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CHAPTER 1

>
1.1 The cross product X x B is perpendicular to both K and ﬁ_
Since we want a unit vector, we just divide by the

N > >
magnitude: n = A x B/|K x B

x oy oz
> > ~ ~ -
A x B = |2 -6 -3] = 15x - 10y + 30z
4 3 -1

1 x B = /152 + 102 + 302 = 35

-~ 15% - 10y + 302 3x - 2y + 6z
Hence, n = 31 = f

1.2 The position vectors of these three points are

T, = 2; - ; + 2, ?2 = 3£ + 2; - 2, and

= —; + 3; + 2;. The position vector of an arbitrary point is
z = x; + y§ + zg. If all vectors lay in the plane, then the

following triple cross product vanishes.

1.3 The position vectors of these points and an arbitrary point
> an >, 2» N 4
are r; = 3x +y Z, Ty = X 2y z, an

£ = xx - yy + zz. The equation of the plane is governed by the



condition (¥ - rz)'(?z - T}) = 0 which gives the equation
2x + 3y + 6z + 28 = 0 for the plane.

n-1

dr/dr = nrr = nr"722

">

1.4 8) Vrn =

(2183

b) 9(2na|Z]) = r da|E|/dr = r/r

v(1/r) = r d(1/x)/dr = -r/r?

1.5 Consider the surface defined by f where

2

f(x,y,z) = 2xz° - 3xy - 4x - 7 = 0. Recall that Vf is normal to

surface f(x,y,z) = 0, then

9f ~  9f ~  Jf - 2 - . .
VE = 2% * + 3y y + 5, % = (227 - 3y = 4)x - 3xy + 4xzz

At (1,-1,2) we have: VE = (8 + 3 — 4)x - 3y + 82 =
7; - 3; + 8;. The unit vector normal to the surface at this

point is:

A~ _ Y _ IR -3y + 82 _Ix-3y+ 82

n = =
el /122
72 + 32 + 82 122

1.6 By definition we have do/ds = |Vé|. Now Ve = 2xyz x +

x2z ; + 3x2yz2;, thus at x = 2, y = 1, z = -1 we have
Ve = -4§ - 4; + 12;. Hence, d¢/ds is maximum along

(4% - 4y + 122)/J42 + 4% + 122 direction and
|vo| = /a2 + 42 + 12% = /T76 .




B e e Dk e e A

1.7 Using Eq. 1.57
Ve(2/c3) = W(1/r2) e + Ver/ro = 1—3 24 3—3 -0
r r

1.8 Using the vector identity given in Eq. (1.60) we have

> > > >

Ve(R x B) = Be(V x A) — Ae(V x B) = 0, since V x X = Vv x B = 0.
+> >

1.9 A is irrotational if V x A which gives

x(c + 1) - y(a - 4) + z(b - 2) = 0. Therefore a = 4, b = 2,

+> N -
c =-1. Hence A= (x + 2y + 42)x + (2x - 3y - z)y +
I > 3% - 9% ~ b ~
(4% -y + 2z)z. Now A = V% = R 3y y + 5, 2 Thus
I
gﬁ = x + 2y + 4z . Partially integrate with respect to x:
2
o =2+ 2xy + 4xz +f(y,z). Now L 2x - 3y - z, thus

2
partially integrating with respect to y gives

ay

® = 2xy - 3y2/2 - yz + g(x,2z). Now %g = 4x -y + 2z, thus
partially integrating with respect to z gives:

® = 4xz - yz + 22 + h(x,y). Comparing the 34¢'s, we see that if
f(y,z) = —3y2/2 + 22 - yz, g(x,z) = x2/2 + 4xz + zz, h(x,y) =
x2/2 + 2xy - 3y2/2 then we get a & where V& = K. That is

o = x2/2 + 2xy + 4xz - 3y2/2 + 22

- yz + a constante.

>
1.10 VeA=1+1+a=2+ a=0 which gives a = -2.

1.1 E = :/r2 = r/r is conservative (spherical coordinates are

> > *> -
implied) if V x E = 0. Note that E = Err .



rsin6$

r r
> > 1 3 3 3
vV x E = —_— —_— —_—
rzsine 38 36
0 0
T
> > 1 A . ~ :
VxE = ———ov (re aEr/3¢ - rsinb ¢ BEr/Be) = 0. We can quickly
r sinf

see that any spherically symmetric (6,¢ independent) radial

field is conservative. Thus V x (f/r) = 0.

> ~ ~ 9% 21 3% A 1 30
E=f/r=-ve=-(f 50+ 8055+ ¢ 5ing 50
Thus 1/r = - 34/d9r = -d®/dr. Or -d® = dr/r which integrates to

& = —¢nr + c. Applying &(r = a) = 0 gives c = fna; thus

® = fna - fnr = —-¢n(r/a).

1.12 Notice that if we can find a scalar function &(x,y) such
>
that A = V®é as required in the second part of this problem, then
>
it would be a necessary and sufficient condition that A be

conservative. However, we will go ahead and explicitly show

> >
that V x A = 0 to show that A is conservative:
= 2 2
v x A = +x[3(3xz" - y)/3y - 3(3x" - z)/3z]
—§[3(3x22 - y)/ox - 3(6xy + 23)/321

+2[8(3x2 - z)/3x - 3(6xy - z3)/3y]

2(-1 = (<1)) - 9(32% = (32%)) + 2(6x - (6x)) = 0. Therefore

> >
VxA=20 + A is conservative. Now we find ¢ such that

> ¥

= Vo,




(6xy + 2% + (3x% - 2)7 + Oxz’ - y)3

>+
]

36/3x x + 38/3y y + 38/3z 2

Integrating 34/3x = 6xy + z3 gives ¢ = 3x2y + xzj + g(y,z).

Integrating 34/93y 3x2 - z gives & = 3x2y - zy + h(x,2z).

Integrating 3¢/9z 3xzz -y gives ¢ = xz3 - zy + f(x,y).

By inspection of these three relations we can easily show

that &(x,y,z) = 3x2y + xz3 - zy + C.

1.13 V% = x + 3y + 3z 3. The surface integral
ax ay 3z

1= g fenda can be written in terms of a volume integral using
the divergence theorem I = fV-; dv = [3dv = 3V where V is the

\Y \Y
volume of the surface.

1.14 a) VR = 3;5 +—L+ —E =4 - 4y + 22.
b) From here on, it is easiest to switch to cylindrical

>
coordinates where VeA = 4 — 4psin¢ + 2z. In cylindrical

2 2

coordinates, x° + y“ = 4 is the same as p = 2. From the figure

the unit vectors normal to Sl is p, normal to 52 is z, and

normal to Sq is»—g. The divergence theorem states 3 '

f VeRdv = ¢ Reda = f (4 - 4psing + 2z)pdpd ddz {" A E—hiéz\

i, H
s !

3 27 2 eyg
= f dz f dé f pdp(4 — 4psing + 2z) = 84w )
0 0 0
| e,
Now we calculate the surface integral //”’”d ~

<]

¢K0d; = f K.dgl + f KOd;Z + f K0d33 using N ‘o
S Sl SZ b3 "*—-"\L S

5



> -
p = xcos¢ + ysing, and A = 4xx - 2y2

y + z%z

24

K-d;l = (4x x - 2y2§ + 222)-(£cos¢ + §sin¢)pd¢dz

(Apc052¢ - 2pzsin3¢)pd¢dz

This gives Kogal = 8(cosz¢ - 251n3¢)d¢dz

Kodgz = (z22)0(2)0d¢dp which is equal to
K-dg3 = (222)-(—2)pd¢dp which is zero at
three contributions we get

N 2 2w 2w 2
§ Aeda =9 [ podp [ dé + 8 [ (cos“¢ -
S 0 0

which gives 84w, the same as fVoKdv.

1.15 a) We first find the unit normal.

2

+y2

surface is described by f(x,y) = x

use n = Vf/|Vf|. The gradient of f is Vf

at p = 2

9pdpd¢ at z = 3.

z = 0. Adding the
3

251n2¢)d4) [ dz
0

The cylindrical
- 16 = 0. We

= 2xx + 2y§. The

magnitude of the gradient is |Vf| = /4% + y2.  But everywhere

2

on the surface we have x2 + y~ = 4, therefore |Vf| = 8. Hence

a = (xx + yy)/b.

> ~ A A A
b) Substituting for A and n in Aen we get Zen = (xz + yx)/4.

Writing this in cylindrical coordinates we get

2

* A
(pzcos¢d + p“sindcosd)/4. Thus fA°nda =

w/h4 5

> A
fA'npd¢dz =

f [ (zcos¢ + 2sindcos¢)dedz = 5(7% + 1)/2.

0 0




a ~ -

X y z

1.16 v x X = |a/3x 3/3y  9/3z
2 2
2x -y -yz -yz
> . - - -
V x A= x(-2yz + 2yz) + y(0 - 0) + z(0 + 1) = z. Using

>

- - -
xsinfcos¢ + ysinBsind + zcosH,

=}

[}

La ]
]

X = rsinfcos¢, y = rsinfsin¢, and z = rcosh, we have

(v x R)enda = (2)+(XsinBcosé + ysinBsing + 2cosd)r’sinddodé

= cosBed¢dBsinb

at the surface of the sphere (r = 1). Therefore

. n n/2 n/2
[V x Aenda = 2m [ cosBsinBd® = -2m cos“8/2 | = m. Now we
0 0
calculate § R+df. In this case df is along a unit circle on the

C -
X,y plane and its direction is along ¢. Therefore

KOd; = [(2x - y)£ - yzz§ - yzzg]-[$rd¢]. At r = 1 and using
spherical coordinates we have
K-d; = [(Zx—y)f - yzz§]°[—§sin¢ + fcos¢]d¢

= —(2sinBcosd - sinBsind)sing - (sinesin¢)(cosze)cos¢

. > .
Now, 8 = w/2 along C, therefore A+d¥ = 2 cosdsing + sinz¢

2m ) 5 M
[ (-2cosé¢sing + sin“¢)dé = cos | + m =

\c‘
>¥
[
o
-
]

1.17 a) fﬁ da = 0. From problem 1.1¢ we have

fVQ dv = ¢¢ n da. Let & be a constant function such that
7



V% = 0, and we can take ¢ outside the surface integral. Thus
0 = ¢/n da or [n da = 0.
b) ¢§ xnda=0. From problem 1.18 we have

> ~ > >
fV x B dv = ¢n x B da. Taking B = f, the radius vector, then
VY x £ =0 and we have Q? xn da = 0.

> >

> N > >
1.18 a) [V x Bdv = [n x Bda. Let A= B x C in the

>
divergence theorem where C is a constant vector. Then

+> > > > A
[ve(B x C) = (B x C)en da

> > > > > > A
Since Ve(B x C) = Ce(V x B), and (B x C)en =

>

> oA > > > A >
Ce(n x B) then C+[V x B dv = Csf n x B da or

” > >
b) [vé dv = [6 n da. Let A = &C in the divergence theorem

>
where C is a constant vector. Then

[vesl dv = [oen da
> >
Now we have Ve(&C) = C+Vd, then

> > - ~
C-fV¢ dv = C+f® n da or [V® dv = [6 n da




1.19 It is by far the easiest to solve these problems by using
spherical coordinates, thereby taking advantage of the

symmetries of these functions.

2 1 d,2diary 1 d 2 1y _ 1
a) Viior = —5-3;(r dr ) = -2 dr(r X r) T2
r r r
2n 1 d,2dry 1 d, 2 n-l n-2
b) V'r =——2--a—lj( ?I:—) ——Ea—r(nl‘ X r )= n(n + 1)r
r r
1
d(— 2
c) \72 1. _1..._d_.(r2 (r))z _ I__Q__(F—) = Q
r 2 dr dr 2 dr ™ 2
r r
1.20 Given that ¢ = xx + ;; + 22
> > - ~ - an An Aa
re(der) = (xx + yy + zz)e[(xx + yy + z2z)
'(x; + y; + zg)]
= x2 + y2 + 22 = (Z£ed)e?. There is no ambiguity in writing
Tedet.
1.21 We use Eq. 1.76 with 7 = % =+ § — + 7 2 | and
: € use k4. L. x Ty TP

£ = x; + y§ + 22; thus V& = xx + yy + zz.

‘o



CHAPTER 2

2.1 The total force is the vector sum of four individual forces
of equal magnitudes but different directions. The magnitude of
each force is F = qoq/(éﬂeorz) where r2 = 17. Now only F cos®6
contributes, where 6 is the angle each force makes with the

*> -
normal to the plane of the charges. Thus F . .., = 1.73 z N.

2.2 Consider a charge element dq = Ads. We first notice that

>
due to the symmetry of the problem, the x—component of the K

= (1/4neo) dq'sinO/Rz. Substituting

4$

field cancels, and dEy

4 4453

>
dq' = Ads = ARd®, then |[E| = (A 4me R) [sinBdB =
" o
-M (4me R)cos® | = A/2me R. But A = q/mR, therefore

> - o
E = qy/ZWZeORZ.

Aodz(2x - zz)

2.3 dE = 3372 ° Now the z integrals cancels, and
4me (4 + 27)
o
z=o z=-5 z=w 2% A dz
E= [ dE+ [ dE=2 [ © 5= 65 X 1082 v/m.
z=5 z=—o z=5 4ﬂeo(4 + zz)3 2 °

where A, is in C/m.
10




A dz RE ~
Rp - zz

(R + z )3/2
integrating from z = -d to z = d, makes the z component vanish

Thus

2.4 Using Coulomb's law we write dE = hﬂe

because of symmetry, and thus

ARp d A Rp d
E - _0 f dz _ [} z I
bre g (R 4+ 22)3/2 4me k2 (k2 H 2y

2Ad8

(4me, R)(RZ + a2)!/2

>
2.5 From symmetry, E has a component only along the axis of the

disk. Hence E, = [dEcos® = L / dg cosf where
z 4me *> > 2
o |r -1
dq = oda = opdpdé. Hence E, = L f opdpd ¢ z =
z 4"80 ( 2 + 2) /_2-.‘—2
P z p + z

L pdp po= 92, -1 T

Aweo o (p ‘2 )3/2 z 260 (02 N z2)1/2 o
o z

E o= 1 - ]

z  2e (32 + z2)1/2

2.6 By symmetry E has only a component in the z direction, the

1 dq cos®

axis of the disk. Thus dE_ = where dq = oda and

z 4rme > 2
o |r - ']
da = 2mpdp, thus
> 1 a2 4 cos0(2mp)dp % 2 cosB dp
E = f =‘———f ———— But
z  4me > 22 2e >
oo |t - '] oo |r-r'|

> > l

o = h tanB, dp = h sec?6d6, and |Z - £'| = h sec8 then

11



[+ a o =a g a

E =2 =2 =2 P -
E = 5w [ cos8d® = 5— sin® | orE, ( )
o o o o

[¢)

2€°h ( 2 ) . Before discussing the field when h >> a,
° /22 + h2

note that the total charge on the disk is
a o
q = foda = [ — (2mp)dp = 270 a
L >
o
Now for h > a, (a2 + h®)™/2 < 1/n thus
> 2 2 . . .
|E| = ooa/Zeoh = q/éneoh which is the E field due to a point

charge q = 2mo,a. Thus, far from the disk, its shape becomes

unimportant and it looks like a point charge.

2.7 We use r' for the point of observation and r for the

charge. dq = o dx dy, ' = (0, 0, a), = (x,y, 0)
>
r

2 2 > _ 2
E = 1 f f (r )o dx dy Now |? - f’| =
4me : > > 3
o x=0 y=0 |r - r'|
(x2 + y2 + Y2 Thus
> 1 2 (xi + y§ - 22)(2x(x2 + y2 + 4)3/2)
B=gpe [ ax [y T2 2.3/2
oo o (x“+y +47)
2 2
.,_1 - Ao o 1 _3_2.. - -
E = Z;E: £ dx i dy 2x(xx + yy - 2z) Z;E; (3 x + 8y + l6z).

2.8 By inspection we find that only the component along the

axis of the disk survive. That is E fdE cos® =

1 dq

/
wme) G 4 ndy

z

o sin2¢ pdp dé

cosf, where dq = oda o

12




E = oo %ﬂ de ? dp sin2¢pd¢ h
z bme - ( 2 + h2) 7 >
oo [ p 02 + h
oh 2n a o h
. 2 pdp o rl 1
= of sin“¢de[ ————ab—urs = —[r - —————]
Aneo o o (p2 + h2)3/2 Aeo h (az + h2)1/2

2.9 a) Consider the o = o' case. From Gauss' law we have
|E| = o/e,. Between the planes the fields substract, and

outside they add. Thus

g = ox/e, x < -1

g=0 -1 < x<1

E=—orx/eo x> 1

b) For the o' = -0 case, the fields add between the planes and

subtract outside the planes

£E=0 x < -1 and x > 1
B=ox/e, -1<x<1
2.10 Z _ |0| -y for y > 2

sheet 2€o +y for y < 2

MG+ DY+ = D2 g check

2neo((y + 1)2 + (z - 2)2

line

oA + B

= 0. The z component can only be zero for

line sheet

> >
z = 2, Hence for z = 2, Eline + Esheet =
My + Dy o y(y - 2) A

— = () requires y + 1 = — or
2"€o(y + l)2 250 [y 2 on

. Thus y + 1 =% %-are solutions.

13



2.11 Let the Gaussian surface be a cylinder of length L, and

>
radius r. E will be radial by symmetry. Then

> > 1 I S
d Ee«da = Ee(2mre) = = 2" [5re” “" erdr [dz
s o o o
r
E(27mre) = i"l [ Sre—zrrdr
o o
2 -2r -2r a
10m2 (r e e
= [—+=F5 (2r - D] .
[ o
-2r
. _ 5 1 e 1
h_er[ 5— (r +r+2)1
o
> r V2 '
2.12 a) For r < R we have fE-d3 =& [ £ﬁ1£—~2g£-or
> > 4ma & 4Tl 2 % 6a ~ r'2
[Eeda = — [dr' =——r = 4mE, E = — 1.
€ [3 ET
o o o o
> > a R (Anr'z)dr' 2
b) For r > R, [Eeda = ;—~f S————— = 4maR/e, = 4nr°E. Thus
oo r'

. 2
E = aR/eor .

2.13 Flux penetrating is equal to Q/e0 where Q is inside S.

a) (q +aq,+ay/e = 1.1 x 107’ Coul/e,

1 12" 2 0%
b) — foda =— [ [ pdpd¢ = 2m Coul/e
€ € P (o]
o [ o] o
1 1 2n 2
¢) — foda = - [ d¢ sing [pdp = 0
o o o0 o

d) (20 - 20) x 10 ’ C/Eo =0

14




Q
2.14 Since total flux is fﬁ-d; = £nc

then flux density is

> > 2 e 2 °
D = g,E = q/4mrs = 9.55 x 107" C/m“.

2.15 To find the charge densities, we use the differential form
>
of Gauss' law: VeE = p/egg

+> - R
a) E = 10 sinbr + 2 cos66

> 1 3 2 1 3 .
VeE = rz 3r (10r“sin®) + T 5in6 38 @ cosBsinB) or
€
[®) . 2 2
P = T5ine (18 sin“8 +2 cos ' 0).
b) V-ﬁ = % a-%'%g 02 - az) = a. Thus charge density is
- > 1 1 9 2 2, _
p = agg for a < p < b. Now VeE = o @ T (b™ - a") = 0 for
o > b. Thus charge density p = 0 for p > b.

2.16 ¢ = 1 f da . But dq = oda = ordr8 so

Aneo |; B ;'l
(p +W/2 .
o 2w
_ 1 rodrd® _ oW '
¢ = A f f < " %e It doesn't depend on p, .
o p /2 o o
o
o bax 2
2.17 a) & =-—-—— [ = . Note that x = r,tan@, dx = r;sec”6df
bme 1t 1 1
o -2 N =2
and r = r,sech, thus & = f sec6d B
1 4rme -1
L 41£
x=4 v/ x2 + r2 + x x=2
A A 1 |
=3 ¢n |sec® + tand| = e | . | |
e x=0 o 1 x=0

15




b) In the 2 > ry limit we have ¢ = - gn r, + constant

2ﬂeo 1
c) For £, Ty << 2, we have V12 = O(rl) - ¢(r2) =
r
A n 2 . This is, as we would expect, the same as the
2ﬂ€o rl

potential difference of two points in the presence of an

infinite line of charge.

2.18 a) We use E = -V where V = f_ﬁ_ + §~3— + % E- in
ar r 36 rsin® 3¢
*> -
spherical coordinates. Thus E = r(Zar_3cose + br_z) +

6(ar_3sin0).

b) We use %—-= VeE. Consider first £ # 0.
o

> 1 3 2 1 £ . .
VeE = 2%r (r'E) + T5ine ap (51n0 Ey)
p__ 1 3 -1 1 3 -3 .2
€ = rz Py (2ar "cos6 + b) + Tsind 30 (ar “sin“@)

= —Zar_acose + 2ar_4cose =0

Thus there is no charge at £ # 0. We now inspect the equation
as ¥ + 0. Also we note that V'i’/r3 = -Vz(l/r) = 478(f) where
from example 1.4, the Dirac 6-function &(£) = O for r # O and
fG(?)d3? =1 if volume includes % = 0. This would have been
obvious if we noticed & = b/r is a point charge potential. We
should also recognize (a/rz)cose as a dipole potential of dipole

moment 4neoa, in the z direction and placed at r = 0. See

16




example 2.9.
c) We use the following in one step: %-= 3-6 = 3-(-30) = -vzo.

(See Ex. 3.20).

©

2.19 a) Using Gauss' law § £.dd = Qe Bives §l = —%— z.
! o
b) Using Gauss' law gives ﬁz = 3%— ;'
-0,
c) Take pé = -p, Bives the cavity, thus gz =3z r'. Adding
> > > Do " o
gives E = E| + E; = Je ZoZe
o
r' -p z' -p -p
= —f.qF = —2 = 2 "—) ' '
d) ¢ [Eedr T %o [ dz 3 %% T ZoF cosf'. One
o o o o

can also find the potential by finding the potential due to the

>
sphere and the cavity. (Same procedure used for E.)

2.20 We notice that this problem has symmetry about the y axis,
so it is natural to set up the problem as in example 2.9, with

the axis redefined: P F>

17



1 {1— - -g—-} Now,

The potential at point P is clearly OP 4"60 o

we note that

r' = /rfz + (1/2)2 - rfcosa, r" = /f;z + (1/2)2 + recosa

A
We are to assume £ < r, then (:") =r ¥ 2 cosa. Thus

2
qr +~3& cosa - qr + iﬁ
o = 1 [ q B q ] _ 1 [ 2 2 ]
P 4me L 13 4me 2
O r - 7 cosa r + — cosa o 2 [3 2
2 2 rT -4 cosa
b =~ 1 glcosa
P 4me 2

r

as seen in example 2.9. We now need only to transpose this in
terms of spherical coordinates, i.e. what is cosa in terms of

6,4? Note cosa =

1o

=£ -s— —_— = i E.: l_ =
s X7 but sin®, S cos(2 $)

s . | qf sinfsing
sin ¢. Therefore cosa sinfsin¢, and QP 4"80 rz

spherical coordinates.

2.21 We can superimpose the potentials of the four charges and
expand assuming that r >> a just as we did in Ex. 2.9. In here,

however, we will use Eq. 2.69 just as we used it in Ex. 2.lo.
t+4- ,-'r?r
-%¢ ¢ -1% ,..3<}
129 + ¢+ +% - b 39
-4t - %

Thus we write (see Fig.) ¢(3) = —3(3)~V¢(2) = —aE-VQ(Z), where

(2) a’ 2
] = ——jL—j; [3 cos”™® - 1] (Ex. 2.16). Now
Qﬂeor

18




2 2
VQ(Z) =r F:zﬂifg [3 c0826 -11]+ 8 [—32——2 [-6 cosBsing]] .
bme T bme T
o o
Using zer = cosH, 248 = -sin®d (Eg. 1.3) we get
(3) 3qa2 2 2
® = [3 cosB8(3 cos 8 - 1) + 6 cosB(cos 6 - 1)]
4me T
o
3
- baa P,(cosB) .
4 73
Aneor

2.22 We use the multipole expansion of Eq. 2.61 since we are
interested in the potential at large distances. We note that
8(2) - 0 and o(1) - 0. Thus because charge is in x-y plane

¢(2) = —l——-—L§ f[3(f-3')2 - p'2]dq. Let T be at (r, 6, 0);

4me
R o 2r R 9 "
then rep' = p'sinBcos¢' and hence Hrep') - o =
[3 sinzecosz¢' - 1]0'2. Now dq = 210, [8(p' - a) -

8(p' - b)lp'dp'de'. Thus the integral becomes:

2 T v 3
[f f[351n20c052¢' - l]SiL—EiﬂﬂTl&[G(p' - a) - 8(p' - b)ldp'de’'
o0 o0 2me
2w 3 27 2
= [ [3 sin®6cos®e' - n&tas -1 13 sin’Bcos?0' - 1]% de'
o o
) 2 2
= (32 - bz)(é_SLe_—_.l_) so ¢(2) =9 (a b7 (é. sin26 -1
2 4me 3 2
o 2r
2 2
¢(2) = A%E —13 (b ; a) (3 c0526 - 1)
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This is the potential of a linear quadrupole where two charges
1
of —q each are at a distance of 1/2(32 - b2) /2 from the central

charge of 2q.

2.23 The dipole moment is defined as (taking the z axis to be
the axis of symmetry) P = f?'dq. Taking dq = oda = okzsin9d9d¢
where R is the radius, and using = ; sinbcos¢$ + 9 sinBsin¢g +

2 cosf, give P = or2 f(; sinfcos¢ + ; sinBsin¢ +

z cosf)sinBd6dé. Only the z component survives, and we have

-~ "/2 ~
p = -2m0R?%Z [ cos® dcose = nor%z.
o

¥

>
2.24 We first calculate E and VE.

> ~ 3% ~ 3% ~ 3% ~ > An
= V0 = X — = Y — = 7 — = — + g o= -
E Yo X o=y 3y z 5 (alx az)x, VE a;xx, is a
diadic.
. N
a) U = -p*E is the potential energy of a dipole in an external

field: U = pyx+(ax + ap)x = po(ax + ay). At x = 0, U = pya.

> > - aa -
b) f = BVE = (pox)-(—qlxx) = —a;pox = 0.

> > > > >
¢) T=PxE+ 7T xf where ¥ x f is the usual torque due to the
distance from the origin (or the point the torque is being

>
measured around). Here, £ = 0 (at the origin) so ¥ = 3 x E =
(POX) X (_(alx + az)x) = 0.
>

>
2.25 a) One can solve this by calclating f = _quipole or by

+> >
f =z (5'V)Echarge' We will use the second for illustration of

> q (x% + yy + z2)
the method: E = - .
charge 4weo (x2 + yZ + z2)3/2
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> _ 0 > 2> — 3 4 32
P = pz then p+V = - p -7 and hence £ =-p - E .o
__a [3(x§ + yy + z2)z _ z ]

hme 2 2 2.5/2 2 2 2.3/2

o (x" +y 4+ 27) (x“+y +29)

q [3 pr cos® £ ; ]
-3

4ae rS -
> > >
S U 10 1. S T
bme r5 r3 q dipole

b) The couple is given by T=3 xE+ ¢ xf according to

Eq. 2.67.

>
> - -
T=17x( qr_3)+;xg=__2ﬂ_
r

s xf =29P sinb® ¢
4me
o

2 4meyr

4me T
2.26 Dipole 31 at the origin, digole 52 at . This must be

>
done carefully, expanding all products. If VeE = O which is the
> > > > 7 > g
case at r#0, then F = (peV)E = V(peE) = pe(VE).
a) The electric field of the dipole El at a point of
observation T is given by Eq. 2.47:

> -4, > A -3 > >
4neoEl = -3r (pl-r)r +r P> thus Py hlls

> > =3, A > A -3, >
4me p,+E = 3r (pl-r)(pz-r) r “(p, *p,)

which is symmetric in El’ 52. Now

> > -3 > a > N . =3 > AL > ~
4me V(p,°E ) = 3V(r Y(p,r)(p,-r) + 3r v(p,-r)(p, r)
-3 + A E -3 + >
+ 3r (p1 r)V(pz-r) V(r )(P1 Pz)
21



= 3WETIG D (B,D + 37OV D) (B, o)

+ 30 2B DR, D) - VT By

F = [-15(p +D)(p,+D)T + 3p (B, 1)
: 1 2 172
> > A > > A 4
+ 3p,(p or) + 3(pl-p2)r]/4neor .
b) In the form above, all terms are in the form (ﬁl-;), (32-;)

or (31-52). All terms are proportional to p;p,. If Bl = 52 =1

-6p P, T
then F = ———— . The interdependence shows this is the

4me T
)

maximum.

>
2.27 a) We first determine the E field of the two charges at

the position of the dipole:

>
hme o §AE (x = R + 22 (x +d)+ 22,
° i ri ((x - a2+ 22)3/2 ((x + 2+ 2372
. - - d) +q(x + d)
4me B = q(x' -
% ((x - YR Z2)3/2 ((x + 2. z2)3/2
3K )
X bqdz
bne ——= - —5————F7> at x = 0
o 9z (dz + z2)5/2

4me aEx/ax = 0 (by symmetry) at x = 0.

bmey K, = qz[((x -2+ zz)_3/2 - ((x + d)2 + 22)-3/2]

22




4me 9E,/dx = -6qdz(d? + 22)™/2 at x = 0. Note that 3E,/dx =

aEz/az. Thus

> A aa
VE(z = 2) = 6qd9,(d2 + 22)-5/2(xz + zx)/4me, and

F = ;-VE = 6qdl(d2 + 22)—5/2(px£ + pzi)/éﬂeo

S

We use the results of problem 2.26. Taking r = z,
P
1

Py = %(py+r) = 0, then F = ——— [3x(p, *2)+32(p, =) 1.

4me la
[o]

the forces, we get: 51 = 2qd(1 + d2/£2)—5/2;.

2.28 We use Eq. 2.62.

e 1 dq > r'
[} = — 4+ of —— dq +
() Us+rf=5d

4me
o r
> > 2 2
1 3(rer')”
5/ [——r'S -——r'3]dq]

Equating

Since r' = R = constant, then the first term gives o(F) =

Ro/eo. Because of symmetry one can show the other two integrals

vanish. Thus &%) = Ro/e, .

2.29 a) The monopole moment is equal to the total
charge = q. The dipole moment is B = [Zedq =
2

zo ) |
([  edz)z =52z
-z

o [o]

23
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2
2qzO

r'z)dz' = dz' =

z' Az” =

- 2 _ 1
sz = fA(z 3

Wi
>
N ~
o o
o|&
o w
N<)

b) The monopole moment is the total charge q + q' = 2nRX -
27RA = 0. We note, firstly, that the point charge is added at
' = 0 and thus makes no contribution to any moments higher than

the monopole. Thus, the dipole and quadrupole moments are those

calculated in Ex. 2.15

2n .
B = [fdq = [ R%xpds = O
(e}
2n 2n
v 1 12 a2 =L 2 _ Rr? =
0= A [ (3x r'HRAB = 7 AR [ (3R“cos¢ — R7)d¢
o o
1.3 2T 2
3 AR [ [3(1 + cos2¢)/2 - 1]d¢ = qrR“/6
o
Q;y = qR2/6, and Qp, = —qR2/3.

