 <2n

if we now compute the kernel {which will be evaluated on the

boundary r = p = 1}, we get

9 }
-B'a]n{ﬁ-) = =

I
p=1 2

and so we arrive at the integral equatlen

y 2" ]
nie) + 5= g (@) 4o = - - F(0)
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$ince this integra) egquation has a degensrate kernel K(8,3) = - %ﬁ

the sclution will be of the form

p{g} = -f.[is@--%;

Substitutling thls in the integral equation, we have

1 21

¢ = E;(J; f(g) do

and so

o o z
wey = -~ 00 I ofle) d¢

' {2¢}® ©

Finally, putting this in the double-layer potential, we have the
sciution
in | 2

2 aa 1= L) - fwfhi) g ] dg
a Els) R w (2m? o

1

ufr,a)

a Tew calculus wmaniputations

] & 1-r?
= [ fl) ,
T 9 1 - 2rpeos(0-9) + ?

dg

i

which s the Poissen Integral formula.

If the reader would like to see more general domains attacked
{which is the purpose of the integral-equation method, he or she
can refer to chapter 4 in reference | of the recommended reading.
There, the Dirichlet preoblem is solved in more general domains.

The computations become [nvoived, so they aren't done here.
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Notes

1. Laplace’s equation is not the only equation that can be
solved by potential methods {methed of integral equations}. Mere
general elliptic equations (Helmholtz’'s equation} can be solved in
addition to heat and wave problems. See reference 1 {chapter 7}

af the recommended reading.

Problems

i. Solve the integral equation

1
olx) - [ (+s?) ¢ls) ds = x*  ©0<x< ]

0

Check the answer.
2. Solve o5

$lx) -~ 2 [ (x%s + xs) ¢is) ds = sin{mx)

0
0<x<m

3. Solve the Neumann problem

PDE V2u = 0 inside the unit circle

BC %F‘(I,D) = sin g 0<8 <2

by the integral-eguation method.
k. Verify the formula
3 1 1
% 'nE® "7
p=1

where RZ =1 - 2p cosib-4) + p?
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Other Reading

1. Integral Equations by S. G. MikhlIn. Pergamon Press, 1957.

This text discusses many applications of integral equations, in
particular, the theory of elasticity, fluid dynamics, and
vibration analysis. Part It of this book shows how to solve the

Dirichlet problem in various domains by potential-theory metheds.

2. An Introduction to Mathematical Physics by L. H. Jones,

Benjamin/Cummings, 1979. Chapter 11 contains an excellent
overview of some basic methods for solving integral equations,
inctuded are integral equaticns of degenerate type, Neumann and
Fredholm series, Hilbert-Schmidt theory, and the Wiener-Hopf

technigue.

#y
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Solutions to Problems in Lesson A

F(t) = boundary tempzrature

319 _36p 392387

2. Straightforward, find the general solution of the ODE and
substitute into the Bf.

~& .t
3. When n =1 we have only one equation: 2 - e Hl = 0
where
1,2 5
s; = -{n - EJ w2 = -2.467 .
Solving for t, we have &, = 28}

1 I

4, This problem paraliels the treatment In the text, The
equations we have are:

5h F(sn} -1 =90

where

2
s, = <l -9
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Salutlons to Problems in Lesson B

1. Direct computatlon.

2, The surface goes to += near the charge +gq and -= in a

neighborhoed of the charge -q.

3. Analogous to the Dirichlet problem.

Solutions to Problems in Lesson C

1. Try ¢lx}) =x+c. One finds e = ~9/4 ,

1

2. Try 4(x) sin(nx) + Cpx +c

5 -
3. Similar to the Dirichlet problem.

4.  Direct computation,



