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I. RELATION TO CUPM RECOMMENDATIONS

In a 76-page report, A General Curriculum in Mathematics for Colleges,
published in 1965, CUPM prepared for consideration by the mathematical com-
munity a '""minimal" undergraduate curriculum in mathematics, consisting of
fourteen semester courses, that could be offered by even a small department.
Five of these are lower-division courses: Math 1, Introductory Calculus;
Math 2P, Probability; Math 2 and 4, Mathematical Analysis; Math 3, Linear
Algebra.

The hypotheses from which CUPM drew its conclusions are important
and simple. Let us recall a few of them:

""Every college, large or small, needs a basic mathematics program
simple enough to staff and operate, yet substantial and flexible enough
toaccommodate totoday's diversity of students and their objectives."
(Page 3.)

'"". . . there are now many more kinds of mathematical knowledge which
[the incoming”students] seek. . . . This is brought about by the computer,
the increasing mathematization of the biological, management, and so-
cial sciences. ... Then there is the explosive increase in the number
of students who wish to major in mathematics." (Page 4.)

"". .. one cannot assume that the student entering at eighteen knows
what his professional interests will be. . ." (Page 5.)

'". .. the five basic courses should not be taught in different styles for
students with differing major fields and professional objectives." (Page
5.)

CUPM then makes its recommendations, which begin with Math 0,
Elementary Functions and Coordinate Geometry, precalculus mathematics
which should be, and frequently is, taught in high school (page 11). Math
1,2, and 4 form a calculus sequence of some 90-120 class meetings. Two
versions of Math 2, 4 are suggested, the preferred version introducing
multivariable calculus in Math 2.

" There are several reasons for believing that such an arrangement
may be better than the conventional one in which single variable calcul-
us is thoroughly exhausted before turning to multivariable calculus as
a more advanced subject. . . the multivariable calculus need not be as
difficult as these ramifications of single variable calculus, techniques
of integration and geometric applications, and offers more new ideas
to contribute to the first year calculus. .

" Furthermore, the proposed arrangement is attractive for better ser-
vice to engineering and physics for it sets up early many things that
engineers and physicists want to do; for example, it permits an early
introduction of the moments of solid figures. It is also more useful
for students in other areas, such as social science and business."
(Pages 11-12.)

Math 3, Linear Algebra (30 class meetings), is placed in the first two
years, not so much as a tool to be used in the calculus, but to broaden the
lower-division experience on the basis of which a student may decide to ma-
jor in mathematics, and to serve physics, engineering, and the social sci-
ences.

Math 2P, Probability (30 class meetings), uses the calculus and may
follow Math 1.




Before we examine Math 1, 2, 4 in detail, let us recall a few remarks
on rigor made in the report:

", .. it is the level of rigor in the student's understanding which counts
and not only the rigor of the text or lecture presented to him. ... The
problem, as we see it, is to devise a presentation which will convey
the ideas of the calculus in forms which are intuitively valid, can later
be made exact, and are made rigorous as the student advances." (Page
22.)
... limits, and all other concepts of the calculus, should be taught as
concepts in some form at every stage. For example, the fundamental
theorem of the integral calculus involves two concepts: the 'limit" of
a sum and the antiderivative. ... It is dishonest to conceal the con-
nection between the two concepts by conditioning the student to accept
the formalism without his being aware that the concepts are there."
(Pages 22-23.)
'"". .. a student who stops with Mathematics 2 will at least know some-
thing useful, have enough technique to use it, and will have a grasp of
the basic concepts of the calculus in a form precise as he can appre-
ciate and precise enough so that it can be made rigorous." (Page 24.)

CUPM gives two sample outlines for Math 1 and two for Math 2, 4,

preceded by this advice:

'"The intent is not prescriptive. For this reason we give more than one

outline for some of the courses. . . . Nothing in these outlines is intended
to discourage original course design or further experimentation."” (Page
29.)

Though I had the CUPM recommendations while writing the text, I did
not try to follow one of their sample outlines but rather to implement their
objectives--which were also mine--with an organization and approach based
on my own experience in teaching the calculus (off and on) for twenty years.
For instance, in addition to the spiral approach which is suggested in the
report, I have used a ' stereo-approach,' which introduces major concepts
by at least two different interpretations or applications.

On pages 31-34, the report presents two sample outlines of Math 1.
The core of both outlines is the derivative, the definite integral, and the
fundamental theorem of calculus, Calculus in the First Thrvee Dimensions
covers these in Chapters 1 to 6.

On pages 37-41, the report presents two sample outlines of Math 2, 4.
Both give about twenty-four out of seventy-eight lectures to differential equa-
tions. Almost all the remaining material is included in the text. Though no
chapter in the text is given completely to differential equations, it does solve
several of them. In Chapter 5 we solve the equation dy/dx = ky; we apply it
in Chapter 21 ("' Growth in the Natural World") and Chapter 25 (" Rockets").
In Chapter 13 we solve the equation d°y/dx* = -ky, using power series; we
apply it in Chapter 26 (Gravity). In Chapter 19 the differential equation of
a hanging cable is discussed, and in Chapter 24 (Traffic) the differential
equations of a continuous Poisson distribution are solved.

The text, in its elementary and intuitive treatment of the algebra of
vectors (including the dot product) in Chapter 16, prepares the student for
CUPM's Math 3 (Linear Algebra). In the treatment of curve integrals
(Chapter 18) and of Green's theorem in the plane (Chapter 19) it prepares
the student for CUPM's Math 5, Advanced Multivariable Calculus. In the
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section on probability in Chapter 8 and in Chapter 24, " Traffic," the stu-
dent is introduced to CUPM's Math 2P, Probability. In Chapter 20, The
Interchange of Limits, the student is oriented toward CUPM's Math 11,
12, Real Variable Theory. In Chapters 21-26, which comprise Part III,
the applications lead into CUPM's Math 10, Applied Mathematics.




II. STRUCTURE AND USE OF
CALCULUS IN THE FIRST THREE DIMENSIONS

The text consists of three parts, each of a distinctive character.

Part I. The Core of the Calculus (Chapters 1-9) focuses on the fundamental
theorem of calculus and its applications. This part, which introduces the de-
finite integral in dimensions 1,2, and 3 in Chapter 1 andthe derivative in Chapter
2, reaches the fundamental theorem of calculus in Chapter 6, gives more ap-
plications of it in Chapter 8, and evaluates 2- and 3-dimensional integrals

in Chapter 9.

Part II. Topics in the Calculus (Chapters 10-20) treats higher derivatives,
maxima, series, Taylor's series, partial derivatives, estimating a definite
integral, the algebra and calculus of vectors, curve integrals and Green's
theorem, and the interchange of limits. As will be shown below in the dis-
cussion of the individual chapters, many of these topics may be presented
before Part I is completed. For instance, the second derivative and maxima
may follow Chapter 5.

Part III. Further Applications of the Calculus (Chapters 21-26) consists
of six independent applications of the material developed earlier (mainly
in Part I).

Now we will examine each chapter, keeping in mind such questions
as: What is the relation of this chapter to the rest of the book? If there is
a rush, what can be left out? Why is the calculus presented this way?

The number of lectures suggested depends on how much is covered,
and how thoroughly. As a rule of thumb, one section corresponds to one
lecture.

Part I: The Core of the Calculus

Chapter 1, The Definite Integral (3-5 lessons)

Sections 1, 2, and 3 gently lead up to the definite integral over an
interval. Four major illustrations are used so that the student will not
identify it with any particular one, such as area. Throughout the text we
reserve the words definite integral for the limit of sums, and antideri-
vative for a function whose derviative is the integrand. The word mesh
corresponds to the mesh of a screen that permits pebbles up to a certain
size to pass through.

The limit concept is not made precise until Chapter 3, after the stu-
dent has accumulated down-to-earth experience with the notion in Chapters
1 and 2. However, nothing has to be redone later. Chapters 1 and 2 are not
a prologue; they are, so to speak, Act I

It is possible to go directly from Section 3 of Chapter 1 to Chapter 2,
" The Derivative." However, Section 4 (' Average of a Function over an In-
terval"), Section 5 ("' The Definite Integral over a Set in the Plane' ), and
Section 6 (" The Definite Integral over a Set in Space'), do provide additional




perspective. Perhaps the first time the instructor uses the text, he may
wish to include say, only the first three sections, or, perhaps, in addition,
one of Sections 4 and 5. (The first time I use a text, I usually find it hard
to predict the difficulties and the time required for covering the various
parts; the second time through, I feel more at home.)

Note that summation notation and functions appear in appendices.

Chapter 2, The Derivative (2-4 lessons)

Again we start with four applications. Slope, while certainly im-
portant, is not the application that most students will use. The " magnifi-
cation'" interpretation (what CUPM calls " scale-factor' of a mapping)
is used in Chapter 4 to make the chain rule plausible and in Chapter 19
to lead up to the Jacobian in the plane. Section 4 may be omitted or may
be suggested as reading.

Chapter 3, Limits and Continuous Functions (3-4 lessons)

This chapter provides mathematical definitions of concepts that were
developed intuitively in Chapters 1 and 2 and sets the stage for Chapter 4,
where we compute the derivatives of the elementary functions. If more
rigor is desired, Appendix F may be included or referred to. My feeling
is that there isn't enough time, nor is the audience sufficiently homogeneous,
to do much with €, § in a lower-division course. I have preferred to use many
pathological counterexamples instead, as a warning to the student.

In Section 1, be sure to include Example 6, }lirg (1+ 1/n)", since it

will be referred to in Section 2 and needed in Chapter 4. There is no need
to cover all six examples. Note that Exercise 28 outlines a proof that
}lim (1+1/n)", exists, and it may be included as a lecture. I prefer to

forgo the proof and, instead, give greater attention to Chapter 6, ' The
Fundamental Theorem of Calculus."

In Section 2, Examples 1 and 3 should be emphasized, for they will
be used in Chapter 4. Section 3 contains statements of the intermediate-
and maximum-value theorems, which will be needed in Chapter 6. The
theorem proved in Section 4 (namely, that if f: f(x) dx exists, then { is
bounded) is referred to later on two occasions: in Chapter 6, where we
show that if F(x) = 3 x* sin(1/x°) then [, F'(x) dx does not exist, and
in Chapter 8 in the discussion of improper integrals. The theorem need not
be mentioned until Chapter 6. If time is a factor, its proof may be omitted.

Chapter 4, The Computation of Derivatives (4-5 lessons)

We obtain the derivatives of all the elementary functions at once for
several reasons: (1) the differentiation of polynomials conceals the limit
concept because of the easy cancellations, (2) the transcendental functions
are more important in applications, (3) to give maximum practice, (4) to
have all the derivatives available.

The differentiation of log., x is done in the classical manner not only
to obtain the formula early, but also because the approach through definite
integrals is too sophisticated for most students. The second approach is
included in Chapter 6, and the instructor who intends to include it can
simply state now that D(log.x) = 1/x.




The more skill the student has in computing derivatives, the easier
will he find subsequent chapters, especially Chapter 7. Rather than dwell
too long on Chapter 4, however, I would suggest that while Chapters 5 and
6 are being studied, a few problems be assigned from Chapter 4.

Chapter 5, The Law of the Mean (1-2 lessons)

The law of the mean runs as a subtheme through the rest of the book.
In Chapter 6 it is used to prove that if f = F' is an increasing function, then
[? #(x) dx exists and equals F(b) - F(a). In Chapter 8 it is used, for in-
stance, to obtain the formula for arc length. In Chapter 20 it is used to
prove that f.y = fyx, to justify differentiation under the integral sign, and
(in a generalized form) to obtain L' hopital's rule. Once the differential
equation dy/dx = ky is solved, some of its applications from Chapter 21
can be included. After Chapter 5 one is ready for Chapter 10 (Higher De-
rivatives) and Chapter 11 (The Maximum and Minimum of a Function).
Of course, such a detour would break the continuity of Part I. In Part I,
all we want from the law of the mean is: two functions that have the same
derivative differ by a constant and Corollary 5, which relates certain ap-
proximating sums to F(b) - F(a). For this purpose the swiftest way
to cover this chapter would be to state the law of the nean (which students
would readily accept), then obtain Corollary 5. This would mean that only
the special case of the fundamental theorem of calculus in Chapter 6 could
be proved.

Chapter 6, The Fundamental Theorem of Calculus (2-4 lessons)

Considering only theory—not applications— Part I could end with this
chapter, which relates the derivative and the definite integral. Rather than
spend time on lower and upper sums, or step functions, or trying to prove
that a continuous function has a definite integral, we prefer to give a com-
plete proof of a special case (f = F', for f increasing) and the traditional
argument which assumes that a continuous function has a definite integral
and deduces that d [ [7 £(t) dt]/dx = £(x).

Moreover, it doesn't take muchtime to remarkthat there are functions
that have a definite integral but no antiderivative (Exercise 15 in Section 1);
functions whose derivative does not have a definite integral (Examplel in
Section 1); functions, such as e*, whose antiderivatives are not elementary.

Theorem 1 (concerning continuous functions), Theorem 2 (the special
case), and Theorem 3, which is implicit in Theorem 1 and asserts that the
derivative of the definite integral [T f(t) dt with respect to x is £(x), we
refer to as the fundamental theorem of calculus: all relate the derivative
to the definite integral.

Section 4, ' The Integral Approach to the Logarithm, " may be omit-
ted without affecting subsequent chapters, as long as the student knows that
D(In x) = 1/x, a result obtained less rigorously in Chapter 4. Indeed, I
would omit it if the time saved could be devoted to a more general topic in
Part II or to an application in Part III.

1

Chapter 7, Computing Antiderivatives (2-5 lessons)

The techniques of substitution and integration by parts (Sections 1
and 2) and a table of integrals are adequate for practically all of the later
development in the text. In this chapter the student should learn how to use
integral tables and become familiar with their limitations.
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In Section 3 ("' Partial Fractions') the student is studying algebra,
not calculus. The cookbook use of partial fractions is given in the section,
but the student may be referred to Appendix G for a discussion of the al-
gebra. A second lesson on this topic, including review exercises for
Sections 1 and 2 may be appreciated.

Section 4 consists of special techniques.