2.30 We use Eq. 2.69, ¢(2) = —3(2)-V®(1) and o(1) =

>
-q a cose/éﬂeorz, and 6(2) =

Q(z) (a cose; - a sineé)-(zq a cosh r + 12 sige 6)
Aneor 4ﬂeor

—ag. Thus

2
0(2) = -—£EL—§ (3 cosze -1).
Aneor
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CHAPTER 3

3.1 From the results of Ex. 3.1, and using 62 = n/2, we have

¢ = V gn(tan6/2)/2n(tand;/2). The charge density o = g E,. Now
> - -
E = -6(dé¢/d6)/r = —Ve/[rsinezn(canel/Z)]. Thus
o= -eOV/rln(tanel/Z) at 8 = 1n/2.
1 3%
3.2 a) - 5 = 0 which gives & = a¢ + b where the boundary
p” 3¢
conditions are: (4 = 0) = 0 and &(¢ = B) = V thus & = % ¢
a > > ‘13¢A
b) From Gauss' law n°E = o/eo, but E = T ¢ or

~

+> -
E = E% ¢, thus o = * V/Bp. The total charge is [oda. Taking

Ve ) do Ve h
da = hdp we get Q = g [ e (h) = — n pz/pl.
|
3.3 From Ex. 3.4 we have
tan(6, /2) N
_ tan(6/2) 1 L s . 830
¢ = Ven (:an(ez/Z))/’m (:an(ez/z))' Now -E = + V& = — == or
E _ —38 _ - Vo
rsinf tan(0,./2)
r sinf an—————L———
tan(92/2)'

>
b) Inside the metal of the plates, E = 0. At the surface,

there is a surface charge density, o, such that
+ eV
o

tan(el/Z)
r sinf &n (m)
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where 0 stands for el or 6,, and + is used for 8; and - is used

for 6,.
3.4 a) ®(r,8) =) {Anrn + Bnr_(n+l)Pn(cose)
8,(r,0) = T {A o, g fneD) 0)

o(r, ) = ) {An r + B r }Pn(cos

n=0
b) The following are boundary conditions that must be

satisfied: 1) & is finite at r = 0 which gives B, = 0 for n » 0

2) & — 0 which requires A' = 0 for n > O
T > n —_—

3) & =6, =V, cosb at r

o R requires that A, = B, = 0 for

n#1, AR = V,, and BR™?

vo R, 2

T °r cos® r < R and 9,(r,8) = V, (;0 cosb r > R.
3

\Y

o+ Therefore &,(r,8) =

— -~ > —VO -~
= —VQl =—7T-= — 6 or , El = z. Now

> - -
E, = -8, = (VO/R) (2 cosbr + sin6® 6). (Note that the
tangential component is continuous). It cannot be conducting
because there is a tangential component.

2Vo -—V0
d) Eon = Ejp = 0/50. Now E, . = —§-cose and E n = —— cosH.

Thus o(8) = (3Voeo/R)

e) We can calculate it from the following expression:

> > 2 +> N

p = fo(e) rda where da = R sin6d6d¢ and r = Rr. Alternatively
we can read it off from the expression for the potential outside
the sphere, since this potential is a dipole potential.

Comparing with Eq. 2.44 we get B = 47R? Vo€ z.

>
3.5 To get E, just get -V® where ¢ is given in Eq. 3.35 -
26




> a a

y_23e o128
ar r 66 3

> - -q Gq 2Rl

E = -r[ 5+ 3 5= (1 +— Ycos 8]
Aﬂeor 4neo(R2 - Rl) r

~ -8q R?
-8 5 (1 ——3)sin9].

3
lmeo(R2 - Rl)

The charge density on the smaller sphere is o = eoEr(Rl,e) =

%— [l— - §§_£2§2___]_ The charge density on the outer sphere
L R2 (R3 _ R3)
1 2 1
o o1 SRR
is calculated in a similar way: o = Z?[—f - ———T;———————cose]
RZ (R2 - R )
For the total charge on the outer sphere we have Q = f (RZ’ 9)

1
da = fo(Rz, 6) 2mR d(cose) = -q.
-1

3.6 We start by writing expansions for the potentials according
o

to Eq. 3.28. For r< R: ¢l = Y % - B r -l) Pn(cose). For

oo

r>»R: ¢.=17 (C ™ D r ) P (cose) Now B_. = 0 for all n
2 nQO n n n

since Ql is finite at r = 0, and Cn = 0 for all n since @2 is

finite at r = o, Next we match boundary conditions:
o

V, cos28 = AnrnPn(cose). Now cos(28) = 2cosz(6) -1

° n=0

= % (% cos?p - %) —%=%P2-%—Po. Thus

Ay = - -31- Vi A2R2= -g— Vo DOR"1= - -;— Vs sz'3= % v, therefore
¢ = - %-Vo+-% Vorzsz(%-cosze - %J and

¢2= - % Vor— R + %-Vor_3R3(% cos e - —)
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-

M ~3 _863
b) E V¢ = —r o r-a—e-thus
>y -2.3 2 -4 2 -2 ona
“Ep =3 vV, 2rR (E cos“6-1)r + 3 VI R “f cos6 sinB)8 and
> 1 -2,,~ 4 b33 2 -
E, = 3 Vo(—r )Rr + 3 Vo(—jr )R (2 cos“8-1)r +

% Vor—4R3G cosB sine)é and

T - £ o = “120 3 s%e)- L
= [E,(R) - E (R)]er = € V R ( 3 (2 cos“e-1) 3).

3.7 Using the fact that the potential is finite at r = 0 and
r = » then we write the following for the potentials inside and
outside the shell.

6 = Y AntnPn(cose) and @2 = Y Bnr—(n+l)Pn(cose). Now use the
n n

information given about the charge at the surface, E, - Elnlr=K

oo(cose--l)2 -3¢
= ————————— where E, = . Note
€ in ar

o
(cosb - l)2 = %{Pz(cose) -3 Pl(cose) + ZPO(COSG)). Thus

-(n+2) (n-1)

z (n+ 1) BR Pn(cose) + z nA R

Pn(cose) =

205/35 X (Py = 3Py + 20g). This gives 3B,RY + 28R = 20,/3¢,,
g

4o
- o -2 o - -
2B RT3 4 A = - —2, BR = 2=, and (n + DBR (n42) - _pa g1
(o] (o]

for n > 2. We also have the boundary conditions °1|R = ¢2IR

which gives
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7 aR"P (cos®) = T BnR-(n+ D L(2nt1)

n n

P (cosB) or A =B
n n n

Solving these and the previous relations simultaneously gives

400 2 _200 3
for the constants: B = 3?; R™, B1 =3z R™,
200 4 400 —200 206 -1
BZ = 158 R > AO= -——3€ R, Al= 35 , A2= 159 R , and An = Bn = 0
[ o o [
for n > 2. Thus
20 R
- 12 (- (& 121 2
& = 3e, (2 (R cosb + = (R" 5 Bceos 6-1)),
20 R
[ R R, 2 1 R 31 2
® = T3, (2D - (D7 cosb + )~ 5 Beos 6-1)).

3.8 Since the potential should be finite at p = 0 and at p + =,
then we write the following expansions for ¢ inside and outside

-]
cylinder: Ql(p,¢) =9 pm(q“cosm¢ + Dmsinm¢) and
© -m m=0
@2(p,¢) = Y P (Emcosm¢ + Fmsin mé). We solve for the
m=0
coefficients by applying the boundary conditions. First the

]

potential is continuous at p p,» that is &; = &,,

oo 00
m 1
—— + .
Y ° (qmcos mé + Dmsin mé) E - (Emcos mé Fﬁsin md)
=0 m=0 s

Secondly the boundary condition E, -E;, = o/eo at p = p, gives

o

oo
1 m—1
N +
Y m I (Emcos me + Fmsin me) + ) m o, (Cmcos mé

m+
= m=0
m=0 N
o
D sin m¢) = Eg-cos 34. Note that on RHS of this relation, one
m
o

has cos 3¢ that is m = 3 only and nothing else, thus E = q“ =0
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for m # 3 and F = D, =0 for all m. Solving relations from

both boundary conditions give Ej = oopo4/6e0 and

Cy = GO/Beopoz. Thus

3 4
o p oe
b = cos 3¢, ¢, = cos34é
! 6802 2 6e p
oo o
2
g p
> o - P
B, o= - 5 (p cos3é - ¢ sin3¢)
2€ p
o' o
ooph s .
Ez=—2-ﬂ—°-z.-(pcos3¢+¢sm3¢)
€oP
2 2
3.9 Since there are no charges, 72 = 3—% + 3 ; = (. Now
ay 9z

separate variables by taking &(y,z) = Y(y)Z(z) which when

a’z a%y
substituted gives — /2 = - —_5/Y° Both sides of last
dz dy
1 dzz 2_ -1 sz
equation must equal a constant thus A =+ a =¥ 3 or
i’z 2. d%y 2 dz dy
— = + a Z, - oy = 0 which gives Z = A cosh az + B sinh az,

dz dy
and Y = D cos ay + C sin ay. The boundary conditions imply:

Z(o) = 0 gives Z = B'sinhaz, Y(o) = 0 gives Y = C sinay, Y(yo) =
0 gives Y = C sin mry/y0 where n = 1,2,... Or a = nn/yo. The
most general solution is &(y,z) = § Al sinh(nﬂz/yo)

sin(nny/yo). To get A, we use theninformation about the fourth
side, that is @(y,zo) =V or VvV, = y AL sinh(nnzo/yo)

n
sin(nmy/y,). Multiply by sin(mmy/y,) and integrate from o to

Yo+
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y y

o nmnz o
A [ sin Egl dy =V A sinh (—) [ sin AT sin 2 4y,
o o n o o Yo o
Yo nm y
Now [ sin AW gin MY dy = 8mn -%y and
o o Yo
Yo
[ sin nry dy = 2y°/mﬂ (m odd).
o o
2V y
Thus A, = { n: 0 ; ln"z , n odd; therefore
© sinh( o)
Avo 1 ° nnz nmw
o(y,z) = - y —hms sinh —T) sin(-—y'y-).
n odd a sinh ( o) o o
o

3.10 The angle between the plates is 45° = 180°/4. Thus we
need 2n - 1 = 7 image charges. They are distributed as shown in

accompanying figure.

T | o
-G \ s

3.11 We use the method of images in this problem. we replace

the sphere by placing an effective charge q', a distance §' away

where £' = 2R2/l and q' = -2Rq/%. Taking the charge to be on

4we U+ ro N >
> A s . o |t -g  |r-eg
where £ = 2 z/2, &' = E'z. Explicitly:
31
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the z axis, then &(r,8) = ! —4 q }



o 1 q _ 2Rq/ % b

T Zme U2 2 172 2 2
o (r“+ (2/2)7 - frcos®) (r2+ (22 )2_ Ai . cose)1/2
We now determine o(8). Now
> o -30 . A 430 0 _ . Lo
E n| = —, gives Ee(-n) = e _AE: at r = R which gives
L N\2
L - )
o(8) = — ) 22R ) 377
4mRT (1 + (-Z—R-) - ('ﬁ) cosB)
[ ARV
Now for £ << R, we can neglect terms of order GEE) . Thus
a(8) = _qz { zl 3/2}. The force between the charge,
4R (1 - (E)cose)

q, and the sphere is just the force between the charge, q, and

its image, q' = -2Rq/%. From general results
> 1 qq’ 1 -2rq%/ 2
|F‘ = Gme * 3.2 4me 2 and
'- 2.2 2R, 2 2
o & - ¢l ° ((BHEh EH? - 2r%)
2 L
2
> —
7| = 22 (%) for & << R.
€0 2R
?‘l
3.12 |
|

°-%

a) We want to find the image charges which will make the

potential on the boss and plate zero. To make & = O on the boss

32




surface, we must have an image charge q' = -qR/D placed at

y = RZ/D, as shown above. To make & = 0 on the flat part, we
must have two image charges —-q' at -y (below the plate) and —q
at -D (below the plate) as shown.

b) The potential on the side of the plate is

o = q _ qR/D N qR/D _
dme | - 02| 4me |f - (R /D)E] dme |F + (r%/D)z|

1 or explicitly
> -~
4me |t + Dz |

$ (r,6) =
ol 1 _ R/D
hme /2 (r2+ RA/DZ - (2rR2/D)cose)l

() (r2 + DZ— 2rDcose)l /2

-1 + R/D ]
(r2 + D2+ 2rDcose)1/2 (r2+ R4/I)2 + (21'R2/D)cose)l/2
>
c) Charge induced on boss is given by Een = o/eO and Q = f oda
- > boss
= -g, fVQ-ndA is the total charge. Now, on boss, E must be
m/2
oy 02 20 i : )
purely radial, thus Q = -2me R g o r=Rsmede. Evaluating
39 . .
3;|r=R and carrying out the integration gives
2 2
D - R
Q= -q[1 - ]
D 2+R2

d) Force between the charge and the plate is just the force

between q and the three image charges:

2
po 9 [__R/D N R/D 1

bre, b - RZ/M2 (0 + RYDZ (2m)?
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3.13 a) We use the results of the example in the book on the
method of images on a sphere. We need an image dipole located
at RZ/ZO and of moment —pR3/Zg. The distance between the dipole
and image is (Zo - RZ/ZO). Note that 51-; =0, ;2-; = (0, thus

using the results of problem 2.26 we get

s 3R . REZr
f = 7 r = 5 (toward the sphere).
4me,r 4me (z - 5—)4
o' o Zo'

3

> >
b) E = qr/4mer’ is the electric field from a point charge at

> -3 +> > __3 >
r = 0; thus VE = (q/4me )(r "V(r) + r%Wr °)). Now V(r) = T =
an  An A - >
XX + yy + zz, v(r3) = -3r7% = —3r_3r, thus
. -322 -37 N _ 20y
VE = (q/4weo)(—3r rr + r °1). Now r = Z , and (Pper) = 0, then
> » 2 > 3
f = peVE = qp/bwe,Z; (see problem 2.25). This force is added to
the force in part a to give the total force. Note that the

force on a point charge due to a dipole is obvious, and there

must be an equal and opposite forces.

> > > > > >
3.14 The torque acting is T =1 x F + p x E where F is the

force acting on it and E is the electric field acting on it.
Taking E to be that of the image dipole, we find that it is
along p. Moreover ; (from the previous problem 13.13) is along
£, thus T = 0.

13.15 Using the results of Ex. 3.14, and taking a = 0, we find
that the image dipole needed is ;' = ;(RO/ZO)3 p and located at

b = R%/Zo. This is an addition to a charge of Roplzg located in
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the same place. Using procedures similar to those used in

problems 2.25 and 2.26, we find that the force and torque are

> PN
F = - (Z2 + 2R2) z. The torque here is zero
2.4 o o
Zneo(zo - Ro)

> >
because ?, F, E and 3 are along each other. In general for any

angle a between dipole and the line joining the center of the

sphere and the dipole we have

2 2 2 2 2
o PR Z [(220+ Ro) cos a + BRO)]
4rme 2 2.4
o (Zo - Ro)
sz 22 sin2a
T = - oo

2 2.3
31reo(Zo - RO)

3.16 We use the method of images. We need to find the location

of the line of charge and its image. Given x, = d, and the

radius of the cylinder R. Thus the line charges are located at

+a where a = (R2 + xg)1/2. Thus the potential

2
tn(p=/o¥) = 2— tn (BT a) * Y.

4"50 (x - a) +y
density is 0 = g En evaluated at x = 0, thus

[

A Now the charge
27me

o (y) = €, (38/3%)| g = %ﬁa (1 & % (x )’ I,
P+ (x - )’

which gives o =22 G—-Ji———)
” 2 2
y + a
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3.17 We use the method of images. Since the cylinders are

identical, then we have symmetry. The locations of the lines
1

are at x = + a where a = ((A/2)2 + Rz)b . The potential is

given by

¢ = 4me 4n

by (x + a)2+ y2
o (x —a) ™+ y

a) The charge density is o = -€,V® evaluated at the surface

(x - A/2)2 + y2 = k2. This gives after some algebra:

2

5=+ b A
- 2.2

[(x2- y2 - bH2 + ax?y?)

1/2

where b = 2R%/(a2/a%- &%) .
b) The force between the cylinders will be that between the
image line charges. Thus from Chapter 2:
L
A2 2
Aneo[(z) + R7]

dg 1/2

3.18 We will solve the problem by solving for the potentials
directly. In the region outside the cylinder there is no
charge, so the potential satisfies Laplace's Eq.: V2®2 = 0. By

symmetry, the potential has only p dependence:

1 3 L1 . . .
-— — — = = 4+ Be.

T (p ap) 0 which gives @2 Afnp B @1, the potential
inside the cylinder satisfies Poisson's Eq.:

1 3 39 -a . . R :

o p P ap) =< which after two integrations gives

@1 = %%— p2 + A' fnp + B'. Since the potential at « is not
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equal to zero, then we take it to be zero at p = 0. The
requirement that °l(0) = 0 requires A' = B' = 0. Applying

Gauss' law on a cylinderpthat encloses the charge distribution
o

evaulates A: Q = fudv = f a 2npdp = wulpﬁ = —AeOZWpQ/p which
o
2
2 i
gives A = -apg/2e,. Thus ¢, = 5o e+ B. Applying the
o

boundary condition ¢ = 02 at p = p, gives

2
- 2 2p -a 2
B = ZET.DO + e Enpo and hence @1(0) = Ze P
o o [¢)
2
_apo
02(0) = [ {2£n(o/po) + 1}.

3.19 For r < Ry and r > R, v26 = 0 which gives ¢, = Alr + b,

and ¢, = C/r + D. For Ry <r <Ry, VO, = l/r2 or

d 2 dOZ

i (r E;—) = —p/eo = —B/eor which after two integrations gives

¢2(r) = %EE - % + F. For r < Ry, & must be finite everywhere,
o

thus A = 0. For r > RZ’ ¢3 + 0 at « thus D = 0. Now continuity

of & at R1 and R2 gives

+ F, — = ——— - ——+ F. We can get the constant

C by Gauss' law, or by realizing that C/r should be the
potential if all the charge was concentrated at the center of

the shell. Thus C = (B/Zeo)(R% - R%). Applying Gauss' law

N + d
inside the shell gives [ £2en da = L—E— - ELJ-4wr2= lﬁ—l or
2 Zeo r2 £
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_ B 2 -
2%, R and hence F = BR)/e

Therefore &; = (B/g,)(Ry = R),

E and B = B(R, - R{)/e,-

o’

2 2 2
oo 88 P g (B Rp
2 2¢ 2 T €, > T3 T 2eo T °

3.20 See part (b) of Ex. 2.12. It deals with a uniformly

>

charged sphere using Gauss' law to get E and then integrating to
get &. The direct boundary value or integrational method can be

used.

3.21 The potentials in the z < -z, z > z, and -z, < z < z
d2¢1 d2¢2
regions satisfy the equations =0,
2
d2¢0 dz dz
5 = -p/eo. The boundary conditions are & = &, E
dz

Z="ZO, ¢0=®2,E0=E28tz=z

0’

=0,

0 = El at

o’ ¢1 o g, El + constant as
z » -=, ¢, a z, E) > constant as z * +o, Eo(o) =0 at z = 0.

Now integrating the equation for ¢, gives

2
Apozo
$ = —————cos (nz/2z ) + A z + B where A and B are
o o o o
mTE
o
—d@o 2pozo .
constants. ho = iz = [_;E—_ sin (nz/Zzo) - A]z. Since

485%
Eo(o) = 0, then A, = 0. Thus &, = 5 cos(wz/Zzo) + Bo and
T e
o
Zpozo N
E, = — 51n(ﬂz/220)z. Now &, = C;z + C) and E, = -C/. But
()
20020
Eo = E2 at z = z, gives EZ = —Cl = e . Now ¢2 = 00 gives
o
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—2poz§ —2pozo 20023
B =—m+ C and 02 = z + + B .

o e 2 ne e o)
[¢) [o) o

3.22 We guess a solution of the form ¢ = A sin a;x

sin a,y sin ajgz. Substituting in Poisson's equation

2. _ o . . . : 2 2 2y _
V<o = ;r—-s1n ax sin a,y sin a_z gives A(al + aj + a3) = po/e0

2 3
o
p
or A = Eg 3 12 7 and
o (a1 + a, + a3)
p
» == 1 sin a_x sin a,y sin a,z
€ 2 2 1 2 3%
o (al + a, + a3)

3.23 We can write the volume charge distrubtion as
p(x,y,z) = 0, cos(alx) cos(azy) §(z). We solve Poisson's

equation V2o = p/e0 or

2 2 o
3 9 g + ae _ EQ cos(alx) cos (azy) 5(z). Assume

9x 3y 3z o

o(x,y,z) = F(z) cos(alx) cos(azy). If we can find an F(z) and
Poisson's equation is satisfied, then, by uniqueness theorem, we
get our . Plug ¢ into the differential equation to get

-a% cosajx cosapy F(z) - a% cos(a;x) cos(azy) F(z) +

sz %
S - cos a.x cos a,y = — cos(a, x) cos(a,y) 6&(z).
2 1 2 € 1 2
dz [} sz
For z # 0, then we get —(a% + a%) F(z) + =0 or
/2 2 dz
F=A e a; + a, z for z > 0 and
+¢a2+ a2 z for z < 0 .
F=A e 1 2
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Now evaluate A. At z = 0, [%§|z=0+ - §§|z=0-]- iﬂ or
)

+0
2A Jaz + a2 cos a X cos a,y = —2 cos a,x cos a ye
1 2 o 1 2 € 1 2
Thus A = —————— and

I

N

™

[}

+

]
Y
[
|

Y

—
+
[

N
N

Ccos a

(x,y,z) = o % 3 x cos a,y, z > 0.

1

(x,y,z) = —————— ¢ 2 cos a

[ 1
2¢ af + aé

X cos azy, z < 0.

2 . -ar3
3.24 We use V4% = -o/e0 with &(r) = (l/&neo)e and

2_1 3,23 - - 24 o 30r _ 3, -ar
ve = 2% (r ap)+ Thus p = -e V70 = e (4 - 3ar”)e .

q q

L WS O ¢ o2y, 49
3.25 Now ¢ = (T+ D exp () + 4me r  4me r

4me
o

-2r/a_

-9 .9 Ly 2r/a e T -1 . 24 _ _
4"50r + 4"80 [(a) e + = ]. uUsing v°e /e,

-2r/a -2r/a
e e -

i = —¢ 724 = (-qV2 1,1 e 1y _
gives p = -e V70 = (-qV“/4m) [r+a + - ] =

-2r/a
- 1)] -q Vz(e-Zr/a).

The first two terms
4ma

-q 2.1 2. e
4w [V (r) + VA r

, 2 e—Zr/a
give q8(r) - (q/4m)(2/a) /r (see Ex. 3.20). The last
terms give VZ(e—Zr/a) = (—A/a)e_zr/a[l/r - 1/a]l. Thus

p(r) = q 8(r) - (q/mad)e 2r/a,
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3.26 a) We use dz‘b/dz2 = 0 to find that &, = Ajz + B, and
¢2 = Azz + BZ‘ Now at z = 0 we have 01 = 0 and at z = a we have
¢, = 0, therefore &, = Ajz and 9, = Az(z - a). Now as z + —-»
> N
and as z + ® we have E = Eoz. Therefore Ql = —Eoz and
6, = -Eo(z - a).
-~ > -
b) o(z =0) = —eoz'E(z = 0) —€oEq» o(z = a) = eoz~E(z = a) =
€oEo -
- T
c) - +
[ S — — >
> - +
> T ¥ S
= +
—_> > -
- 1t
—_ > >
- +
+ S—
S r -
- +
- +
>
d) o(z = 0) = -g,E, o(z = a) = 0. Moreover E = 0 in the z > a
region as predicted by Gauss' law since o(z = a) = 0. Thus

> -
E = Ejz in the z < 0 region as predicted by Gauss' law.

e)

[ U

v
1
]

1

After grounding we



z. 'The factor

of Vz has not been yet explained. It is explained in Chapter 4

as due to self fields (Eq. 117).
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CHAPTER 4

-

>
4.1 We are given that P = Pz

a > A
neP so p = -$-Pz = 0. Now on upper

]

a) We know p = —3-5, o

-~

A oA -
reP = Pcosf. On lower surface n = -z

surface n = 5, thus o
thus o = -P.

b) q = [oda + [pdv = P [cosB da - P [da. Now

s v u L
2 2 w/2 9
P [cos6da = PR f dé f cos6sin6d® = mR"P, and
u 0 0
P [ da = nRzP. Therefore q = nRZP - ﬂRzP =0.

L
c) Since the material is neutral then net charge = 0.

d) By integration: ; = f; dq = f;dq + f?ﬁq. Let 5 be the

L u
projection of £ on X, y plane, i.e. £ = rcosf z + rsind p =
2 + 3. Now on upper surface we have dq = P cos® R2d¢ sin6d®
while on lower surface we have dq = -Ppdpd¢. Thus
> m 2m R . 2n R 24
P = gRsinede é d¢PcosB(cosbz + sinbp) - J do édp Pp p.

By symmetry we see that contribution proportional to p vanish

m
E = -27 R22 choszesinede = %1 R3 Pz
0
Now by definition of B: p = [P dv = P2V = %3 R3pZ. We see the

two answers are equal.
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4.2 Dipole moment: ; =P [dv = PﬂR2 L/2.

> A

Polarization charge densities are: °p = Pen = -Po for
* “ A
rectangular surface. op = Pen = Pox-p = Pocos¢ for curved
LN > >
surface. op = Pen = 0 for top and bottom. Pp = -Vep = 0.
. 2 2 _ »2 > 2 - -
4.3 Given x“ + y R and P = (ax“ + b + cy + a)xx + pxy

=3

Now 0 = §~ﬁ, = T%%T with f(x,y) = 0 is the equation of

1/2

surface. Vf = 2xx + 2yy and |Vf| = 2(x2 + yz) = 2R

Thus @ = 2xx + 2yy _ XX f yy
2 2.1/2 R
2(x™ + y7)
- 3.2 2 A €< S50
Thus we have 0 = Pen = ((ax + b+ cy + a)xx + pxy]- —
oy = (ax4 + bxZ + cyx2 + x2 + pxy /R and
> > 2

Pp = -VeP - =(3ax“ + b + cy + a).
4.4 a) Using Gauss' law in the region p < ) gives
> >
D=E=0. In the region o < p K Py it gives

2 2
> o 1,~ > o pl ~
D = E(D - ?;—)p and E = EE—( - 7;—)p. In the region p, < p < py

o >
> a 2 D a 2 2
= — - F = c— =
b =55 (py = p)e and e, 2ero(°z opP
> B 2 2.~

Finally in p > Py region we have E = E;-= E%E;(pz - pl)p

> >
b) P =0 for p > ) and for p < py. But P = (1 - 1/K) x

[+

2 2,4 . .
7o (02 pl)p for o, <pXK Py. From the polarization we get the
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polarization charge. The volume density

Pp = -V.P = ry dp(pP) 0, while the surface density is
- A. = e _—) ——— - 2 =
o, =10 B giving op (1 K) 292 (p pl) at p = p, and
ap = (1 - 1/K) =— p3 (p2 -0 ) at p = pg. Finally o, = 0 for all
other sugfaces. o 0
3, . 2 3
c) V= [E(r)dr = [ Eldr + B, dr
° ) )

2

)

p
_a 2 _ 2 2 2 2 _
= 51(p; = p)/2 + gn 5 (Coy = 0))/K = p
o 1
4.5 a) Take the z-axis perpendicular to the dielectric
interface, and the origin of coordinate system at the center of

> N
the spheres. From symmetry we have E = E r. Thus the electric

o
field at the interfaces is purely tangential to it, hence,
equating the electric fields at the boundary of the dielectric
gives Ev(r) = Ed(r) = E(r). Applying Gauss' law to a spherical
surface gives

1 2w

fﬁ-ﬁ: =q = r? fd(cose)f dee()|E| = Zﬂrz(eo + €)E
-1

s qf
E = 2
21r(eO + €)r

>
b) We use o = Den. This gives the following for the vacuum

€
: . =4 _(—°
and dielectric regions: o 3 (e T e )’
2na o
o = s ()
f + e
Zna + »0 >

c) We use P =D - g,E. Thus at r = a we have
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> ~

_ _9gr
P = (e - eo)/(e + eo) and
2ma
LN od
0 = pen = - 3L (e - e )(e+¢€).
P 2 o o
27ma

4.6 a) There are three regions in all of which the electric
field is normal to the plates (say along x). We use Gauss in
all three cases. In the vacuum next to 0, plate, we have

fﬁ-d; = foda or D = le. In the charged slab we have
> > X

h<x<h+t: [Deda = foda + [(pdx) da or

> R h

D = (cl + p(x - h))x.

h+t
In vacuum above slab we have fﬁ-dg = foda + [ pdxda or
> -~ h
D= (ol + tp)X.
b) 1) On the top plate we have o = Den = —(cl + tp)
2) 1In the dielectric we have B = D — eog = 5(K — 1) or
> K-1 ~
P = ( z )(0l + p(x - h))x
. . . > K -1
i) Volume polarization pp = =VeP = - g p
P > A K_l
ii) On the lower surface (x = h) we have Gp = Pen = - <

iii) On the upper surface (x = h + t) we have

_K-1
% m (ol + pt).

>
4.7 We use Gauss' law for D.

a) fﬁ-d; = q which gives D= qf/(&neorz)
> > € q R
b) P=1D (1 - Ejé = ___7#1 - ¢ + ar)r. Thus
47r
- yep =4 2y L d 9,
Pp = ~Veb = err(rP)— err(ZTr(l e + ar)) or
Py = -qa/&nrz.
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>
4.8 The differential form of Gauss' law gives VeD = pg = 0.
-> N > > N
Therefore dD/dx = 0 or D = Cx and E = D/eoK = Cx/eoK where C is

a constant. But we know

(exp(-ax)

c—nAa
[}

d -C d +C
V = -[Edx = =< [exp(-ax)dx = S K
0 o 0 [

+C
ae K
o

(exp(-ad)-1). Thus C = -VaeoK/(l-exp(-ad)) and

E = -V ax exp(-ax)/(l-exp(-ad)) .

* —
4.9 a) From Gauss' law E = 4

Zﬂpeo

0>

>
b) If we let € = a/p with a constant we see that E will be

constant.

> a
4.10 a) Since there are no free charge at x = 0 then Dyen =
Dzoﬁ or Dy, = D2x which gives Dyy = 1.5, and hence

>
sz = .6/e°. Also continuity of tangential component of E )gives
> A > .

El-t = E2~t or Ely = be’ and Elz = bZz'

Thus Epy = -4/ey, and Ey, = 6/€,. Thus
+ - - -
E, = (l/eo)(.6x - 4y + 6z)C/m2.