Chapter 8, Computing and Applying Definite Integrals over Intervals
(4-11 lessons)

Here the student develops skill in recognizing when quantities can be
expressed as definite integrals and in applying the fundamental theorem.
There is no need to cover all nine sections. The main innovations are the
emphasis on the first moment (and higher moments) and the introduction of
probability distribution and density (which is used in Chapter 24, " Traffic').

For later applications the most important sections are: volume, aver-
age value of a function, and improper integrals. In particular, they make
Chapters 21-25 accessible. Section 1 ("' Area') includes a discussion of
substitution in a definite integral. The instructor may choose to cover some
of the sections and finish the remaining ones after a break of a few chapters.

Chapter 9, Computing and Applying Definite Integrals over Plane and Solid
Sets (2-6 lessons)

If time is short, this chapter may be cut or omitted. Section 2, in-
tegration via rectangular coordinates in the plane, is used in Chapter 19
(""Green's Theorem' ). Integration via spherical coordinates is used in
Chapter 26 (' Gravity'' ) for computing the attraction of a sphere.

I suggest that, before beginning this chapter, the instructor review
the definition of [ f(P) dA from Chapter 1. This will also remind the stu-
dent that we are now solving a problem posed in Chapter 1 and will help
him to distinguish [; f(P) dA from the repeated integral.

In Section 1 we prove that all balancing lines pass through a single
point, which we then call the center of gravity. The argument is quite sim-
ple and shows the importance of plane definite integrals. Both physics and
mathematics texts slide over this technicality (like two outfielders, each
assuming the other will make the catch), but it merits attention and pro-
vides a meaningful introduction to Chapter 9—before the consideration of
repeated integrals. In Section 1 we obtain the formulas for (X,y). If time
is short, the instructor may simply state the formulas for use in the re-
maining sections. (They were stated in the case of constant density in
Chapter 8.)

A minimal treatment of Chapter 9 consists of Section 2, " Computing
Plane Integrals via Rectangular Coordinates,' for this does convey the no-
tion of a repeated integral.

Observe that the notation [ f(P) dA is used for the definite integral,
here as in Chapter 1, not the notations [[; f(P) dA or [[f(x,y) dx dy. Re-
peated integrals are written for emphasis with the insertion of parentheses,

e.g., [ (J} 1(x)y) dy) dx.




Part II: Topics in the Calculus

Chapter 10, The Higher Derivatives (2-4 lessons)

Here we meet the second derivative, a topic which may be introduced
after Chapter 5. The first three sections, devoted to the second derivative,
are independent. Section 4, which discusses the higher derivatives, sets
the stage for Taylor's series by developing the formula a; =£,(a)/j!
for polynominals.

Section 1 discusses the relation between y'' and concavity and maxima.
However, it is not needed in Chapter 11, where maxima are dealt with in
terms of £f'. Section 2 uses y'' to study constantly accelerated linear mo-
tion. Though it ties in nicely with Chapter 26 (' Gravity''), it is not needed
in any later devlopments. Section 3 ("' Curvature') can be omitted. The
concept of curvature appears again in Chapter 17, where we obtain the nor-
mal component of acceleration. In Chapter 17 all that we need of curva-
ture is that it is defined as d¢/ds.

Chapter 11, The Maximum and Minimum of a Function (2-4 lessons)

It may seem surprising to find this subject, historically andtraditional-
ly placed atthe center of the calculus, delayed until Chapter 11. I had several
reasons for not putting it in Part I: (1) I wanted to treat £(x), f(x,y), and
linear programming together; (2) its insertion in Part I would disrupt the
continuity of the first nine chapters; (3) the student should have lots of
practice with derivatives before applying them to maxima problems.

As a matter of fact, the instructor who wishes to consider Section 1
(" Maximum of f(x)"') may do so as early as immediately after Chapter 5
(" Law of the Mean''), where it is shown that at an interior maximum a
differentiable function has derivative equal to 0. Section 2, which intrcduces
partial derivatives and applies them to maximizing f(x, y), can also be in-
troduced then.

While Chapters 15-20 make use of partial derivatives, most of the
applications in Part III do not.

Section 3, linear programming, is included as a reminder that in many
practical cases extrema occur on the boundaries. It may be omitted.

Chapter 12, Series (3-4 lessons)

The student has met sequences in Section 1 of Chapter 3. It may be
wise to assign homework back in that section just before starting this
chapter—as a reminder--and to discuss some of the six examples in that
section that may not have been treated before.

Example 3 in Section 2 shows that 1{11_11.3 x" /nl =0, a result referred to

in Chapter 13 (" Taylor's Series'). Section 3, which examines the error

E, =8S8-8,, is not needed for later work. Section 4 (" Power Series'), shows
that tan™ x=x-x*/3 +%x°/5- - - - and sets the stage for Taylor's series
(but is not used in the development of Taylor's series).

Chapter 13, Taylor's Series (1-3 lessons)

We begin with the integral formula for R, because of the (relative)
simplicity of its proof and its connection with the fundamental theorem of
calculus, which it generalizes. The derivative form of R, generalizes the
law of the mean.
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Chapter 14, Estimating the Definite Integral (1-2 lessons)

This '"practical' chapter ties together several ideas: the definite
integral as a limit of sums, the limitations of the fundamental theorem as a
computational tool, higher derivatives, and Taylor's series. It is not re-
ferred to later.

Chapters 15 through 19, going from partial derivatives and vectors
to Green's theorem in the plane, form a unit which the mathematician
or physical scientist should meet early in his career. The social
scientist would benefit from Chapter 15 (' Partial Derivatives' ) and
Chapter 16 (' The Algebra of Vectors' ), the latter an introduction to
linear algebra (CUPM's Math 3). Chapter 15-17 are needed in Chapter
26 (" Gravity''). The natural or social scientist may benefit from re-
placing Chapter 18 (' Curve Integrals') and Chapter 19 ("' Green's
Theorem in the Plane') with some chapters from Part III. On the other
hand, a first-hand knowledge of Chapter 26 may be of value to anyone
who will be using mathematics, for it is an example that may develop
high standards and broad perspective in the applications of mathematics.
Besides, neither we nor the students should stereotype them when they
are,as CUPM succinctly puts it, eighteen years old.

Chapter 15, Further Applications of Partial Derivatives (3 lessons)

Note that the proof of the equality fx, = fyx is delayed until Chapter 20.
The proof is, however, self-contained and could be presented with Chapter 15,
especially if Chapter 20 will not be covered.

Chapter 16, Algebraic Operations on Vectors (4 lessons)

For several reasons I feel that an introductory calculus course is not
the place to introduce vectors as ' equivalence classes of ordered pairs of
points." (What is an ordered pair? What is an equivalence relation? Is
addition of vectors well defined?) Rather I have chosen to include more
physical motivation than is customary. In particular, fluid flow is referred
to again in Chapters 18 and 19 to provide a plausibility argument for Green's
theorem before its proof.

Chapter 17, The derivative of a vector function (3 lessons)

The development of Ay and A 1 is included mainly to illustrate the power
of vector techniques. (Ay and At are not used later in the book.) The com-
ponents A: and A, are obtained in Chapter 26, during the study of planetary
orbits. It is possible to omit Ay and At and go directly to Chapter 26 for A:
Ay

Chapter 18, Curve Integrals (2 lessons)

It should be emphasized that a curve integral is a definite integral.
This chapter and Chapter 19 generalize the fundamental theorem to the plane
and provide a background for those who will go on to the higher-dimensional
versions of Green's theorem.

Chapter 19, Green's Theorem in the Plane (3-4 lessons)
Here we use Green's theorem to develop the Jacobian in two dimensions.
We do not use matrices or determinants. The material in this chapter (the

9




Jacobian and an example of a linear transformation) will provide some back-
ground for the subsequent study of linear algebra.

Chapter 20, The Interchange of Limits (1-3 lessons)

More than one analyst has felt that the interchange of limits is a ma-
jor part of analysis. In this chapter, which is kept as simple as possible by
""stacking the hypotheses' so that the law of the mean can be made the basis
of the proofs, we provide a prelude to advanced calculus. Note that the proof
of the generalized law of the mean is almost identical with that of the law of the
mean. (No " skyhooks' are used to introduce a function from out of nowhere.)

Part III: Further Applications of the Calculus

These six independent chapters introduce no new mathematical ideas;
hence, the instructor is free to cover them as he wishes. Perhaps some
chapters may be assigned as term papers (the student solving a certain
number of exercises in a chapter). Since the time to be devoted to a chapter
is quite arbitrary, no suggested numbers of lessons will be offered.

Chapter 21, Growth in the Natural World
This is what most biologists want from the calculus. It could be covered
after Chapter 5.

Chapter 22, Business Management and Economics

This chapter applies maximum-minimum arguments, improper in-
tegrals, and partial derivatives. Even the mathematics major may be in-
terested to know that the Laplace transform of the revenue function is the pre-
sent-value function.

Chapter 23, Psychology
This chapter provides illustrations of the use of the derivative and the
definite integral.

Chapter 24, Traffic

This chapter calls attention to a relatively new field of engineering.
With a million acres (1600 square miles) of road built every year in the U. S. A.
and the population increasing at the rate of two million per year, this field will
become increasingly prominent., The section on the Poisson distribution has
applications to many fields, as is shown in the exercises. The section on cross-

traffic provides a nice application of the infinite series X, np” . The student who

hasn't the time to take a probability course (such as CUPM's Math 2P) would
find here the basic concepts of continuous distributions.

Chapter 25, Rockets

This chapter should be of interest to many citizens of the twentieth century.
It develops the basic equation of rocket propulsion in free space, mass-ratio,
escape velocity, and drag. It uses no calculus beyond Chapter 8 and develops
the little physics that is needed.
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Chapter 26, Gravity
The historical introduction describes what Newton did and what he did

not do, a subject over which a haze has settled; this approach is used to make
the physical problem as vivid as possible, for the mathematics that follows is
rather involved. The chapter depends on Chapters 8, 9, and 17 and is a {it-
ting conclusion to a calculus course.
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III. OUTLINES OF VARIOUS COURSES BASED ON THE TEXT

Since many instructors are called on to teach the calculus more fre-
quently than any other course, it seems to me that they should, for their own
pleasure (and hence their students') be able to vary the course from year
to year without disruptively changing texts every couple of years. For this
reason each chapter, section, and example is written to offer the maximum
choice of order, of omission or inclusion, and of degree of thorough-
ness or coverage. The appendixes increase this flexibility. The instructor
who would like to include more analytic geometry, a discussion of the real
numbers, or more material on the algebra of partial fractions may choose
to include one or more of the appendixes.

Even if some chapters in Parts II or III or the appendixes are covered
before Part I is complete, it is important that the student realize that Part
I is a unit whose subtitle might be " The fundamental theorem of calculus
and some of its applications."

Part I takes from twenty-four to forty-six lectures, depending on how
much of each chapter is covered and how intensively. Teaching and learning
this material is simplified by its unity: relatively few symbols, terms, and
definitions are introduced. Moreover, the student knows wherve he is and how
the chapters fit together. This may perhaps be called Math 1.

Part II takes from twenty-seven to thirty-nine lectures and may be called
Math 2. Both Math 1 and Math 2 may incorporate some chapters from Part IIL
I think of the text as completing the basis of the calculus (CUPM's Math 1, 2, 4)
in one year instead of CUPM's year and a half. This would include about four
lectures on differential equations instead of CUPM's suggested twenty-four.
CUPM seeks flexibility and smaller texts; I feel that any text that tries to cover
more than two semesters is too big. Moreover, the attempt to shove such
topics as analytic geometry, linear algebra, or differential equations into
the calculus course frequently results in their inadequate treatment.

Various courses may easily be extracted from the text, as the fol-
lowing outlines suggest. The first course is included for the convenient de-
scription of the other courses following it; I am not advocating its inclusion
in the curriculum.

A. Minimum course, 18 lectures: the derivative, the definite integral, and
the fundamental theorem of calculus
The first six chapters contain the essence of the calculus, as expressed

in the fundamental theorem. It is, therefore, a minimal self-contianed ex-
tract. In eighteen lectures one could cover Chapter1 (omitting 2- and 3- di-
mensional definite integrals), Chapter 2 (omitting set derivatives), most of
Chapters 3 and 4, the law of the mean and Corollary 5 from Chapter 5, and
only the special case of the fundamental theorem from Chapter 6.

B. Maximum course, Parts I and Il in 85 lectures plus Part III

C. A course aiming at the Poisson distribution in Chapter 24, " Traffic, "
25 lectures
The minimal course described in A, plus improper integrals, and prob-
ability from Chapter 8, plus Sections 1 and 2 of Chapter 24.
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D. A course omitting vectors, 72 lectures plus Part III
This would differ from the maximum course in the omission of Chap-

ters 16, 17, 18, 19, and 26.

E. A course omitting plane and solid definite integrals, 74 lectures plus

Part III

This would eliminate part of Chapter 1, all of Chapters 9 and 19, and
the attraction of a sphere in Chapter 26, and would suggest the omission of

Chapter 18 (" Curve Integrals').

F. A course emphasizing the applications in Part III excluding Chapter 26,

" Gravity,' 25 lectures plus the first five chapters of Part III
The minimal course, Sections 1 and 2 of Chapter 7, Sections 8 and 9

of Chapter 8, Section 1 from Chapter 11, the chain rule from Chapter 15, Z, np"
from Chapter 12, plus Chapters 21-25 from Part III,

Many rearrangements are possible,

For instance Chapter 10, " Higher

Derivatives" (other than Section 3, ' Curvature' ), and Chapter 11, ' Max-

AA

imum and Minimum of a Function,

can be placed right after Chapter 5.

The chart below shows the interdependence of the chapters:

Chapter

may follow Chapter

10 Higher Derivatives
11 Maxima

12 Series

13 Taylor's Series
14 Estimating the Definite Integral

15 Partial Derivatives (Section 1);
remainder of chapter

16 Algebra of Vectors (Sections 1, 2);
remainder of chapter

17 Differentiation of Vectors

18 Curve Integrals

19 Green's Theorem

20 Interchange of Limits

Part I
21 Natural Growth
22 Business and Economics

23 Psychology
24 Traffic

13

4 (the derivative)

10 (or 5, if the second deri-
vative is not used)

7 and improper integrals

from 8

10 (higher derivatives only), 12
7 (except for the part of Chap-
ter 14 that uses Chapter 13,

" Taylor's Series')

13

5

any

15

16

17

18

15

5

11, improper integrals
from 8, chain rule from 15
6

8 (improper integrals and
probability distribution and

density only), 12 (Elnpll only)



Chapter may follow Chapter

25 Rockets 5, 8 (improper integrals
only)

26 Gravity 9 (integration by spherical

coordinates only), 17
[D (£(t) F(t)) only]
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V. SOLUTIONS TO EXERCISES

If time is a limiting factor, assign exercises from the second group
sparingly--perhaps not all, However, they may serve as examples in
lectures, as review problems, or as voluntary problems (solutions posted,
so as not to use up class time), Solutions to many problems are given in
detail in order that the instructor may decide with a minimum expenditure
of time which exercises will best serve his purposes.

CHAPTER 1: The Definite Integral

SECTION 2: Precise Answers to the Four Problems
. (a) xe=1, x=3/2, % =2, xs =5/2, xe = 3. (b) 6.
(¢) Xy =1/4, X; = 3/4, Xs = 5/4, Xy = 1/4, Xs = 9/4, Xs = 11/4,
3. (b) "Two triangles fill a square,"
5. 232.4.
6. (a) 7°/3. (b) T /3.
7. (@) b*/3. (b) b*/3.
9. 97,
0. 9 million dollars.

SECTION 3: The Definite Integral over an Interval
2. (b) T7/60= 1,283,
4, For instance, m = 1.283 and n = 2.083.
5. (a) 1.47. (b) 1.43. (c) 1.93.

16. (a) foaﬂxzdx. (b) 9.
17. (a) [*tdt. (b) 9 (millions of dollars).
0

18, [° (3 -Vy)dy.

0

19. (a) f:/z 58 dx. (b) f03/2 5x? dx,

20. ['x*dx. (For each n use the partition given by xi = i/n and Xi = x;).
0

21. [%2425 - ¥* dx.
-5

22, [?t*dt (millions of dollars).
1

ooo

23. For convenience, consider the circle and ellipse to be cut from a right
circular cylinder by two planes, one perpendicular to the axis of the
cylinder, the other intersecting it at an angle A. The area of the circle
may be expressed as [* c(x) dx, where c is the cross section function;

the area of the ellipse is [* c¢*(x) dx, where c*(x) is the appropriate
cross section of the ellipse, Since c*(x) = (sec A) c(x) = (b/a) c(x),

we have [ c*(x)dx= (b/a) [* c(x)dx = (b/a) 7 a® = 7 ab,

15



25,

26,
21,

28,

29,

If you intend to cover Section 4 of Chapter 6, this exercise may be espe-
cially appropriate, Observe that if X;, ..., Xa are sampling points in
[0, X1 ],eees [Xn-1, Xu); then 3Xi,...,3Xa are sampling points in

[3%0, 3%1],.00s [3%n-1, 3% ], Thus

> (1/3X:) (3% - 3x11)

i=1

is an approximating sum for [® 1/x dx. Cancellation of the 3's in
3

(1/3X:) (3x; - 3x;.,) = (1/X ) (x -x,,),almost completes the exercise,
See the discussion of Exercise 25,

It does not matter at what speed he travels, since the volume of the set
of raindrops that strike the windshield equals: ''length of trip' X "area
of windshield." An easy way to see this is to consider the set occupied
at the beginning of the trip by all the raindrops that will eventually
strike the windshield.

Arguing intuitively, we see that the area of the ring whose inner radius
is xi-1 and outer radius is x; is about 27x; (X1 - Xi-1). (When straight-
ened it resembles a rectangle of length 27x; and width xi - Xi-1.) Thus,

n

Z 27X (X1 - Xi1)

i=1
is an estimate of the area of a disk, whence its area is [* 27x dx.
[\

If X; isin [Xi1, Xi], then 2X; isin [Xim, X1 ].

Z (2X1)5(2X; - 2Xi1)

is therefore an approximation of [? x°dx. From this it follows that
o]

[2x° dx=(2%2 ['x°dx= 64/6.

0 0

SECTION 4: The Average of a Function over an Interval

6.
7.
8.
9.

10,
11,

13,

Yes, and its value is 0.

(a) 3. (b) 1,

24 miles per hour.

(a) 12and 28, (b) 12= flsf(x)dx =28, (c) It is between 3 and 7.

(a) 21, (b 4.2
() 10, (0 9. (c) 139/19 = 17,3186,

aono

Since the values of x at which f is known are not equally spaced, this
exercise should lead to some open-ended discussion, ''Should we give
greater weight to the interval [0, 1/2] where we know more ?"

"'Should we disregard f(1/4) and £(1/2)?" In any case, simply averaging
3, 7/2, 4, 6, 8 is not right, since doing so gives too much weight to
small numbers. (1) Perhapsuse X; =0, Xp = 1/4, X3 =1/2, X, = 1,
Xs =2andx0=0, x1 = 1/8, x = 3/8, x5 = 3/4, x4 = 3/2, x5 = 2

(2) Perhaps graph the five known points (x, f(x)), join them by straight
line segments and compute: (area under graph)/(width of interval).
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14,

15,
16,

(b) Partition [0, 2] into 3m sections all of equal length 2/3m. In
precisely m of these sections choose Xi to be irrational.

Tab/2a = 7h/2.

(This is an occasion to remind the student that the areas of similar
plane figures are proportional to the squares of their linear dimensions.)
The area of the cross section made by a plane parallel to the base and at
a distance x from the vertex is therefore (x* /h®) A, Thus, the volume
equals [o" (x* /h%) A dx = hA/3. Note that this is the 3-dimensional

analog of ""the area of a triangle is half its base times its height."

SECTION 5: The Definite Integral of a Function over a Set in the Plane

5.
6.
7,

9.

11,

15,

16,

17,
18,

16, 20, 6 respectively.

(a) It equals BA. (b) 5A.

(a) Any circumscribing rectangle has area < d*, (b) A circle,

(c¢) In Chapter 8, Section 1, Exercise 18 it is shown that its area is at
most the area of a circle of diameter d.

By considering the minimum and maximum of f over the appropriate R,
one shows that the definite integral is between (a) 6 and 15,

(b) 97(8 - 3V2) and 97(8 + 3V2).

The first implies the second (for the area of each set becomes 'small"),
but the second does not imply the first (keep one set in the partition
fixed, partition the rest).

oaao

(An exercise that may interest the non-physical scientist,) It is simply
another version of the two problems discussed in the section.

Let the radius of R be a. An approximating sum for this f and R formed
on a partition of mesh p, has a non-negative value that is less than
3(2a-2p), since a region Rsfor which f(P;) # 0 lies in the rectangle of
length 2a and width 2p lying along the diameter. Since 12 ap—-0asp —~0,
the definite integral exists and equals 0.

No. Use the same argument as in Example 2 of Section 4.

The cross section for each x in [0,4] is a triangle of base 2 and height
2%, hence of area 2x, Thus the volume equals f: 2x dx = 16,

SECTION 6: The Definite Integral of a Function over a Set in

10,

Three-dimensional Space
(Volume) X (maximum density) = 4° (4% + 4° + 4%) = 64 x 48,
(20/3) mr®, since each approximating sum has that value,
If R is the set and f(P) = distance from P to F, then the average distance
is [rf(R)dV/volume of R,
It is between 384 and 1120 (ounces).
(a) Itis at most 8(volume of R). (b) Itis at most 8.
(b) As the density of a homogeneous potato occupying the same set and
having the same mass,

ooo

Since the solid lies within a cube of side 10, the volume is less than 10°.
(This is not the best possible result.)

If R is the region in space occupied by the mountain, then the work
equals [ h(P) g(P) dV. Energy considerations like this have been used
in geological theory.
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CHAPTER 2: The Derivative

SECTION 1: Estimates in Four Problems

3.

8.
9.

12,

15,

(a) 5.999.(b) 80(5.999) feet per second. (c) 5.999, (d) 5.999 ounces
per inch,

(¢) 45° or 7/4 radians,

(a) Using intervals to the right of the mentioned points, one obtains the
estimates 2,001, 4,001, 6,001, 7.001 ounces per inch. (b) 2s ounces
per inch,

oogd

(c) 6. (d) Itis 6. In general, this method of estimating the slope of
the tangent line at a point P is more accurate than the method that uses
a chord one of whose ends is P.

(See Exercise 12.) (a) 12 +h®. (b) It approaches 12.

SECTION 2: The Derivative

1,
2.

E,ﬂ»h

13.
14,

15,

19.

23.

(a) 3t® miles per hour. (b) The derivative.

Using the idea that AV/A x is an estimate of cross-sectional area, and
thus that the derivative of V with respect to x is the area, one obtains

(a) 3 square inches, (b) 12 square inches, (c) when 3x° = 3/4, that is,
x = 1/2 inch,

Z [1/8(X1) ](xi- xi-1) is an estimate of the time; hence the time is a
i=1

definite integral fb [l/f(x) ]dx, assuming, of course, f(x) # 0.

(e) -1/(4 + 2a%).

(@ -1/9. (b) -1/%.

(c) 0.414. (d) 0.107. (e) c/x where c is fixed at about 0.4 (actually

c = 0.434, to three decimals),

(@) 5. (b) 5. (c¢) The line itself.

(d) Using a common logarithm table, one sees that logio 1.259 is close
to 0.1, thus 10>" = 1,259 and 10'"* = 12,59. Thus the first line has slope
2.59 and the second, 25.9.

(b) Whenx=4, (¢) t=4, (d Only (4,256).

ood

(10**4* -10%) /Ax = 10°[(10** -1) /ax]. Hence, the derivative at x is
(10™) (derivative at 0) .

(a) £(1) = £(1/1) = £(1) - £(1), hence £(1) =0, (b) £(1/%) = £(1) - £(x) =
- f(x). (c) In the identity f(x/y) = f(x) - f(y), replace y by 1/y and use
(0). (d) [f(x+ Ax) - f(x) |/ax = f((x + &%) /%) /Ax= {(1 + Ax/X)/Ax

= (1/91(1 + ax/%) /(ax/x) = 1/x [f(1 + ax/x) - £(1) ]/(ax/%).

Let Ax — 0 and recall that f' (1) = 1, (e) logiox.
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SECTION 3: Standard Notations Related to the Derivative; the Differential

2. dx dy Ay
3 9 63
2 6 26
1 3 7
0.1 0.3 0.331
0.01 0.03 0.030301
0 0 0
-1 -3 -1
4, dx dy Ay
0.5 -0.5 -1/3 =0.333
0.1 -0.1 -1/11 = 0.091
6. dx dy Ay Ay/dy
1 4 5 1.25
-1 -4 -3 0.75
0.1 0.4 0.41 1.025
-0.1 -0.4 -0.39 0.975
0 0 0 meaningless

9. (b) It approaches 3x12, (c) Itis 3x® at x,
10. Tt approaches -1/x:%.

11. y=1(x)| D(y) dy Ay
X 2x 2xdx 2xdx + (dx)®
% 3% 3% dx 3% dx + 3x(dx)? + (dx)*
1/x -1/% | (-1/5%)dx [-1/(® + x d®]dx
Vx 1/2Vx (1/2Vx)dx | Vx+dx - Vx

(The lower right entry,as shown inSection 3, equals [1/(V x + dx +V x)]dx.)

12, (a) The differential dy represents the mass of the string in [x, x+AX]
if the density of that section is constant (and equals the density at x.)
The increment Ay is the mass of the string in [x, x + Ax].

AY.;d_X= Ay _il(i)g’_{ - BY _ i — -
14, = ax ax e f'(x), which approaches 0 as dx(= Ax)—0.

SECTION 4: A Generalization of the Derivative
5. We know that [f(x + A%) - f(x)]/Ax — a, a certain number. Now
f(x + Ax) - f(x ~ AxX), Ax > 0, may be written as [f(x + Ax) - f(x) | +
[f(x) - f(x - Ax) |. From this it follows that
[f(x + A%) - f(x - AX) ]/2ax—2a/2 +a/2=a

6. Similar to Exercise 5, but use for Ax > 0, At > 0 the identity

f(x + Ax) - f(x - At) _ Ax [f(x+Ax) - £(x)]
AX + At T Ax+At AX
At [f(x) - f(x - At) ]
Ax + At At
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CHAPTER 3: Limits and Continuous Functions

SECTION 1: The Limit of a Sequence

1.
6.

8.
9

10,

11,

13.
14,

15,

16,

17,
18.

19,

20,
22,

23.

24,

217,

28,

10.

The distance remaining at the n™ stage is (1 - 1/4) (1 - 1/16) . ..

(1 - 1/(2n)®), which does not approach 0 as n—~ =, It approaches 2/7.
(b) an = 2 when n is even and 0 when n is odd, (c) No.

(2) as =2, as = 7/4 = 1.75, as = 97/56 = 1.73214, as = 18, 817/10, 864

" 1.73205. (b) Same as (a), (¢) as = V3 foralln, (d All (seem to)

have the limit V3 ((c) obviously).

(b) a, =1/2, a; =2/3, as = 3/4, a; = 4/5. (¢) an =n/(n +1),

(d) First rewrite an = 1/[1 + 1/n], perhaps.

(a) a; = 1/4=0.250, a; = 13/36 = 0.361, ag = 61/144 = 0,424, a,

= 1669/3600 = 0.464. (c) The property used is that an increasing
bounded sequence of real numbers has a limit. This is a consequence of
the completeness of the real numbers, discussed in Appendix B and in
Chapter 12,

(¢) Yes, since lim (n +1)/2n= 1/2,

n—ow

n 1 2 3 4 5 6
(1+1/n)" 2 2.250 2,370 2,441 2.488 2,522

(a) as = 5/3=1,667, as = 8/5= 1,600, ag = 13/8 = 1.625, a;= 21/13
= 1,615,

as; =2, a4 =3, a5 = 2, ag = 1, ar= 1. Thus, since ag = a, and a7 = az,
the sequence repeats in blocks of five. It is not convergent. If it were
convergent and its limit were L, then L =(1+1) /L, hence L

= (1 + v5) /2, the positive sign in front of V5 since all the a.'s are
clearly positive.

Since a; = 1 and as = 1, it behaves like the sequence in Exercise 16.
(a) a; =1, a, =1,5, az = 1,833, a4 = 2,083, as = 2,283, (¢} No, aa
becomes arbitrarily large.