* -~ ~ -~ hd
b) D, = 1.5x - 2y + 3z C/mz. D, projected onto yz plane gives

- - - Al
-2y + 3z. Thus cos® = |-2y + 3z|/|D,| which gives 6, =
cos™! (—ﬁ?——-) = 22.60

v2.25+13

> ~ N ~ a a
Since Dy = 1.5x = 10y + 15z = -10y + 15z so
V335 )

8, = cos”!( = 4.70
vY335+2.25
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4.11 Assume there are no free charge at the interface. The
>
parallel E component is continuous thus K;sinf, = Ezsine,. The
>
normal D is continuous thus eoﬁlchosel = eoEszcose2 where 61,
8, are the angles the field makes with the normal to the

interface in regions 1 and 2. These two equations give

Kltane2 = Kztanel.

4.12 a) Let us take the field and potential in the region

0 < x <1 to be El and ¢1 and the field and potential in the
region 1 < x < 2 to be Ey and ¢2. The potential difference

VvV = —fE-d? gives -V = El(l) + Rz(r). Moreover the continuity of
the perpendicular component of 5 gives E K| = EoK,. Solving for

£y and E,) simultaneously gives -V = El(l + Kl/Ko). Thus

@1 = -xE,| = xVKz/(K1+K2). Now@l(x = 1) = —VKZ/(K2+K1) and

]

- - YE, = (W - ¥ r , .
o) = &)(x = 1) + (x = DEy =[xV + V(K, = K V(K + K))

1

>
b) At x = 0 we have E, = =VK x/(K_ + K ) and 5= K e £ o=
1 2 21 1ol

-VKleeo;/(K1 + K2). Thus the free charge =

(=2

=1

=0, = —VKlK € /(K2 + Kl), and the bound charge =

a e
= ne(D, - €

2
£
1

%4

o
ne ‘) = ob = szeo(l\l - l)/(l\2 + Kl)'

> >

¢) The bound charge is oy = ;-(P1 - P2) =

A+ >

> >
x-(Dl i R eoﬁz) = eoV(Kz - Kl)/(K2 + Kl)'

2 > > >
4.13 & = Ar6, ¢, = Aa 8/r. Now P =D, - gk, =

i o'i
> >
(gy €,)Ej+ Also E; = -Vé; thus
El = —V¢l= _(gg r o+ %_Q% 6) = —A(ef + é). Therefore




"

1 A(eo - el)(§r+ 6). Similarly

L}

Aley - €)(-8(a/)%F + (a/r)28). Thus

= —V-; = -A(e - )(l— 4 ( 29 + (1/rsin®) 4 (s eb
) 1= € € rz a (T ) rsin a8 (sin@))

= —A(eo - el)(Ze/r + cotB/r).

> B .
py = —V~P2 = —A(e0 - 52)(a2/r3)c0t9. The surface polarization
+ . > A

charge densities at r = a, and r b are o, = Pl~r - P2-r =

> A .
ACe, - €.)8 + A(e, - €)), and 0y = Pyer = -AB(e, - ez)(a/b)z.
The free charge density at r = a is Og = Dy, — Dy, S0 op =

ley(de,/dr) _, - €,(d&,/dr) _,] = AB(e) + €)).

4.14 We have for a solution from Eq. 3.65

é = Cnp + D + ) (E o_m + F pm)(A sinmé + B cosmé). We have
3 m m m m
m#0)
three regions ¢l(o) in p < a, ®2(p) in a < p < b, and 8,4(p) in
p > b. We also have the boundary conditions:

> a
E = E i s & = -k = - <
1) X slves 3(°°) on hopcos¢

2) At p = b we have Qz(h) Og(b) and n7(b)°6 = D3(h)-5

3) At p

a we have ¢7(a) 0](3) = V0 = constant

Thus we write the following expansions for 4: ¢1 = Vo’

A C
= + (= + s =V + (= -5 sb.
Qz V0 (D bp)cosd, ¢3 \o (p nop)cos¢ Wwe now apply

these conditions. Conditions two and three give
e(i - A/b%) = € (B, + A/b%), (Bb + A/b) = (C/b - £.b),
V_ = (A/a + ra)cos¢ + v, or Ala = -pa. volving these equations

o

simultaneously give
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= 2E_b%/(a%(1 - k) - b2(k + 1))

=
I

A = -2E b%a?/(a%(1 - W) - bZ(k + 1))
¢ = -E b%(a? = b2 + k(a? + b2))/(a%(1 - k) + bA(k + 1))
b) o.(¢) = B-ﬁ. From (a) op = -e(B - A/az)cos¢ = -2eBcos¢ with

B given in (a).

4.15 a) First consider the case € > €9 The electric field
will exert a torque on the cylinder due to the induced
polarization: the cylinder will orientate itself to create zero
net torque. The two such positions are with the axis of the
cylinder aligned (1) and perpendicular (2) to the field. 1In (1)
the cylinder will be in a stable equilibrium. In (2), the
cylinder will be in unstable equilibrium. For a thin disk, its
axis will be perpendicular to the field in a stable equilibrium.
b) For the case g < €y, we have stable equilibrium when the
axis of the cylinder is perpendicular to the field, and the axis

of the thin disk parallel to the field.

4.16 a) Since the polarization of the material is permanent,
then the permeability of the unpolarized material is
irrelevant. The field inside the cavity is dictated by the
polarization only. We can use the polarization charge

S > A
technique. Now Pp = -ve§ = 0, 0 = Pen = Per = Pcos® on the
surface of the cavity. There are no other charges because the

material is infinite. The electric field corresponding to this
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charge is uniform inside the cavity and it is equal to

> >

E = P/BCO. [See Exs. 4.2, 2.17, and 3.6.]

b) When the polarization is not permanent, then we have to

solve the problem in an external field with the permitivity e of

the material becoming relevant. We have already solved a

similar problem in Ex. 4.8. 1In this example we have a

dielectric sphere of permitivity € place in an infinite medium
> ~

of permitivity €, and with an electric field E = Eyz. WNow we

take €., = € € = & and E = P/ (e - so). Thus from KEq. 4.86

2 o’
we have
e - .
2 T W IS B
‘sphere "o e + 2¢ ‘o” e + 2e, o

changing this result to the present case gives

>

3e P
- o
hole (el + Zeo)(e - eo)

)
4.17 a) See Ex. 3.5 to get F o= —(l/Aneo)q“/AdZ.
b) The potential is &(x,y,z) = (I/Aneo){q/(x - d)2 +
- . . . f 1'
y2 + zz) VZ— q/((x + d)Z + yz + zz) AZ}. ‘Thus

0= gy = —(30/3x) |, =
—(q/am x - d)/((x - D)+ y2 + 2532

(x + A)/((x + d)2 + y2 + 22)3/2}|

x=0 =
-2 d/lnr){l/(d2 v y¢ o4 22)3/2} = —(qd/Zn)/(p2 + d2)3/2. Now
q y
¥ = f %E~ da where da = 2nwpdp, thus
0
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2.2 2.2 =
F = q,g gﬂpdg 3= 2 d 7 pdp3 3 - We do the
817 (p+ d%) "800(8+d)
integrat?on by letting u = p2 + d“, hence du = 2pdp and the
q%Zw du q%Z 1 © 2
force becomes hme f 3 = 16ue 5 55 | = q > %
o0 2u o (p” +d") 0 l6neod

which is the same as in (a).

4.18 Because the potential has to be finite at r = 0 and r = =,
and because the normal component of P on the surface of the
sphere P = Pocose involves cos® only, we keep only the cos®6
terms in ﬁhe expansion of the potential inside and outside ¢,

and @2:

-01 = Alrcose, ¢2 = —E-cose

Taking & = &, at T = R gives AR = B,/R%. Matching D = D,

n

at r = R, we get

> > . > . 3
(eOE1 + P)en = €,Eyen or —(Al + Po/eo) = 2B1/R .

Solving for A, and B we get A = Po/3eo, B = R3Po/3eo, hence

8, = P rcos/3e,, o, = &3P cos /3¢ 2.

4.19 We use expansions for the potentials of the form of

Eq. 3.65. The potential inside the cylinder 01 has to be finite
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at p =

vanish at p = «

Pocos¢, then we will keep the cos¢ terms only.

¢, =

1 Apcosnd, @2 =

Taking Ql =4, at p =

>
p = a gives (eoEl +

eoA'/aZ. Solving for A and A' gives: A =

a gives Ala =

hd PN
Pl)'n =

A'cos¢/p

A'/a.

>

A' = —azPO/Zeo, and hence
Poo azP0
¢1 = - T cosd, ¢2 = - 2€0p cosd
The fields are
. Po§ > aZPo . .
E, =—, E,=- [pcos¢ + dsing]
1 2¢ 2 2
o 2600

g Eyen or —(eoA + Po) =

Thus

Matching Dln =

-PO/Ze0 and

0, and the potential outside the cylinder ¢2 has to

. Moreover because at p = a, the polarization is

D at

2n

4.20 We use the results of section 4.7 to introduce the charge

q' and q” as images of q, and the charges -q' and -q" as images

of the charge -q, as shown in the figure.

£, et?i,

+$'\q,"

I T A

%

+%

’

-
-

4

~% -\21\*%:'

€.<E,

1%
/

A\

& = He- /)

24, % [&,+5)
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Thus the images are: an image dipole B' in material €, at
distance d, and an image dipole 3 in material €, at the
location of the real dipole. The moments of the image dipoles

are
S Tl U B
2t 5 )

4,21 a) <B =4 [dz' @y dx' K x'T)

X+AxX n+l x+Ax
. [ x x'Mdx' = l_.i [}l____
Ax : Ax n+1
X
) g_ [(x + Ax)r1+1 _ xn+l]
Ax n+l Pt
b) a<E> = g— [(x + Ax)n - x"
X Ax ‘
BE n—1
c) <3;> = <X nx >, or
> x+Ax
9E. B < g
<3x> ™ [ xnx dx
X
A n x+Ax ~ 2
X X X n n H<ED> .
= Ax-n[n ]x = = [(x + &) -x ] = ol The operations of

averaging and differentiation are indeed interchangeable.

+> - > - +> >
4.22 a) Since f = x“x then E = x“x and D = €E since

1 Coulomb. At one face of the differential cube, we have,

> -
= ek = exzx, and at the opposite face we have

Oy Ty 2
|

]

> >
e[E + (3E/3x]Ax. Thus the net flux of
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>
5 =€ 3E Ax<AyAz = 2xe AxAyAz. This net flux must be equated to

Ix

the total charge inside the cube, that is Pg AxAyAz =

or p = 2xe-C/m3.

b) = 9eD. Th = eax%/ox = 3
pg = VeD. us pe = €3x“/3x = 2ex C/m°.

4.23 a) Because of the symmetry, the fields and the potentials

> >
will depend on x only. Thus VeD = p and VeD = 0 give

> - > “
D1 = (px + b)x for x < d, 02 = fx for d < x < 2d. The
potentials given by d&/dx = -E give
2 .

5 - —PX_ = 2bx + 2c b = - fx + g

1 2€ T2 €

o

Apply the boundary conditions: QI(O) =0 = 62(2d),
8,(d) = 9,(d), D;(d) = Dy(d). Thus c = 0,
b = - Vzpd - pde/2(e + g,), f = -pdso/Ze, and g = -fd.
P i YN ¢ RS

1 2¢ 2¢(e + € ) ’ 2 2(e + € )

o o

Dy = px - pd(2e + eo)/z(e + eo), D, = —pxdeo/ZE.

> A
b) 0; = Dex evaluated at x = U. Thus 0, = b.

b2;/28.

> BY.Y
Force/Area = dF/da = ofx/Ze
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CHAPTER 5

5.1 Given p =1 g/cm3, K = 4, and molecular weight = 59. Thus

N = 6.02 x 1023/59.07 = 1.02 x 1022 molecules/cm3. From Eq. 5.5
3, k- 39 2
we have a = - X¥2° Thus a = 1.3 x 10 coul m/Nt where

N, is the Newton, the unit of force.

>
S.2 a) Taking E along the z axis, then using Eq. 5.23

pE/KT = 1.3 x 107°.

_ 1
<p,>/p = <cos®> 3
B) P=N<GOVz=7x1012 ¢/m, B=N<p,>z=7x 107 ¢/m?
c) <cosB> = 2.6 x 10~3 double the average dipole moment, thus
we need T = 150° K.

d) 1If saturation is achieved, then <p,> = p, thus 6 of the

block is N pV = 4.95 x 1072 C/m

5.3 a) Edipole = (p/4ﬂR3){2c059; + sin® 6}. The induced

dipole is 3i = of = (pa/4n€0R3) {2c056; + sinea}

b) U = -8 = —-——RE—EHZCOSGf + sin6d}]. P 3{2coser + sinfo}
4neoR 4neoR

= -aG—Jl—ji)z (4cosze + sinze) = ‘G(p/4ﬂ€oR3)2(l + 3cosZe)
éneoR
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m
pla(2m)/(4ne R)% [ (1 + 3cos26)sin6dod
Juerde _ _ °

[de

c) <> = (2ﬂ)

- —ap2/8n2e2Rb

5.4 a) Let 61 and 8, be the angles py and p, make with a line
joining the molecules. Then we know the interaction energy

= (1741 RHG@E D) Byer) = FBy). Now
;1°; = cosel, 52-; = cosez,
;1' py = sinelcos¢lsin62cos¢2 + sinOlsin¢lsinezsin¢2 +
cosOlcose2 = sinelsinez(cos(d»l - ¢2)) + coselcosoz.

U = (-plpz/ANEORB)(Zcose1c0592 - sinelsinez(cos(cbl - ¢2)).

_ exp(-U/kT)
b) P(el’62’¢l’¢2) T n 2 2w

[ sin61do’ 's1n9’d6' f dé, f d$,exp(-U/kT)
o] o

c) Let ¢ = ¢, - ¢y

L L 2w
fsineldel fsinezdez [ dé U exp(-U/kT)
_o o 0
Wp = n n 2 v
fsineldel fsinezdez [ dé exp(-U/KT)
o o o
Taking U/kT << 1 then exp (-U/kT) = 1 - U/kT. Let us call

Denominator = D and Numerator = N of the above integral
n b 2w

= ({sineldel [sin8 de, f do(1 + plpz/(4n€0R3kT) x
(2cosBycos8, - sinb sinbycos¢))
2m m
Note that [ cos¢d¢ = 0, and [sin® cosBd® = 0, then D = 8
o 21 o
N = f51neld9 f 81n62 f d¢ [u-U /kT] Note that we have
o

already calculated the flrst term in this integral, so we need

to calculate the second term. Remember that Uz is proportional
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to Acoszelcosze2 - Acoselcosezsinelsinezcos¢ +

sinzelsin202c052¢. The middle term goes to zero since

fzﬂcos¢d¢ 0, but fg cos?Bsin6de = 2/3, and fsinzede = 4/3,

therefore N = 4e2/3e2n + 4/3e4/3em = 487/9 = 10w/3 so

pz p2 p2 pz
_167/3 1 P2 1 P2
W = =55 - 2 2.6

l6ﬂ2€2R6kT 2471 e R kT
o [

5.5 a) Using Eq. 5.17, we write p, = 2a EO/[I-(2a/4neoRg)]-
Solving for 2a = po/[4weok3po + E .
b) The molecular polarizability for all R is given by Eq. 5.17

a' = 20/[1-(2a/4we0R3)].

5.6 Consider the figure where it shows the atoms and the

> > >
external field. From Eq. 5.14 P = a(E, + E') where E' is an

1< R

P

additional electric field produced by each atom at the site of
>
the other. Using Eq. 2.4t for 8 = 90° we get E'(8 = 90°) =
>

—p;/4ﬂ€OR3. Thus E- = —a(gg + ﬁ')/bneokj. Solving for L', and

> > .
hence for p and a gives
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+> >
a B -a E
oo _ m p = L
' , 3 3, 3
4me R7[1 + a/4me R7) 1 + a/4me R
o o o

a' = 2a/(1 + a/AneoRB)

5.7 Using Egs. 5.9 and 5.21 we get a + a' + a =
3 -.l_ ) = . T ig
Aneoﬂ + po(coth n n) where n = poho/kl. At high temperatures

ve have a = 4n€OK3 + p02/3kT. The average dipole moment is

3 2 oy
+ v, /3kr)no.

<p> = (QHSOR:
5.8 uUsing Eq. 5.36 we write  ~ | = 3/6(T—Tc). Since K is very
large, then K = 1 = K, and we have 1/K = 8(T-T.). The points
(1/¥, T): (.0035, 13%) and (.0105, 153) define the line and we

et 6 = 1.05 x 107 and T, = 123°K.

5.9 The ferroelectric condition is given by Eq. 5.34:

Na/3eo = 1. sut from Eq. 5.5 we have

"
i

Ha/3eo = (¥ = 1Y/(V + 2) = .N009p which is different from 1:

thus it is not ferroelectric. ror the liquid we have

ha/jeo = .367 which is not ferroelectric. 1In this case

K= 2.74.

5.10 Ir Eq. 4.4 we nave o = - (K-1) of/K. For ferroelectric
t

naterials « >»> 1, hence o, = Of-
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CHAPTER 6

6.1 See example 6.1.

6.2 &(r) = Aexp(-ar3).
. . . 2 2
a) From Poisson equation we have V ¢ = —p/soor p = —sOV b,

Note & has only radial dependence, thus

2 1 d 2 dé dd 2 3
Ve = :5 4o (t7 g Now — = 3o Aexp(-or~), and
1 4% 2de 1 d 4 3
:E Ir (r dr) = 7 & (=3ar Aexp(-or”))
I 3 3 26

A/r” (-12ar exp(-ar™) + 9a’r exp(—arB))

3Aarexp(—ar3)(3ar3—4). Thus the density is
p = 3Aeoar(4—3ar3)exp(—ar3).
- 2 3 3

b) V= (1/2) fo¢dv = (3/2) A €, [rexp(-2ar”) (4-30r”) dv
= 47 (3/2) Azeoa fexp(—Zar3)(4-30r3)r3dr.

o
We know fxn—lexp(—x) dx = T'(n) with T(n) the gamma function
0

I'(n+1) = nI'(n), and I'(n+l1) = n!, if n is a positive integer.

3 anﬂ put the integral in the form of the I' integral
4me A

-9
24/3a1/3

Let x = 2ar

we get V = r¢a/3).
3
6.3 We use Eq. 6.9: . = Y P, Q , where the coefficients of
J k=1 ik 'k
potential are: ij = 1/4meja, ij = 1/4mey ¢ for j # k since the

spheres are identical and they are at the same distance from
each other. Grounding sphere 1 changes the charge on it but

does not affect the charge on the other two. Thus & = 0 =
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(qy/a) + (q/2) + (g/%). Solving for q; gives q; = -2qa/2. Now,

ungrounding sphere 1 and grounding 2 gives &, = 0 = (ql/n) +

2
(ap/a) + (q/2) which gives q) = - %i (1 - ig)- Now ungrounding
2, and grounding 3 gives &, = 0 = (qlll) + qz/l) + (q3/a). This
32 2a
solves for q3 = qq (3 - I—). The "until equilibrium” refers
2

to allowing the charge on each sphere to adjust to the external

potential. You do not have to keep grounding spheres.

6.4 Since the force between the spheres is given by F = -3U/03r
where U is the electrostatic energy of the system, and r is the
distance between then, then we need to calculate U as a function
of r. We use the coefficients of potential to solve the

problem. We use kgs. 6.8 and 0.12-6.13.

P. O+ P + P,,0, where

i, =Y, Yo b =
U =2 L0305 0 = PO Pty By = Poy 0 Py

i
Pyy = Ppo, and Py = P}y because of the symmetry. Now when

0 = qp, (A2

0, and o = V. These equations give V = Py a4 and
6, = Py1a; = Py»q vhich can be solved for Py, = V/ql. The

2
energy of the system is 1l =1420T Py, and hence from the force

dp
F =lﬁ'q% (—ﬁ%lJ we get dP,,/dr = 2F/q%- In the second

operation, we have Al = P1149; *t Pyogy, and V = Py,q) + P40y
which gives Pyy = V(q; - qz)/n%, and hence U, =1ﬁ3P11(q% + qé) +

Py1yapay e ¥rom the force between the spneres we can calculate

dPlz/dr as follows:

o )
df d}lz

1

v o (e 4 qly b —=
¥y (af * ap) N A
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dP,/dr = —F(Zq% + q%)/q%qz-

Now that we know P};, Pjy and their derivatives with r we can
calculate the properties of the last operation. In the last
operation sphere 1 is grounded, thus ¢} = 0, while the charge on
the second does not change, therefore 0 = P“Q1 + P12q2 or

Q = -q2(q1 - qz)/ql. The force between them can be calculated
from F = -3U3/3r where Uj = VZPII(Q% + q%) + P;5Qpq9, OF

F = q2(2q§ - q%) F/q?-

6.5 a) See Ex. 6.8. By symmetry Py, = Ppy = P33 = Py, Now

4 = 4ﬂ2 e Pllq- thus Py = l/4neoa. By Symmetry: Pygp = Py =
o
Plll = P41 = P34 = P43 = I/A’NEOQ = P23 = P32. Also by symmetry:

P13 = Pyp = Pap = Pyy = 1/4meg(V20).

¢) (1) Wwhen we connect 1 and 2 then the charge merely splits
because of symmetry, that is q; = q/2, qp = q/2. (2) When we
connect 1 and 3, then because spheres 1 and 3 are symmetric with
respect to sphere 2, the charge splits equally q = q/4, and

qq = q/4. (3) Similarly there is symmetry in the last

operation and we get q; = q/8 and q, = q/8. Thus the final
1 4

charges are q/8, q/2, q/2, q/8.

6.6 a) See example 6.6.
b) From above we have C = 4weoab/(b - a). Now if b - a =
d << a,b then C = Aﬂeoaz/d = AeO/d with A = 4n2 the surface

area of the sphere.
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6.7 Let us call the fields in the regions r < a, a < r < b,

> > > >
b<{r<cand r>cas g, E, E; and E, respectively.

x =S 2y 2 2 _
a) bl— 0, E2 (Q/Aweor ) r, h3

a (o]
b) ¢ = -[Eedt = -[F df - ‘(E3 .dr - IEZ “dr

0 oo Cc b
BRI S
Aneoc 4me ‘a b

S 2.~
0, }:.4 = (Q/Aweor )r

) 7!

)
c) C=q/V-= (———!—(l+ -11;

1
4me c a
o
d) We know that capacitors in series add inversely

S U - 1_ 1
—_ ?r-w1th C, = Aﬂeoc and C, = lnreo/(a ).

1
"Cfr'cl 3 1 2 b

6.8 a) U =lpw? =1y (ea/d) V2.

b) Treat the system as two capacitors in series. Let the sheet
of metal be a distance b away from one side of the capacitor,
then l/CT = llCl + l/CZ with €] = Ag,/b and

Cy = Aeo/(d - b - a). Thus Cp = Ae,/(d - a). Now during the
operation the charge stays constant. Thus IJ =

QZ/ZCi - Q2/2Cf. Using C; = Aey/d and ¢ = Aey/(d-a) gives

U = Aeja v2/d2.

c) Since

Ve = G/

constant, then Q = CVy = GV which gives

V(d - a)/d.

3
11 5 %
p= () 4 — L (r - —)cos® to first order in
4me ‘r 3 3 2
R, 4re (R2 - Kl) r

§. Now it is important to realize that this result was derived

from the boundary condition ¢|sphere #2 = 0. (Indeed, if you
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plug r = Ry + & cos6® in the above result, after much algebra you

will get ¢, = 0). Therefore we have

-9 (L _ 1 -
Yt TR 2 O
o 1 2
5 -6 =-—L (R, -R) =AV
1 2 4me R R 2 1 ’
ol 2
brme RIRZ
C =4 = ——— = yhich is the capacitance of a concentric
AV R2 - Rl

spherical conductor. Thus, there is no change in the
capacitance in the non-concentric case to first order in §. For
a larger &, we have to include higher order terms to 4. The
next term is the Pz(cose) dependence which would be proportional
to 62. In this case the potential difference will depend on 62,

thus giving a change in C. THe next correction is found to be

R2 R2
2 1 2
AC = § 2 3 3
(R2 - (R Rl)
6.10 a) W = Qu/2 = Q2/8meR.
> 9 A + 2 A
b) Since E = q/4mer® r and D = q/47r“ r, then
W=l [EDav = o TL g - ® hich h
=1/ | Vo= 2z r = oo vhic is the same as
calculated in (a).
2 2
= Q _0_ .l_..._ =Q_ 1
€) W=gi=. Thus AW = oo (g = ) = 33 (AR/RR') .

d) The energy goes into mechanical work. Consider the sphere
at a radius r. The force acting on an element of surface area

+> -
is dF = ozda n/2¢ where o = Q/&ﬂrz. The total pressure acting

2 2
on the surface is then F,. = [dF = (1/2¢) _—ilTT— x Anrz -9
(47mr7) 8meEr
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2 R 2
The mechanical work is Wm = Frdr - [ QE' %——
R

6.11 a) The large conducting sphere is grounded but has charge
0y, thus &, =P ,Q; + P1oQy = 0 where P}, is the "self"”
coefficient of potential I/AneoRl. Due to symmetry we have

Plz = le = l/AﬂEOdo Now (\)2 = q, thus PllQl = "PleZ which
gives 0 = —qu/d.

b) If the sphere is then neutral, Q =0, and hence

& = P Q) + PyQy = q/4me d.

c) From Ex. 3.52, the image method gives the same results as

above .

6.12 The field at r inside the sphere is found to be equivalent
to all charge in the region inside a sphere of radius r, all at

the origin. This is only true for spherical symmetry (no 0,

N 3 N
> Q -
& dep.) El(r) = E.ﬂ&ﬁ;l = 45; LS 5 = ur 3 r for r < R.
4me v R™ 4me r Lme R
o [) o

For r > R, consider all charge at the origin. Thus

ES
Ez(r) = ———2—;—-for r > R. ndow
Aﬂeor“
€ , € R )
y =2 [ EZ dv or U = —=> f (r) Aﬂrzdr +
2 2
all o}
space
€ o 2 K 2 o
- 0 (¢] d
72 = (r) hrridr = —2 frAdr +— _;
< R gre R o "€ k r°
2 RS (’ 1 '%(2
= Q X — +~—3—— X — === —;l——-.
5 8me R 20me R
8neoR o [o}



3 3
ar

6.13 6= Ae ®F , &= -v0 = 3Aar’e” f. Thus
3
W= (1/2) f EOEZ dv = 187 Azazeoéﬂ f e Zor r2 dr
AneOAZ
= ;Z7§;T7§ r (4/3) as in 6.2.

6.14 1) 1In the first case the outer shell is neutral. Because

the outershell is neutral; then from Gauss' law there will be

-~

>

r
E = —5———3-around each sphere, including the outside outer
4me T

sphere.0 With charge + q on the inner sphere (outside surface),
a charge -q will appear on the inner surface of the outer sphere
and +q on the outer surface of the outer sphere. Thus from Eq.
6.8 the energy of the system is

Uint= (qf+ q%)/snsorl independent of r,. 2) When the outer
spheres are connected, we find because of symmetry, that the
charges on the very outer surfaces of the outer spheres
equalize, while the charges on their inner surfaces or the

charges on the inner sphere are unaffected. Thus qi = qé =

q' + (qp + q7)/2, corresponding to a flow of charge

+(q; - q2)/2-

2
2 . 2 ] ] 2 q

= — e —— + —_—

Now Ufjnal (ql + qz)/(8“€o) (rl rz) 8me r,
2 2
(q) - a,) -2 (a, - q,)
AU = - 1 2 = 1 2 1 Thus the ener
16me T 4 gme r, 24
o 2 o 2

change comes from the charge that flowed.

6.15 We are given that & = —(64/m) Vo.
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6V

a) E--vos-%g—: b= —2du=1/2) el - wevz/p2 z
2 /6 1. .6
) U= fudv = 18 v 2/n* [ a6 ldz fap/p = 3ey(2n6)V 2/ .
o o .l
19 9,9
6.16 a) U= 5'(4ne rz + Awi i ).
. 12 o 21

But 1)y = ry; = d, thus U = qq,/4med.

b) Let us take the z axis to be along the line joining the

€ . qlr q(i’-f')
charges U = E—-fE dv. But E = + ~ .
2 %,
4me T 4me |T - 7'
o o
2 2 N . .
1 9 92 9192 (r — r')er dv
Ve g (G v
r |t - dz| '

The first two terms constitute the self energy, that is the
energy needed to assemble the charges themselves. This is a
divergent quantity. The last term, on the other hand,
constitute the interaction energy. This integral can be
evaluated easily if one recognizes that dv = dadr where

+> -
da = rzsinededo and da = r da. (See Eqs. 1.22 and 1.27). Thus

q.q _ .
U = '“lfil—_ dr f Sf;__l_l_ﬂi . Now the area integral is
int 2 .
L r? IT - |
just 4w since the integrand is dQ. (See Egqs. 1.23 and 2.23.)
q,q9, d q,q
_ 172 dr _ _ _"172 , .
Thus Uint = %me f 7 Tred " Thus the difference
0 ® T o

between the two methods is the self energy and the minus sign.
We have a sign difference because what we just calculated is the

energy stored.
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> P P
6.17 V = 3x2 + 4y2, E = -W = (6xx + 8yy).
fudv where u = eoE2/2 = eo(l8x2+ 32y2). Thus
1 1 1 ) )
€ [dz [dx [ dy (18x"+ 32y7) = 50 ¢ /3J
°% 0 0 °

U

U

6.18 a) First we use U = (1/2) [o &da where o = surface charge
s
density = Q/hﬂRz, but Q = CV = 4we RV, thus o = €,Vo/R and

therefore U = 2wReovg.

>
b) Now for r < R we have E = 0, and for r > R we have

>

- 2
E = VOR/r . Thus 3} Vz R2
2 o 2
U = (g,/2) [E7dv = (e /2) [{ X dv = 2mRe V..

6.19 a) From Problem 3.2 we have & = o .

>|<

b) From Problem 3.2 we have at plates ¢ = O, and ¢ = B.

Q = (=Ve h/B)en py/py, 0 = -Ve,/Bp, Q = (Vesh/B)2n p2/P1s

o = Ve, /Bp.
¢) C-= %V = (he_/B)n(p,/p,) -

d) U =Y, v? = (he v?/28)20(p,/p)). Consider a virtual

rotation of one plate in ¢ direction, then

> AU - 2 2 -
T=gg2 = (—heoV /28 )ln(pzlpl)z.

6.20 From the results of problem 4.6 which were arrived at
using Gauss' law, we find that the electric field in the slab

>
using |F| = [ Edq where dq = Apdx, E = [op + p(x-h)]/e, thus

h+t h+t
> A A
|F| = L2 [ (o, + p(x - h))dx = L2 (ox + l-pxz) |
€ 4 1 € 2 h

F_» 1.2
N (olt +t et )
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6.21 a) The stable configuration is when the rod is aligned
with the external field. The unstable one is when the rod is
perpendicular to the field. A force arises because a dipole
moment is induced in each of the conductors which exerts a force
on the other dipole. From Ex. 3.7, the potential field and the

moment due to the presence of one sphere are:

.3
I:'oa > P - Py > 3. A
® = cosf, K = ———— {2cosfr + sinBB}, p = 4ne a’E z.
2 3 o o
r 4rme T

Because 2 >> a, then oge takes this field to represent the field
near each of the two spheres. The force of one dipole on each

sphere (we are only concerned with the force in the 8 direction)

oE 2 2
is Fa = e p—2 . _P 3 (£ _ {n
is Fg = (p*V)Eqg = p % i 32 ( 4) or Pe 7—11—7531n26).
o r 2me L
o
> p2
The total torque is just: |T| = — (sin28).
2me ¢
o
s
c) The work necessary is just W = [T+d® or
2 /2 .
Ww=—P _ [ sin20d0 = -8ne a’E>/ 2> .
3 o o
Zneol o

6.22 We use the notations of Fig. 3.13. The potential energy

> >
of the dipole is U = -p+E where E is the electric field of its
image. Now
> Py R - P, R -
E = —~——————§(2coser + sinfB@) = ————————7$2cosez - sinfx). But
Aneo(Zd) Aneo(Zd)
P =Py cosfz + posineﬁ. Thus
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2 2

P P
U = —-—-Jl—-——-(2cosze - sinze) = - -———£L——j§(3cosze - 1). Thus
Aneo(Zd) 4ﬂe0(2d)

the energy needed is W = -U.

6.23 a) We replace the sphere by an image charge q' located at

2
_ —ba _b :
Z, where q' = - and Zo =L as given by the method of

images. Thus the force F between the two charges is
2
F q'q - -ba’/r - -bqr

2 - 2 2.2°
4‘"60(!' _ _:_)2 41[80(1' - b )

r 2 T
> *> bq r'dr'
W= [ F(r')edr' = [ or
= 4ng - (r'2— b2)2
2 r 2
-b -b
e R e e T

r'“- b ) 8weo(r2— b2)

b) Yes as position of real charge changes, the induced charge
on the sphere changes. In other words, electrons flow to or
from ground to change the induced charge on the sphere.

¢) If we isolate the sphere and place a charge Q on it, it is
like placing a charge Q - q' at the center of the sphere (see

Eq. 3.116). Thus the force becomes:

bq
~bq’r q(Q - q") -bq’r alQ + =)
F= 7 2.2 " 7 " 7 2.2 " 7
4me (r“- b") 4re v 4re (r"- b") 4me T
o o o o
r 2 r
> > -b - b
W = f Fedr = 4 + 'r d (-Q— + ‘—q')dr'
2 2 4rme 2 3
© 8ﬂ€0(r - b7) ) o r r
’ —bq’ q_ (Q . bq
W = + (r + -—2'].

4me
o

8weo(r2- bz) 2r
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d) The difference is clearly AW = a4 G& + bg . This is just
4w% r 2r2
the work done in moving the point charge against the charged

sphere.
> >
6.24 The energy density is given by Eq. 6.61: u = VZIEOD =
> > >
lkgE-(eoE + P). From problem 4.19 the potential and the field

inside and outside the cylinder

+ -
&) = (Py/2¢e,)pcosd, B = -Pox/2e

2 2
o o o ) i Po 22—( 0 + si ;) Th th
= e— — Y = — S n .
2 260 5 cosd, 2 260 > cos ¢p sindd us e energy
density outside the cylinder is uy = P%p§/8€opa. For the region
inside the cylinder we have uj = —Pg/Zeo-
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CHAPTER 7

>
7.1 Using Eq. 7.4, J = p<¥>, we get I/A = ne<v>. Thus

<\-;> S S 3.1 cm/s.
Ane

N
7.2 Now equipotentials are spherical shells, and the field E

> B
and the current J are radial. Thus using d2 = dr, and A = 4mr?
we get:

b
dr 1 1 1
k= [ 7 T 3T
a o 4mr
c b
73 R= 95— 4 d;
a 4nr°o c 4rr” o
1 2
1 1 1 1 1 1
R= 4mo (Z c) 4mo (c b)
1 2
b b
_ do  _ 1 _ 1 b
7.4 R = o 2mpL  2mo % tnp | = 2m0 4 m(a)
a ¢ c a c

+ 3 r_ 7 >_ 3

7.5 a) Using VeJ = - 3 and J = o E, we get o VeE = - EYa

Integrating over the volume of the capacitor we get

2 2 __de
onV-Edv = -7 fodv = - =«
> >
By the divergence theorem we have [VeEdv = [E«d3, and

cc f§~d; = - dQ
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>
Now for a parallel plate capacitor, E = Q/KeoA, then

o .Q
s Q- _do odo_ et
[d KeoA dt dt Keo

—(oc/Keo)t

The solution is Q(t) = Q,e

b) The rate at which heat is generated is

dw + >
P T 'rJ‘EdV
> 2 OCQZV
P = [Jekdv = chE dv = —
v (KeOA)
och2 o —Z(OC/KE )t de
Total heat = ———— [ e ° dr = =2 . Uriginally, the
2 2AKe
(Keo) Ao o

energy is Q2/2C = Qg/ZKeO(A/d). Thus the total heat produced is

equal to the original energy.
Ke

c) T = ?;Jl = 3.8 x 10 24sec.
c

. >
7.6 We will use the boundary conditions: the normal J is

continuous J,,| = an, and the tangential E is continuous: or

Jer e

ﬁ c %¢
Jaitand, Jey = Josinf, = Jotanfy. Then using J,; = J,, we get

. But Jnl = chosel, an = chosez, Jtl = Jlsinel =
Jnltanel/olc = antanez/Q c °f q ctane2 =9 ctanel.

7.7 a) From Eq. 7.38 with no external electromotive fields we
have: V-(OCVO) = (Vcc)-(VQ) + oc(V2¢). Note that the current

of the E field and the potential depend only on x. Using
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2

V6 = x 92, Vo = ax and (V2¢) -4 , We get
dx c 2
dx
2
ala + x) 42 + a 48 _ 0.
2 dx
dx
dE dE
do X - X dx .
= - — + -—— = —— = -
b) Ex T Thus (a Xx) o Lx 0 or Ex 7+ x which
integrates to fnE, = -¢n(a + x) + const or E = A/(a + x).
o 2a
8 -6 =-[Edx = dx__ _af 9% (23 - a2
a o X a + x a
a o a
> > < D N
c) Since J = o.E = ala + x) Ax = 0Ax, then f = JaZ = ahAa X.
a + x
andR=-‘£-Am22—ln§
aAa a a

7.8 This problem is similar to Ex. 7-11 except that both
spheres are completely immersed in the infinite medium. We

first use Eqs. 7.58-7.59. Now Eqs. 7.60-7.2 become

1 1 1 1

1 " Fmoa Mt Tot 2 % " Fmoa 2t G b
c 1 c c 2 c

Using Il =1= —12, we get:

1 1 1
01 - ¢2 (Awo a 4wo_a )I + 4o 2

c1 2 c

1 1 2
Thus R = goo-(z=+ o = §)-
c 1 2
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7.9 This problem can be solved by introducing two image

currents across the boundary such that the Jn across the

boundary vanishes. Thus the image of I, =

1 is taken to equal

to I and the image 12 = -1 is taken to be equal to -I.

using a similar procedure to that of Ex. 7.11 we write

= e [ - e — —_———_——
2 4mo ‘2 a, 2b o 7
Y 25+ 4b
¢ - &
1 2 ol d - 1 )

I 4no b
¢ /i bl

7.10 From Eq. 7.36 we have e/Ro,.

7.11 Using the expression K = fdQ/UCA given in problem 7.2, we

can find the resistance between the plates

Alternatively we can use Eq. 7.36 RC = e/cC to arrive at the

same result.

7.12 Using Eq. 7.72 we have o, = nqzr/m.

T = ocm/nq2 = 2.1 x 107 Hgec.

7.13 The potential of the ith conductor is given by Eq. 7.57:
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¢i = Z R;p I+ But the heat generated due to the current leaving

the ith conductor is Q; = ®;I;. Thus the total heat is
Yo; =V Ry L.
14 i Naktitk
7.14 We use the equations developed for the circuit of
Fig- 7.16: "I3R3 + Il&R[b = O, Isz - IlRl = ( and
-€ - IR - IRy = 0. Along with these equations we have
I, = I3 + Ig, I3 = Ig = I, I, =1, + Ig and Ig = 1) + I,.
Solving these equations for Ig we get:

i —el(Rl/Rz - RA/R3)
5 (1 + RA/R3)(R1 + R4) + R4(R1/R2 + RA/R3)

1
Thus Ig = 0 when RI/R2 = RA/R3.
7.15 Differentiate 15 with respect to R4 using the result of

problem 7.14. Thus

d1 (bottom)d(top)/dR, - (top) d(bottom)/dR
_ 5 _ 3 3
S-CRB—-d = 3 |
3 (bottom)

balance

Since the top = 0 at balance, then

d(top)/dR3 Cel

3 (bottom) Rl + R2 + R3 + R4

S = CR

7.16 a) When we take €y as dead, we replace it by a
resistanceless wire. Thus the resultant resistance is R = 1/2Q,
and the power delivered is P, = e%/R = 200 Watt.

b) We replace € by a simple wire, thus one of the IQ
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resistances gets shorted giving R = 1Q and hence Pz = s%/R =
100 Watt.

c) The actual currents in the circuit can be determined from
Kirchhoff's law. Assume current I, and 12 to flow clockwise in
the loop on the left and on the right respectively. Thus

10 - (Il - 12) =0and 10 - I, + 21, = 0. Subtracting the
equations gives 12 = 0, and Il = 10 Amps. Thus total power
delivered is €1l + €9y = 100 Watt which is different from the

sum of the individual ones in a and b.

7.17 a) Using Kirchhoff's law for the series case we get
Yei - YRiI - RI = 0 or ng;, - nRy - RI = 0 giving

I= neo/(R + “RI)‘

b) We use Kirchhoff's law. Assume current Il, 12, oo In to
flow in the loops as shown. Set the equations for each loop,
for example we have

(-21l + IZ)RI = 0, (—212 + I3+ II)RI = 0,

(—213 + I, + I,)r =0, ..., —(RI + R)I + RiI ) * & =V

Solve for I, Take n = 4 as an example and then geprer-'‘=c.

|
pl lalz

>N
>
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7.18 We use Kirchhoff's laws to set the equations for
circulating currents similar to the analysis of Fig. 7.16. We
determine the current I through the source €, then R = &/I.
This gives R = 3r/2 for n = 2, R = 13r/7 for n = 3 and

R = 47r/22 for n = 4.

4
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CHAPTER 8

8.1 The equation of motion for a particle of mass m and charge
> >

q in a region with E and B # 0 is given by Eq. 8.2

> > > > > N >

F =q(E + v x B) = ma. Note that the magnetic force v x B is

perpendicular to 3, and hence for orbital radius r we have

mv2/r = qvB sinf. The smallest B needed is for sin® = 1; thus

B = mv/qr which gives B = 5.69 x 103 Tesla.

> > > >
8.2 To get B we use Ampere's law ¢ Bedf = u fJ'dg. For p < p,

we get:
2n o, .,
¢ Beal = B(2mp) = "y [ Je 20" vdpraet
o o
2mp - -2p! u
_ o e 1 _ O, _ -2p _ _-2p
E T CARR ) | 23[1 2pe e “M1.

For p > P, we have

p

o _, 2w u -2p -2p
B(2mp) = p f e 2e p'dp! f d¢ = —g{l - e ° - 2p e o].
o4 o 4p o

8.3 We will first find the field produced by the sheet. The
procedure is the same used in Ex. 8.6. We calculate
contributions from opposite sides of the sheet, then total up to

> -
give a horizontal component. Hence B = -Bx
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W/2 uK

dx h
B = f(dBl + dBy)cos¢ = 2 / e T =
o 21 2wy 2 2 andy 2

u Kh W/2 u K +> > >
oo 1 -1/x 0o o -1,W y~
- F tan (E') CI, = - - tan (-z—h))(o Now F = I2 x B. Thus

IuoKo

w

| e

tan-l(gﬂ)§. It is an attractive force. When W

> R
becomes large, then F/f = -IuoKoy/Z.

2
100u 4p 2pp > >
> _ o o oo [ T 1% _ .
8.4 a) B 5 -5 sin 20 " Tw cos EB—}¢, VxB=u,J
L o o
6 Y z
I lindrical ordinates: V x ﬁ =L 2 3— 2—
n cy c co es: =5 |3 5% 32
0 p(B¢) 0
100u 4p 2pp
> o9 o LI o L
VxB-= zf——s——[ap(—i—- i 0 - cos E;:)])
+ ~
J = 100 sin LT
2p P
o ° "
b) I = 100 | sin =8~ da, da = 2mpdp, I = 2007 [ p sin 57— dp
2p 2p
A o o o
P P P Api
I = 2007 5 sin 50— = —— cos W} | = 200m(—>)
TR o (E;— o o L
[
800p
I = 7 Amps
I 9B 9B
3--° 3 .3 =12 1 ¢, =2
8.5 Using B = 270 ¢, and VB T (po) + ) + 32 ° and

>
noting that B only has a ¢ component and p dependence, so

+ >

VeB = 0 and
st 9B, 3B, 3B, 3B -, 2B
< B-Blag - m) v ) Rleery T )
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The only term we can use is % %E(p8¢) where pB¢ = uoI/Zn and

%E(HOI/Z") = 0. Now, check p = 0 carefully:

13 - b, _¢__o _
o 3—(03 ) 5t

For p + 0 we have (® - ) which is infinite which indicate the

presence of a filamentary current at p = O.

8.6 Let's consider the contribution to the force on the

u012 ~
1 = S z. The force on the

=24

diagonal wire due to current 12.
> > > > N N
diagonal wire is given by F = Ilfdl x B where df = xdx + ydy.

k4 a~ A
But y = x + ¢, then dy = dx, and d2 = dxx + dxy. Thus

pI1I, X +a

s WoIiTy %ot (axn 4 dxg) ~ Polilz ¥oT ax . .
F 2m I X Xz = 2w I X (x -y
. X X
o o
uwII X + a
> o172 o - -
F=— 2n( - )(x - y).

8.7 From Ex. 8.9 we find that the vector potential of a
filamentary current along z is Zl = —uoI; n pl/2n. For a
filamentary current pointing along -z we have 22 = uOI; n p2/2w
where Py and P, are measured from the currents. Thus at any
point in space

>

>
A=A+ A =u.I 2 (py/p)/2m.
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x y z
- > 9 3 9 ~
8.8 a) A, = -Byx: V x A= |5 3y 55| = B2
-By 0 0
9 - 3 ~ 3 ~
v Kl = (3; + 3y Y + a7 z)+(-Byx) = 0
X y z
M - > 3 3 3 -
Ay = Bxy: then V x A = = 3y = = Bz
0 Bx 0
> +> N >
and V-Az = 0. A3 = -VZ T x B: We may choose the B-field

+ -
along any axis without any loss of generality. Take B = Bz.

> a ~
Thus —1/2 T xB= -1/2 (By)x +1/2 (Bx)y. Hence
> - - >
Vx A= - Vz(—B - B)z = Bz. Moreover we have V-A3 = 0.
> >
b) To show that A} - A is the gradient of a function ¥, it
>

+> > >
suffices to show that V x (A} - Ay) = 0. Taking A} - Ay =

-B(yx + xy), then

, X y z
> >
- = |9 9 9| = - =
vV x (A1 AZ) = 3y 57 B+ B = 0. Hence
-By -Bx 0

> >
Al - Ay = V. It is easily seen that ¢ = -Bxy + constant.

+ >
8.9 a) Ampere's law gives QB-dl = w1, where ¢ is a circle of

c
radius p around the wire. Thus we get B(2mp) = uoIl or

>

B = o 1 ;/an.

tr
l"oIl 1 l"oIl o
b)F=dea—ff T;dpdz=—2—“—t ln(;—-)
> > >
c) We use Eq. 8 46 fB-Ha = F = fA+d2 where c is the loop and
s

C»
s is the surface bounded by c, and A is in the z direction, and
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depends only on p. Thus F = [A(r) - A(ro)]t, and hence
u I
1
2
+> > N
d) The force on ab is dF = Izdl x B = IzdlB(-z) or

> >
A(r) - A(ro) ln(——ﬁz

r
o uoI —uOIlI2

2w

a

kel
]
I

r -~
2n(;§1)z

> +> > N
The force on bc is dF = I,de x B = IzdlB(-y) or

t pul -u I I
- -3 ol - -_ol2 =~
F -1, £ 7nr 9% < mr Y

> a
8.10 a) The magnetic field in the solenoid is B = uoInz. The
flux F = BA = uOInxy.
> > > N
b) Using ﬁA'dl = F and taking Al = A(x)y, we get
Al(x)y - Al(O)y = Al(x)y = uOInxy which gives Al(x) = uOInx and
> -
A1 = uoInxy.
> a
c) Take Ay = Az(y)x. Then we have —Az(y)x + A2(0)x = —Az(y)x =
> a
u,Inxy which gives Az(y) = -u,Iny and A, = -u,Inyx.
> > > - -
d) Take A3 = (Al + A2)/2 = -uOIn(yx - xy)/2. Check
V°A3 =0 = —uoIn(By/Gx - 9x/dy) = 0. It is clear that the

potentials are as plotted.

> > -
8.11 We expect A to be along z. Thus V x A = -¢3Az/ap. Now

UIA >
using ﬁ ° ¢ we get from V x A B: —BAZ/ap = uoI/an which
-y Ifnp
> o -
integrates to A = T Tom Z.
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8.12 a) From example 8.12 and taking the point of observation

w I

at the center of the loop that is z = 0, we get: ﬁ = —%— z
where r is the radius of the loop.
b) Integrate loops from a to b, dI = INdr
- uozNI b dr uozNI o T ) uozNI gn(PJ

) r 2 r 2 a

a a
Check for b = a: ln(EJ = n(l + b - a) - b= a’ thus
a a a

+> -
B = u zNI(b - a)/2a. Now check for b —a << a: b-a-= %—,

> -
thus B = uozI/Za.

>
8.13 From symmetry we have for each side B = Bz. We use

"

Wl ag x & " s
dB = o di x§ . For che side shown £ = —xx - (a/2)y,
4w 3
> N 13
df = -xdx, thus
ulal/2
o adx
B., =— | . Using x = au/2 and dx = adu/2
side BT __ ) (2, aljuy3/?
N i uoIz } du i V2 uoIz
side ma (uz + 1)3/2 2ma
27 u 1z
> [
B = 4B =
square side Ta
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8.14 From problem 8.12 we have for a loop of radius b:

u I
Eo = 3%— z. B for 2 wires from 0 to = is the same as a wire
ulI
from -» to «, ﬁ = 5%3 z. Thus the total field is
golol s Mol Bl 1
4b 2tb © 7 b AT

8.15 Consider a band of loops at 6 in the range d6, thus the
current in Rd® x IN/mR = INd®/w. From Ex. 8.12 the field on the
axis of a loop of radius r and current I is dB = u01r2/2£2 where
£ is the distance of any current element from the point of

observation. Taking r = Rsinf, £ = R and integrate we get

u NI w
_ o 2, (Ndb o .
B I-ZT i e(-—"— = MR £ sin~6d6
u NI m u IN
[ 1 1 o
B--ZTR—[Z_Z&Sinze]’ B_4Rz°

8.16 Consider the result of Ex. 8.15 about the B field on the

axis of a spinning disc:

where t is the thickness of the disc, and r is its radius.

We consider the above spinning sphere as a collection of
spinning discs with variable radii r and thickness t = dz.
Since we want the field at the center of the sphere, then for

all of the discs we have r2 + z2 = R2.  Thus
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R 2 2
B =1u pw f {R ; z - 22}dz z
o
3 R
2 ~ 1 2 -
B=1qu pw{R2°%E -z } l z = §-uome Z .

8.17 From Ex. 8.12, the field on the axis of a current carrying

loop:
2

p IR R

3.__°

2(22 + R2)3/2

If we venture slightly from the z axis, we expect

> > +>
B = B(p,z), i.e. we will introduce a B field in the p
> > 1 3B
z
direction. But VeB = 0 gives 3-—— (pB ) + 3 =0 or

9
% - "5 3 (pB ). If we are not too far off the axis, then:

u IR? 3B -3y 1Rz
B = —————jL———————, hence — = —————Jl——————— , therefore
2 22 + vHY 32 5,2 4 rE)Y/2
13 3uoIRzz f 3uoIRzz
== (pB ) = or pB_ = pdp =
P30 1PN 52 4 g%y/2 P 222 + r%)>/2
3u IRzzp2 3u IRzzp C
B = -2 4+ . But at p =0 we
4(z% + R 2,572 " ° 42?4 2)5/2 P
3uoIR22p
require B_. = 0, thus C =0 and B = ———F—F75
[ p A(ZZ + R2)5/2
> 3u IRzzp I IR2
B(p,z) = = P+ ° z .
4(22 + R )5/2 2z 2 + R )3/2
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8.18 From example 8.12, the field on the z axis, from a single

R uolkzé
coil is B(z) = . Now
222 + rY)3/2
u
B _Y 2 2  2.-5/2 3 -
3z -7 R7I(z" + R") (- —2-)(22)2
32B 3 2, 2 2,-7/2 2 2 2,4~
—5 = -3 IR“(z" + R7) [-52° + (z© + RT)]z.
3z °

For coils at z = £+ R/2 we add the two terms. Since 3B/3z is an

odd function of z, then § L 0. Now

R 9z
)

2 2 2
3°B __3 2,2 .2-7/2, RO ORT . o200a
22 lg = - 5 u IR (z" + R [-53—+ (G +RDJz=0
z Z”E

2 u I
3 2(R 2,-3/22 Yo 5 -3/24
B = l.loIR (-4—- + R ) z = —R—(Z- Ze

>
_ _ - N x
8.19 a) B = V¢m = (Bo/uo) x + z(1 + b)- We must make sure

z
b
> -+

that VeB = 0 and V x B = 0 for the potential to be reasonable.
Both are clearly satisfied.

’-) 3 > 2“ 2.~
b) F = V(meB) as given by Eq. 8.107. Now m = ma“Iz = ma“fez
where f is the frequency of revolution which is equal to

1
v/2ma: The speed for a circular orbit is v = (e2/4n€0a) &.

8.20 From Eq. 8.97 we get for a small current loop:

TR " >
A= z%—(ﬂazz)X(g3). At large distances £ = (£ -1%') =f. Thus
13
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UI ~ hod a a a
K = Z%_ “aZ(z er). Using z X r = ¢sinb we get:
r

u I ﬂazsine
0 ~

- $
Anrz

>
8.21 a) The magnetic moment for each turn is ﬁn = IA where
> - -
A = 1R%z. Hence m = NImR’z.
>

b) Force = V(meB) as given in Eq. 8.107
F = v(nInR?Z i (x+y)) =0

= TR 2z 7—2— X y = .

>
¢) Torque = mxB as given in Eq. 8.109

NInRZBo R R NIWRZB R

—— 22 x(x+y) =—2(y - %).
V2 2

—AY
"

8.22 a) The current is taken counter clockwise. Force due to
> > >
a magnetic field on a current I is given by F = 1 fdl x B, where
c

c is the path of current. We apply this to each side:

obviougly ;AC = 0. For AB, dz = dy(—§) and ;AB
I|AB|B (-y x x) so ;AB = +1.98 zNt. Now ;BC =
IB(0.3/0.5)§ x ; = 1.98;Nt. See that net force = 0 on a loop in
a uniform magnetic field.

b) Dipole moment: for a current loop m = IX: for counter-
clockwise sense of current, looking from top, points upward: so
m=6 x V2(0.3)(0.4); = .36;A-m2. The torque on a

+> -
dipole = T=mxB-= «396yNem.
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8.23 a) m = superposition of 2 dipole moments = Ex + 52

> Ina2 A > Ima »
M =2 XM =72
p=Ima 3y = (107 (% + 2) Amp-m?

b) Since ¢32 + 42 meters >> 1 cm, the loops are effectively

dipoles with the net dipole moment given in (a). The field due

Yo
4nr3

origin, o= 3x+ 4y, and r = 5m then

[3(?-;)? - E]. Since the dipole is at

to a dipole is E =

SR A 0 x 107y (x + 2)1(—3'3‘—;—“11 -

m -11,.,27 A 36 - A
3 - 1)x + 55 y z] Tesla

o
I

w

.
J—]E-L = 1.96 x 10724 amps m?
-2“‘—2 = 2 x 1016 sec!.

> >
8.24 Since T = m x B then |m|

Now I =S8 and 1 = —25, then w

2m
mr er

8.25 a) By example 8.19, the magnetic dipole moment of a

> 4
charged spinning disc of thickness t is m = TPtuR . Now, we

4
2 by R2 - zz, then

replace t by dz and r

R
> _ 2mpw 2 2,2
|m|sphere == f(R - 2z7)"dz
o
R 5
_ Tpw 4 2 2 4 > _ 4wpwR™ »
msphere = £ (R 2R“z" + z )dz or msphere—-——ﬁ;—-z.
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b) Now, consider the sphere as a "collection” of current loops
with a magnetic moment dm = AdI where A is the area of the loop,

and dI is the current in the loop. Now dI = dq/T,

o(27nr)RdOv

™ = OoRvd6.

dq = o(27r)Rd6, and T = 2nr/v. Thus dI =
Taking v = wr, dI = oRwrd®é. Now r = Rsinf, thus

dI = oRstinede, and dm = (nrz)(oRzmsinedB) = GWR4w31n39d9,

3
]

™ L
omR%w fsin39d0 = —onR% fdcose(l - cosze),
o )

3¢
]

™
owRaw{—l/3(cose)(sin29 + 2)|}z = %—OmﬂRag.
o
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CHAPTER 9

-

9.1 n = (a z, b,) g+ a 2
. m ly 1 y Zx X

>
a) The volume pole density is pm = =Vem = -Zaly - 2a2x. The

*A -~
surface density is o = men, but n = Vf/|Vf| where f is the

equation of the sphere = x2 + y2 + z2 = r2. Using Vf = 2xx +
Zy; + 22z, |Vf| = 2r, then n = xx + yy + zz/r and

o, = (l/r)[azx3 + (aly2 + bl)y].

X z
B) J =Vxm= |2 5 21 -0
m=- VXM= 3x dy z -
2 2
a,x (aly + bl) 0
X y z
> > a 2
Kp=mxn= Jax" (a;y+b) 0
.S pA z
r r r
> - 2 : 2 .2 2 2
K, = x(z/r)(ay° + b)) - y(z/r)ax” + z[(y/r) ayx” - (x/r)(ayy
+ bl)]’

-

>
9.2 This is the magnetic version of problem 4.2. Given M = My
where M, = constant.
> > -~ -~ ~ -~
a) Py = ~VeM = 0. The surface density Op = Men is Mizey = 0 on
~ ~ > ~
top side, -Mjz*y = 0 on the bottom side, M yey = M  on front

face, and Moy'p = Mosin¢ on curved surface.

91



L/2 R 2n L/2
b) ¢ =fpdv+foda= [dz [dxM + [ Rd¢ [ dzM sing
"oy " s " -2 -k % wmo_,00°

2LM, - 2LRMo = 0.. Note: The region is 7 < ¢ < 2w by convention.
c) No magnetic monopoles have been detected, although there are
theories that predict them, and a Stanford experiment may have

detected one. We do not know for certain that they do exist.

> R 2m " .
d) m = [fo(D)dv + [To(P)da = [do [ RAe(pp + 1y 2)0 P+
v s o L

R 2w R

~ L ~, bottom L/2 ~ ~, face

fdp f Rdo(pp - E-z) o + f dz fdx(zz + xx)0 +
[ L m -L/2 -R m
L/2 2w . . ’ 2m

[ dz [ Rdé(zz + Rp)6SUTVE =0 + 0 + 0 + LR°M [ (x cos¢ +
-L/2 L n °
. nRZLMo
y sin¢)Mosin¢»d¢ == = MOV.

> >

9.3 a) Magnetic pole densities Pn = -V*M = 0. The surface

density on flat faces is o = Men = 0. For circular edge, we

have n = cos® x + sin y, thus o =M cosB.

o
> > >
b) The magnetic current density is Jn = V x M= 0. The surface
> - - N
current density on the flat surfaces are K = M x X z = -M_y on

> ~ -~ ~
the upper surface, and K = M x X (-2z) = M,y on the lower
surface. The surface current density for circular edge is
K, = Myx X (cose; + sine§) = M, sinbz,

(¢

n
o m e
c) B = T / £3 da + Mu . Now for R >> T;

iy
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. . . _uo 2n Mocose . R T
£ ~ -Rp, thus B = — [ ———— R“(cosOx + sinBy)d® [dz + u M.
4 3 ()
[} R o
- >
> . uoT Mox 2m uOTM > > > >
B= B=-,— 4 [cos0de =-—+ u M. Since B-uM = H,
> > o

then H = —uOTM/AR.

9.4 We use the method of magnetic pole density to find ¢m along

axis. Now p_ = 0 and o =M  at z = £, and -M, at z = 0. Thus

1 om Mo VAL a pdp a odp
¢m=ﬁfrda=_ﬁ[-£d¢{£/z 2+f/ 2 2}]
z°+ p ° (z - )" +0p
Mo {Tz + zz/_ azT (z - Q)ZJ_}
8 =2 o - o
m =7 2 - 0?2
M 7 2 2 2
o =21/ at 2t Vet - - 2] + |z - g

9.5 Let us consider the potential inside the sphere first:

Y g >
-1 m 1 m
—Z'l_{ E_ dv - T‘l? f E_ da where Dm = =VeM,

> A > - > > 14+ >
On = Men and M = Ml(r)r + M . Using M = (;—Jr + Mo and Eq. 1.57

b) From 9.16 o, =

we can show that p = —Zﬂl(r)/r - M;(r). Moreover o = M, (r) +
>

MO-;. We will evaluate the volume integral which we will call

I, first. Using Eq. 2.59 we get:

r R
I, = - {%-£pmr2 dr + {pmr dr}. Substituting for Py the volume
integral becomes
2 T 1 r, 2 R R
= -— — + .
I, =3 £M1(r)r dr + — £Ml(r)r dr + Z{Ml(r)dr {Ml(r)r dr
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We now perform an integration by parts on the second and fourth

terms.
2t 1 2T 1t
1, = ;-f M (r)r dr + - M (D) | -< f M, (r)(2r)dr +
o o] (o]
R R R
2/M(r) dr + M (o)r | - [ - #(x)dr = M ()r + M (R)R = M (D)1 +
r r r

R R

fMl(r)dr = MI(R)R + fMl(r)dr. Now, look at the surface integral
r r

IS. First we note that from Ex. 9.7 the contribution to the

> > > >
potential from M = M  is given by e = (1/3) M *r. The

contribution of the constant density M(R) is first from analogy

with electric charge problems, a constant potential -MR. Thus

R
- Ly

o = M (R)R + {Ml(r)dr +3 M er - M (R)R.

o = ? M (r)dr + 4 o7

n ! 1(r) ro+ M.,

a) Outside the sphere, the potential satisfies the following:

6, = ) Ar ™Dp (cos8). But & = 6, at r = R. Thus
2 n n 1 2
n=0
R 1 -2 1 3
{Ml(r)dr + §-M0Rcose = AIR cos®. Thus Al = 3 MoR and
3

%, = (1/3) M R cosG/rz. Since ¢, is independent of Ml(R), then
the field outside of the sphere must also be independent of

>
MI(R)’ as B, = —roQZ.