(a) an=(1* +2* +...+n*)/n®. (b) a, =1, a; = 17/32 = 0.531, a,

= 0.403.

(a) a. = 3/10 + 3/10% + ... + 3/10".

az = - 1/2, a; = 2/3, a, = 3, and the sequence is periodic. It is not
convergent,

(a) az =2/3, a; = 3/4, as = 4/5, a5 = 5/6, a5 = 6/7. (b) Since we
would have L = 1/(2 - L), L would be 1. (¢) The limit exists, since
one may (inductively) show that a. = n/(n + 1).

ooag

This is the Buffon needle problem. The probability turns out to be 2/7,
as is shown in Chapter 6, Section 1, Exercise 20.

(a) 1.500, 1,083, 0.950, 0.884, 0.846. (b) The number of terms in-
creases but the terms get small, (¢) The sequence approaches 0.693
= flzl/x dx, as will be shown in Exercise 31. (Note that a, > 1/2.)

This exercise shows that e exists, If there is ample time, it may be
covered as a lecture. If not, it may be suggested as a reference. Note
that it makes use of the fact that an increasing bounded sequence has a
limit, a result discussed in Appendix B.
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30.

31,

32,

33.

(¢) Assume r > 1, From (a) it follows that s <r. Clearing denomina-
tors, we have s!(r + 1)" = r"N, where N is an integer. Sincer andr + 1
are relatively prime, r" divides s! Buts!< s°< r” if s>1.

Note that a, in this exercise differs from a, in Exercise 27 by 1/n.
(a) an = Z 1/(n + 1)
i=1 i=1

[?1/x dx made withx; = 1 +i/n, i=0, 1,..., n, Xi =xi, i=1, 2, ..., n.
1

b an<1/n+1) +1/n+1) +...+1/n+1) =n/(n+1) <1,

(€) an -am =1/n-1/2n+1) -1/(2n + 2) = (3n + 2) /n(2n + 1) (2n+2)>0.

In Chapter 12, Section 2, Example 2, it is shown,for 0 <p < 1, thatp+

2p° +3p° +...=p/(1 -p)®. Thus, the sum in Exercise 32 is 3. The ex-

periments sometimes suggest such guesses as 3, 7, v10.
Though the gaps '"tend to increase,'" U's do not always lead D's,

> (1 +i/n)"*(1/n), an approximation to

SECTION 2: The Limit of a Function of a Real Variable

3.

D
.

11,

12,

14,

x 1 0.1 0.01 0
cosx | 0.8415 | 0.998 | 0.9999599996
1-x*/2| 0.500 0.995 | 0.99995 1
(a) x |-1/2 -1/3 | -1/4 | -1/5 | -1/6
1+0Y*| 4 3.375 | 3.160 ’3.052 ‘2.986
(b) Yes.

x | -1/8l-1/2]-1/5) /31| 2 | 3 | 4 | 1000
(1+xY*[6.179] 4 [3.052]2.370] 2 | 1.732 | 1.587 | 1.495 | close to 1
(a) 80.

(a) 405. (¢) d(x°)/dx= 5x*.

Qoo

[In Chapter 6, Section 1, we will cite the function y = (1/2)x* sin(1/x")
as a counterexample. This exercise is good preparation if you want to
discuss that counterexample.] Point out that this graph oscillates
between the lines y = xand y = -x.

(a) No, since f(x) ~ 0 as x — 0 from right and f(x) — 1 as x - 0 from
left. (b) Yes, 1/2. (¢) Yes, 1/2.

Rewrite the quotient as [(x* - 2°) /(x - 2) |/[(® - 2%) /(x - 2) ], which
approaches (5+ 2*)/(2-2) =20as x ~ 2.

SECTION 3: Continuous Functions

1,
3.

4,

Since lim (1 - cos x) /x= 0, we must set £(0) = 0.

x—0
(a) The population is not continuous. (b) Speed is continuous (even in
a crash). (¢) There may be some debate. Since a person is composed
of a finite number of molecules, the weight is in fact not continuous,
However, growth charts approximate it with a function that is intended
to be continuous.
(b) At any x not an integer. (c) Atall a, and lim f(x) = 0,

X—a
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(%3]
.

=

9.
10.
11,
13.

14.

15,

11,
18,

19,

20,

21,

22,

(b) Everywhere except at the integers.
(b) Since lim f(x) does not exist, there is no way of defining £(0)
x—0

to provide a continuous f.

Form=1, X=1, -1;for 1<m < 4, X= Vm.

(b) X=0, m, 2. () For m=1, two X's; for -1 <m < 0, two X's;
for 0 <m < 1, three X's,

There is no X, Note that f is not defined at 0,

No. The maximum value theorem refers to closed intervals.

The intermediate value theorem.

(a) £(0) =0, £(1/2) =0, £(-2) = 0, £(1) = 1/2. (b) For x# -1.

(e) x# -1, 1,

(@) £(1/2) =0, £(2) =1, £f(1) = 1/2, (b) All x; f(x) = 1if Ix|> 1,
f(x) = 0if )x| < 1, f(x) = 1/2if Ix|l = 1. (c) Everywhere except at
x=1, -1

oag

Encourage the students to graph f, which is continuous only at x= 1,
They sometimes try to do it in their heads.

Introduce g, defined by g(x) = - {(x).

This is Brouwer's fixed point theorem in dimension 1. (A graph of f
makes it plausible.) If £f(0) # O then £f(0) > 0. If £f(1) # 1, then (1) < 1,
Then g defined by g(x) = {(x) - x is positive at x = 0 and negative at

x = 1. The intermediate value theorem applied to g says that there is
X in [0,1] such that g(X) = 0, that is, X = £(X).

If £(0) = 0, let X= 0. If not, we may assume {(0) = a > 0, Then {(a)
=0<a. Letg(x) =1f(x) - x., We have g(0)> 0 and g(a) < 0, Apply
the intermediate value theorem to g. (The result is a special case of
P. A. Smith's fixed-point theorem: A hemeomorphism of Euclidean
space that is periodic with prime-power period has a fixed point.)

(a) Letg(x) = f(x +1/2) - £(x) for xin [0, 1/2]. Then g(0) = £(1/2)
and g(1/2) = -f(1/2). The intermediate value theorem implies that
there is X in [0, 1/2], such that g(X) = 0, which was to be proved.

(b) Consider f(i/n), i= 0, 1, ..., n. Pick m such that f( (m - 1) /n)

= f(m/n) = f((m + 1) /n) and introduce g as in (a), g(x) defined for x
in [(m - 1) /n, m/n]. (c) No. The function sin 27x is a counterex-
ample. (d) Yes. Consider g(x) = f(x +2/3) - {(x) for xin [0, 1/3].
Pick a small h> 0 such that f(h) /h < 0.1 and [£(1) - £(1 - h) ]/h> 0.9,
say. Let g(x) = [f(x +h) - {(x) ]/h for xin [0, 1-h]. We have

g(0) < 0.1, g(1 - h) > 0.9. Applying the intermediate value theorem to
g, we see that there is X in (0, 1 -h) such that g(X) = 1/2. The same
type of argument works for any preassigned slope m, 0 <m < 1, There
need not be a chord of slope 0 or 1, as f(x) = (1/2) x2 shows.

We have f(x*) = (£(x))° Thus £(0))® = (£(0))® and £(1) = (£(1))?>. Thus
£(0) = 0 or 1 and £(1) = 0 or 1. The fixed points of g are only 0 and 1.
We must prove that at least one of 0 and 1 is fixed under f. Say f(1)
;(1 that is, f(1) < 1. Then, sincefis continuous, there 1sanumber a
< 1, f(a) = b < 1. Since £(x°) = (f (x))* we have f(a ) = b%, f(a*) =b*
Smce a® ~0andb® -~ 0asn — « andf is continous at 0 we have

£(0) = 0 (= g(0)).
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SECTION 4: Precise Definitions of Limits
3. Anye >0 would work,
13. Encourage the student to write in newspaper English, There should be
no mathematical symbols, such as f and g, in his answers.

CHAPTER 4: The Computation of Derivatives

SECTION 1: The Derivatives of Some Basic Functions

6. logz(4) = 2, logs (2) = 1/2, logio V10 = 1/2, logs(1/3) = - 1, loge(1) = 0,
218f =8, elnx = x, 10"’ =17, James,

12, (a) 6, (b) 108 ounces per inch, (¢) 1/16 miles per hour, (d) 100,

13. (a) 1/2, (b) 1/2 foot per second, (c) 1/2.

SECTION 2: The Derivative of the Sum, Difference, Product, and Quotient
of Functions

1, (a) 2x+3x*. (b) 2x + 3%°.
2. (a) 4x°. (b) 4%,
4, -sin x + 2x,
7. (b) [(x* +sin 0 (3) - (1 + 3x) (2x + cos x) |/(>* + sin ®)*
12, (a) 4/(1 - 29°%, (b) 4x*(-x sin x + 5 cos %), (c) 5x* - 1/x,
13. (a) 4x® - sec’x, (b) 4x® +sec’x, (c) (4x° tan x - x* sec ¥*) /(tan ®)*,

(d x* sec®x + 4x°tan x.
o0og

17, Thetangentlineat {a, a") passes through (a, a®) and (0, - (n - 1)a”).
18. (a) Write (tan 8)/8 as [(sin 6) /6] / cos 6.

SECTION 3: The Chain Rule

L y=u,u=x*;y=0v’, u=x*;y=u*, u=x*; y=u®, u= . Of course,
it is also true that y = ulz, u=x;y=u, u=x"°.

6. (b) Lety=In |ul, u=cos x. Then dy/du= 1/u, du/dx = -sin x, hence
dy/dx = -sin x/cos x = -tan X. In this, as in (e) and (f), justifications
should be shown briefly beneath the equals sign.

7. (@) [(6x +2)(10x +1) - (5% +x+1)(12x) |/(6x° +2)°.
(b [(65% +2)(10x +1) - (55° +x + 1) (1200x%) ]/(6x* +2)*™,
(c) 4(logioe) x*/(x* +1), (d 2x cosx*/sin ¥, (e) 10 tan*2x sec®2x,
() (55° +4)™(3x° +1°[225x° (3x° + 1) + 60x(5x° +4)].

8. (a) In (b), (c), (d), (e) and (f). (b) In (d), (e), and (f).

9. dv/dt = 155°.

10. (3 n(1+x" =) +2G@)x + ... + (0-1) ) x" 2 +nx"",
) n2"" =) +2E) +... + (0-1) (1) +n. (¢) Both sides equal 32.
@ 0=() -26) +.o +(-D™* (n-1) (%) + (-1)" " n.

SECTION 4: The Derivative of the Inverse Function

4, cos '(0) =7/2, cos *(1/2) = n/3, cos (1) =0, cos™ (-1/2) = 27/3,
cos ' (-1) = 7.

6. (b) 6 =tan™ (x/3). (¢) dx/dt=2, d§/dx= 3/(x* +9).

7. The limit is the derivative of 10* at x = 0, hence 10°In 10 = In 10,
11. Both (a) and (b) are the derivative of € at x = 2, hence € or 7.3891,
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12,
13,
20.

32.

() (In2) @'x ) (1/VI-%), (e) (In 10) (10Y%) (-1/x%).
(a) (log,e) (12x%) /(1 +3x*), (c) e™/(1+ ).
(a) 4/5, (b) 4/5, (c) 4/5, (d 4/5, (e) 4/5, (f) letting

f(x) = ¥9 + X and using differentials at x = 4, we obtain f(4.1) ~ 5
+ (4/5) (0.1) = 5.08 and £(3.9) ~ 4.92,

lim (1 vanVr o dim [V e

h—-

CHAPTER 5: The Law of the Mean

SECTION 1: Rolle's Theorem
2 and 3. These should be expressed in nonmathematical language, e. g., for

2: If after starting and before finishing its journey, the particle reaches
its farthest position to the right, then at that moment its speed is 0.

X=0,1, -1,
Since f is not differentiable on (2, -2) Rolle's theorem says nothing,.
ooag
ux anx
Apply Rolle's theorem to g defined by g(x) = aox + + — -

Note that g(0) = 0 = g(1).

SECTION 2: The Law of the Mean

1,

10.
11,
19.

24.

25,

26,

If the change in position is d and the duration of the trip is t, then at
some instant during the trip the particle had the velocity d/t.

At some point in the string the density equals total mass/length of
string.

If the projector magnifies a certain interval by a factor m, then at
some point in that interval the magnification is m.

(b) 4.375 (if differentials are computed at x = 16).

(a) Yes, by the law of the mean. (b) No, consider y = x*, and its
horizontal tangent.

There is X, 3<X <8, such that {'(X) = 2,

(a) Cor.2, (b) Cor.1, (¢) Cor.1, (d) Cor. 2.

(a), (b), (c¢). That for any partition, there is a choice of sampling
points such that the approximating sum yields the exact answer, that is,
'*has no error,"’

(a) The definite integral may not exist. (b) Thatthe definite integral
exists.

(b) No. Write 10™ = etin1x |

X1 =2, X =1/2, X =9/2, X4 =11/2,

oan.

First show that there is a chord of slope 1/2 (using the technique de-
scribed in the solution of Exercise 21 in Chapter 3, Section 2). Then
apply the law of the mean,

Let f be a differentiable function and m a number between f' (a) and ' (b).
Then there is X, a < X < b, such that {'(X) = m.

(¢} One may prove that f' (x) = 0,
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27. [f(1 + Ax) - £(1) ]/Ax = £'(X), for some X between 1 and 1 + Ax. Since
lxmlx f' (x) exists, f'(1) exists.

28. Let h(x) = f(x) - g(x). We have h(0) = 0, h'(x) = 0. Hence f(x) = g(x)
for x= 0 and f(x) = g(x) for x =<0.

29. £(3) = £(0) + (3-0)f'(X) = 3. The function y = 3x shows that we cannot
claim more.

30, (a) D((x) - f(k ~ x)) =£(x) (-f(k - x)) +f(k - ) f(x) = 0. (b) Constant.
(c) If A is the constant value of f(x) f(k - x) we have £(0) f(k - 0) = A,
whence f(k) = A. Hence f(x)f(k - x} = f(k). (d) Lettingk=x+y, we
obtain from (¢) {(x)f(y) = f(x +y).

31. (a) D(f(x) +f(k/x) = 1/x+ (1/(k/x)) (-k/x*) = 0. Thus £(») + f(k/x)
= A, constant, Setting x = 1, we see that A = f(k). Then let k = xy.

(b} f(x) and In x have the same derivative and agree at x = 1,

32. (a) D(tanx - x) =sec® x-1> 0 for xin (0, 7/2). (c¢) Follows from (b).
(d Follows from (c) by considering D(sin x/x).

33. (a) Yes. (b) No. Apply the law of the mean to h defined by h(x)
={(x) - g(x.

k
34, O (1 -u) < e Yr¥2%
i=1

35. For convenience, let the distance from the pessimist to the chair be 1.
His first step has length w; and 1 - u; remains. His second step has
length uz (1 - u;) and (1 - wy) ~u2(1 - w1) = (1 - u2)(1 -~ u;) remains, etc.
Then apply Exercise 34 to show that the distance remaining approachesO.

36. For 0<x<1, |'In(l -x) | =-1n(l - x), whose derivative is 1/(1 - x).
Thus f(x) = x/(1 - x) - |In(1 - %) | has the derivative

1/1 - %% -1/(1 -x)>0for 0 <x< 1.

Thus f is an increasing function for 0 = x < 1, and since £(0) = 0,
f(x) is positive.
38. £'(0) = lim [f(h) - £(0) ] /h. Since [f(h) - £(0) ]/h = 0 by the law of the
h—s

mean, f'(0) = 0.

CHAPTER 6: The Fundamental Theorem of Calculus

SECTION 1: Various Forms of the Fundamental Theorem of Calculus
3. Select 0< x < 1/1000 such that 1/x* = 2n 7, for instance any
x = V1/2n 7 where 2n7> (1000)?, in particular n = 1,000,000 and
x = v1/2, 000, 000,

5 -x
12, (a) e* /5, (b) -1/x, (c) -e™~.
13. (d) Both.
15, This is a good illustration of the limitation of the FTC and a reminder
that a definite integral is a limit of sums. (a) For a partition of mesh p,
0 = ), £(X)(x -xi-1) < 6p

i=1

since at most two of the Xi's are equal to 1. Thus the sums —~ 0as p—0.

(b) If F* =f, then F(x) = c for x <1 and F(x) = k for x > 1, where ¢ and
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k are constants. Since F is continuous, ¢ = k, whence F is constant.
Thus F'(x) = 0 for all x; in particular F' (1) = 0 # £(1).

ooo

18, (a) Since f satisfies the conclusion of the intermediate value theorem it
is continuous. (Expect only a plausibility argument.)

x

-x -x -x%
19, Clearly [° x'°e 4dx= -1t xPe ! dx, thus [* x'%™* dx = 0.
-1 (o] -1

SECTION 2: Proof of a Special Case of the Fundamental Theorem of Calculus

6. Since the mesh is 1/n, the sum differs from the definite integral by at
most |£(1) - £(0)[/n.
7. Yes.

9, [ e'dt=e® - e*, by Theorem 2.
2

10. The volume, which is [ "2 7 sin x dx = 7. No elementary function has
0

a derivative equal to Vsin x.
11, () 1-¢e".
12. (o) 2vb -2, (c) It becomes arbitrarily large.
13. (a) The first; the second cannot be evaluated by the fundamental theorem

of calculus (See Exercise 10).
14, () a; =1/4= 0.250, ax = 25/72 = 0.347, az = 469/1200 = 0,391,

1 1 1 1 1 1 . .
(b) T+ 1/m)¢ o + a5 2/n)" a + ...+ m 3 an approximation

to [? (1/%*) dx, formed withx; = 1 +i/n, i=0, 1, , ..., n, Xi = Xi.
1
Oooa

15. This exercise may be generalized to: If f = F' and the slope of the
chords of f are bounded (in absolute value) by M, then [”f(x)dx

exists, and equals F(b) - F(a). Proof. Use the X; and X% of the proof
of Theorem 2. Consider

n

; Zf(xi) (xi- Xim) - ), £(XF) (xi- Xia0) | <

3 IE(X) - (X (xi- %) = p ) H(Xs) - (XD =

n
p ), MIXi-XFI=p ), M(x:i - xi-1) = pM(b - 2),
i=1

i=1

—

which approaches 0 as p— 0.
17, f(x) = x= g(x).
SECTION 3: A Different View of the Fundamental Theorem of Calculus
4, Let G(x) = fo"e‘zdt. Then the limit is G' (x1) = e,
5. (a) Since A + [T f(t) dt is the cost during a period T, g(T) is the average
cost per unit ti:ne. (b) g'(T) = [THT) - (A + fOTf(t) dt)]/T%. (c) Set

the numerator in (b) equal to 0. (d) Yes: if f(T) < g(T) then we would
lower the cost per unit time by keeping the machine longer. If f(T)< g(T),
we should have overhauled the machine earlier.
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6. Hopefully, the student will use the fundamental theorem, and conclude:
£(1) - £(0) = 1/2 - 0,
8. We have [ f(x) dx = F(b) - F(a), where F' = f, Differentiate both sides
a

of the equation.
9. Necessarily, f must be the derivative of (sin t)/(1 + t?).
10. (b) f'(t) = kf(t), hence f(t) = Ae™,

ooag

14. (Note in this case that the continuity of v implies its differentiability.)

Pursuing the hint, we obtain
v(b) = v((a +1b)/2) + (b -a)(1/2)v' ((a +b)/2)

and -v(a) = -v((a +b)/2 + (b - a)(1/2)v' /((a +b) /2).
Subtracting, we find v(a) + v(b) = 2v((a +b) /2). (The only continuous
solutions of this functional equation for v are v(t) = ct +d.) Or, differ-
entiate: v'(a) = v'((a + b) /2). Since b is arbitrary, v' is constant,

hence v=ct +d.
15. (See note concerning Exercise 14.) We have

_v(a) +v(b) N (b - a)v' (b)
B 2 2

v(b)

v(a) + v(b) . (b - a)v' (a)

—v(a) = - 3 9 ’

which we rewrite (respectively) as

v(b) - v(a) = (b - a)v'(b)
and
v(b) -v(a) = (b - a)v'(a)

whence v' (b) = v' (a). Thus v' is constant and v is of the form ct + d.
16. (b) Rewrite An as

n-1

[@n)/(n-1)7] ) sin(k7/n) 7/n,

noticing that sin (07/n) = 0. The sum approaches f;' sin x dxasn— o«
17. Break [a,b] into intervals determined by the values of x where f' (x)
= 0. On each interval apply Theorem 2, since f' does not change sign
in any of those intervals.
18. Differentiating with respect to a, we obtain bf(ab) = f(a). Now hold a
fixed and let x = ab, We have f(x) = f(a) /b = af(a) /x. Thus, f(x) is of
the form k/x for some constant k(= af(a)).

SECTION 4: An Alternative Approach to the Logarithm and Exponential
Function
1. It is differentiable and its derivative, 1/x, is positive.
8. Rewrite the expression in brackets in the form of an approximating
sum to ff 1/x dx, namely as

11, 1 1, .1
1+1/nn 1+2/nn " 1+n/n

21
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10.

12,

16.

19,
20.

(a) In(l+ x) is the area of the region under the curve y = 1/x from 1
to 1 + x. This region is contained in a rectangle of base x, height 1,
and contains a rectangle of base x, height 1/(1 + x).

Let y = E(x). Then x = L(y). Thus 1= dx/dx = (dL/dy)(dy/dx)

= (1/y) (dy/dx), whence dy/dx = y = E(x). This is the same proof as
that in Chapter 4 for d(e*)/dx = e*.

oog
1 1 1 1 1 1
n+1+"'+§ﬁ_(1+§+“'+% _(1+§+"'+H)=
1 1 1 1 1 1 1 1 1
1+ G- +3+(g =) +5+(5 ~3) +r (g - 1)

1-1/2+1/3-1/4+ ... -1/2n.

L(a®) = L(E*(® ) = xL(a).

a™ = E(xyL(a)) and (2"} = E(yL(a®)), which by Exercise 19 equals
E(y(xL(a))) = E(xyL(a)).

SECTION 5: The Antiderivative

1,

@

10.

11,

As proved in Chapter 3, a function unbounded on [a,b] lacks a definite
integral over [a,b]. Secondly, 1/x* is not the derivative of -1/x for
x= 0,
Since F' = f = G', F and G have the same derivative, hence by Cor. 2
to the law of the mean, F differs from G by a constant,
(a) 7/3, (b) In2, (¢) 7/4.
(a) Yes, [f(x)dx - [g(x)dx is an antiderivative of f - g. (b) None that
I know of, The complication is due to the fact that D(uv) is not neces-
sarily D(u)D(v).

ogo

Let M be the maximum value of f(x) for x in[0, 1] and let f(a) = M,
1=a2a>0. Since foof(x) dx = £(0), we have £(0) = 0. Thus

foa f(x)dx < aM < M = f(a), a contradiction.

(a) implies (b) by the law of the mean. (b) implies (a), as follows:
m  [f() - 1(y) /(x-y) = lim g(T) = g(x).

Hence ' (x) exists and equals g(x). (a) implies (¢) by FTC. (c) implies
(a) by Theorem 3.

CHAPTER 7: Computing Antiderivatives

SECTION 1: Some Basic Facts

1,
3.
4,
5.

6.

(a) x*/4, (b) 5x*/4, (¢) x°, (d) x°/8.

(a) sinx-2cosx, (b) 5tan’x.

(a) 6e*, (b) -6e ™, (c) -(5/2)cos 2x.

(a) x+x°/3-3%", (b) x°/6, (e) x+2x*/3 +x°/5.

(a) x+2%, (b) 5%°/3, (¢) -V1-%, (d -1/x
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SECTION 2: The Substitution Technique

—
= O W O U hw
G S S

—

12,

13.
14,
15.
16,

17,

(2x + 5)3/2/3, (1/4)In 14x+ 7], 2V1 + 5, - Vi - <.
(-1/3) /(1 +x*)®, -(1/10)/(5%* + 1), -(cos*x) /4.
(a) -e™*, (0 (1/3)e**, (¢) 10*/In 10, (d) 2*/In 2.

f(el/x/xz)dx= -V,

() [ [In(x*)/x]dx= 2[[In x/x]dx = (1n x)?, (c) (1/2)(ln x)*.
() a=2, (b) a=-1, (c) a=0or -1/2, for instance.
(a) (tan®5x) /10, (b) e */(-7, (c) (5/2)(In x)*

(@) tan"'x, (b) (1/3)tan™3x, (c) 1/v5tan™ (V5 ),
(d (1/V5)tan ' (x/ V5).

Generally, no. [ x- ¥dx=x'/4 + C while x [ ¥*dx = x*/3 + K which
are not equal for any choice of C and K.

ood
2 tan™' Vx,
Use the substitution u = x2 .
Use the substitution u = e*.
We would have (e p/q)' = e"/x, hence the identity xqp' - pq' X +pax =
Thus x divides q*, hence q. (Simply set x = 0 ) Writeq=x'r, i > 0,
x not d1v1d1n§ T, Then the 1dent1ty becomes x' rp' - ipx’ - pr' x'"
+ prxi+1 = x*'r®, Thus, x' ! divides the left side, hence divides prx ,
hencer, a contradiction.
From the first to the second use the substitution u = x*; from the second
to the third use the substitution x = tan 6.

SECTION 3: Integration by Parts

1,

J ook w

(a) xe®-e*, (b) e"(x* - 2x +2).
xsin"'x + VI- £

xIn®x - 2x In x + 2x.
() e™(-kx - 1) /K, (b) e (K% +2kx +2)/(-k).
(a) sinx -xcosx, (b) 2xcosx - 2 sin x + x° sin x.

xIn(4 +x°) - [ 25* /(4 + ¥)dx, and

2% 25° + 8

8
fove = I &I dx

1
d=2-8 e

= 2x - 4 tan™ (x/2)

Hence, the answer is x In(4 + x*) - 2x + 4 tan™ (x/2).

[ sinx dx = x/2 - (sin 2x)/4

[ sin®x dx = -cos x + (cos®x)/3

[ sin®x dx = 3x/8 - 3 sin 2x/16 - (sin’x cos x) /4

[ sin®x dx = -(sm x cos x) /5 + (4/5)[ -cos x + (cos’ x) /3].

The symbol [x 'dx is multiple-valued. It is true that [ x” 'dx +1is

an antiderivative of x™*, which we write (loosely) as [x'dx + 1= [x"'dx.

oo
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12. Use the substitution u = ¥%. (The same method works for [ e% dx, n a
positive integer.) The answer is 3 ek [(VX)? - 2¥x +2].

SECTION 4: The Antidifferentiation of Rational Functions by Partial
Fractions
1. (@) -1/(4x-2), (b) x/2+(1/4)In|2x-1]- 1/(4x - 2),
(¢ (1/8)[(2x-1) +2In(2x-1) - 1/(2x - 1) ].

2. (a) (2/V8)tan™'[(2x +2)/V8], (b) (2/V8)tan™"[(4x + 4) /V8].

X+ 2
+3

4. (a) (1/7) 1n|;‘:r , () Inl 25 1.
6. tan~'(2x - 3).
7. (@) -1/x+(1/2)/(x+1) +(1/2)/(x-1), (b) -InIx| +(1/2)Inlx + 1|

+(1/2)Inx - 11.

8. 2Inlx-1] - In(¥* +1) - 6 tan'x.

9. x°/2 -2x+(1/6)Inlx -1] - (1/2)In|x + 1| +(16/3) In|x + 2.

10. x+41Inlx + 2] +4/(x + 2).

11, (2x+1)/[3( +x +1)] +[4/(3V3) ] tan™' ((2x + 1) /V3).

12, -2 +x/[3(x* +x+1)] - (2/(3V3)) tan™! ((2x + 1) /V3).

13. (a) (1/2) In(x* + x* + 1), (b) The partial fraction decomposition is

1 - @x+r o, (A x+3
x+x +1 X2 +x+1 ¥ -x+1"

and [[1/(x*+%x* +1) Jdx= (1/4)In(x* +x+1) - (1/4)In(x* - x + 1)

+1/(2V3) tan™! (25_+ 1

)+ 1/(2V3) tan (2%_ 1) .