94




9.6 We can easily show that the fields in this situation are
fven by By = 27 oL & by shous hat th
given by H, = ”1+ ™ o’ 9 = TR o’ Dy showing that these

fields satisfy Laplace's equation and the boundary conditions.
By uniqueness, therefore, these would be the only solutions.
+> >
1) By example 9.4 H, and H, satisfy Laplace's equation.
2) There is no field parallel to the interface, so clearly
> > >
(H2t - Hlt) = K orma1 15 satisfied.

2u uy L)

3) Bip = Byp * u1“1 = “2“2’ TR, H) = W, H is

satisfied. Thus Hl and H2 above give the field equations, as

they satisfy all the requisite conditions.

>
9.7 a) Find B using Ampere's law

> > >
i) For 0 < p < p;, @$Bedl = 0 thus B = O.

2
+ > HI(D—DI)
ii) For py < p < py, §Bede = M lge =—5 5 orf
P2 7 P
2
. qu -f
B ¢
2ﬂp 2 2
Py =P

iii) For p > Py, we have a field as if all the current is at
ul

> o -
p=0: B =gt

> -

b) By symmetry we have A = A,z and A, = A(p) only. Thus we
2 >

solve V°A, = -y J.

3
1) For p <py: V2A, =2 -0 3o A =05 thus

Az = C&n p + D. Now A, must be finite at p = 0; therefore

C = 0. Moreover we take the potential to be zero so we set

>
0. Thus A = 0 for p < Ple

o
]
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ii) For p; < p < py, we have J = I/(n(p% - p%))

3 3 2 2
30 P 35 A, T Ip/[ﬂ(p2 pl)] or
uOI p2
Az = - z;—-;FTTT—TZ + Co in p + DO. Match the boundary
2~ P
1 o] a Co a
conditions on H. at p; Ht =57 3 3 $ - ;;—-¢ then at py
02 pl
2

°l Co Tu, P

should vanish, thus i . = 0; CO TR, .
Py = Py 2 Py~ P

Also A, should vanish at p = p) since A, for p < Py is taken

zero. Thus

2 2
ulI( -p;) ulI p
Ao 17, o L gn 22
v T2 2 T 2 2 M
P2 7Py P27 P
2 2
L ST
and B [2ﬂp 7 2 ]¢ as expected from part (a).
Dz Dl
> Cl a
iii) for p > Py: A, = Cl fn p + Dlg B=- s ¢; but from
Ampere's law we have
Eﬂi_ = - El or C. = - Egi and A=- UOIZ &n p+ Dz
2mp, 0, 1 Zn Zn LSS}

>
The constant D; can be determined by matching A at p = p,.

2
ul wl »p I
_ o o 1 o
Dy =-%& *'sz—z—_—z“""z/"n T

2 1

lnp2
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N
9.8 For a uniformly magnetized sphere we have m = f Mdv =

> > >
% ma ﬁ, B = uo(M + H). But ¥ =1 x B, thus
T = % ma uoﬁ x (ﬁ + ﬁ) = % na3uo{ﬁ x M+ M x ﬁ}
4 3 * >
T = 3 Ta quH sina where a is the angle between M and H.

9.9 Let us label the three regions r < Rl’ R1 <rK< R2 and

r > R, by 1, 2, and 3, with potentials ¢y, ¢, and L%
respectively. Then @l =nZO Dnr“Pn(cose). Note that Ql + 0 as
r>0. 9% = z [Bnrn + Cnr'(“+l)]Pn(cose). $3 = -B,rcos® +

n=0
XO A“r'(n+l)Pn(cose). Now we have the following conditions:

n=
l) 03 = Qz at r = R2 2) ¢2 = ¢l at r = Rl
302 34’3 302 3@1
3) ”1 T = u2 T at r = R2 4) ul r = uz e at r = Rl

Because of orthogonality of Pn(cose), only the n = 1 term

is involved (due to the magnetic field ¢ = —Horcose for large

2

r). Thus®, = D rcos®, ¢, = B;rcosb® + Clr- cos6 and

2

®3 = -H rcos6 + Alr' cos® where Hy = Bo/“2°

A Cc
From (1) -BR, + —%-= B/R, + —% or —BIR% - C + A= HOR%.
R R
2 2
! 3 3
From (2) BIRI + — = DlRl or -DlRl + BlR1 + Cl = 0.
R

1

From (3) 2upA; + u BjR3 = 2C; u) = -uyR3 H,.

From (4) ulBl - 3 = Dlu2 or ulR%Bl - Zulcl - DlHZR% = 0.
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Solving these equations for the constants, we get the

following for D, and hence for ¢1 and By:

—9u1u2Ho
D, =
1 Rl 5
(2uy +u)(u, + 2u)) - 2(R—2) (uy = uy)
- upHpHe
(] =
! Riy3 2
{Quy +u)duy + 2u)) - Z(E;) (uy = w7}
> o Myt
H =
1 Riy3 2
{2uy + )y + 2u) - z(f{;) (uy = u"}

For u; >> u,, we rewrite the expression:

u

2 -
—)H

) 9(“1) oZ

T+
|

) My Ry 3 ¥ 2
e nghe n -2’ - DY

giving H; = 0. Thus, for a material of high permeability, the H
field in the cavity is expelled. Thus, the shell acts like a

shield of the magnetic field.

> ~
9.10 We take H = Hoy, with a potential -Hyy = —Hopsin¢. We

should now see that only n = 1, sin(¢) terms can enter the ¢'s
so we rewrite our ®'s in the cavity, in the shell, and outside
in the form: ¢; = Apsin¢, ¢, = (Bp + Cp-l)sin¢,
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>
¢y = (-H,p + DEl)sin¢. The corresponding H fields are:

N a > - -
-Apsing - A¢cos¢, H, = -p(B - Cp'z)sin¢ - ¢(B + Cp'z)cos¢,

—8(—Ho - Dp’z)sin¢ - 3(-H0 + Dp_z)cos¢.

=
w
1]

We now require either ¢ or H¢ to be continuous at p = a,b; thus

A=B+C 2, B+ 2=-H +Db2

We now require Bp to be continuous. Note that B = "oHl’

B, = uH, and By = p Hj. Thus we get at a and b: uB - uca? =
uoA,uB - qu_2 = -u H, - uon_z. These four equations must be

solved for A, B, C, D in terms of Hy, a, b, u, U, giving

2 2
—ZuoHob (u + uo) a“(u - uo)
B - 2,2 27 T TGy
(u+p )b -(n-u)da o
o o
TRET!
A = ____iéﬁi___, D=2C- Bbz(_____JZ) .
2 u+yu
a (u - uo) o

> > -
In the material we have B, = wH,y = -uve, = -pu(B - Cp—z)sin¢ -

ou(B + Co 2)cosé

2 2 ~
= 2up B bZ[(Cutn ) - E=(u-v ))p siné + ((uru ) + 2=(u-u ) )écos¢]
oo o p2 o o p2
(n + uo)zb2 - (u - uo)a2

9.11 We have an infinitely long cylinder polarized such that
-} -~
M= Mox. Note & will have only cos¢ dependence because of
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> A
matching boundary conditions with Men = M0 cos¢. Thus the

potential inside and outside the cylinder are: Ql = A)p,

cos$ + Cy E%iﬁ (We take C = 0 because ¢; is finite as p » 0)

%) = Ayp cosd + G E-gfi-(we take A, = 0 because ¢, is finite as

p + @), Now at p = Py e have ¢, = ¢, therefore A = C2/°§~

> a
Also at p/po we have B; = By,. But By = uOBQ/ap + u Mep then

“UoAL + u My = Uy Czlpg = which gives A} = quo/(u2+u0);

Cy = uMp2/(uy + uy)

2

> quo A a A u2quo A
B, = = ———(cos¢ p - sinp ¢) + y M x = ——
1 u +u oo o+
o 2 o 2
M 2
> uou2 opo cos$ - sin¢g 2
By =g+ L P+ 7 ¢
o 2 P P

Note we did not use Hps there is no need to give this

parameter. In fact, once the cylinder is magnetized, then it

does not make

9.12 Because
equations, we

field induced

any sense to introduce My

of the linear nature of the electromagnetic field
can consider the field as a superposition, of the

by the external magnetic field, and the field due

to the current in the wire. Consider first the effect of the

external field. The magnetic potentials inside and outside the

cylinder due to the external B field, are

B

@1 = Alpcos¢ and @2 = -Hopcos¢ +-El cos¢
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B e e e B A

The boundary conditions at p = p
3@1 8@2
oy TS = -u, TR which give Alp0 = -Hop, + Bl/p0 and

- 2 ) o
-ulA1 = “2“0 + ”2Bl/po‘ Solving gives

are ¢l = @2, and Bln = B2

(o] n

u, — -2u -2u
1 2 2 2 2
B, =———— Hop", A = — , & =-——"—H pcos¢
1 ul + u2 o o 1 ul + u2 1 u1 + u2 o)
o u, Pl
1 2 o
¢2 = —Hopcos¢ + TR 3— H cosé
1 2
i 2ot op 2ot sindd
= ————— cOS -
Loy et
2 2
(v, —u,) o (u, = w,) p
> 1 2 0 ~ 1 2 o) ~
B = (1 + ——" -2)H costp - (1 - 7=y —5)H_sinés
2 ) + Hy pz o (ul + u2) p2 [o)

Now, the magnetic field due to the current is simply

calculated using Ampere's law:

The field inside and outside the wire is, therefore, given as

the sum of the two fields:

2uyH, I

> A ~
H cos¢p + ( sin¢)¢
Loyt I
u o
1 2 1 2 o . ~
f=(1+ TR Z)Hocosdm + [2"p TR -——2)1-1031n¢]¢
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9.13 a) Small spherical cavity. Take g = Moz and H = H_z.
From boundary conditions at r = « we conclude that only terms of
order cos® survive; thus the potential inside and outside the
cavity take the forms:

C

A
1 1
@1 = rz cosf + A2r cosb, ¢2 = Hor cos® + rz cos®

Moreover, since 01 must be finite at r = 0, then Al = 0. Now we
match the boundary conditions at r = R:
i) QI(R) = ¢2(R) or
AR = -HR + C;/R? or Ay = -H_ + C /R
> >
i1)  By,(R) = By (R). But B} = —u V& + u M, thus
Biq = “Ajugycos®; By = u H cos® + (ZuOCl/R3) cos® + u M cos6,
hence —A2u0 = uoﬂo + ZuOA2 + ZuOHo + quo
-3A2 = 31-1o + Mo or A2 = —Ho - Mo/3, thus
¢’-H+M° O-HMO B.(t HM°‘
1 (1) = —(H  + 37)rcosb = —(H  + 37)z, 1 (0 = (H +37)z
> >

b) For a cylinder with axis parallel to M, we have H, is

> > - > -
continuous. Thus Hlt = H2t = Hoz. Therefore Bl = uoﬂoz.

> -
¢) For a cylinder with axis transverse to M = Mox, then
matching at r = ® requires that only cos¢ terms are kept.
%, = (AI/p) cos$¢ + A,p cosd, %, = (A3/p) cos¢ - H p cos¢. Since
¢, is finite as p + 0, then A, = 0. Moreover matching boundary
conditions at p = Po gives
- - - 2 =
1) 83(pg) = @3(py) or Ayp, = A3/p, — Hyp, or A3/pg = Ay + Hi.
> >

>
ii) Bln(po) = an(po). But B = -p Vé + u M, then
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VARV, h i A BT e e T A e e e R R A e

'AZ = A3/p§ + Ho + Mo' Thus A2 = -Ho - Mo/2, and
> -
Ql = -(Ho + M0/2)ocos¢, B, = uo(Ho + Mo/Z)x.
9.14 The correct boundary conditions at the boundary are first

B, = an or Blcose = Bzcose2 where 91 and 62 are the angles

In
between B, and B, and the normal to the interface, and the
condition Hlt = H2t or Blsinel/u1 = stinez/uz. Eliminating Bl

and 32 from these two conditions by dividing then we get
tanel/ul = tanBz/uZ or tanel/tanez = u1/u2.

-b ~
9.15 a) We use m =¢U§f? x J dv where J = %%i-G(r - R)sinb¢

m = %%ﬁ fr(g x $)sin9 §(r - R)rzdr sin® d6d¢
3

; - - -qu3
8mR

by symmetry. Thus 6 = p cos® - z sin®, hence

> quR>T 3 » wR?
m = 427 [sin’e z a8 = L= z.

2

fé sin“® d6 d¢. Now only the z component is nonzero

[e] .
b) To use m = [m dv we need to find the effective

> > a > S ~
magnetization. Km =Mxn=Mxr = (qu/4mR)sin6¢. Thus

M=3Y 2 . .
= %7k z (seeAEq. 9.20) )
m = fM dv = 4TR fdv amR 2 3 mR 3 2Z°

>
c) Use form of vector potential (Eq. 9.108) A, = (uoquz/IanZ)

> >
‘ uomxr uom

sinf¢. But Amag dipole “%r 3 " im 2 sinf¢. By comparing
> > N E quZ JR 4
A, and Amag_dipole’ we read m = 7 2

¥ . 3

1y
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9.16 This problem is solved using the method of images as done
in Ex. 9.9. We use the notations of the figure of this
example. The force on the wire I is just the force exerted by

the image current Il' Thus from Eq. 8.28

dF _ _
T uoI 11/2ﬂ(2d). Since I1 = I(p uo)/(u + uo), then
dF L u0)'.[2

47d

Loan =2
de o'u + uo

9.17 Taking u >> U, in problem 9.16 gives the required answer.

9.18 This problem (ul >> “2) is similar to a line of charge and
a conducting cylinder, which was solved using the method of
images (see Figs. 3.23 and 3.24). We therefore use the method
of images. Here, however, we need two image currents: one is
located inside the cylinder and it is equal to I. The position
of the image current can be determined in terms of a and b using
the relation X¢ Xy = R? where X¢ and Xy are the distances of the
image and the original currents from the center of the cylinder,
and R is the radius of the cylinder. (See discussion on p;ge
111). Thus X = az/b. The distance between the two currents is
therefore D = b - aZ/b = (b2 - a2)/b. The second image current
is -I and located at the axis of the cylinder. Thus the force
exerted on the current is equal to the force exerted on it by

the two image currents:
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2 2 2 2.2
ar _ "0t | R B I
TR TR B N R RN

To prove that these are correct values of the currents we
satisfy the boundary conditions as follows: taking the origin
at the axis of the cylinder, then we have I at x = -b, Il at
x = -d, and 12 at x = 0.

Using the boundary conditioﬁ H tangential continuous, and
because ; = uﬁ is finite, then Hl >0 as uj + = Now the
continuity of B normal implies ; must be normal outside the

> -
cylinder. The vector potential A = Iz fn((x + b)2 + y2) +

a 2 2 A 2 2 -’_-) -)_
I,z tn((x + d)° + y°) + Izz gn(x“ + y“). But B=V x A=

-9 .3 " oA - D

(X'a—y'ya_x')Az’¢=YCOS¢—XSin¢=yE_x%’

oA, 21(x_+ b) 21, (x + d) 21 )

ox = 2 2+ 2 2+ 5 z’an
(x+b) " +y (x + )% +y 24y

o4 2Ly 21,y

- - 2 + L + 2 then

|

2

3y (x + b)2 +y (x + d)2 +y x2 +y

> > A
Btangential = 0 or B = 0 gives
2 2
+
Bed 2I[(x + b)x +4237 21 [(x + d)x +413 ZIZ[X y ]_
“¢a 2 2t 7 2 ‘vt 2.2 - %
(x +b)"  +y (x +d)” +y x +y

This should be true at any (x,y). We will evaluate at x = -a,

+a, and 0 to get three conditions respectively:
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al al) al al,

+1,=0, a+b a+d 2

+ + I, =0
a2 + b2 az + d2 2

Solving these three equations for Il and I2 and d gives exactly
the above solutions. In fact if we remove the condition

¥y >> uy, then the off axis image current is

I, = I(ul - uz)/(ul + uz) and the on axis image current is -1,

and the force becomes

3212 -
e M Wl

de 2mb N + My

9.19 Just like the previous problem we use the method of
images. The images are the same, one outside the cylinder and
one on the axis. However the force is now given only by the

current outside the cylinder. Thus we get:

2
aF _ M
de 2n(a2 _ b2)

9.20 We attempt to find the force between the dipole, and its
image. The magnetic field, due to the image dipole, at the

point of the original dipole is

{2cos6r + sin6b}.

-1 4
[

4me r3
o
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The force on the "real” dipole due to a magnetic field is given

> >
by F = (m+V)B. Now noting that

ﬁ-v = (m cosOr + m sin6§)°(§;§ +

1

(and noting that 8;/30 = 5, 36/86

ar/3r = 0, see Table l.1), then F

>

3 a ) m 3
- 350) =m cosH 3 + T sin0 )
—;, 88/3r = 0, and
2a
3m " r

5
(1 + cos™0). The
64T1E 2

torque acting is T =m x B which can be 8agily shown to bhe as

given in 9.120.

9.21 For the bar on the right, we have an analogy with a

> >

solenoid: B = qu(cosel - cosf,) where

L + zg/z L
cosf, = = = | and
1 2 2\1/2 2
(@ + LIDT+ (o /2) ) 2 Po1/2
(L™ + Z—J
zg/z ng
cosf, = = = = (
2 (s o )Y P
g o
3 z u ﬁ{ L fg} =y M For the bar on the left
axis o (L2 + p(2)/4)1/2 N o

> > >
we have a similar result. Thus B = ZuOM and H = 2M.

>

9.22 We use the notations of Fig. 9.18. Thus we write

NI - Hlll = Hzlz = H3Z3, Fl = F2 + F3 or B1 = B2 + B3. Thus we

make the following table using the above H equations and the

magnetization curve.
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My M, W B B By B - By~ By
4000 3125 1250 .7 .76 .4b -.5

4500 1875 750 .72 .54 .31 -.13

4650 1500 600 .73 .485 .26 -.015
4750 1250 500 .73 .44 .22 +.07

5000 625 250 .74 .265 .11 +.365

Thus it is clear that the relation Bl = B2 + 83 is satisfied for
Hy = 4675. This can be seen by plotting B, - B2 - B3 as a
function of Hl and extrapolating for a zero value. Thus the
operating point of the circuit is B, = .73, By = .48, and

B3 = ,25T.

9.23 Using the notation of Fig. 9.21 we have

EmHm 2 2
= - +.__—,
Bm RAm » R u A u_A

For lg =1 cm, and since pg >> u,, then R = Qg/qug. Thus

L
-y M_ g - -
B = N 1 Am Hm louon

>

m o]

x

Plotting this equation on the magnetization curve of Alnico 5
(given in Fig. 9.8c) gives the operating point of the magnet at

the intersection of the two curves.

108




9.24 We follow the procedure described in Ex. 9.13. Let the
fields (H,B) in materials one and two be (Hl’ Bl) and

(HZ’ BZ)' Thus according to Ex. 9.13 we have

ng‘l + HZQZ = N1 or H2 = Nl/lz - Hlll/ﬂ.z

BlAl = B2A2 or BZ = BIAI/AZ

These two relations have to be consistent with the H, - By
magnetization curve, and Hl - Bl magnetization curve of the
materials. Thus from Fig. 9.8 for cast steel, we can select the
following pairs (Hl’ Bl): (200, .33), (250, .44), (300, .55),
(350, .65), (400, .73), (450, .78), and (500, .83). We
substitute these values in thé top two equations to generate
pairs of (HZ’ BZ)' For example the (200, .33) pair gives

(240, .44) as follows:

Hy = 40/.1 - 200 x .08/.1 = 400 - 160 = 240

B, = .33 x 3 x 107%/2.25 x 1074 = .44.

9 =
Continuing we get the following pairs: (240, .44), (200, .59),
(160, .73), (120, .87), (80, .97), (40, 1.04), (0, 1.11). Ve
now plot these points on the magnetization curve of material 2
of Fig. 9.8 as shown in the figure. The crossing of the two

curves gives the operating point of the system: B, = 1.01 T,

By = .76T, and flux = ByAy = BjA) = 2.28 X 1074 Tm2.

>
9.25 The toroids (circular cross section) have a B field inside

N > > > >
(¢ direction). We want to find an A satisfying V x A = B on the

>
(z) axis. In Ex. 8.12 and in problem (8.18) we solved the B

> > >
field on the z axis for a current loop, satisfying V x B = u J
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/'{‘/ Nickel-Yvpn

1.0

B(T) g

- (ool Sheel
'6 3 ‘\/
.L} L
2 1 1 { L L Hz( A/m)
\00 190
N uOIRZE
and found B(z) = — 5 3.3/2 where the loop is of radius R,
2(z° + RY)

placed at z = 0 with a current I = current density times cross

>
sectional area. For a toroid with B = flux density, giving

> >

a) F = flux = ﬂ(%)zﬁ let uOJ + B and B + A then

F R%2

2 + R2)3/2

n(%)ZBRZE

Az) = 2 3/2

2z 2022 + &%)

b) For two toroids, at z = d

_ ntZBRZZ 1 + 1
((z - &2 + D)2

)
((z + d)2 + R2)3/2

+ >
9.26 a) Using Ampere's law we get: ¢ Hedf = 2mpH(p) = N,I, or
+> N
H(p) = (N I/2mp)¢. Now we need H(p) 2 H in order to saturate
the Ferrite, hence we need at minimum, enough H at p = b to

saturate that is H(b) = H = N

o o minI/Z"b =N

° min(l)/21rb or

N = 211bH0 at I = 1 amp.

o min
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b) Now for I = 0, and again by symmetry, Ampere's law gives

> > > > >
§ Hedt = 2mpH(p) = NJI = 0 or H = 0. But B = u,(H + M), hence

> a

oM = 0B .

c¢) The energy per unit volume is (relevant to Chapter 12)

N I 2N B

()
U= ¢ ¢dB(2np) = (an o = mmw

i.e., the change in B with H is neglible now, from part (a),

N, = 2mwbH,, hence, u = AHOBOb/p, i.e. H varies with p, but

B = B, = constant, and

[}
]

b
1
fudv = 4H B b £ B-(anc)dp = BWHOBobc(b - a) per cycle.
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CHAPTER 10

10.1 a) m=13, I = l;- =-"3—‘:"-, 2 = np%z, thus
> _ (—em . 2; _ —ewp2 2
2 e 2
> > -
b) In the presence of an external B field (B = Bz) we have from
> 1 ezp2 > > —e02 eB . °
Eq. 10.9: Am = - % B, therefore m = > (w + E;;)z
1 uol2N<r2>
c) Xp = ~ 3 ———me— (from Eq. 10.13). Thus
-6 X m
> = —2 = 6.1 % 10 212 o <o> ~ 7.8 x 1011 .
uoe N

10.2 a) Since the 2 electrons are moving in the same orbit and

>
speed but in opposite directions, then their angular momenta L

will be opposite and will cancel out. Hence m = 0 since m is
>
proportional to L.

b) For each electron we have, from Eq. 10.9, for the change in

1 e2p?
4 m
e

+ 1
moment: Am = iy

m: A o= - . For two electrons we have twice as much
2 2
p

® v

>
B.
m

10.3 The probablity P of being aligned with the field is

emB/kT
emB/kT + e—mB/kT

If 757% atoms are aligned, then

emB/kT

P=.75= .
emB/kT+ e—mB/kT

We now solve for T
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(eMB/KT , mB/KT, 4  -2mB/KT
e

.75 emB/kT =1 or 3= + 1 thus
4% = o 2mB/KT ich gives EE% = gn3. Thus T = 3.67CK.

10.4 The results can be obtained from problem 10.3. Note that

the previous problem we had 2mB/kT = &n3, then T = i?:3 which

gives 5.6 x 1073k,

10.5 a) Since n << 1, then from Eq. 10.18 we have

2
Nm™u
oo -3
Xpara = 3T = 3.3 x 10 .

v

> »> >
b) Since M = xH and H =

=|w+

> _X
, then M = &= = (2626) (0.1) =
o Yo
262.6 A/m
m = [MdV = M(volume of bar) = 2.63 x 1073 A/m?
c) At saturation, M = Nm = (1023atoms/m3) (1.8 x 10-23A/m2) =

1.8 x 105 A/mm = [MAV = M(vol) = 18 A/m’.

10.6 From the Curie-Weiss Law, we have x = T_g_f—’ therefore
c

1 _ T-T and 5.82 x 103g/cc _ 600 - T,

x ¢ 1.35 x 10°g/cc 1000~ T

which gives T, = 297°K.
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10.7 The saturation magnetization is M = mN = 8.44 x 105 A/m.
3kT N

From Eq. 10.46 we have y = CZ = 2656.
qus

10.8 From problem 10.7 we have for Ni, N = 9.1 x 1028 atoms/m3,

and Y = 2656. From Eq. 10.45,

which gives

an = 5.2 x 10720 joules.
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CHAPTER 11

11.1 We use Eq. 11.5, for a loop of radius p < p, and for a
> >  —=d ;> >
loop of radius p > p,. ¢CE dg = Ic [Beda or
-d 2 . _1 2dB _ 1
E¢(2np) =3 B(mp“) giving |E¢[ =50 x=3° (.1) volts/m,

>
fE¢| = .050 for p < p . For p > p, we have V x E = 0 or

9
%-3; (pE¢) = 0, thus E¢ = EQ%EE. Now at p = p,, E must be
continuous, therefore 22%E£_= .05 % giving const = .05 poz.
o

_ 2
Thus |E¢| = .OSpo/p for p > Py

.
11.2 The flux in the coil is F = [B)+dd = u,n;Iwr?N,

- -4dF _ _ 2dl _ _ -5

E = dat uonlNzﬂr it 7.9 x_;o (3 + 4t) volts, and at
_ _E _ _ (7.9 x10 TH)(1l) _ -3

t = 2 seconds i = R - 150 = 5.8 x 10 “A.

P >
11.3 a) We use § Aedl = F = [B+dd. For p < R, F = 7B (t)p?,
thus A, = PB,(£)/2. For p > R, we have F = B R%, thus

- p2
A¢ =R Bo/2p.

* > >
b) E' = -0A/3A/3t which gives
dBo ! R2 dBO
= =-l —— - — —— .
E = E, /2pdt for p < R and /2p qc for P> R
> > -

¢) The current density in the disk is J = o E = °c¢E¢’
d). The power dissipated is calculated from the power density
Jz/o . Thus

c

S0 2 dB
2 2 _ _c(mR”  "Toy2 a
P=[U /oc)dv = fccE v = -5 3 Y[1 + 4 n R].
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> - - *> -
11.4 Since B = B,z and Vo= 3ox, then E; = v xB= -v,B,y and

> - ~ -
E = [(¥ x B)edE = [(-v B )y+(dxx + dyy) = -2v B R.

11.5 The wire (long) has current I flowing.‘ Use cylindrical
u Ié

coordinates to find B of the wire ﬁ(p) = g"p . We can
> >
calculate the flux, find the change, or, use E = ¢(3XB)-d£ which
vy 1z
0

is equivalent. Now ; x B = « Since we have only a

2np

z—component, only sides parallel to the z axis contribute:

E = 2~?(3 x B(2))dz + 2-1(3 x B(2 + a))dz
o

vy Ib

-G - )
= (g ~ = \
21 2 2+ a 2n 12 + %a

I
vuo b{

If the loop is stationary, and the current changes,

b f2+a p I u Ib

_ dF _ o'l o a
E = Ic where F = £ dz { dp Tme - 2n 2n(l + 7)
ub dI
_ dF o aydl 1
E = ac = 7 en(l + l)dt and E2 M 3E
uob a
Thus M = o en(l + I) = mutual inductance

> > >

11.6 a) We use Eq. 11.21 E = ? (v x B)edf. Now
. oop
V=208x®=opwp, v x B=-wpBz, thus

L d -~
E=¢( x B)ede = - wez (.03 m x .25T - .05m x .8T) =

= |m

«85 volts. Thus the current in the loop is =1 = 4.25 amps.
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- = IZR = IE = 3.62 watts

J
mim
N

)
> > > >
c) F = force = qv X B = ¢Id£ x ﬁ, and

> > -
= ? 15 x [¢2 x B) = -1 2z(p;B; - pyBy) = IV = 3.62 watts,
oop

same as in (b).

> >
11.7 a) Stationary loop with A = 25 em?. Flux = BeA = BA,

dF dB dA dB
thus I E=A—+— dt: B ic = A qc (stationary loop)
E=A—?—=ABmcos(wt) 7.5 cos wt
b) F =AB, E = dFsA%+B-§% Use A = &x = fvt, thus

da fv, and F = !.vtBosinmt. Thus

dt
dF
E = Fra Bollv[sin(mt) + wt cos(wt)]. .

*
e \d}
-1 +1
X
-0 a
", dllodiz
11.8 a) Using the formula M = i < ve get
|r, - r
1 2
Sl L ] ay b )
_— !, de
2
Yem T | 1 (§+z)”2 (+z)1/
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where m refers to the moving wire, and s refers to the

stationary wire.

L + rl + L2 -L + r§+ L2
= zg fdl log{ x }
-L + Vrf+ L2 L + rg + L2

Expanding as L becomes large we get:

H H
Im o 2 o
- = ir fdlmlog(rz/rl) =57 log r2/rl

b) The induced emf per unit length

E - _IdMsm _ uoIr;((x - a) + 2z _ Q(x + a) + 2z
n =

dt 2m L 2 2

(x - a)2+ z (x + a)2 + z

At the origin we have x = z = 0, and we have v o= VoXo thus
— = -y I v /ma.
2 uo o/

11.9 Using the dipole approximation where r >> size of loop,
loop 1 has area Al’ current I,, and using Eq. (8.87), we have
ﬁl = IIAI(; coswt + ; sin wt). The field produced by loop 1 at
the location of the second loop is calculated from 8.98, and

-

>
using r = yr

R 3uo(§-$l)§ - ;1
Bz(r) = 3 thus
4mr

1

=R 4

A > ~
3(y°ml)y -m Mo

lAl PN a
3 (2y sin(wt) - x cos(uwt)
4nr

&=
N
~
-
N
|
=

4nr3
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> -~ > >
But the area Ay = Azx, then Bz(r)-Az =
u I AA

-11—Lf%—%(—§ cos(wt)) = F2' Thus
4mr
dF u I A A
_ 2 _ol12 .
£, & - 3 v sin(wt) and

4rr

E2 ) uOIlAlAzm sin(wt)

"

Iy
4mr
> ~
11.10 Using Ampere's Law we get B = uoIN¢/2np. The flux
> >
through N loops is F = N fB-da = (uoIN2/2n)fadp/p. Thus

F uoINza ln(pz/pl)/Zn, hence the self inductance is

L uoNza ln(pzlpl)/Zw.

11.11 We know that for a toroidal solenoid:

J dr

z
A
iy \\ :
/l/ (19 .

L 4% \\a o —
T 5 v e b .
'\\ <

> N >,
B = y,IN¢/27r and F = [Bed3, thus the flux is
uoIn 1
F = 77 f ;(2zdr) where z = asinf, or
p IN .
F=-= g“ f 322%22 dr. Now r = b -acosf, dr = asin6d6, hence
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2
p INa" w 2
F=-2 sin 0d9 « From Integral Tables:
m ° b - acos6

T 5in’0d® b 2,2

IS'TTCO—SS-='—2‘(I- 1 - a"/b”"). Thus

o a

F = buoIN(l -v1 - az/bz) = uoIN(b - lbz - az) and
u N2 A

L = %E = uoNz(b - ¢b2 - a2) and L/length = 5%;— (b - /gz - az)

11.12 Let currents Io and —Io flow along the inner and outer
conductors respectively. Take the z axis along current 1,-

Then Ampere's Law gives E = Ioa/an and E = uﬁ for the inside
region and 0 for the outside region. The flux linking the two

conductors is that crossing a plane of constant ¢. Thus

ul ul 2
- rud [} dpdz [ b
F = fB°da = S f ——-—p = 57 n P

Thus L/& = (u/27) &n(b/a).