14, The integrand equals x - 1 + (- 2x + 3)/(x* + x + 1) ; its antiderivative is
/2 -x-1In(x® +x+1) +(14/V3) tan™((2x + 1) /V3).

SECTION 5: Some Special Techmques

2. (a) 1/2[- cos 2x +(2/3) cos 2x - (1/5) cos 2x]
(b) 1/2[sin 2x - (2/3) sin® 2x + (1/5) sin 2x] (e) (- 1/3)cos X +(1/5)cos X.

3. (a) (1/2)[(1/5) sec®2x - (1/3) sec®2x], (b) (1/5)sec’d - (2/3) sec®d +sech.

4, -In |cos 6| =In|sec f!

5. (a) (1/2)[xV4 - % +4sin™*(x/2) ], (b) Inlx -V¥ - 4],
(¢) Inlx + V¥ +4]|.

6. (3/M(x +1)7° - (3/4)(x +1)¥°.

7. The integrand in terms of u has the partial fraction decomposition
3+12/(u -2) +(-2u - 8)/(u® +2u +4). The answer (in terms of u) is
3u+121nju - 2] -In(u® + 2u +4) - V12 tan™ ((2u + 2) /V12).

SECTION 6: Summary and Practice

1. (@) (1/3) [ [sec®f/tan®6]df = 1/3 [(1/sin®6)dh, which leads to a
rational function under the substitution u= cos 8. (b) [u®/(u® - 9)*du.
(¢) Since

v 112 V4 o -1/12  1/4
(w2 -92 u-3 (u-3)? u+3 (u+3)2
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2, (a) [2(d® - 1)2du, (b) j'(us/2 - 2u1/2 +u-1/2)du, (¢) [ 2tan® sec o da.
All are easily evaluated, perhaps (a) the most easily, The answer, in
terms of x, is 2(1 +x)7? /5 - 4(1 +x)3/2/3 +2(1 +x) 73,

3. (2/3)(x-2) Vx+ 1.

4 @ @/Dtan™ (BEEL) () (/9@ +5x+6) - (5/14) tan (322

: =T o

5. (@) x-tanx, () (/26 +1, (0 x+(1/2n 1553

- X + 2 2

6, (a) In |;+—3|, (b) 2In|x" + 5x + 6.

7. (a) The partial-fraction decomposition is

£ _1/4 -1/4  _1/2
x*-1 "x-1 x+1 = +1
Hence, the antiderivative is (1/4)Inlx - 1] - (1/4) Injx + 1] + (1/2)tan'x,
(b) (1/4)In)x*-1}.

8. Use the factorization x* +1= (2 -V2x + 1){(f +vV2x + 1) described
in Appendix G. A laborious problem,

9, Letu=x’. Answer is (1/2)tan™%*.

10. (1/4) In(x* + 1).

11. (1/4)InIx| - (1/8) tan™ (x/2).

19. (a) ¥ Vi+¥X -2 [V1+% xdx, (b) [tan®0 sec6d dd, (c) [ (u®-1)du.

20, (1+3)Y2/3 - (1 +%)Y2,

21, e'**/12,

22, V4-% +21n '4'§ -2

23. (a) The substitution u = 3/x sends this into [ [3u*/(u® + 1) ]du =

3u®/2 - Inlu + 1} +(1/2)In(u® +u +1) +(1/V3)tan™ ((2u+1)/V3).

(b) Usually nothing.

24. (a) (1/2)[- cos 2x + cos®2x - (3/5) cos2x + (1/7) cos"(2x)],
(b) (1/16) sin®2x.

25, (a) Use the recursion formula for [ sec”x dx, (b) (1/5)sec’s,
(¢) (1/5) cos™x.

26. Method (b), which is easier. Answer:

(x-1?/2+3(x-1)+3In|x-1]-1/(x-1),

27. The second, which can be evaluated by an integration by parts.
Answer: sin x - xcos X.

28. (a) For m= 0, clear, Then argue inductively using integration by parts.
(b) Follow by the substitution v = (m + 1) u and use (a).

29, Letu=e".

31. {(a) Inllnlxl, (o) (1/2)(n}x})?.

33, (1/2)x®sin™ x - (1/4) sin™ x + (1/4)xV1 - xX°.

34, xsin'x +V1 - £,

35. x In(x*+5) - 2x + (10/V5)tan™ (x/V5) (by an integration by parts).

the antiderivative in (b) is
1/2 Inlu - 31 - (1/4)/( - 3) + (- 1/12)In|u + 3| - (1/4)/(u + 3).
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36,
31,
38.

39.

40,
41,
42,
43.
44,
45.

46.

41,
48,

49,
50.

51,

52,
54,

56.

Letu=x-1. Answer: (x-1)+3InJx - 1] - 3/(x - 1) - (1/2)/(x - 1)2.
Let u =+/3x + 2. Answer: (in terms of u) (4/45)u®- (2/27)u®.
The partial fraction decomposition is

N -1/16 L 1/4 . 129/16

2 X X2 X-4

(1/2)e* (sin x - cos x).

(@ In(x+V9+%), (b) 1/2[xV¥ -9 - 9 In(x + V¥ -9)].

Let u = " and use partial fractions. Answer: 2 Inle* - 1| -x.
(a) (1/8) In(4x* +1), (b) (1/2)tan™2x.

(1/54)(1 + 3x*)°.

Expandthe integrand. Answer: x + 2X° + (9/5)x".

(a) (1/3)InI1x® +1), (b) (-1/3)InIx + 1] +(1/6)In(x* - x + 1)

+(1/ V3)tan™ ((2x - 1)/ V3),
() x-(1/3)In)x+1|+(1/6) In(x*- x + 1) - (4/(9V3))tan* ((2x - 1) /V3).
() Letu= v2x + 1, Answer: (Interms of u)(1/4)[u®/5 - 2u°/3 +u],
(b v2x+1, (¢) (1/2)In|2x +1].

Express as [ (1/V -x* + 5x - 6) dx and use integral table or complete the
square,

Express as [ V1 - 4%* dx and use integral table or the substitution

4x" = sin®0.

(a) (- cos 3x) /3, (b) (-1/3)x cos 3x + (1/9) sin 3x.

(a) 2V¥ +1, (b) Use integral table or the substitution x = tan 6;

the latter transforms itto [ 2 sec §# df = 2 In|sec 0§ + tan 6|

=2l x+V& +1].
(a) (1/25)In15x + 2] +(2/25)/(5x + 2), (b) (-1/5)/(5x + 2).

0o0og
Use the substitution u = Vx.

(@ Ifvi=1-x, hencetv'™ dv=-dxand [ x"(1 - ¥ dx=

[ (1 -v)? v*(- tv'™dt), which has a rational integrand. (b) is similar,
(c) The substitution x = 1/t reduces this case to case (a).

This theorem can be used to show that for rational p and q,
[ sin’ x cos’ x dx is elementary if and only if p or q is odd or p + q is
even, To demonstrate this, make the substitution u = sin®x.
1/12 +1/2® +1/3% + ... = (1/1° +1/3% +1/5° +..) +(1/2® +1/4* +..))
(1/12 +1/3% +1/5* +...) +(1/49)(1 +1/2® +1/3% +...). Denoting the
sum 1/1* +1/3* +1/5° + ... by "'x"", we have 7° /6 = x + (1/4)(7* /6).
Solve for x.

CHAPTER 8: Computing and Applying Definite Integrals Over Intervals

SECTION 1: Area

6.
9.

V2 -1,
(a) fl4 (1 + ) *°du, (b) f: u'du.
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10.

15,
16,

18.

23.
25.

26.

(@) (1/2) [/ [u/(1 - ) Jdu, () (- 1/2) g [(1-0) /u]au,
(c) fO’T/6 [sin® 6/cos 6]d8, (d) f"”/gz [cos® 6/sin £]dh. The value is

(1/9[1In(4/3) - 1/4].

2147 - 512

405
(a) 1/5, (b) 4/5.

aooad
Area = f: (1/2)(£())* d9 = 11/2(1/2)[ (£(8)) +(£(8 +7/2))* | df, which by the
Pythagorean theorem is not larger than fo"/z (1/2)d® do = md® /4.

This solution is due to W. Feller.

Forxin[27, 47], sin x/2= - V(1 - cos %) /2.

Yes. For any o we have (1/2) f: [(£(8))? - (f(9 + m))*]d6 = 0. Differentia-
tion with respect to a yields (f(a))® - (f(a + m))* = 0, thus f(o) = f(a +7).
Since area = [ (1/2) [£(6) 12 a8 = fo”(l/z){[f(e) 1? +[£6) +7) 1%} do

and £(8) +f(8 +7) = a, the areais = 7 a’/4. We used the fact that if
X+y=a,x =0,y =0, thenx’ +y* = a®/2. To establish this, note
that * +y° = x* +(a - x)® = 2%% - 2ax +a® = 2(x* - ax) +a® = 2(x-a/2)°
-a?/2 +a% = 2(x - a/2)% +a%/2=2a%/2.

SECTION 2: Volume

3.

6.
7.
10.
11,

15,

16.

@ 2T, ) 8, (@ T, @ s
Half the volume of the cylinder.
(2/37)(volume of the cylinder).

(¢) 47,

147,

oaono

(a) Consider the solid formed by revolving about the y axis the region
bounded by y = {(x) and the coordinate axes.

Examples are f(x) = sin x or tan x. The assumption £(0) = 0 is only a

convenience; e would be another example, One has tf(t) = fé(‘)f'l(x)dx

+F(t) - F(0), where F' = f. Replace t by f " (u) and obtain f* (u)u
= [* £ (x)dx + F(f" (u)) - F(0) and solve for fo“ 7 (x) dx.
0

SECTION 3: The First Moment

6.

11,
12.

13.

2 x2
(a) Area=f12 e” dx, (b) moment=f12 xe® dx,

() moment = flz (x+1) e"z dx, (d) part (b), answer: (1/2)(e* -e).

227/3.
47,
c(y) = 8 + 3y.
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(9)(62.4) (m)

16. (d) 64

[% (x +20)x*dx.
0
ogoo

19. Volume = (area)(27y) = (27)(moment). But volume = [° 7(f(x))® dx;
solve for moment. *

20. Consider the region bounded by x= viny, x=1, x= 2, y= 0. Or, for
a simpler region but more involved function, consider the region
bounded by the positive coordinate axes and x=VIn (2 - y) .

22. (a) No. (b) Furnish the end R with a density 50 D and determine the
depth of the center of gravity of the end. (This will involve the new
idea of center of gravity of a non-homogeneous material.) Theorem 2
is valid relative to this center of gravity.

SECTION 4: Arc Length

2. 1v(0) | =32, jv(1)| = 32V2, |v(2) | = 32V5.
(8/27) [(10)% - (13/4)72].

5. (b) lt(4+9t2)/| (@ y_x/

13, vt 1 = {[e®h (O] + g ®]}7* .

ooo

16. The area of the figure is 7ab + (a - b)%. By the isoperimetric theorem,
if mab + (a - b)®> = 7R?, then the perimeter of the figure is greater than
27R. To show that R> (a + b)/2 show that 7[(a +b)/2]* < 7ab + (a - b)?,
or equivalently, that 7[(a - b) /2]* < (a - b)*, which is valid since
7 <4,

17, The length of the inscribed polygon is precisely

n
Z Vo r riq - 2ririicos (61 - 8iy),

i=1

which may be rewritten as

- i i - : 2

Z\/ 0, _If;—l 2 +4riria] SIH[(BGix - 661‘__11) /2]} (6i - 9:4).
Argumg for plausibility, one observes that [ (ri - ri-t)/(8: - 8:-1) ] =r'(67),
while the expression in { } is ""close'’ to 1/2. The difficulty of this
approach should enhance the appreciation of the indirect approach used
in the text.

18. Assume dx/dt and dy/dt are continuous and at P are not both equal to 0.

Arc length equals V [% (T) |* + [¥(T) |* (t= - t.) for some T in [ti, t; ]
whileV(x1 - %)” +(y1 - y2)” = { [%(T1) ]* + [y (T2) °} (t2 - &) for

some T; and T in [t;, t;].

19. Most students give up when they see that they cannot compute the arc
length with the aid of the FTC. Perhaps, assign it a second time with
the hint '"draw the graph.'" Clearly the arc length is larger than the
sum of the ordinates at x. = V[m(2n +1/2)], n=1, 2, 3, ..., that is,

larger than Zl 1/[7(2n + 1/2) ], a series whose divergence follows

from Chapter 3, Section 1, Exercise 18.
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SECTION 5: Area of a Surface of Revolution

4,
5.

© o
o .

13.
15.
17,

19.

20.

21.

(a) V(sphere) =(2/3) V (tin can), (b) equal.

(@ 27 [“gt) [ ®)° + 0 (1) Y dt,

(b) n[zi/IE +(1/6)In(12 + V145 - (1/2) V10 - (1/6)In(3 + V10) ].
(b) 27 ff (Vx+1)V1+1 dx, (0 Z [125 + 60V6 - 17V5

4x 6
+ (/0B ) ),
() 27 1%y [1+ @y ]/ ay, (© § (22 VE -5 VB+(1/8) n@Zel),

They are equal.
It is the portion of a ring bounded by two concentric circles and two rays
from their center. Area = 27rh, where r and h are defined in the text.

If a> b, and c =v/a® - b?, the surface areais27a’ +[rab®/c]In((a+c)/(a- c)).
~%(r3 - rf), where r; and r; are the inner and outer radii.

On axis of symmetry and at a distance 2a/7 from the center of the circle,
whose radius is a.

S + 67A.

oo

This is a special case of Tarski's plank problem. Consider the surface
of the sphere whose equatorial disk is the given disk, With each strip
associate the band on the surface bounded by the two planes perpen-
dicular to the equator and bounding the strip. Note that if the strips
cover the disk, then the bands cover the surface of the sphere. Hence,
if their widths are d;, dz, ..., dn, we have

) 27 adi = 47a%, and thus ), di =2,
i=1 i1

We have, on differentiation with respect to b, 27y vV 1 +(dy/d%)* = k,
whence (assuming non-negative dy/dx and positive y) dy/dx

=V K - 47°y®/271y. One solution is y = k/27 and we have a cylinder.
Otherwise, we have
2ry dy = dx,
K- 4772y2
which yields (-1/27) K - art y2 = X +c. Squaring shows that this is a
circle.

SECTION 6: The Higher Moments of a Function
2

2.
3.

Mo=2, M; =0, M2=12— - 4,

No. (It should be emphasized that the '"centroid'' is related to first
moment, There is no corresponding point for higher moments.)
3mw® mw’
() ==, (o) T
30x* - 24x + 3,

goao
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12,

13.

(a) If f has no roots, then by the intermediate value theorem it is
always positive in [a, b] or always negative and . £(x) dx would not be
0. Note that there is a root ¢, a< ¢< b. (b) If c is the only root of
f(x) = 0 in [a, b], consider [, f(x) (x - c)dx. The sign of the integrand
f(x)(x - ¢) remains fixed since f(x) changes sign at c. Thus
f f(x)(x c)dx#0, contradlctmg the assumption that [ Pxf(x)dx = 0

J' f(x)dx. (c) Iff xf(x)dx=0,i=0, 1, ..., n- 1, ‘then f has at
least n roots in [a, b] , in fact, at least n roots at which f changes
sign. To prove this, assume that f changes sign only at c,;, cz2,..., Caq
and consider fab f(x)(x - c1)(x - c2)...(x - Cnmy )AX.
Let h=f - g. According to Exercise 12, there is an infinite set of roots
of the equation h(x) = 0, hence h = 0, since h is a polynomial.

SECTION 7: Average Value of a Function
8. ffrds/L=["rVri+ @)’ d8/L = [*r*ds/L = 2A/L. Equality holds
0 0 0

12,

13.

16.

117,

18,

19,

only when r' (§) = 0 for all 8, thatis, in the case of a circle.
f(a).

oono

This is an instance of substitution in a definite integral.
Z f(X:) g(Xs) (%1 - Xi1) = Z £(Xi) V(i - xi-1) g(Xi) V(xi - Xi-1)
i=1 n i=1_
5[ Y KO (xs - Xi-l):] /2 [Z [g(X:) ]2 (xa ‘Xi-l):ll/z and
i=1 i=1
let the mesh — 0, (¢) When equality holds and f(x) is not O for all X in
[a, b], the polynomial h(t) has degree two and a root, c. We have
cf(x) = g(x) for all x in [a, b]. Equality holds also if f(x) = 0 for all
x in [a,b].
We let x = £f(t) and for convenience assume that dx/dt is non-negative and
wish to prove that

b dX t1p) dx
Lard _ o & &
b-a — f(b) -f(a)

fw) dx —=)? dt and doing a little algebra, we wish to

Rewriting f” T dx as fa (di()

prove that
b dx b 1/2 b AX, 2 1/2
[P g = tay / l:fa i) dt] .
This inequality follows from Schwarz's inequality of Exercise 16 by
letting f(x) = 1 and g(x) = dx/dt.
We wish to show that [* xh(x) dx/[*h(x) dx= [*x*h(x)dx/[}xh (x)dx,
[} 0 0

where h is the density function. This inequality is a consequence of
Schwarz' s inequality of Exercise 16 in case f(x) = xvh(x) and

g(x) = ‘h(x) .
Let g(x) = 1/f(x) in Schwarz's inequality of Exercise 16.

36



SECTION 8: Improper Integrals

1, .

2. 2.

6. (@ G(0) =0; (b) -7/2, (c) w/2.

10. a < -1,

11, a > -1,

13. (a) Mz = 2/c*, (b) Mo=1, My = 1/c, Mz = 2/c?.
17. 1,

oo

18. Letu=x°.
19. Letu=x*.
20. Let x= sin§.
21, From a table of integrals or by an integration by parts, [x* In x dx
=x°[(In %) /5 - 1/25], which we call F(x). Now F(1) = -1/25 and
hm F(x) = (1/5) lim x°In x= (1/5) 11m e’'y=-(1/5) lim t/e** =0,

by Example 5, in Chapter 5, Section 2. Hence, the improper integral
has the value -1/25,

22. (c) Observe that G(a) +G(a) = [(1 +x")/[(1 +x*)(1 +¥) Jdx= 7/2,

24, Factor x* +1=(x* +V2x+1)(x® - V2 x + 1) and use partial fractions.

25, Use the substitution u = Vx,

26, First use integration by parts with u = sin®x and dv = (1/¥*) dx. Then
note that du = 2 sin X cos x = sin 2x, and make the change of variable
W= 2X.

27, Integration by parts.

SECTION 9: Probability Distribution and Density
- (b 1/(1+1)°.

2. (b) (2tan'x) /7.

4, (a) e L™ (¢) 1.

5. (&) F(O) =0 F() = 555 FO) = 10055 F(10) = oag F20) = 1005

F(30) = '1'5’616; F(40) = 1(?(?0’ F(50) = 1(133(2)’ F(60) = 1%)%%
) - 328 v <58 700 - £, ran -

(9 £(0) = o555 £(5) = (5)?000; £(10) = T5550: £(20) = T(%
£(30) = 10320’ f(40) = 10%)?50’ 1(50) = 10830’ 1(60) = 101:020
#(70) = 10%3%’ £(80) = 10%%?) £(90) = 10000’ £(100) = 10&)0

(e) About 65, the result depending on the choice of approximating
points.

26 5 12 182
(® m(0) = 555; m(5) =575 ; m(20) =557 s m(60) = 7g75.
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-

15,

16,

18,

19,
21.

= O O -aom
HE R e

@ £ = @/b)e e 21 = @/,

(a) 0.91, (b) 0.005, (c) 0.17 = F(40) -F(20).
(a) About 31.

(a) About 30.

(a) F(0) = 0; F(20) = 0.1, F(80) = 0.5.

(b) About 41; (c¢) About 65.

133 191 209 237
2817, _ 351 428 536 694
F(30) = 755p) F(40) = 155055 F(50) = 1550: F(60) = 15505 F(70) = 1555
860 962
F(80) = 1000, F(90) = 1000, F(100) =
133, ... _ 18 . 158 .
(c) £(0) = 1000° f(5) = 20007 £(60) = 10000 and see answer to Exercise 5.
(b) Smokers m(40) = .~ I nonsmokers m(40) = __11
! = 10000’ 10000°

oOod
() From £(t)/[1 - F(t) ] = 2(t) it follows that [*£(t) /[1 - F(t) ]at
= foxz(t)dt, hence - In[1 - F(x) ] +In [1 - F(0) ] = fox z(t) dt. Solve for

F(x). (b) Differentiate F(x) given in (a).

(a) The fraction of the original population that reaches age a is 1 - F(a).
Of this fraction approximately f(t) At have betweent - aand t + At - a
years remaining. (b) Integrate by parts withu=1t - a, dv = f(t) dt and
v=F(t) or F(t) - 1.

Note that this provides a formula for expectation directly in terms of F.
(a) Surely the expected life of the device is not longer than that of a
device which turns on the second component only when the first fails.
With this alternative arrangement the device has an expected life A + B,
(b) Let the distribution of the first component be F(t) and of the second
component, G(t). Then F(t) G(t) is the distribution function of the device,
hence F(t) dG/dt + G(t) dF/dt is the probability density of the device. The
expected life of the device is

[7 t[F(t) dG/dt + G(t) dF/dt]dt
o
since F(t) = 1 and G(t} =1, the expected life is at most

[7tdG/dt dt + [Tt dF/dt dt = B + A.
V] 0

CHAPTER 9: Computing and Applying Definite Integrals Over
Plane and Solid Sets

SECTION 1: The Center of Gravity of a Flat Object (lamina)

2,

6 feet@o the right of m;.
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n n
3. x =( ) mixi)/ ), ma.
i-1 i=1

oono

18. At the center of gravity. It minimizes the polar moment of inertia.
"It is easiest to spin something around its center of gravity."

19, The center of gravity of the forest.

20. Many students leave their common sense and intuition behind them when
they study calculus. One answer to this exercise is, ""Draw the forest
on tagboard, cut it out, and find two balancing lines. The center of
gravity is at their intersection.'" Put more layers of tagboard at the
denser or more valuable parts.

SECTION 2: Computing [, f(P) dA by Introducing Rectangular Coordinates

8. (3 (1/)[1 - cos(x®)].
9. (a) 32/9, (b) 64/15, (c) 128/21, (d) 352/315, (e) 512/525.
12. (a) 4/27, (b) 4/65, (c) 4/119, (d 12,296/208,845,
(e) 4,048/502, 775,
13. (8 0=y =1,0=x=y", () 0<y =1, 0=x =1,

ood
14, (a) Clearly f is continuous, hence has a definite integral over an
interval. (b) 1G(x) - G(x*¥) | = | f: [f(x, y) - f(x*, y) ]dy | = fozif(x,y)

- f(x*, y) Idy = f02 2]x - x*}dy = 4]x - x*|. Thus G is continuous. This
shows that the repeated integral [*[ [? f(x, y)dy]dx exists.
(1) 0

T

15. (a) The sum is of the form Z f(Px)Ax. (b) Write the sum as
k=1

Z [ Z f(xi,y;) (y; - yi-1) } (xi - Xi-1). The inner sum is "close'' to
i=i =1

foz f(xi, y)dy = G(x1). The repeated sum is then ""close' to [3G(x) dx.
(1]

A measure of the closeness could be worked out.

SECTION 3: Computing [ f(P) dA by Introducing Polar Coordinates

2. For0 =r =1, wehave0 = 9 = 7/4.,
For 1 = r =v32, we have tan™ [(r? - D¥?] = 4 = n/a.

3. (a) For each y between -a and a, x varies between - vVa® - y* and va®- y2 .
(b) For each § between 0 and 27, r varies between 0 and a.
(c) For each r between 0 and a, 9 varies between 0 and 27,
4, (a) rectangular: f(P) = x* where P = (x, y).
polar: f(P) = r’ cos®# where P = (r,0).
(b) rectangular: f(P) = ¥ +y® where P= (x, y).
polar: f(P) = r where P = (r, 6).
5. (a) f(r, 8) =r cos @, (b) f(r, 8) = r.
15. (a) 1/12, (o) 1/20.

18. (a) For each x between 0 and a, y varies from 0 to Va2a¥ - &,
(b) For each y between 0 and a, x varies between 0 and a; for eachy
between a and av2, x varies between 0 and v2a?z - y2,
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19.

21.

22.

23.

24,

25,

26,

(c) For each # between 0 and 7/4, r varies between 0 and a sec 8.
For each 0 between 7/4 and 71/2 r varies between 0 and a V2,

(d For each r between 0 and a, # assumes all values between 0 and 7/2;
for each r between a and av2, f assumes all values between
cos™(a/r) and 7/2.

(b) 4m/3; 2m - (32/9), (c) edge of town.

ooag
Since fo" £f() d9 =0, thereisa, 0 <a<m, f(a) = 0. Assume only one
such root. At a, £f(6) changes sign; hence [" f(x) sin (x - a) dx is not 0
0

since sin (x - a) also changes sign only at a (for x in [0, 7]). But
sin(x - a) = sin x cos a - cos x sin a. Since [" f(X)sinxdx =0 =
(V)

I™ £(x) cos x dx, the definite integral [" f(x) sin (x - a) dx would be 0.
8] 0

Contradiction.
From Exercise 11 we know that [" [g* (8 +7) - g°(8)] cos § d9 =0 =
0

fo" [¢®(6 +7) - g*(h)] sin § db. To apply Exercise 21 to £(9) = g* (6 +m)
- g°(0) we need to make f:[gs (0 +m - g*()] d = 0. This we may

achieve in advance by choosing the polar axis properly. (The existence
of such a choice may be established by considering the function

h(e) = [*27 g*(6)do-[7" ¢° (0) d.

a+m

(Note that h(a + 7) = - h(e) and apply the intermediate value theorem.)
Assume £(0) > 0. Hence f(27) > 0. Since [?"£(6) d§ = 0, there is b,
o]

0 < b < 27, f(b) < 0. By the intermediate value theorem there are
numbers a; anda;, 0 < a; < b < a; < 27, f(a;) = 0 = f(az).

By Exercise 23 there are at least two roots a; and az, 0 <a; <az <2m
If f has precisely two roots in (0, 27) or precisely three roots in

(0, 27) then f changes sign at exactly two of them (as a diagram will
show). Let us assume that a; and a; are the roots where f(§) changes
sign. Then £(§) and sin ((§ - a1)/2) sin ((§ - a2)/2) change sign only at
a; and a, for 8 in [0, 2m]. Argue as in Exercise 21 concerning

1710 sin (552 sin (5522 .
fz”f(e) de = f“ () g'(8)do = [g*(2m) - g*(0) ]/4= 0. By Exercise 11,

f02" g*() cos 6 do =0 = foz" g®(0) sin 0 df; integration by parts applied to

the first integral, u= g*(§) and dv = cos 6 df, yields 0 = g*(0)(sin 9) | %
0

-J2"3 ¢ (6)g'(6) sin 6 do, hence [;" g* (6) g'(6) sin 6 d6 = 0. Similarly

f:"g2 (6) g'(6) cos 6 dg = 0. By Exercise 24, g° (6) g'(9) (hence g'(6))
vanishes at at least four numbers that are distinct (mod 27). As the
little ''dr, rd6'' -triangle suggests, the radius is perpendicular to the
curve when g'(9) = 0.

Let £(8) = g(b) - g(0 + (7/2)) and apply Exercise 24.
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28. For (a) use the substitution x = 2u; for (b) the substitution u = ¥*; for
(c) integration by parts, with u = x and dv = xe**dx; for (d) use the
result of (c) and the substitution u = x*.

29, Simply replace the variables r and 6 by x and y--that is, interpret r and
f as rectangular coordinates.

SECTION 4: Coordinate Systems in Three Dimensions and Their Volume
Elements

1. 0=z=10=y=1-2;0=x= 1l-z-y.

2. 0= z=4,0=<y=3-(32/4), 0= x= 2-2/2 - 2y/3.