11.13 The difference between this problem and problem 11.12 is
that the inner conductor is solid and the current is uniformly
distributed. For the region between the conductors the fields
and the flux are identical to those in 11.12. An extra flux due
to the fields inside the inner conductor has to be accounted
for. The B field for the region resulting from J = Iol'na2 is

B = $uolop/2na2. Thus the extra flux is
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> >
F = [Beda = fu I /4m.
Thus L/2 = u /4w + (u/2m) an(b/a).

11.14 This problem will be solved using the method of images.
This procedure is very similar to the electrostatic case
discussed in Chapter 3 and in Examples 6.7 and 9.9. We need to
find the two currents I and -I that will produce constant
potential on both conductors. Referring to Example 6.7 and to
its figure 6.4, we will uge the notations iQ the figure. We

find that the currents are located at a and —a where

2 b4 X
2 + 1 2 1/2
R=__ma__,xo=m_2__a,m=_R2+[(Ee) - 1Y
m -1 m -1

The B field in the region between the cylinder and the plate is

produced by

. uOI . uOI .
B = 21rp+ ¢+ - 2mp _ o

where (p,, $+) and (p_, ¢_) are the distance and unit vector in
the $ direction with respect to origins located on the I and -I
currents (Example 9.9). Now the flux linking the two conductors

can be calculated by the flux penetrating the x-z plane.

a "01 (a+xo-R) UOI
dp, dz + | s—— dp_dz
a

>
F = [Beda = 2

2mp
a (xo R) +
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+x -F
a xo R i w1

o
dp+dz, or F/l —2—“— &n m

. _ 2mp
a (xo R) +

Changing to the notation of the present problem, we replace X,

by d and R by a and we get:

H H
d dy2 1/2 -1
L/ = gy anfe o (7 - 1112 = 53 cosn

w|e

Now if d >> a, then [(d/a)2 - l]l/2 = d/a, and
u
o
L/% = o 2n(2d/a) .
11.15 In this problem there is twice as much flux linking the
two conductors. Moreover the distance to the symmetry plane is

d/2. Thus we get from the previous problem

u
o -1d
L/2 = ;—-cosh 52

11.16 Consider a loop with a radius a, resistance R, inductance

L, in a magnetic field py H y, and take & = wz.
oo

2

a) Flux = -ma uOHosin(wt). Thus
dF 2 .
t =- T Ta uoﬂow cos(wt) or using complex notations
ﬂazuOHomeiwt. Kirchoff's loop law gives F = IR + iwLI which
(3 R - iwL 2 iwt
gives 1 = = ma u H we
R + iwL R2+ szz oo

+> - -
b) Tt =mxBandm=1A=1 (x cos(uwt) +y sin(wt))na2
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R cos(wt) + wL sin(wt)

R2 + mzL2

> > >
wa u H we Thus T = IA x B =

2 -
R cos“(wt) +2wL s;ngwt) cos(wt) 234u2 H2 v

R™ + 0oL

R cosz(wt) + wL sin(2wt)/2 2 4222

1 T a u H w .

c) P =710 =

R2 + msz
anaauiHi 2 | *
LN R B P>resistor = 2Re(IL'R) =
(R - iwL) (R + iwL)R 2 4 2 2 2 R 24 222
2. 2.2 Ta e N
2(R + wL7) 2(R” + o L7)
<Pin> = 1/2 Re(IV*) = '—‘Z—Ri—‘z— ﬂzal.ucz)ﬂ(z)wz .
2(R™ + w'LY)

11.17 a) We use the dipole approximation when the loops are
far away from each other. The B field due to loop 1 at the site

of loop 2 is normal to this loop and is equal to
2y m

- ol
12 4nh3 9
Fy1 = Bjohy = ""oRlzRZ 11/2 which gives a mutual inductance M =

B

, where m = wRIZII- The flux through loop 2 is then

_ 2, 2
FZI/Il = Tl'uoRl R2 /2.
b) First by using ¢12 = 2¢ - m, then one can write Eq. 11.37 as
—uok R1R2 /2 cos 2¢ dé

M=—2 For R} =R, = R and
2 -n/2 (1 - k sin <1>)/2

h << R, k becomes nearly one and the integrand diverges when ¢
approaches n/2. Thus we use a limiting procedure and define
§ =w/2 - ¢:
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1]
. R"fz cos 26 d& ? 48 +“/2 cos 26 d6
- 1., = 1/ :
° 5 (1 -k%0s26)2 o (1 - K%+ K262y2 s sind

where we chose 1 - k2 << §'2 << l. Integrating gives

LY (s Y S (Y S
1 -k /] 2

1 -k

1
Using (1 - kz)/z = h/2R, then we have M = uoR[ln(gg) —2].

11.18 a) The voltage drop across each one of them is V and it

is related to L and M as follows V = leIl/dt + MdIz/dt,

V = LydI,/dt + MdI,/dt where I, and I, are the current through

them. Eliminating I, from the first equation and I, from the

second we get, V(Lz - M) = (L1L2 - MZ) dIl/dt and

V(L - M) = (LjLy - MZ) dIz/dt. Addigg the two equations and
Ll ™ g4

Ll+ L2 - 2M dt

using I = I; + I,, then V =
1 2

b) The effective inductance is defined via V = Logs dI/dt which

gives Loge = (LjLy - M2)/(L; + L, - 2M).
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CHAPTER 12

12.1 a) From Eq. 12.5, the energy stored is U =l/2 L1 =

2
Y, L(-E)Z =1l LE—Z— = 62.5 Joules
R

2U = pl = 25 Webers.

=1 = £
b) From Eq. 12.6, U =%/ IF, thus F I E/R

12.2 a) Take the z axis along the I current, then from
Ampere's law we have B = u°I¢/2ﬂp between the two conductors.
The magnetic energy density is u = B2/2u° = u012/81rpz. The

total energy per unit length is

12 12
Yo [ pdpdzde _ Yo b

U/t = — )2 ar M2

287

b) U =Y,L12, then L/2 = u tn(b/a)/27.

12.3 a) Using Ampere's law, inside conductor: we get
> u_pl “
fﬁ'di =yu I,= B(2mp) = u m:’ZI/vra2 therefore B = ——— $
oi o 2
BZ 27a
fllz—u—— dv, Energy/length =
o

Energy stored

2w u 2p212 l-l012

a
1 [}
5 Jde [ déo —5—— = 15 -
o o T 4a

2
5— | B’pdpds
H
[o] (o]

b) Now, for inductor U =1/2 LIZ. Thus energy/length

Uu_y,. L ;2 uolz
=3 " /21- 1°= Ten " Thus the inductance per unit length L/% is
L_ Y
L 8 °
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12.4 a) Ampere's law gives B = uoIN¢/2np.
b) Th i = B2 = 202702 2
e magnetic energy density u = B /2uo = u,I°N /81%p~.

c¢) The total magnetic energy is

U = [udv = [updpdédz = UOIZNZ/(Bﬂz)a x 2m | %2
U = (uOIZNZa/4n)£npz/pl. But U = UQLJZ, then
L = (s N%a/2m)2n(p,/0))-

12.5 a) From Eq. 12.37 we have W = ¢ EOdE which is the area of
the hysterisis loop. From the figure we find it is ~ .2 J/m3.
But the volume is 20 cm3, then the loss is 4 x 10-6 Joules.

b) Power loss is W/At = 2.4 x 1074 wate.

c) We need to find the current in the loop.

Using ¢ E-dz = NI, and taking 20 A/m for the maximum H, then we
get 20 x .2 = 100 I, which gives I, =4 x 1072 A. Since

L = NF/I where F is the flux through each loop, then

L = 100 x .01/(4 x 1072) = 25 H.

d) If we double the current, H will double, but B and the flux
will not because the system is at saturation, therefore L = NF/I

will decrease.

12.6 The force can be calculated by finding the change in the
magnetic energy of the system when the rod is virtually moved a
small distance Ax. Because the flux is constant, then we use

U = [(B%/2u)dv. Thus
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BZ 2

o 1 1 BTAAx

- =2 (= - —)AAx = - - .
Up - Uy =5 (u uo)Ax 2uuo (u uo) But
= (1 + Xp)u,, thus AU/AXx = F = - B%Axm/Zuo(l + X,) an
attractive force.
12.7 a) Using Ampere's law we get B = Hy % I along axis, thus
U=/ udv = £ f Bzdv

2u
o

1 R u(Z)NZI2 L 2m y NZIZ 2
== [ —=——RdR [ dz [ d¢ = 5~ "R

2p 2 2 2

oo 2 o o
> u NZIZWR % u N12
F=3_U5= 0 5. Thus —— = -2 o
R 1 : 2TRN 2% )

b) When flux remains constant instead

F=- gg . To keep the flux constant,
> —uoNI2
opposite direction Torn = T Pe

12.8 The total energy of the system is

interaction of both magnets with the ex

interaction energy of the magnets with
>

Ujo where U} = —Ei-B = -2muoHcosel, Uy

Now to find the U12 interaction energy

> uo 1

> A A
due to one B} = W 3 {3(mi'r)r - ml}.

-~ -~

second magnet we have r = x and r = d,

of current we have

the force must be in the

the energy of
ternal B field plus the
each other: U = Ul + U2 +
= -$Z-E = —3mu0Hcos62.
we consider the B field
At the position of the

thus

> Uo m " " s
B) = 5 ;3 {ZSinelX - 008012}- Since U;, = -m,*B;, and
Ez = 3msin02; + 3mc0592;, then
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—3uom2
Uyy = — {ZSinelsine2 - coselcosez}, and

U = -ZQuoHcosel - 3mu0Hcose2
3uom
- — 3 {2sinB_sinb

- cosH_cosf,}
omd 1 2 1 2

To show that.el = 89 = 0 are equilibrium positions we minimize

the energy:

U 3u0m2
+— = 2mp Hsin® - ——{2cosH_sinb, + sinb cosb_} = 0
36 o 1 3 1 2 1 2
1 2nd
2
U 3"lom
§§é= 3mu°Hsin02— 2"d3 {ZSinelcose2 + cosels1n92} =0

These relations are satisfied if 91 = 62 = 0, thus proving that
such is a position of equilibrium. We can determine the

condition that this equilibrium is stable 01 = 62 = 0:

2 3u m2
3—25 = 2mu0H - 03 requiring H > 3m3

391 2nd 4md

32U 3u m2 m
—5 | = 3mp H -~ 3 requiring H > 3 Thus for stable
20 °  2nd 2nd

equilibrium we should have H > 3m3 .

4md




12.9 a) Vector potential of infinite wire is

> H ® u I z
AR = -2 f I1dz _ o gnp.
L 2m
— 2
p + z

> > > >
b) From U =1/, [ JeAdv we get U =1/, [ IA«dg =
1 > +> > >
D) fIlAj-dli where I;dg; is tne i'th current, and, A, is the

7 J
i#j
vector potential due to the i'th current. The energy of one

> >
current in one vector potential is U = fIA-dl, for example,
> >
moving a current from p = =. 5o, U = %Q fllAzodzl +

Uy fighyethy = ftyhpethy = 1,20 an. or a w
> IIZ 1°d2,y = [ 1Ageds) = [11 P z. For a wire
-0

L p I I 2npdz p I I L p LI
o172 _ o172 U__To12
of length L, U g 7 = Tr np, L= 2. np.
1.1 pII
F_d U_Y712_Yo12 B
<) L dpL 2mp 7.k 2t P T Ke

12.11 We use the following expressions for the moments:

ﬁl =1 ralz and ﬁz = Iznazg. In the case ¢ >> a, 2 > b,
consider a dipole field due to loop 2.
R 3(E-$2)£ - 1?12
Bz(f) =y ———=———= . At loop 1 we
o
47T
have ¥ = 2z, hence 3 (2) = 2um 2/(4u£3) =l nbzi/(2n£3).
’ 21 o 2 o2

>
The magnetic energy of loop 1 in loop 2's field is U = _321'51 =

-u Illzﬂazb2 > 3 3uon1112a2b2 .
-11———7;————. Thus f = T e — z. If I, and I, are
28 29

in the same sense then the force is repulsive, whereas it is
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attractive if they are in the opposite sense.

12.10 a) From Ampere's law E = NIOQ/LO, and hence

; = uoNIo;/Lo. The magnetic energy density is u = B2/2u0 =
uoNZIg/ZLg, and the total energy is U = uV = u x ﬂRZLo =
ﬂuoNZIZORZ/ZLO.

b) Since the flux remains constant, then if Lo changes to Ll’
I, has to change to I, = IoLl/Lo‘

c¢) To determine the tension we need to write the energy in
terms of B directly since it is kept constant: U = nBZRZLo/Zuo,

thus T = -dU/dL, = —nBzRZ/ZuO.

12.12 Consider moving the rod a distance dx from the field H1
to‘HZ. This is equivalent to taking a piece dx from field Hl to
field Hy,. Before moving piece of rod, the energy stored in the
small piece of volume Adx, in the field H; is U1 = 9@ quzAdx.
After moving the piece, there is a vacuum, and the energy

Ug ==Uéu°H12Adx. Thus, by removing the lower piece, the energy

charges: AUbottom = Vz(u - uo)HIZAdx. Similarly, by placing the
piece in the field Hy the energy changes: AUtop = +
U& (u - uO)HZZAdx. Total change
AUtotal =1/2 (p - ”o)(HZZ - leAdx. Now
-4u - 2 _ 2y, -t 2 _ 42

F=gx=7h0-u)H,-H)A 72 (u x)(H, - H)A.

", df -df,
1213 M=426 § ——— v=mMl,. P, = -F| = VU =

cl ¢2 |rl— rzl

130




> >
LS dll°d£2

e V2 6 ¢ —— ¢+ Now, it is almost obvious that this
cl e2 |r - Tl
uy at -ak ) f-t
equals Z_ 6 ¢ V2 ——5 - But Vr T T -3 > 3 then
cl c2 |rl— rzl |r -1, |r - r°|
S ak dl,(z,- T,)
-— ¢ ¢ . Now compare to Biot Savart law
T 4 > 3
cl e2 |r - t N
> >
B(;) ) 32-¢ Ildllx(r rl)
4w '; _ ; |3
1
>
> . > H, l 2dlzx(dl x((r - rl))
F, = 1,dL,xB, = wf 9 —3 . But
cl e2 |t -« i

we can show that only a piece of the cross product contributes,
*> *> > >
that is d&,y X (de; x (xy - r;)) can be replaced by
> >
dll-dlz(fl - fz) as shown below. Use 3 x (B x 3) =
(Z-08 - F ¢ so dab, x () x (7, - ) =

>

s e > I Y
(dzz‘(rz - rl))dll - (d 2‘ l)(rz - rl)o

> >
(diz-(r2 - rl))dI1

Now if § § 3 > 3 = 0 then it is right:
cl c2 |r, - r|
> > > > > >
(r, - r,)dg (r, - r,)de
1 1 A 2 1 1
6 dl,o[§ —2—11 = [ da ReTpx(§ ———]
2 2a -r |3 s2 20 |, -1 |3
€ ¢t i h 2" N
R &, -1)
= [ da nef Vx e > 3 d£1= 0.
s2 cl Irz - rl|

12.14 1In Eq. 12.7, AX is the virtual gap, but here AX is a real

gap, and we want to see what happens if it changes. (Use X
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here, instead). But we can use the same method. Now we have

Hol + 2H, X = NI, ub = uH.

2u _ _ NI
Thus Hm(f. + ” X) = NI or Hm—- T+ 2ok
[ [
2.2
uuoN 1A

=1 2 1 240 = —©O
U= u Hodv + ) quHg dv Z(UOL RS

Now, see what happens when we change X:

2.2 2 2.2
e dU _uuoNIA(—Zu)_—uuoNIA

dXx I Z(uol + ZuX)2 (uol + ZuX)2
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CHAPTER 13

13.1 a) V =RI + L dI/dt. Ftor t < 0, V=20, I =0 and for
t > T, V=0
b) For 0< t <T L dI/dt + RI = V, I =A+B %4, B, a

are constants. Put this into the equation (-BalL + RB)e %t +

RA = V . For all t, A= Vo/R, a = R/L. At t =0, 1=0 »

(-]
]

>
]

-Vo/R, 1 = (V,/R) (1 - exp(-Rt/L)).

c) V=1L di/dt, di/dt = (Vo/L) exp(-Rt/L)
VL = VY exp(-Rt/L).
d) At t =T, Ig = (Vo/R)(1 - exp(-RT/L)).

For t > T, RI + L dI/dt =0, I = I exp(-R(t - T)/L)

]

vy = L dI/dt = (-RIp)exp(-R(t - T)/L)

V(1 - exp(-RT/L))exp(-R(t - T)/L).

13.2 The transient solution of L dI/dt + RI = V is

I =1, exp(-Rt/L) as usual. This is the solution to the
homogeneous equation. The inhomogeneous equation L di/dt + RI =
Voexp(—Rt/L) is a special case. The particular solution must be
different from the solution to the homogeneous equation. Using
variation of parameters, we write I(t) = u(t) exp(-Rt/L) where
u(t) is a function of t, and not a constant. We now get

L du/dt - Ru + Ru = V, after factoring exp(-Rt/L). Thus

du/dt = V /L or u(t) = V,t/L + I where I, is our transient

solution. Thus I = (V,t/L + 1) exp(-Rt/L). Many degenerate
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differential equations have solutions with an extra power of t

multiplying the original solution.

13.3 We write Kirchhoff's loop equations I; + I, = dqQ/dt,
Q/C + LdIzldt =0, RI; - LdIz/dt = 0. Differentiating the
second equation with respect to time, and using the resulting

equation along with the thjrd equation to eliminate I, and Q
1

d"1 di
2 1 2 |
5 + ® dT + o 12— 0. The
dt 9

solution of this equation with L = 2R“C is

from the first equation:

I, = e kt(A coskt + B sinkt) where k = 1/2 RC. Because at

-kt Sin kt. From the

t =0, I, = 0, then A = 0, and 12 =Be
second equation: Q = —kCLe Kt B(-sinkt + cos kt). Using Q = Q

at t = 0, then we get the required answer.

13.4 We use results of Ex. 13.2. a) The time constant of the

circuit is T = RC = 10 “sec. Using Eq. 13.17 we get V_ = V /2.
b) Using Eq. 13.19, Vg = RC dE/dt = 1072V where V, is the

maximum voltage in one cycle of the source.

13.5 dq/dt = 1 = 86.6 q, exp(-5t) sin(86.6t) is a solution to

1

L d2q/dt? + R dq/dt + gq/c = 0, w = 86.6 s~ ! with solution

q(t) = q, exp(-at)[cos(wt) + % sin(uwt)]

I(t) = -q, exp(-at) Gi—ﬁgig—) sin(wt)
2
2oL _E R _uw_aw
w2 7w R T 7a
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a) w= 86.6 5 a=5s Q = 8.66
R

b) R=0.1Q L = e 0.01 Henry

1 ..2 AU 12( ) 2
c) Energy = U =3 LI U—:]..—Z____t__ T = 2"

1°(t + T) w

I(t + T) = I(t) exp(-aT) = I(t) exp(-2ma/w)
%2 = 1 - exp(-4mna/w)

13.6 1, = Vo/Rl after the switch is opened L
di/de + (Ry + Ry)I = 0 has solution 1=1, exp(-(R; + R2)t/L).
Thus V = (Rl + R2)10 exp(-(Rl + Rz)t/L)

Vm::lx = (Rl + RZ)IO = Vo(Rl + R?_)/-Rl’

a) Vo = 20 Volts Rl = 100 Q Vmax = 100 Volts
Rl + RZ = SRl R2 = 4Rl = 400 Q
b) dI(0)/dt = -(Rl + RZ)IO/L L = 10 Henry, thus

d1€0)/dt = -500 x 200 mA/10 Henry = 10 A s~}

13.7 V = IR + L dI/dt, V = IR + iwLI where iwL is the

impedance of the inductance. Substituting in this equation

I= Io ei“’t, and V =VVo ei“’t, gives V0 = IOR + iwLIo. This has
o
the solution Io = m .
R - iwlL

a) 1 =V , &= tan-l(R/wL).

o 2 2.2

o
R™ + oL
b) They are in series, the current is the same, A = O.

- =T _ 900
c) Vg = IR v, = lul,  A¢ =7 =90
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_ iwt _ iwt
13.8 V = Vo e I = I, e

vV = RlI - il/wC + iwLI + R21

\Y (R, + RZ)I - iwL + i/wC

1 = [ - v 1
o (R +R) + iwL - i/uC o 2 _1 2
1 2 (ﬂ +R2) + (wL w&
Io 2 2.-1/2
i B [(Rl + Rz) + (wL - 1/wC) "]
o
I I -3/2 ]
el - -l el o - 1700 L+ 17680 = 0
dw (V 2
o o
which gives w? = 1/LC  or  w = infinity.
a) maximum for w2 = 1/LC and minimum for w = =.
v
o
b) I = —
max Rl + R2
1 -2 -2
<) lIol = 7 lnax |Io‘ =4 Toax

(Ry + R)Z + (ul - 1/w0)? = 4(R| + Ry)?

w?L? - 2L/C + 1/w?c? = 3R, + Ry)?
2, 2L 4 2 1,
m2 ) 3(R1 + RZ) + C + (9(Rl + Rz) + 6(Rl + RZ) L/C)
2L2

13.9 The impedances to be used are iulL, R, l/imCl, and

l/imCZ. The loops on the left and on the right have the

_ 1 o _ 2
1T TTaL ¥ Tac, © MM - wLep,

= R/(1 + imRCz). The total impedance is
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following inpedances: z

1

22 °71/R + 1uC,




z = z) + 2. Taking the imaginary part of z and equating it to

zero gives w? = (¢ - L/R)/LCy(Cq + Cy) -

R + iwL
w2
b) L = iwc & = iwc [1 - —F—]
z o€ o .
C o w - ivw
= iwC + 1 . Thus by comparison:

o . 2 2
iw/ ( Co“’p) + Y/(Comp)

1
C = Co’ L = 7 andR = yL = 5 -
Cuw Cuw
o p o p
\' v, -V v, -V \
1 2 1 2 1 2
13.11 a) 1 -—— 4+ I+ ——= 0 1 + ——+ — = 0
1 Rl 2 R2 2 R2 R3
IRR, -1 R2 R, + R
) V, = Llr 22 vy = (0 - R ) + L)
(R, + RO(R + R))/Ry = R . 3

]

Now for I; = 2A, 1, 1A, Ry = 1Q, Ry = 29, R3 = 3Q we have
vy = 2 volts and v, = zero volts.

c) Ipzy =0, Igy = 1A, and Ip, = 2A.

2

nJ21—=nw+%,mmzc=5;i§fL
zC 1 + w R C2
R - imRZC + iwlL + iw3R2C2L
z = iwlL + ZC = 5 2
1 + wR C2
|Z|2 _ Rz + (1)2(1. + m2R202L - RZC)Z
a + w2R2C2)2
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1 + wZKZCZ(wZCL - l)2

For large R we have Izl2 = which
4.2 4
wR°C
2 _ 1 _ L
peaks at w“CL 1, with a value of |z| 7 72 = Re °

w RC

13.13 y_ = iwC, yp = 1/R. y = iwC + 1/R
c R RC

vy, = -i/wL, y = yLyRC/(yL + YRe)

R T 11"

V0 Yre L + Yre iwC + 1/R - iwlL

= 5 R « Thus ¢ = t:an-l (———u—)%R—).
-w LCR + iwL - R 1 + wLC

13.14 The heat loss is simply Q =1/2 ReVI*. Since I = Voei‘”t/z,

2
2 1% 2
then Q =1/2V0 /Z where Z = |z|, or Q =3 —--2——??C0Vo . The
o+ y

instantaneous energy stored is the sum of the energy stored in
the capacitence and the inductor which is W =1/2 COV2 +

1/2 LOIZ. The time average gives

2
w
2
WD =1/4(C0V02 + LOIOZ) = 1/4(1 + _z_p—z) covo.
w+ Yy

_ iwt, _ .
13.15 Use E = E e™®: E = RyI; + iwl I, + iwMI, and
0 = RyI, + iwL,I, + iwMI; or Eo - (Rp + iul))I} = iwMI,,
(Ry + 1uwly)I, = -iuwMI;.

Thus E; = (R; + fwl; + w?M?/(R+iuLy)) I, or
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(R2 + imLz)Eo

- b = Py
(R + 1L (R, + ul,) + L2 2 Ry o+ duly

-iaM E
0

1
2 . . 2.2
(Rl + 1¢;.|L1)(R2 + 1mL2) + oM

2 2.2
el L Al
P 77 T2 . 2.2
1 R1|11| (R, + w'L))R,
P
da Fay o 2202 0 220 (22
ax, (Pl) - 0 = WMARS + WLR) — (WHRY)(ZRYRy

2 2.2 2 2.2 2
R2+wL2—2R2-0+wL2—Rzand Rz— mLz.

13.16 7, = -i/wC. Considering two voltage dividers,
R -i/wC C
2 = S = X which gives
- + (-1
R+ R (-1/wC)) (-i/wC) = C + C
C CR
c = S or c =2
s R X R
a b

R+ el =

R3 L wC
13.17 — = . Equate real and imaginary parts
R R,
4 2
R
- 3. EE -
wL - e - 0 and R4 = R2 or RLRA— R2R3.

13.18 (iwC + 1/R,) Ry = (iwL + RL)/R2
iwC R2R3R4 + R2R3 = iwlR, + RLR[‘. Equating real and imaginary
parts give CRyRq = L and RyRq = Ry R,
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qQ = WL 225&51_ = w CR
RL R2R3/R4 4

13.19 a) Kirchhoff's loop laws for phasors give the following
three equations for the three small loops (assume three current

loops I, 12 and 13 flowing clockwise in these three loops from

- ) -~ . N -
left to right) V = 1leIl ;EI (Il 12),
-i - - - N i N " -i - -
= — - + - — = i — -
0 ac; (12 L+ 11) < L 0 = iwljIg ac, (I3 12)

The determinant of this set of equations is

2)

(1le— 1/mCl) i/mCl 0
i/mCl —Zi/wCl—i/mC i/wCl =0
0 i/mC1 ile - 1/wC1

(iul; - 1/wC)[(-2i/wC| - i/wC)(iul) = i/uC)) + 1/ulC;?]

-1/ (wC)[1/(wC)(iuL, - i/wC)] = 0. This gives wf = 1/L,C|, w}
= 1/L1(Cl + 2C).

b) When there is no coupling between the two outer loops

(C = 0), then W = wy = l/LlCl. When there is very tight

coupling C is large then w, = l/Llcl.

13.20 We can use a similar procedure to the one used in problem

13.19 to show that w% = l/LlCl and w% = E%; + f%E; .

13.21 We write three mesh Kirchhoff's equations using phaser
notations:
ilA)L(I3 - Il) + R(I3 - Il) =EO
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Gl - i/w0T) - 1Ly + R(I) - 1) =0
R(3 12 - Il - 13) = 00

Solving these equations we get:

~ E (R + 3iwL) E (R + 3iuwl)
1. = o =2

1 g2 4 30/C + 2iR(wL - 1/ wC) R + 3 L/C
” E (R + 2iwL - i/wC) E (R + iwL)
1. = o = -2

27 R2 4 3 1/C+ 24R(uL - 1/wC) R+ 3 L/C

Then I, - I, = 2i Eoel®t/lu(3L + cR?)] with an amplitude as
required.
Thus the phase difference is

b) I, - I, = |1} - L| e

/2.

13.22 a) Series: z = R + iwL - i/wC = R + i (wL-1/wC)

R - i(wL - 1/wC)
RZ + (wL - 1/mC)2

-1
y ¥4

R - iwL - R - iwl + iwCR2 + iuu:;CL2
R2 + m2L2 R? + m2L2

Parallel: y = iwC +

R2 + msz
z =1ly = 3 .

R - iwL + iwCR2 + iw CL2

]

b) V = Iz, |V| = I|z| for constant I.

series: |z]2 = RZ + (uL - 1/w0)? = R + w212 + 2L/C + 1/w?C?.
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{000

s____

(Rz + wzl..z) 2

R2 + (-wL + uoCR2 + w3

c) parallel |z|Z =

CLZ)Z
R2 + u)sz

. 2
factoring twice: |z|® =
(mZCL - 1)2 + wZC R2

We now find the maximum:

L 1z2]? = 202(w4c?1? - 20%cL + 1 + W2c?RY)
- (8% + w22y [2(wlcL - 1)(20CL) + 20CR2)
= —2u0C(20?cL? - 2L + cr?) = 0

2
which gives W = 2= R This reduces for R = 0 to W =
o 2 [6)
2CL
A

\\/o/\/0| wi oo [

e— a0 %;ao’ = Jole

al-

©0.

©

©,

w

> X = a/"30
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13.23 a) Using the condition for resonance wgCIL =1, we get
¢, = 107F.

b) Q, = w,L/R, thus Q, = 100. At this frequency the impedance
z=(2+ 1) R= 10%Q (see Eq. 13.97). Since Q, > 10 and

QO >> 1, then it is a simultaneous phase resonance and
antiresonance.

c) % = imCl + 1/(1/R + iwL). Thus at w/mb = .9, we get

z = 25(1 + 181)Q. This impedance is inductive with a reactance

equal to 450 Q.
d) To annul the reactance of the parallel circuit with a

capacitor we take 1/wC) = 450 which gives C, = .25 x 10_6 F.
i/iwC

e IVe/Vol = | 7 171uC,

terminal. This gives 4 x 10—29 at the resonance frequency

where z is the impedance of the A-B

w, = lOA/s. At w = .9 w, we get 450 Q.

2 2
jwL + R/iwC R + iw[L - R"C - wLO)]
13.24 a) z = =
R + 1/iwC 1+ m2R2C2

222

b) z =12 el® uhere z = ///rRz(l - szLC) + m2L2 and
1+ wRC

tan ¢ = [L - R2C(1 - w’LO)1/R.

c¢) Taking ¢ = O gives the resonance frequencies

w2 = 1/LC - 1/RECE.

d) The average power is <P> = (Rez)Ig, where 1, = V,Z is the
amplitude of the current through the source. The source voltage
is taken of the form V = Voeiwt. Thus <P> = ng/(l + NZRZCZ).

e) We need to calculate the current in the resistor. First let
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us calculate the impedance of the circuit and the current in the
inductor and hence in the source for mzLC = 1.
_ . 2,2 _ iwt,, _ _ _
2o = (R + 1uL)/ (1 + o?R2C?), T = voel®/z . vy =v - v =
V - iwLl = V(1 - imt/zo) = -iVRwC. Thus Ip = Vp/R = -iVuC.
Thus the average power <P)> =1/2R I; Ip =l/2R V(Z) w2c2,
13.25 z, = d0L - —, 7 = —L
. 1 wC %2 T TuC - ifal
b) From example 13.7, cosh(zxy) =1 + zl/2z2 =

1 - (mzLC - 1)2/2m2LC. Then we have the following frequency

range: 0 < (w?LC - l)Z/mZLC < 4.
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CHAPTER 14

14.1 a) Gauss' law between the plates where z is normal to

Q0

> qw
o ~ > 3D 0 A
X sin(wt)z, thus JD =3t - A cos(wt)z.

them gives ﬁ = 02 =

The displacement current ID = ED.K = qowcos(mt).
The conduction current I, = dq/dt = qowcos(mt). Observe that

the two are equal.

- > -
b) Since Ip is in the z direction then B = B ¢.
c)
- ~ 139 -
v = - — =
X(B°¢) (uqow/A)cos(wt)z > (pBO) (uqow/A)cos(mt)z

i
(=]
Py

p, C 9,
B°= u(§—+ B) - cos(wt). But BO¢ o at p = 0, then C

uq w
2 A

therefore B = pcos(wt)&.

14.2 We are given V = 250 sin(377t) volts. (See Ex. 6.5)
Ic = dQ/dt where Q = C V. We know the capacitance of the

coaxial cylinders from Eq. 6.36 is

 anle _ (2m(.5m)(6.7 x 8.85 x 10”128 /m)
T Tn(b/a) In(.6/.5)

c
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Thus C = 1.0 x 1077F. Therefore I, = dQ/dt = 9.6 x 107>

> >
cos(377t). Ip = [ %%-d; =¢ | %%od;. But inside the capacitor
>
E = 0/(2mepL). Since Q/L = (2neV/n(b/a), then =
> "
E V/pln(b/a))p. Now dE/dt = 250/(pln(b/a))377 cos(377t). Note:

_ _250(377) cos 377t 2wLp _ -5
[da = 27Lp then I, = SEYCIEY) (9.6 x 107?)

cos(377t). We see that Iy = 1.

14.3 We are given V = 150 sin(500t) volts. (See Ex. 6.6.)

I. = dQ/dt where Q = 4meV ba/(b - a), therefore I. = 7.1 x 10_5

(bbf a)cos(S()Ot). Now the displacement current is
x I

- dE 2 ;o dE _ ¢

I, =« f at da. But E 2 then qt >
4 4mer 2 9 4mer
so Iy = I./(4mc") fda = Ic/(énr Yomrs = I., so Iy=T1..
> >
4.4 From Eq. 14.17 we have \72(%) - ue 22(5) =0
ot

a) E = (Ac) exp(x-ct), B = A exp(x-ct). We use a single

notation.

a2 E c a2 E 3

“— (8) = (1) A exp(x-ct), ~—— (B) = (CZ] A exp(x-ct)
ax’ at? c

Using pe = 1/c2 we get

2 E a2 E c c
v°(B) - ue - (B) = (1) A exp(x—ct)-(1) A exp(x—ct) = 0.
at
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b) E = (Ac)n(x + ct), B = -A n(x + ct)

3 E Ac 1 a2 E
o (B) = (-8) ;o and = (¥) = aC 1)
x (x - ct)
E Ao:2 2 E -C
3 1 3 1
2 (B) = (-ac) ———=»— (B) =a( 2 ) ——
ot X + ct 3t2 C (x + ct)z
E 2 E -C
soVZ(B)-ue-a—i-(B)=A(l)—-——-l———2-—(l) == 0
at (x + ct) (x + ct)

14.5 a) We are given E = Eo§ sin(wt - kz). For free space we

> > > -~
have € = €. SoD=¢kE=¢€¢cE=¢Eysin(ut - kz). We
. o oo

integrate Maxwell's Equation

3 dE

+  dB - I A ~ _ .
VxE=-q905 where V x E = —x = —koncos(ut kz):

t > k A 0o -
§=f\7XEdt =—;onsin(wt—-kz)=—-c—-xsin(mt—kz)
+ B E
=2 - -2 x sin(wt - kz) = —¢ E cx sin(u - kz) .

H M c oo

>

dD > . .
4+ — = -
£ It where V x H iky Hoexp (-i(wt + kz))

>

b) We are given i = Hoiexp(—i( wt + kz)). Integrating Maxwell's
>
Equation V x H = J

>
and Jg = 0 we get:

t
D = f$ x H dt = %9 exp(-—l(wt + kz))
2 Dk s .
so E =—= =y Hoexp(—l(mt + kz)).
o %o
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14.6 We are given K = 10, and Ky

1000. From Eq. 14.23 we

have v = c/(KKM)l/Z. Therefore v 3 x 108m/s, and X = v/f =

3 x 10" 2m.

14.7 We have f= "OQexp(i(kz - wt)) thus

; = (Eo/c)§exp(i(kz - wt).

a) Real fields are

- N -
Er = hoxcos(kz - wt), Br = (Eo/c)ycos(kz - wt)

2
- L |B_| =% e.Eq cosz(kz - wt) +

2cosz(kz - wt).

2.2 2 . _ -
(1/2)u0c hocos (kz - wt) which adds to u = €56,

z - 2 _ ~
=% x ﬁ/uo Eo/(uoc)cos (kz wt)z.
2
> - E -~ 2 >
Now v = cZ thus § = (cz)cos“(kz - wt) = uv.
UOC
. £22 ) g2 2 .
b) One period: <S> = 2 <cos (kz - wt)> = 2 .
U Cc uc 2
o o
he ‘i z lim 1 T 2
Over infinite time: <$> = TC Tee T [ cos“(kz - wt)dt
o o
2 A 2 A
_ Eo z lim [l_ CEI + sin2wt)] - Eo z Cl)
a uc T+ ‘T 2 4 uc 27
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>
14.8 o = onexp(i(kz - wt) + Eéxexp(i(kz - wt + 4). The real

+> ~ ~
field is E = oncos(Kz - wt) + E;xcos(kz - wt + 4). The real
N K B
>, A < [ o ~
i field is B = . ycos(kz — wt) + Z—-ycos(kz - ot + é). Using
1 2 1 .2
=—€ b + =38 we get
u 7 3 / uo g

-
<
|

(%-eo + Vzuocz) [Escosz(kz—mt) + Eézcosz(kz—wt+¢)

+ 2 EoEécos(kz—mt)cos(kz—mc+¢)]. Note: cos (a + B) = cosacosB
- sinasinB, c052¢ = (l+4cos24)/2 and sin2¢ = (l-cos24)/2, thus

u = eo[Egcosz(kz—mt) + Eéz(cos(kz—mt)cos¢~sin(kz—mt)sin¢)2

+ 2 EoEécos(kz—mt) (cos(kz-wt)cosd~sin(kz-wt)sing) ]

= (50/2)[Eg + E%cos(Zkz—th) + Eéz +E82cos(2kz—2wt)(cosz¢ -
Eézsin(Zkz—th)sin2¢ + EOEécos¢ + EoEécos(Zkz—Zwt)cos¢ -
EoEésin(Zkz—Zwt)sin¢]

= (e0/2)[ug + Eaz + EOEé cosd + (Eg + E52c052¢ + Eoﬁécos¢)
cos(2kz-2wt) - (Eézsin2¢ + EoEésin¢) sin(2kz-2wt)]

= a constant energy field + a wave field with velocity ¢ = w/k.

S

% 1) - Z— [E exp(~i(kz—ut)) + E'exp(-i(kz-ut))]
ZUOC . exp o cexp(-i(kz-w

& = % Re (

x [Eo exp(i(kz - wt)) + Eé exp(i(kz - wt))]

-

z
2u ¢
o

2 '2 ]
(E, + E;” + 2B El cosd) .
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> >
Upon comparing with 14.7 we note that in general u, S, <S> are

not equal to the sums of the separate waves.
149 E = Eof exp(i(kz - wt)) + Eé f exp(i(kz - wt + ¢))

ﬁ = Hof exp(i(kz - wt)) + Hé X exp(i(kz = wt + ¢))

. 1 > > > > )
a) Using u = 7 (eoE-E + uOHoH), and using the real parts i.e.
E = oncos(kz—wt) + ... etc. We get u = LQ [eo(Egcosz(kz - wt) +
Eézcosz(kz - wt + ¢) + uo(chosz(kz - wt) +
Hézcosz(kz - wt + ¢)]. For the waves individually we have
uy = Vz(eoEg + uoﬂg)cosz(kz - wt), and
uy = Vz(eoEéz + uoHéz)cosz(kz - wt + ¢), therefore

> > *> ~
u=uy +uy. Now S = E xH = u cz. From above we have
> - > >

u=u; +u) s0 5= (u; + up)ez = S + Sy, therefore

> - tr D - >
S (EH, + ELH)Z <§l> + 3.

1 1
2 2
b) Elliptic polarization in general.

c) The electric and magnetic waves are perpendicular and

H = E/cuo.
> a - i
d) Ereal = oncosmt + 2Eoycos(mt - Z).

* -~ ~
14.10 E = on exp(i(kz - wt)) + on exp(i(-kz - wt))

a) We rewrite the electric field as
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= Eof exp(-iwt) [exp(kz) + exp(-kz)] = 2E0£ exp(-iwt)coskz

=y
\

EO§ 2iE y
— exp(iwt)(exp(kz)-exp(-kz)) =

x ¥
[

exp(iwt)sinkz

Thus the real fields are E = Zﬁoxcosmt coskz and

2E
b= —32 ysinwt sinkz. The energy density is

2 2 _ 2n 2 2 2
€ L /2 + B /2u0 = efE “cosut coskz +

u

282

. ” ,
02 sinzwt sinzkz = ZEOEi(cosAwtcos“kz + sinzmtsinzkz)
uc

o

2E
o

c

g = ExB = %r-(ZEoi coswt coskz) x ( ; sinwt sinkz)
o

L
i)
E 2

=2 sin(2wt)sin(2kz)z.
Uoc

> >
b) We see that the E field goes as coswt and the B field goes

as sinwt. Since u = (eoE2 + Bz/uo)/Z we see that the energy

oscillates between purely magnetic and purely electric limits.

>

¢) and d) We see that for the planes kz = ""/2 that E = 0 and
> >

the energy is purely magnetic. When E = 0 then § =

> >

E x B/uo = 0. We see that there is no energy flow across this

> >
plane. Similarly for kz = nm we have B = 0, and also S = 0.

14.11 E = x exp(i(ky - wt)) + § exp(i(kx - wt))
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a) B = exp(-iwt)(x exp(iky) + y exp(ikx))

> > a ~
= Eo exp(-iwt) with E = (x exp(iky) + y exp(ikx)).

14.12 <S> = l.ékw/mz. We use MKS units

2 _ 248> _ 2 x 1400

E =
€&C  g.85 x 102 3 x 10°

= 1.05 x 106 Vz/mz

This gives E = 1.03 kV/m, B, = Ej/c = 3.42 x 107® T and
Hy, = By/uy, = 2.72 Amps/m.
b) The area of sphere with radius r = 1.5 x IOIIm is

4wr2 = 2.83 x 1023m2. Taking radiation to be isotropic gives

power = 1400 x 2.8 x 1023 = 3.96 x 1020 watts.

> -
14.13 a) E = 50 x cos(wt - kz)V/m. The wave is travelling in
direction. Thus using MKS

cE
<s> = =2 Ei =3 x 108 x 8.854 x 10°12(50)2/2 = 3.307 W/m®

Now A = (2%02= 19.6 m2, thus P = SeA = 65.2 Watts.
> -
b) E= 2 x 102 8 sinBcos(wt - kr)/r ,
> N + > >
H = .53 ¢ sinbcos(wt -kr)/r, 8 = E x H =
(.53 x 200)t/sin20 cos?(wt-kr)/r?,
<S(8)> = £ .53 x 200 x sin29/2r2. The average power =
2n w/2
f f <S(9)>rzsin9 de d¢ = 222 Watts, independent of r.
o o

14.14 Given o, = 1073 (@em)™1, K = 2.5 = €/e_, E = E, sinwt,

0)

E, = 6 X 10°%V/m, w = .9 x 10%rad/s.
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= eEomcosmt = 1.2 x 10—7coswt

|3c| o = (1073)(6 x 10 ) sin(ut) = 6 x 10 Psinut.

1415 £ = 1.6 x 10° Hz, o = 38.2 x 10%am)71, k= Wy = 1.
> PS +> a

a) At z = (0 we have E, = Ex, thus from Eq. 14.92 E = E x

cos(Egi - wt)e—wkzlc, where w = 2nf. From Eq. 14.100 we have

for a good conductor

~

K =n=n /o Juc where n_ = /K K_ = /& and K = 2 (n + ik)
o ¢ o c

b) For the skin depth, we have from Eq. 14.100, for a good

conductor, § =V 2 7u°w0€=6.44 x 10—5m, v=c/n=
c/2 fue

n g
o (o]

* 650 %; A= v/f=4.06 x10 % m,

PN > k4
c) We have from Eq. 14.94: iKz x E = iwB. Thus

R E
> ~ "k
B=y o cos(uw(t - bl z))e wkz/c
w c
Uc gc
d) Phase difference: since ew >> 1, then tan ¢ = v > 1.

Thus ¢ = 7/2 or ¢/2 the phase difference is u/4.

14.16 £ =1 x 10%Hz, ¢ = 18¢,, u = 800 u,, o /ew = 1.

a) The damped wave equation,
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> 2
VZE - uo. -g% -ue _3_;. = (0 gives E(z,t) = ﬁoexp(iKE - wt)

with K the complex wave vector. Now

Y 1/4 14/2

k___u+< )) ——m+1w,
[0
with tan ¢ = (e:)'

Q

<

= =<
b) § = » V o’ w

(Y]

- /I8 % 800 = 120, and ¢ = tan (1) =-g . Thus
9 2,1/4 1/4 )
n = no(l + (e —) ) cos —2- = 131.8, k = n°2 sin 7= 54.6,
8 8
§ = —3X lg = .874 mm; v =-§—5;19—-= 2.28 x 10%n/s
21 x 10° x 54.6
c) At z = 0 we have I =1 W/m?, I¢|E|2, and hence I Ioe—Zz/G
Thus I = 1W/m2 exp(-2/.874) = .318 W/mZ.
d) E = :1 H where
1/4

n = Y(u/eX(l + io /me) so Inl = /(u/e)(1 + 0 /eu?y”

a - - i
and n = |n| e 12 =2.13 0 17/4,
T > * 1
e) <S> = |E” x H|/2 = EH cos (9 ¢)/2 where ¢$/2 = n/4 is the

phase between E and H. Thus <S> = E2cos (Y ¢)/2|;\| so
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£2 = 4575 V2/m? or E = 67.6 V/n.

f) The phase is % = n/4 (see part d).

14.17 o, = 5 x 107(Q/m)_l, w=u,, and w = 27 x 108rad/s

" io _ . o _
n = /F(l +ac-) 12 In] = Yu/e [1 + (E—‘;)z) /a4
€

o
3.98 x 10790. Note E% > 1 for a good conductor so

n = J/KKm /oc/ew = 6.7xlOAand v =c/n = 4.47 x 103m/sec.
2

14.18 £ = 3 x 10® Hz, K = 20, K_ = 1000, and o, = 2(/m)”".

1/2

a) n = no(]+ioc/me) = =n + ik with n = 265 and k = 225.

1

Therefore n ¢¢ = 265 and absorption constant = wk/c = 1410 m .

e
- 9c.2y-1/4 3
o Inl = /u(+ %) = 1.08 x 10°Q.
€

14.19 a) Neglect displacement current : V x ﬁ - uoj = uooCE

>
Also we have V x E=- %g , therefore

2 2

> 2 -3°B 9B 3B 3 B

VxVxB=-V ﬁ B 2 —uooc ot or océ 3t 2

3y 9y

1/2 . .
b) £ = (uooc/ht) y. Substitute into the D.E. to get
2 2

4B _ 2E 48 . This has a solution 4B = C,e £ and hence
dE dg £ i
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A~
B=C, + C f e & de. Applying the boundary condition which
o

2 1
states that at t = 0 or £ = », B is zero, and at y = 0 or § = 0,
g 2
B is equal to 2 we get C, = 0 and 0 = € [e £ dE + 2 which
o

E ]

-4 2 & _¢?
gives Cl = 7m0 and thus B = 2[1 —7—0f e dEg].

5

P xA =8 x 10

n N.

c) P = B%/2u, = 8 x 10> N/m®. Thus F

mly=0
2 (1-.063) = 1.874

d) At t =1 we have £ = .056 which gives B

so F =2 x 10°N.
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CHAPTER 15

2 1 thb
15.1 9°¢ - - T3 < 0. Since ¢ = £(t - r/c)/r is ¢ and O
R T R
independent then V7¢ + — — (r~ —). Now
2 dr ar
1 a2 r

20 cn w s . .
— (f(t = r/c)/r) = 1/(xc”)f" where f" is second derivative
ot
with respect to its argument.

2
c

3¢ 1 1 290 _ _ 3f _ F _ -1,

5r “roer . 20 T Tty o gp=cf

1o 200 1 e 2% ap 1% 1.
2 9r ‘' or 2 “or 2 ar r 2 2

r r ar ar rc

>
dL

1]

f 3 dv _ Yo f 7 e _ Eg f I(t-r/c)

15.2 Using A —— = i =

4

Note: the integral must be done in cartesian coordinates
because the unit vectors ($, here) change the position. We
consider curved segment r = a,b first. In this case

u

‘o I (t-r/c)
4

r

r&(-&¢) where $ = § cos¢ - x sin¢

C 3

1(: - -o f [-y cos¢ + x sind]dé = o7 Lt —-—)(+2x)
For the straight segments we have:

2 f I(t=x/c) x/c) dx. Thus the total vector potential is



M X b I(t - %)dx

At) =5 [1(e - D) - e - %+ f —]
For near field X >> b or w << b’ thus

bk N
A(t) 'TH I(t) zn(—o I(t) ~ I(t + E)

15.3 a) In cylindrical coordinates

.9 a
ﬁ =V x K = -0 —gi = -pé sin(at)
)
> 9A VY 1~ 2 3 1~ 2
E =-Vd - 3 96 - 5z pa cos(at) - 3 VY = — 72 p a cos(at)
3% L

b) If ¥ = 0 show that Ve <A+ eu 5o = 0 (Lorentz condition). 1In
this case %% =0, A= %—2 p2sin(at) and therefore VeA = 0. To

2+ 22} + +
check the wave equation, V A - eu——i = —qu, we note that vZa =

> > > at
V(VeA) - V x (V x A) = -V x B. Using for B from part a, we get:

Y xB=Vx (p$ sin(at) = 2z sinat
A 1~ 22
—5 =-5zpa sinat
at
2>
VZK - eu'2~§— = z(-2 +-% pzazeu) sinat = -ujf

* =+ > force
volume

3f= z %(2 % pZa eu)sin(at), B = —p¢ sinat
3 x B = o l{Zp - l-03u eu)sxn (at)
f M 2




15.4 Haxwell's divergence equations in free space are satisfied
by these expressions because Ve(curl of a vector) = 0.

a) We now check the Maxwell's curl equations.
VxE=9x(YxVx Ro) = V[Ve(V x Ro)]

- VY x (Re)) = VAV x (Re)] = -V x R Voo .

> 2
b 1 3 ~ 3% 1 ~ 93 9
st = 2 oacl X (Kl =5 V(K 2

c c ot

Since ¢ satisfies the wave equation then

>

9B s 2 »
—-—-—=—V v = :

re x (K %) V x E

>
Now we check the V x E equation.
2 1 ~ 30 1 9 a

VXB=C—)‘—VX[VX(I\E~)]—?i{[VXVX(K‘D)]

b) VxB=VxVx [Vx (K8)]

= V[Ve(V x R8)] - VA[V x (Re)]
2
- vk (@) - - L x k3D
- -9 v x (R.gg) S l_.gﬁ o
ot at’ c2 ot

Similar procedure can confirm the other Maxwell's curl

equations.

15.5 To calculate the fields produced by the charge, we first

calculate the first two multipoles:
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]
el

q = fp(?', t - r/c)dv’

r

Pt - r/c) = [E p(F', t - Ddv!

(ad

Because p(;', t - r/c) po(r') + pl(r') cos(wt - kr) which
depends on r' but not on its direction, then E(t - r/c) = 0.
Because of the spherical symmetry higher multipoles vanish

too. Thus

-

-1 Q o _Q
® = Gwe pr 3 E= 2
o 4me T
o
> >
The B field can now be shown to vanish, since A vanishes:
u
+ _ o0 + >, _ '=_(1_ >, v oo
A = I fJ(r , t r/c)dv It fr p dv 0
15.6 x = L% e y = 2t , = 23
A4 = T T T T T /9 = T4 1o
(1 + tz)2 (1 + t2)3/2 (1 + t2)2

x2+ y2 + z2 = [(1 + t4)2 + (2:)2(1 + t2) + (2t3)2)]/(l + tz)4

2

= [1 + 2t4 + 8 a4 a® 4 4t6]/(l + t2)4 =1

This means that the wire is wrapped on a unit sphere.

H > H 2
2-_0 f Ide _g_f I(t - r/c)de
T 4w >  + . 4w P
It - x| lr - x|
*> >
Here, r' = 1 and in the lim(|r|+ =)A + 0. Now for r = O and
?'(t = —o) = ?'(t = o), the integral around a closed loop is
>
zero: § d2 = 0.
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15.7 For a single wire, turned on at t = 0 over the whole
length. (Note: since the fact that the current is on cannoe
travel faster than ¢, a current cannot instaneously start
flowing.) Only parts of the wire closer than ct can

N
contribute. (See Ex. 15.2.) We have A = 0 for t < p/c, and for

t > p/c
* uoIo2 czt2 02 + ct
= ( —
A T n [} 0 )
For two wires
uw I v/czt2 - p2 + ct

R-22 [2n( ! ) +

2w pl

2 2

2
c“(t - to) -, c(t - to)

n

)

The two vector potentials are equal when

2.2 2 2 2 2
ctT - pl + ct ) /F; (t - to) p2 +c (t - to)

1 )

) i)
where t > —, and t > t + —= .
c o ¢

15.8 From Ex. 15.3, the electric field of an electric dipole

gp(t) is given by Eq. 15.55
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> 3p ., 3p Pyr_ Z (P p p
E = lme (_ * Py —)r - Am: ( + Lyt =)
cr cr cr cr

A].r + Azz-

In the plane of interest, we utilize an orthogonal coordinate
composed of the r axis and an axis in the 6 direction, thus

- - - > - ~ -

z = cos® r + sin6f, and E = Alr + Azz = (A1 + Azcose)r +

(A sine)a. Now from Eq. 2.6 defining the line of force
2

dr __-rdé

= 5
Al + A2c036 A231n

thus

dr _ rdo

(Zp/r3 + 25/cr2)cose (p/r3 + f:/cr2 + 6'/cr2)sine

A
(p/r” + plex” + p /Jer’) 4. _ ¢

2cot6d6 -
' p/r3 + p/cr2
2cotods + JP/C HP/T) _ g

p/c + p/r

which integrates to (B/C + p/r) sin26 = constant.

To get the static electric dipole results, we take the limit of

r + 0. In this case one can drop the ﬁ/c term in comparison

with the p/r term and we get (p/r) sin29 = constant.
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15.9 a) From Eqs. 15.112, we have

3 3

p k p k
% __0 cos(wt - kr) s % o cos(wt = kr) -
E 4re kr sin6b, B 4me ¢ kr sin¢é
o o
+ >
Along the dipoles, 6 = 0, E =0 and B = O.
b) For 6 = m/2 we have
3 3
E - pok cos(wt - kr) : ﬁ _ pok cos(wt - kr) $
e kr > 77 4me ¢ kr ’
[ o
2.6
§ _ E x § - pok cos(wt - kp) ~
Yo (4me )2u c ke
o’ "o
2. 4
Pk

c) f - R cosz(wt - kr) sinZe r.
(Aneo) Hcr

p K

> A
d) Total power radiated is P = ¢S°nda = cos(wt - kr)

6me " u ¢

o

o Njo N

15.10 Radiating magnetic dipole and image (see Ex. 15.5). Take
the plane to be in the x-y plane. Then for an electric dipole

Px = ~Px» Py = ~Py, Py = p,. For a magnetic dipole my = m,,

(- [ - .
my = My, My -m,

2 when it is parallel to the surface.

a) ET =m+m

0 when it is perpendicular to the surface.

3+
|

3
]

b) ;‘T =
Generally, we have pq = 2n($en) and mp = 2n X (m x n) where n is

the unit vector normal to the surface.
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¢) For electric dipoles (see Eq. 15.114)

pi kacosz(mt - kr)sinze T

>
S (r,0,¢) =
(4me )2 cr?

o” "o
The energy flux or power density is proportional to pg. If we
time average we get <P> = pgkac/IZneo.

d) For magnetic dipoles we make the transformation

2 2 2. 4
Po Ho™o uomok ¢
4neo > 4w S° <P> = {27 (magnetic).

For our problem, ﬁT = 25, but we are only radiating into %-(Aw)
solid angle, so our power density is 4 times as high, but total

power is only twice: <P> = uom§k4c/6w

15.11 Using complex notations we get: El = pyX eiwt,

>

Py = Bo(x cos¢, +y sin¢o)(—ieiwt),

£ a $[sin¢ - i sin(¢ - ¢o)] - 6[005¢ - 1i cos(¢ - ¢0)]cose

where 6, ¢ are observer position and ¢o is dipole orientation.
a) For 6 = %, cosf = 0, Ea $[sin¢ - 1i sin(¢ - ¢o)] which is
linear polarizion.

b) For 6 = 0 and m, cos6 = £+ 1, and for ¢o = %-we have,

Eax- i§ which is circular polarizion.
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> ~ ~ S
¢) For ® = 0, m we have E a(x - ix cos¢0 +y sin¢o), which is

elliptical polarizion.

15.14 For a small sphere where r < X we use the dipole

approximation. (See Ex. 15.7.)

2
B E k
= eo 2 A _ ~ -i(wt _ kr)
Ee 4me r [¢ sin - 8 cos¢cosfB]e
2
B E k
= =2 (% 9 -i(wt - kr)
Be 4ﬂeorc [6 cosdcos® + B sindle
2
B H k
B MO [} cosé + B sinpcosble 1(UE T KF)
" 4me ¢
o
2
B H k . .
E m o [-¢ sindcoshd + 6 COS¢]e—1(wt - kr)

m  4mE cr
o

-+ >

Note that on the x-axis, 6 = % and ¢ = 0, thus Ee + 0, Be + 0,
BH K L osHK
Bm + ——— ¢ cos(wt - kr), hh = Zme ot 6 cos(wt - kr),
4me ¢ o
2.2 4
B"H k
§ = E x ﬁ =L E x E =—mo__ 5 cosz(wt - kr). This is
M 2 32
() (Qﬂeo) e

independent of Be.

15.15 w = 5 x 1010 rad/s, I, = 1A. Now we have

3 x lolocm/s

2 K c/w
5 x 1010 /s

= 0.6 cm

a) Use 2 = 0.01 cm = 1074 m.
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b) From Eq. 15.150 p, = £I,/w = 1.2 x 1073 coul/m

¢) From 15.154 we have R = 789(§)zohms = 5.6 x 1073 Q.

15.16 a) The current distribution in the antenna is

represented by

mmn -iwt
1= Io sin[z—-(z + 2/2)]e

where m is an integer. Thus at z = t £/2 the current is zero.
b) Consider a small element at distance z' and length dz. From
2/2 Eq. 15.150 dp/dz' = I/w.

c¢) From Eq. 15.157 we have

u I wz

dB, = 22 f cos(wt - kr + kz' cosf) sin LA [(z' + &/2)]dz'
$ 2 [)
4mc kr

d) A corresponding expression for the electric field Eg can be

easily arrived at in a similar way. Integrating, and using

S = EeB¢/uo, we get
cosz(l'-ll cose]
2
2 S S— odd m
- Io 2 sin” @
§ = ———— cos (wt - kr)
2/mm
4me cr sin fi— cosf)
° — even m
sin” 6
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, sin(z N sind)
15.18 From Eq. 15.168 we have |E| = |E |—————. Thus
sin(5 sin®)
for N = 4 we get |E| = |§ | sin(27 sinb) 2
sin(z sind)

15.19 The antenna can be decomposed into two components. One
is a quarter wave which is normal to the ground, and a v3/2 wave
parallel to the ground. The dipole emission from the horizontal
component vanishes because of its image components whereas the
vertical component behaves as a half wave when its image antenna
is added to it. Thus we expect the pattern of radiation to be
that of a half wave placed along the vertical direction. See

Examples 15.5 and 15.10.

15.20 Given q = q,sinwt
a) B = lqoz sin wt
b) I = dq/dt = Lq 0 cos wt

2

c) p’=- Lq,w” sin wt, thus
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lqom2

E = -—2  [f(r+z) - z] sin(wt - kr)
R

413 ¢’ r

o

24 q w

<> 00 A a
= e — X -

BR hmer r z sin(wt kr)

Along the line joining the charge 6 = 0, ; x 2 = 0, and

r(;'z) - ; = 0, thus the fields vanish.

15.21 The dipole moment of the charge is p(t - r/c) =
[E' p(E', t - F/c)dT'. Since ' o= (vt -U§at2);, and

p = q8(¥' - (vt +-V2at2)£) then $(t - /c) =

f?' q (¥ - (vt +vV2at2)2) or B = q(3t +-V2at2)£; hence

P = aqz. The radiation electric field of the charge is

E = S S— [;(;-;) - ;] --q2 [f cos® - t cosB + 8 sin@].
R 2
4me c'r 4me ¢
o [

. > ot P > qa a

Since z = r cos® - 6 sinb. Thus ER = ——— s5in66. The
4me ¢’
o
> -~ i ~
magnetic field and hence S are ER = l-r x E = 32_31%9 $ >
¢ Aneoc r

> > 2azsinze ~
§ =ExfH=-1280" ¢ . The radiated power is found:

2 3.2
(4m) €,cT
dzw dp
FTIFTY = A For low velocities we have
%% = 8en dA = 3.1 erQ = dP. Therefore
dP _%.° 2 qza2 2
Eﬁ=s.rr =——2———351n0
(4m)7e c

The angular distribugion is proportional to sinze, and the

radiation is independent of the initial velocity v.
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b) Total power

2n 1

f a9 P 4a = [ d¢ | ﬂ~2—%32—% d(cosb). Let x = cosf, then
o -1 (41)7€e ¢
o
2.2
1 - x2 = sin%0. Thus P = -iL————31§ j (- xhyax = L2
(4m)7€ c” -1 bme c

15.22 Consider a particle moving with 30, where the

acceleration is parallel to 30. v, does not have to be << c,

therefore we use Lienard-Weichert results. From Eq. 15.228

dP _ q2a2 sinze

a) == =
da (Aweo)zuocs(l - Bcos)5

b) Integrate to determine the total power:

2 2 2 1 i% 8
P = f 19 aQ = ——fL—————— f do f -————ji——————g d(cos6)
(hwe ) H, © -1 (1 - B cos®)
p 2ﬂq?a2 } (1 - xz)dx
2 5
(4neo) uo-l (1 - Bx)
For evaluating the fdx we let u = 1 - Bx, and hence du = -Bdx.
Therefore
1 1 - x2
I=f———-§dx
-1 (1 - Bx)
p 148 1 B u e ?
I = -B-f 3‘[ 5 du.
1-8 u B~ 1-B u
M U G S TN SRR | SR V.
83 1-8 4”30 22 33@r-1n? 3



2azc2 6 1
= deme Y with Y = ————

15.23 We will find energy radiated in stopping a particle using

t v -at' a
E=/P(t')dt'. B = —SLT;——— therefore dB = - E-dtf. Using the
o
results of problem 15.22 wg write
0 o
_ c _cqac 1 - .
E = f - PdB 2 Gne 53 dB where BO vo/c. Using
vo/c o o (1 -89)
integral tables:
B
222 7o
E= g e | . 77t N 321°g(ifg))
(o) o 4(1 - BY) 8(1 - BY) 16a
o2ac3 8 38, 5 1+ 8 )
E = + + log(y—3")
"% a1 - 8% 81 -8 16> 1T H

15.24 VUsing 15.228

22 .2
q a sin’® sin29

(Aweo)z uoch(l -8B cose)6 (1 -8 cos9)6

2

d dP _ 2 sinfcosO(1 - B cose)6 - sin"@ 6(1 - B cose)SB sin6 -

0
(1 -8 cose)12

a
D
(=%

cosf(l - B cosf) - 38 sin29 = 0 or cos6(l - B cosb) -

38(1 - cosze) = 0, or 28 cosZG + cos8 - 38 = 0 which solves to

-1 /1 + 2482

cosf = 4B .
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SE T, 1 Rt

V25 - 1

We use the plus sign when lim B + 1: — = 1 or coseo =1 or

60 = 0. On the other hand when lim B8 + O:

/1 + 2487 ~ 1+ 1287 cose, ~ 38 > 0 or 6

I
2
15.25 a) 3 = x p, coswt + ; P, sinut.

b) The phase difference is 7/2.

c¢) Example 15.6 dealt with two dipoles located at the origin,
one of them is along x and the other makes an angle ¢. Thus
taking ¢o = m/2 gives our present configuration. The angular

distribution is calculated from 15.129 taking by = m/2; thus

pzkac
5%%2 = —2—5—— (1 + cosze)
327 eo

d) 5 = pomz(x + iy)eimt (in complex notation). Now
<|; x §|2> ==Ué‘(; sinbcos¢ + ; sinfsin¢ + z cos8) x p| =

VZ pgm4(1 + cosze). Thus <dP>/dQ is the same as we got in (a).

171



CHAPTER 16

> > > >
16.1 Near the origin we have H = Bl/l.S uy and H2 = BZ/Suo or
> - - > - - -
= (1.6 x + 6.67 z)/uo, Hy = (5 x = 3.5y + 2 z)/uo. The
> > N N
current distribution is therefore: K = (Hl - H2) x z = (-3.4 x +

3.5y + 467 2) x z/ug = (3.5 x + 3.4 Y, A/m.

16.2 a) From Egqs. 16.50 and 16.51, we find that the angle of
refraction in this case is complex, with sin02 = sinel/sinec =
a > 1, and cose2 = (1 - 82)1/2 = iB where 91 and Bc are the
incidence and critical angles. Inside the n, material we can
write (the z axis is normal to the interface plane)

[ . i(;z-f-mt) - EZOei(kzax-wt) o—kyBZ

The direction of propagation is along x, that is parallel to the
interface plane. The phase velocity is calculated from kzax-wt
= constant: vp = w/kza = nzm/(kzsinel) which is a function of
the angle of incidence.

b) The attenuation takes place along the normal to the
interface (i.e. z axis), and the coefficient of attenuation is
k,B.

) Calculat% <Sp>+5 = Re (E, x Hy*)e3. But V x B, =

> >

ikszz = 3—— = in2= iwuoﬂz; thus
S>3 = L & [Eyx (Kyx )12 = Re |, 12 (&, -2)
>0z = s e X X z o 92
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1

- Re —— 2 = Re —— 2q
= Re g k2|E2| cosb,= Re o k2|E2| B=0

16.3 a) We have from Ex. 16.4:

¢ (51n 8,- (n /) )l/2 ¢p (sm 8,- (n,/n )2)1/2
tan - = cose , tan 57— =
1 (nz/nl) cose

1

Thus ¢_. = ¢_ when sinf, = n,/n, or when 8, = w/2.
s - % 1 2/ 1

b) We maximize (¢p - $,)/2. Now 8/2 = (¢p - $.)/2 =

-1

an-l[Y(nI/nz)Z] - tan = Y where tan(¢s/2) = Y. Taking the

derivitive of &§/2 and equating it to zero gives Yy = “2/“1' Thus

Smax/2 =
can™! 2L ot 22 0r vancs /2) = (1 - (a,/n)%/2(n,/n )
n, n max 271 2°71
¢c) Yes if also Eop = Eyg+ Since 8§ = 0 when 6, = sin'lnz/nl and

when 6, = /2, and since the tan($__ /2) as given above occur in

max
between, then it is possible to have tan(§/2) = 1 provided that

n n n
- ()2 > 22 and 2 < L4l
1 1

16.4 From Ex. 16.6 we find that the boundary conditions at the

two boundaries give

- E!

1= E2 - Eé nl(El + Ei) = nz(E2+ Eé)

Ezeiez - Eée-iOZ = E3e103, nz(EzeiGZ + Eée_iGZ) = n3eie3 Eq

n,wd n3wd

2
P TR B

Solving these four equations for Ej /El gives

=1, and n, = 2

where 92 = 2
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E1 (9e—2192 -1 5 + 4 icot02
1
Fly2 _ 1
E1 1 + 16/9 cscze2
16.5 From ex. 16.6
E2 n n,wd n n n,wd
1 1 3.2 2 2 1 2 342 2 2
— =7 (1 + 797 cos™ (— )+4(n—+n)sin )
E 1 1 2
3
n <E2>
3
T=x — ¢
1 <E7>
1
1) F =1 = 2 =3 h T = 3
or nl ,nz— ,n3- we ave —4 -1_5- iZ(Zuld)
16 sin c
8

2) For n; = 2, n, = 4, ng = 1 we have T =
9 + 72 sin® (24

. . ) _ 1/3
3) For m) =3, ny =2, n3 =1 we have T 4135 5,22,
9 1296 c

16.6 Notice first that the incident flux undergoes a phase
shift at boundary #1 (because nj > n;) but does not shift phase
at interface #2 (n3 < nz). Thus we have: minimum A requires
2n2d =m (m=0,1,2), maximum A requires 2n2d = (m +k@ )

(m = 0,1,2). But A = %EE , then for a minimum we have

[
n,d = l'-(—:-'E-and for a maximum we have n,d = JEiEL:—lizl .
2 w 2 w
()

16.7 The critical angle ec = sin_lnzlnl. The largest angle is

0 =n/2 - Oc. Thus for n, = 1, 6 = 49.8, for n, = 1.52,
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8 = 11.3 and for ny) = 1.50, 6 = 14.6.

16.8 The analysis is very similar to that given in Sec. 16.2.1
leading to Eq. 16.22, except n, becomes complex, and we take

n, = l. Thus 1y, = (nz—l)/(n2+ 1).

16.12 a) For p polarization incident at the analog of the
Brewster angle we have: tanép = —2¢mnlné/(¢% - n%lnzl). Since

om approaches n1/|n2| = nl|n2|, then tan6p + ® or Gp = n/2.

1
an cose1

-1 + 2n2cosel

highly conducting surfaces né and ng become very small, and

b) For s polarization we have tanfg = . For
tan&s is negative and approaches zero. Thus tanGs = M.

¢) If the amplitudes are equal and the initial phases are the
same, then upon reflection they will be w/2 out of phase,
producting circular polarization. When one of the incident
amplitudes, either Eop or Eos is zero, then we have linear

polarization.

16.13 Using the same procedure followed in Ex. 16.12 except we

are given here the amplitude of the incident H field instead of

the E field. Thus we first calculate E, = B,/c = uOHO/c =

3ug,/c. Thus from Ex. 16.12 we have
2

E,/E. = , E.JE, =
177 1 + oc/eom e”/2 21

e-d/&
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-in/4

E3/E2 = :—————— = 2/[1 + (eom/oc)e ] where § = ¢2/uoocm.

8cm for n =

16.14 From Eq. 16.111 we have Ac = 2a/n = 16/2
2. Now from the same Eq. we have Ag = (l/Ag - n2/4a2)—l/2 which

is equal to 12.8 cm for n = 1.

>
16.15 Considering TE waves, then we can write E(x,y,z) =
>
E'(x,y) x ei(k Z70t) | Thus VeE = 0 gives 9E'/3x = 0 indicating
E' being independent of x.

> 2> 2, 2. >
b) The wave equation for E gives V'E + (w“/c)E

0

"

d2E'/dy? + (w2/c? - k2)E' = 0, which has the solution:
, _ ' _w 1/2
E'(y) Eosin(kcy) + Eocos(kcy), kc E(l k /k )
Applying the boundary condition that E' should vanish at y = 0
>
and y = a requires that k. = nm/a and Eé = 0. Thus E(x,y,z,t) =
i(k, z-wt)
Eosin(kcy) e g .
c) kg has to be real quantity for propagation to take place.
Thus from k_ = (w/e)(1 - ké/kz)l/z we get k, = (I - K2/k)1/2,
1/2.

or k_ = (1 - nnc/aw) Thus for n = 1, we have nmc/aw < 1 or

g

w = mc/a is the smallest frequency.

>

> ok
16.16 a) Using V x H = €, 3¢ Ve get

aHx oE aHx aEz aEx

szf-= - eo SEX’ —;— = eo 3t 3f - 0. For example the first
9E

equation gives 80—3%-= uoksinB Hocos(kycosB) sin(kz sinB-wt),
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and Ey= —(uok sinB/eom) Hocos(kycosB) cos(kzsinB-wt).
Similarily we find E = 0, and
Ez = (uokcosB/eom)Hosin(kycosB) sin(kzsinB-wt).
b) At y =0, and y = a, we should have E, = 0. Thus
sin(kacosB) = 0 or kacosB = nm where n is an integer.
> > >
c) <S> = <E x H>, thus
~ 2 2 2
=z (uok sinB Ho/eow) <cos“(ky cosB) cos” (kz sinB-uwt)>
+ §(uok cosB Hi/Aeom)<sin(2ky cosB) sin(2kz sinB-2wt)>. It is
easy to show that the second term vanishes; hence the time
>
average of the S is entirely in the z direction.

p ksinB Hzab u sinB Hzabc
o [ ()

b
Q) [ax [ dy <& = = 5e
(] o (o]

. >
16.17 a) In the case of TE, we had E tangent to the plate,

> - > -
that is E = E x, and hence H = Hy (normal to the plate). In the
> >
TM case, H is taken tangent to the plate while E is taken normal
> a
to it. Thus we write H = x[Hocos(kcy) + H} sin(kcy)]ei(kgz_Mt)
> -

where k., = k cosf, and kg = ksin®. But from V x H =1y BHx/az -

a >

z 3Hx/3y = -ie wE we conclude that 3Hx/8y vanishes on the plates

since the tangential electric field vanishes there. Thus Hé is

set to zero, and kca = kacos® = nm giving kc = nv/a where n is

> -~ -
an integer. Thus H = x Hj cos gz-y ei(kgz wt)

cos n:z + iz:n sin n:z]ei(kgz—wt)

g
> >
b) Even if n = 0, H and E do not vanish in the TM case whereas

and

<> ~
E = (HO/som) [-yk
all fields vanish if n = 0 in the TE case.
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¢) We sketch the pattern of the n = 0, and n = 1 modes

16.18 a) From the results given between Eqs. 16.114 and 16.115
we have <ud/a = eo|E°|2/4 and <§>/a = eoc|E°|2kg z/4k where

k = w/c (that of the free wave). The lowest two modes are n = 1
and n = 2. Thus using ké = kz—(nn/a)z, we get

<ud/a = e,|Eg|2/4, and <S>/a = e c|E |2 2(k2-(nn/a)2)} /2 4K
where n = 1, and n = 2.

b) v, = c/sind® = ck/kg = ck(k2 - n21r2/a2)-1/2 and

P
vg = csinb = c(kz— nznz/az)l/z/k.
16.19 The solution must satisfy the boundary conditions
Ey =0=H = BHylax at the surface of the plates at x = 0, and

> PO
x = a. Thus E = x E el(kz-wt) = 4y - Y(Eg/vyuy) el(kz-ut)

This solution satisfies all of Maxwell's equations and the
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boundary conditions. Moreoever it has no restriction on w and

can even work for dc current flow (w = 0).

16.20 From Eq. 16.22 we have ké = k2 -k2=x2or

Ky = w2/e2 - @2 - EH%V2. Thes

vo=2 . & v = do w(l - (m /w) )l/2 where
P k —2 g dk
g V1 - (o /0) g
1 fmon,2  nm 2
w, = 0——) + (— ) is the cutoff frequency.

16.21 a) From Eq. 16.126, the cutoff wavelength is

1/x = ( ) +

For TEIO’ and TEOl we have Xc = 2a and 2b
respectively. Thus if a > b, then TE;, has the largest Ac'
b) From Eq. 16.126 we have for a = 2b,

Qc = 2bwc/nc = (m2 + lmz)l/2 or m? + 4n? = l/(Ac/Za)2

c
n=20 1 2 3 4
m=20 2 4 6 8
1 1 2.24  4.13  6.08 8.06
2 2 2.84 4.48  6.32 8.25
3 3 3.61 5 6.71 8.54
4 4 4,48 5.66 7.21 8.94
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c) (A./2a) = (m2 + 4n2)-l/2' The cutoff wavelength is given in

the following table.

c
n=0 1 2 3 4
m=20 1 5 .33 <25
1 2 .89 .48 .33 «25
2 1 .70 <45 .32 <24
3 .67 «55 b .30 .23
4 5 .45 .35 .28 22

Thus we see that in the first case only the mode TElO will
propagate, while in the second case we have a number of modes:
all modes listed in the first two columns, and the top three of
the third column.

+>
16.22 a) ThE wave equation of the x component of H,
97 H

V2Hx - €, X - 0 will be first shown to reduce to
a:z
azux Bzﬂx azux 32Hx
= € p ——~= by showing that + = 0. This can
322 070 32 x> ay?
> 3H M 3,
be shown by noting that (V x H)z = —§£ - 3;— = eo 5 = 0 and

. Therefore




y X X y .

L - e = e A ——— = .

Py 3y % 3y 0 Differentiating the first equation

with resBect tozy and the second with respect to x and adding
3°H 3°H

gives zx +-——§1 = 0. Now the solution of the above wave
9x dy

equation for H, is just H = H (x,Y) el(kz=0t) Gieh w/k = v, =

1/v eouo which is not restricted to a discrete set of values.

: _ mwx nny i(kz-wt)
b) Solutions of the form H, = H,, sin —cos e
_ nmx mny i(kz-wt) _
and Hy = Hoy cos —/— sin - e where my, n = 1,2,...

> >
¢) Using VeH = 0, and (V x H)z = 0 gives (HOx = —am/bn) Hoy’
Hoy = (bn/am) Hoy Dividing these two equations gives
1= —(am/bn)z. which cannot be satisfied for real values of m,

n, a, and b.

16.23 Consider the following solutions of the wave equation

(m=n=0):H =H, ei(kgz-wt)’ H = Hy, ei(kgz—mt)’ and

N
Hy = Hyy ei(kgz'wt). Now one can see that VeB # 0 for this

9H 9H oH
solution. ——’S + —y- + ———i =0+0+ ik H ei(kgz—mt)¢ 0.

9x ay 3z g oz A

similar argument applies to cavity modes TEOOI’ etc, therefore

those modes are prohibited.

16.24 The mode structure was given in Eqs. 16.130 - 16.140.

EY
The V+E = O equation leads to Eq. 16.138, that is

g 48 g + g =0
a ox b oy c oz

a) Consider the case 2, m, and n # 0. Two of the E

ox? Eoy’ and

Eoz constants are independent, and hence the modes are in
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general doubly degenerate, i.e. to each value of the allowed
mode frequency there corresponds two oscillations with different
configurations of the electric and magnetic fields.

b) If one of the integers &, m, n is zero, then there will be
no degeneracy.

c) Now if the dimensions a,b,c are in ratio of integers then

the order of degeneracy increases.

16.25 a) The wave equation for H,,

A

— +t— + — + ——-] H = 0, will be solved under the
2 2 2 2 z

9x oy 9z c

following boundary conditions on the six surface: H, = 0 at

0 and z = ¢ (normal component vanishes), 8H,/dy = 0 at

]

k4

[]

0 and y = b, BHZ/Bx =0 at x = 0 and x = a. Since the

y

solution will be sine and cosine functions, then we can

immediately write Hz(f,t) = Hg, cos££§ cosmgz-sinﬂgi e_lwt with

mz/c2 = (lﬂ/a)2 + (m1r/b)2 + (nn/c)z. The other fields can be
determined using Eqs. 16.118 - 16.119.

b) The fields are given in Eqs. 16.130 - 16.140 with E,, is
taken zero. It is, however, customary to express the amplitudes
of all components in terms of that of H,. From Eq. 16.138 we
have (&n/a) Eox = — (mn/b) Eoy’ and -i[(&7m/a) Eoy - (mm/b)

on]/uow = H,; thus

E = Mo azbm H E = Ko abzl H
=— = , = <=2
()4 w azm2+ b212 0oz oy n a2m2 + b222 0z
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b abgn a abmn
H =-()—5—=H ,H =- ()7
ox c a2m2+ b2£2 oz oy c aZmZ + b2£2

c¢) Now n cannot be zero because Hz vanishes and hence all
fields vanish. On the other hand if m and % vanish, then all
fields vanish too. Thus the lowest mode is when m or £ vanishes

only. Now if a < b < ¢, then from

2 2 2
n_
wzcz b2

d) If a=b =c¢c, Q? = (azmz/ﬂzcz) =224 n? + n. Thus the

w

<+

ol P

= £§-+ , the lowest mode is for £ = 0, m = 1 = n.
a

(¢]

spectrum is Q2 = 2, 3, 5 and so on.
> 1 *
16.26 <S> = = Re(E" x ). Inspecting Eqs. 16.130 — 16.140

> >
which give the fields in the cavity, shows that H and E are w/2

>
out of phase. Thus <S> = 0.
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CHAPTER 17

17.1 An observer moving with the muon finds a life time of

t' = 1.52 % 10"6 sec. But he sees the distance to the earth
shorter (due to space—contraction) by the (1 - vz/cz)l/2

factor. Although the two observers, one on earth and one on the
muon, disagree on the measurements of length and time intervals,

they both agree if they measure the fraction of muons reaching

the earth before they decay.

17.2 a) Because of space contraction, the observer on ruler 1,
sees the length of the second ruler 2 = 20(1 - v2/c2)1/2. He

needs to find the time it takes the ruler to move

L - 2,01 - v2/c2)1/2. Thus we have
zo— lo(l - VZ/CZ)I/Z lo 2, 2.1/2
At = - =3 (1 -Q-=vcH ) or

v = 220At/(At2 + lglcz). The same is true for the other
observer.

b) According to 1 the right-hand ends will meet first.
According to 2 the left-hand ends will meet first. According to
the third observer, the left and right ends will coincide

simultaneously.
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17.4 For two sucessive transformations, we write using

Eqs. 17.2: z' = (z - vlt)Yl, t' = (t - vlz/cz)y1

z'' = (z' - Vzt)Yz, t'' = (t' - vzz'/cz)Y2 where

v, = (1 = v}/eHV2, and v, = (1 - v3/c®)1/2. Eliminating the
prime variables and getting a direct relationship between
(z'', t'') and (z,t) we find 2z'' = (z - vt)Y, and

' = (t - vé/cz)y where v = (v + v2)/(l + vlvzlcz), and

y=(1 - v2/c2)1/2.

17.5 ds'? = ax'? + dy'2 + dz'2 - ¢24t'2. But dx' = dx,

dy' = dy, dz' = y(dz - vdt), and dt' = y(dt - vdz/cz). Thus
dz'? - c2ae'? = Yz(dz2 + v2at? - 2v dz dt) -

czYZ(dt2 + vzdzzlc4 - 2vdtdz/c2) = dzz(Y2 - vz/cz) -
czdtz(Y2 - v2/c2) = dz2 - c24t?. Therefore ds'? = gs? or

ds' = ds.

17.6 The number of wave crests in a wave is

> > > >
N = (ker - wt)/2n. Let us evaluate N' = k'er' - w't' using the
transformation given in Eqs. 17.7 and 17.25 - 17.26, we can
verify that N = N'. Of course these transformations for w' and

k' were derived from this condition in the first place.

17.7 Taking the inverse of Eq. 17.28, that is interchanging the
prime (6 + 6', w' * w, w + w'), and taking v + -v, we get:
w=w"(l +-% cosf')/(1 - v2/c2)1/2 which gives the required
result.
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17.8 From Eq. 17.28, and using & = 7/2, we get

tanb' = —(1 - vg/cz)l/zl(vo/c) or cosf' = —vo/c.

17.9 We start with uniformly distributed stars, that is No/4w
is their density per solid angle, and No is their total

number. dN/dQ' = (No/4n)-(d9/d9'). But we substitute for

a - v2/cz)
[1 - (v/c)cos8]?

N

dN o
' —_— = ——
dQ/dQ' from Eq. 17.33, thus T =

17.10 From Ex. 17.4, if 6, = 0, cos®; = 1, then

cos8y = —(1 = 28 + B2)/(1 - 28 + B2) = -1. Thus 8, = 0. Also
the frequencies are related by Eq. 17.36:

wy/w; = (1 -8B cos®;)/(1 - BcosBy) = (1 - B)/(1 + B). If it is
approaching, then B is negative, and if it is receding, then B
is positive, therefore wy/w; = (1 + [B])/(1 + |B]) for
approaching, and wz/w1 = (1 - |B])/(1 + |B]) for receding. If

B + 1, then we have wy >, and wy > 0 respectively.

17.11 W = wy, and the angle of incidence is equal to the angle

of reflection. This can be seen from the results of Ex. 17.4

when taking v, = 0 or B = 0.

17.12 For simplicity let us consider a two-dimensional
motion. Reference S, is moving along the z axis with velocity
v, while S; is stationary with respect to the laboratory. Both

origins coincide at time zero, and stay parallel. Thus we write
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z9 = Al z) + A2 t; + A3 X1, X9 = Dl xp + D2 t, + D3 )

ty = By t; + By z9 + B3 xy, where A; and B; are constants
independent of the space and time coordinates. 1) Now let us
consider the motion of the origin of S;. As seen by S, the
origin is always at rest where as 82 sees it moving along the -z
axis at speed v. Thus dzz/dt2 = -y = AZ/Bl or A, - —vB1 and
D2/B1 = 0 or 02 = 0. 2) In a similar way, the motion of the

dz2 dz dt

i -2, 2
origin of Sy, gives EEI-— dtz X dtl

A2 = —vA1 and D3v + D2 = 0 or D3 = 0. Thus we have after these

=0 = Apv + AZ or

two conditions: z, = Al(z1 - vtl), ty = Byz; + Aty and

Xy = Dyx;. 3) We now determine A} and B, from the constancy of
the speed of light. If observer §; shines a beam of iight along
the z axis, then both he and observer S, will measure the same
speed for the light that is c. Thus dzl/dtl =c = dzzldtz, and
dt dz dt

dz, 1 L it R
dt

2
At - v l) = A (ot
1 dtz dt2 1 dtl 2

dz
EE;__
c = Aj(c - v)(dty/dty) = Ay(c - v)/(Byc + Aj). This solves to
B, = -(v/cz)Al. Thus zy = Al(z - vtl), and

ty) = Aty - (v/cz)zl). 4) It can be shown that D; = 1 by
considering the measurement of the length of an identical rod
when measured in both systems. A cross measurement however
gives Ly = DjL, and L, = DjL;. But Ly/Ly = L,/L, because we
cannot distinguish between the inertial system, then D1 = 1.
5) Suppose S; projects a light beam along X, then S1 will

measure the speed as c while 32 will measure a speed
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(é; + ig)llz = ¢, Or (v2 + ‘:Z/A%)l/2 = ¢ or

A= Q1 - v2/c2)—1/2.

17.13 From Eq. 17.27 we have u' = w y (1 - %-cose). For 6 = m,

and 6 = 0 and since A'/Ao = mO/w' then

X' = V(1 - v/e)/(1 + v/c) and A' = Xo/(l + v/e)/(1 - v/ec), for

approaching and receding observers respectively.

17.14 a) Since from Ex. 17.7 we have d4x = -idxldxzdx3dx4 as a
Lorentz invariant, and since pdxldxzdx3 is invariant, then p
will transform like Xy the time coordinate. Hence Ju = (},icp)
is a legitimate four vector. The transformation can be easily
seen from Eq. 17.2: I = I J; = Jy, p' = (p - (v/cz)Jz)Y,
and J; = (Jz - vp)Y.

b) Using the transformation for p, and taking J, = 0, we get
A= agy = A (1 - vEeHl/2,

o]

17.15 From Eq. 17.98 we have

B2 - c?8'2 = y2(E| - c8By)? + Y2(E, + cBB)? + E} -
c2vy2(B) + BEy/c)? - c2y2(B, - BE /c)? - 2B} =

v2E2(1 - 82) + v2e2(1 - 8%) + E} - v22Bd(1 - BY) -
v2c2B5(1 - 82) - %8} + 2vcBE B, + 2v2cBB|E, - 2cY28B,E, =

E2 - 282,
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17.16 We use the transformations of E and B and we use the
> > >
condition E' x B' = 0. Moreoever let us first find v which is
> > > > > > > ~)2
normal to E and B, thus [E + v x B] x (B - v x E/c“] = 0.
> > > > > 2 > >
Expanding we get: E X B - E x (v x E)/c“ + (v x B) x
> > > > > 2 - > > >0 9
B - (vxB) x (vxE)c*=0, or v|E x B| - vE/c* -
Pa2 0 21 R a2
vBS - v v |E x B|/c = 0. Thus we can now solve the quadratic
> > >
equation for v. Noting that |E x B|2 = E2BZ sin?e =
> > >
EZBZ(I - cos?8) = E2B? - |E-B|2 where 6 is the angle between E
>
and B, then after multiplying by c2 we get Eq. 17.105. This is
not the only velocity that does the job. In fact any other
> >
motion parallel to the common direction of E' and B' will keep

then aligned.

b) Substituting for v in Eqs. 17.99 or 17.100 we get

282 = B2 - o282 + J(E2- 282y + 4cl(EeB)?

2e28'2 = 282 - B2 + J(E2 - c28%)2 + 4c(EeD)? .

17.17 From the results of problem 17.17, we have two cases. If

E > c¢B, then B' can be zero, thus

> >

B2 - c2B2 = /QEZ- czBZ)2 + Acz(ﬁoﬁ)z, or E*B = 0,

2E'2 = 2(E% - ¢282) or E' = (£ - <ZB%)1/2,

> >
If E < cB, then E' = 0 and cB' = (c2B% - E2)1/2 anq EeB = 0.
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The velocities of the frames in these two cases respectively

> I TES > > > 2 > > > 2
are: v/c = cnB“/|E x B| = ¢(E x B)/E® and v/c = (E x B)/cB".

17.18 Consider the results of Ex. 17.14. a) Along the line of
> > >

motion (8 = 0 and 7), the E field is E = q R/4ne R3y2. Thus it

is smaller than Coulomb field E =q E/4n€OR3 by the factor

(1 - vz/cz). On the other hand in the perpendicular direction

to the motion (6 = 7/2), the E field is E =q Ey/4neoR3 which is

larger than the Coulomb field by the factor (1 - v2/c2)-1/2.

For v ~ ¢, the field is only larger within an angular range

28 ~ (1 - v2/c2)1/2.

b) The condition E; = E. points to the same conclusions in the

four space. In the rest frame of the charge, a point appears

2)—1/2

further from the charge by a factor (1 - vz/c than in the

laboratory frame which accounts for the effect.

17.19 a) ¢ = q/4ﬂ€oR* = qY/4neor' where r' = [Yz(z - vt)2 +

.92]1/2. Thus = V¢ = (q/4ﬂ€°Y2R*3][Y2(Z - vt) z + pS].
A *3 -
- 3¢ = ~(u_va/4mR™) v(z - vt)Z = ~(v2q/4me c2R*3) (2 - vi)z

= [-(Q/4ﬂ60Y2R*3) + (q/4ﬂe°R*3)](z - vt)z. Thus one can see
that the lines of -V®, and the lines of -BZ/at are not
separately straight lines emanating from the instantaneous
location of the charge. However when both are added to get the

>
total field, then the second piece of -3A/3t will cancel the
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z component of -V¢ resulting in an overall field which has
straight lines of force with center at the instantaneous

position of the charge.

17.20 The potentials of a moving dipole were calculated in

Ex. 17.15. The fields can be calculated from them. Here we

calculate the fields directly. 1In the rest frame of the dipole,
> . o~ >

we have E' = . — [(;'r)r - ;], and B' = 0 or

4me r3
o

> P
E' =

° 3—-[cosesin95 - sinze 2] = EL + El where
éweor

T = o5 3 F e 5 osinl 3
E popcosesinﬁlbneor and E“- pyzsin®8/4ne r-.

From Eq. 17.99, we then conclude that Eﬁ = - pogsin23/4weor3,

> ~ 3 =2 > > > 2
Ei = Yp°081n29/8180r R Bi = 0, and Bl = - YV X EL/C .

> >
17.21 From the definition p = dP/dv, and m = dM/dv and from the

> >
Lorentz transformation of P, M, and the volume element which are

given in Eqs. 17.110 and from Eq. 17.75 we get:

> > > >
p'=p-32-xr71—(v-l)v"p
c Yv
> > > ;,*
m=m+vxp' -(y-1)v (See Egqs. 17.100).
Yv
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17.22 a) From Eq. 17.99, we have Ei = y[v x Bll° Since
> > > > >
E = [Eedf, then E = y(v x B)+2 = yvBL.
>
b) Take B to be along x, and v along z, then in the laboratory
frame the vector potential associated with the uniform B field
> > > - -
is A= -r x B/2 = (Bzy - Byz)/2, and the scalar potential is
zero. In a frame moving with the conductor, we get from the

> >
Lorentz transformation f(A,i¢/c). &' = YVA, . Thus E = -V§' =

-YvVA, = YvB§ and E = yvBR.

17.23 a) To calculate the charge densities we use the Lorentz
transformation of the four vector (},icp)- We use the
filmanetary approximation where Jdv is replaced by Id%, and pdv
is replaced by Ad%. In 8', A' = 0, thus in S, and in sides 1
and 3 we have A = & (v/cz)I'Y. The total charge is therefore

A a(l - v2/c2)1/2 which takes into consideration the Lorentz
contraction. Thus q; = —qg3 = -V a I'/cz. The charge on the
other two sides is zero.

b) The electric dipole moment is qb = I'vab/czo The same
result may be alternatively determined from the transformation
of the polarization and magnetization givén in Eq. 17.110.

¢) From Eq. 17.110, we have M = YM'. But m' = abM' = I'ab, and

yI'ab/y (Lorentz contraction is accounted for), then

m
m=m'. The same results can also be arrived at using the

transformation of 3 and m as given in problem 17.21.
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