3. 0=x=5;0=y=+V25-x%;0= z= V25-x° -y?,

4, (a) r=V+ 7y, 0=tan"(y/®), z=12, (b) x=rcosh, y=r sin4,
zZ =z

5, 0 =r= 5 0=0=<2m0=<z=<v25-r°,

6. (A p=V¥+y + 2%, b=tan (VR + y2 /NP + ¥ + 27),
6=tan" (y/Ve +y*) (b) r=psind, =0, z=pcos o.
7. -4 = z=<4,-3=x=3,-9-¥=y= V9-%

and

4= 1z]=5 -V25-2" =x=V25-2°, -V25-2° - ¥ = y=25-22-%,
Z2
4

2
8.05z54—%5x ?z,-ql% - =ys= 32 e,
< 0=

r = z/\/§.

IA

9, 0=z=4,0
11. (a) ¢=17/2, (b)
12, (a) z=0, (b) 6

f = 2m,
$=0, (c) o=1u/2, 6=0,
=n/4or 51/4, (c) z=0, §=0.

ogono

SECTION 4: Coordinate Systems in Three Dimensions and Their Volume
Elements
13. (a) The right triangleL in the yz-plane whose vertices are (1,1), (1, 2),
(2, 2) is revolved a quarter of a complete turn around the z-axis.
) 1=r=2,r=z=2,0=0=7/2 (c) tan1/2= ¢ = 7/4,
0=<6=rm/2 1/sing =p =2/cos ¢. (d) 0= x= 2,

VMT-¥=y=V#4-Xif0=sx=1land0=y= #4-xifl=x= 2,
VR +y =z= 2

14. A cone, a half plane, a sphere; a plane, a half plane, a (surface of a)
cylinder.

SECTION 5: Computing [; f(P) dV by Introducing Coordinates in R
9, 122 7/3.
1. [f 7 77+ x2®) dz dy dx.
o] 0

12, 1/24,
22. ma* (hence I x4V = 71a*/3).

ooao
26. This result is important in the theory of gravity. (The potential due to a
homogeneous sphere is the same as if all its mass were at its center.)

41



28.

29,

30.

31.

Locate the point Q on the positive z axis. Use spherical coordinates and
integrate first withrespect to ¢.

The average distance from Q at a distance q from the origin to points in
[-a, a] is In [(q + a) /(q - a) ] /2a, and involves a. (Nor is the analog for
Q in the plane of a disk true.)

(a) The set of "points" (x, y, d, t) suchthat0 = x=< 1, 0=y=1,
0=z=1,0=t= 1. (b) [, 1dV where Ris the '"3-cell." (c¢) 1.

(a) The set of "'points" (x, y, z, t) suchthat0 = x =1, 0 =y =1,
0=z=10=t=10=x+y+z+t =1 (b) [R(1-x-y-2z)4dV
where R is the '"'3-simplex'' described in the exercise.

(c) Iol (fol_‘(f:'x_’(l -x-y-z)dz) dy) dx. (d) 1/24,

(a) The set of ""points'" (%, y, z, t) such that x¥* +y* +2° +t® = 1,

(b) 2Vl - ¥ - y* - z2° dV where R is the ""3-ball". (c¢) For each
R y

of the three coordinate systems there will be a repeated integral
(d [, 7(1 - r*) dA where R is the " 2-ball" and r is polar radius.

For if we denote x* + y* by r* and z® + t* by s, then r* +s® =1; that is,
introduce polar coordinates into the xy-plane and the zt-plane.

CHAPTER 10: The Higher Derivatives

SECTION 1: The Geometric Significance of the Sign of the Second Derivative

14,
15,

16,

17,

(@ x>1,(b) x>2/3andx <0, (c) x=0andx=2, (d x=1,

(e) x=0andx=2/3.

f(x)> Owhenx=2n7+y, 0 <y <mf(x > Owhenx=2n7+y,
7/2 <y <37/2;f'(x) > 0 when x = 2n7 +y, 1<y <27, fandf"
change sign at n7m; f' changes sign at n7 + 7/2.

No, y'"' never changes sign,

y' changes sign at0; y'' changes sign at x = + 1/V3.

Since f'(x) = 1 +x°, f" (%) = 2x.

Since there is some ""margin of interpretation' in specifying the coor-
dinates, the answer is not included.

(a) Yes, (b) No; y'" does not change sign (at 0).

(c) No. Pick a tangent line on the graph, Since f'(x) < 0, this line cuts
the x-axis. Since ' (x) < 0, the graph lies below the chosen tangent line;
it, too, must cut the x-axis.

(d) £(1) = -20, £(5) = -100, £(2) = -46.

(a) Inflection points at x= +1/V3, (b) Inflection points at x = +1/v2,

ood

(a) Slopes upward, for g' (x)) 1 (). is concave downward, for
g"({(®)) (%) = - £"(x)/[f'(x)]*. One may also solve the problem geo-
metrically, since the graph of g is the reflection in the line y = x of the
graph of f,

(b) If f(a) < 0, 0 < a <1 then by the law of the mean there are x,

0 <x; <a,f'"(x1) < 0, andx2, a < % < 1, f'(x2) > 0. The law of
the mean applied to the function f' implies the existence of

X3, X1 < x5 < X, f'"(x) > 0.
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18. This generalization of Exercise 17 may be obtained from it by applying
it to the function g, where g(a) = f(ax, + (1 - a) xz) - af(x1) - (1-a) f (x2).
The second derivative of g with respect to a is (x1 - x3)*f'"(ax; + (1 - a)x»)
= 0. Thus g(a) = 0, which completes the exercise.

19. Consider x; < x2. Since (x2,f(x2) lies above the tangent at (x1, f(x1))
and (x1,f(x1)) lies above the tangent line at (x2,f(x2)) we have
f(xz2) > f(x1) + (x2 - x1)f'(x1) and f(x1) > f(x2) +(x1 - x2 ) ' (x2),
inequalities which imply that f'(x;) > f'(x;). Since f' is increasing,
its derivative f'' is never negative.

SECTION 2: The Significance in Motion of the Second Derivative

1. y=-16t% + 64t,

3. y= 96 - 16t*; for V6 seconds.

5. A ball thrown up at that time and with the same speed as that with which
the ball in the example strikes the ground would incorporate the path of
the example,

10. The velocities have the same magnitude but opposite signs; the speeds
are equal.

11. The change in coordinate; the distance travelled (as registered by an
odometer, say).

12. Distance travelled; acceleration.

13, (b) 6, (d y=0, (¢) y==6.

ood

14, The constant acceleration is irrelevant; assume only that the accelera-
tion and deceleration is the same at both stops and that the maximum
speed is reached both times. Thus it travels 30 - 24 = 6 blocks in 120
- 96 = 24 seconds at its maximum speed.

15. (¢) Use integration by parts.

16, Consider the graph of y = v(t). If [v'(t) | =< 4for all tin [0, 1], then
the graph is properly within the triangle whose vertices are (0, 0), (1,0),
(1/2,2); hence fol v(t)dt is less than the area of the triangle, and hence

less than 1, (b) Sketch a graph looking like the triangle described in
(a) and meeting the conditions.

SECTION 3: The Second Derivative and Curvature
7. The absolute value of the curvature is ba*/(a* - 8% +b*%x* 3/ .
8. The absolute value of the curvature is ba* /(a* sin® 8 + b®a® cos® 6)3/2.
9. (b) Probably not, If the wheel rotates "instantaneously at rest,!" then
the tack rotates on a circle of diameter 2, Since the hub of the wheel
moves, the radius of curvature is presumably larger than 2,

ood

15. Let x=f(s) and y = g(s) and use the method of Example 2.
16. (b) Differentiate (a) with respect to s. (¢) Solve for x' in (b) and
substitute in x"y'"" - y'x"".

SECTION 4: Information Supplied by the Higher Derivatives
4, (a) 0, (b) €, (¢} -e=, (d -7 cosmx.
5. (a) 30!, (b) 31!x, (c) 0, (d) e, (e) -7*°sinwx,
6. (a) 60(x -4)% and0, (b) 120(x - 4) and 0, (c) 120 = 5! and 120,
(@ (32)(51), (e) O.
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11,
13,

17,
20.
22.

23,
26.

28.

31,

32.

(x-2)°% -5(x-2) -3.

(a) 2(x-12-1, (b) 2(x+2)° -12(x+2) +17.

fY vanishes at least three times; £/® at least twice; ‘¥ at least once.
(@) 4(x-2)°% +30(x-2)?* +67(x - 2) + 48,

(b) £f(2.1)= 48 + 6.7 = 54.7 £(1.9) = 48-67—413

e + £V + 1@ 4 )

D*°[(cos 3x + 3 cos x) /4] = (1/4) (3*° cos 3x + 3 cos x).

ooo

(a) f'(x) = a, constant, Thus f(x) - ax has a derivative equal to 0 for
all x. (b) Similar.

If D*(f(x)) = O for all x then f is a polynomial of degree at most n - 1.
(a) If r is the root of the polynomial equation f(x) = 0 and D"f = 0 for
some r. (b) sin 7= 0, all the derivatives of sin x at 0 are 0 or + 1,
and (1 + D?) sin x = 0. It is not known whether e is quasialgebraic.

f(x) = x"/n! -nx""/n! +... + (-1)"%*"/n! (a) clearlyf® (0) =0

j < n while £ (0) = :tC]'DJ (x’) /n! evaluated at 0 for 2n =j =n,

which is an integer since D’ (x') = j! is divisible by n! Furthermore
f0(x) = 0 for all xand allj > 2n,

The statement "'7° is irrational, "' for if a number is rational its square

is. However, v2 has a rational square.
We have a. = £ (0) /n!; hence f(x) = 3 + 2x + (5/2)x* + (1/12)x°.

CHAPTER 11: The Maximum and Minimum of a Function

SECTION 1: Maximum and Minimum of f(x)

11,
18,
21,

22,

24,

25,

26,

The remaining fence should form the three other walls.

At x= 0. Neither.

(a) The derivative is 0 when cos x = sin x. Local maxima occur when
x = 2n7 + 1/4. The global maximum occurs at x = 7/4.

oo

Volume as a function of § (half the angle subtended by the base of the
typical inscribed cone at the center) is 7 (a sing)®(a +a cos 8) /3.

The maximum occurs when cos § = 1/3. The volume is then 327a® /81,
An algebraic solution can be obtained also by working from the equa-
tions V= 7r®h/3 and (h - a)* = a® - r?, implicitly or explicitly.

Let 0 be the angle subtended by arc BP at the center, We wish to
minimize £(§) = 200 cos (9/2) /100 + 100 8/200, subjectto 0 <= 7.
The maximum of f occurs when 8 = 7/3 and the minimum when 6 = 7,
He should not swim at all.

Cut along PQ and lay it flat to become a rectangle of width L and height
h. Then glue n such rectangles together to become a rectangle of width
nL and height h. Interpret the path on this rectangle: it will be a
straight line.

Let f(x) = sin 5%/sin x. We have £(7/2) = 1 and f(7 - %) = £(x), lim 1(®)

= lirg [ (sin 5%) /5%]/[ (sin x) /5x] = 5, hence lim f(x) = 5. Consider
only x in (0, 7/2). We have sin 2x/sin x = 2 sin x cos x/sin x =
2 cos x < 2. Then sin 3x/sin x = (sin x cos 2x + cos x sin 2x)/sin x =

cos 2x + cos x (sin 2x/sin x) < 1 + 2= 3. Continue inductively. (Calcu-
lus is not always the best way.)
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28. Since the car can be anywhere on the circle of radius 1 and center at his
camp, he should walk 1 mile in a straight line, then walk around the
circle. If he walks at most 1 + 27 miles he will surely reach his car.
No shorter route will do since he may have to make this complete trip
around the circle. If he only wants to reach the road he has a shorter
route, for instance: travel V2 miles in a straight line, then 1 mile along
a tangent to the circle, then continue three quarters of the way around
the circle for a total distance of v2 + 1 + (3/2) 7 = 7.13 miles, which is
less than 1 + 27 = 7,28, If he travels in a direction inclined at an angle
6 to some radius until he meets the tangent line at that radius, then
walks on this tangent line until he meets the circle, then walks 27 - 29
miles on the circle, he will meet the road. The total distance is sec 8
+tan @ + 27 - 20, which has a minimum value V3 + (5/3) 7 = 6.97 miles
when 6 = 7/6. This may be the shortest route.

SECTION 2: Maximum and Minimum of f(x, y)

1. (a) zx= l/x, zy = -1/y; (b) zx = 2x/y, zy = - (° +1) /v°;
(c) zx=tan 'y, z, = x/(1 +y)

2. (a) zx = 2x cos(x’y), zy = X* cos(x?y); (¢) zx=y¥X ", zy = xInx;
(d) zx=1/y, zy = -x/y°.

6. This is a study of a saddle point.
7. Since fx and f; simultaneously vanish only at (0, 0), the maximum cannot
occur within the triangle. It must occur on the border. On the two legs,
f(x, y) = 0. Examination of f(x, y) for (x, y) on the hypotenuse shows
that the maximum occurs at (1/2, 1/2) where f(x, y) = 1/4.
12. Use (4). This means that

n

), di =0,

i=1
where d:i is the vertical deviation from (xi, y:) to the line of regression.
ood

16. Let x= cy + d be the line, assuming that it is not vertical. Then we wish
to minimize

f(c, @) = i (cy: +d - xi)%.

i=1
The formulas for ¢ and d are obtainable from those for m and b by inter-
changing the roles of x and y.

SECTION 3: Maximum and Minimum of ax + by + ¢; Linear Programming
3. (b (1,2), (2,4, 3,1).
5. Evaluating -x + 3y + 6 at each of the vertices, we see that the maximum
is 10, occurring at (5, 3).
6. (b) (1,1), (5,2), (4,6), (2,3); (c) 4 (at(5,2).

CHAPTER 12: Series

SECTION 1: The n‘" Term, Integral, Alternating Series Tests
2. (b) Use S; and Ss.
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12,

14,

15,

11,

(b), (c), (f) converge; the others diverge.

. Note that 1/7! < 0.001. We have

0.8415=1-1/3!+1/5!,1/71 < sin 1< 1 - 1/3! +1/5! = 0.8417,
In (a) and (b) an does not approach 0. (c) converges.

ooo
Recall that E 1/vn diverges. This suggests the example
n=1

2/Vn, pan

=1/, ...
(a) Rewrite 1/(1 - 1/p%) as 1 +1/p} + 1/pt = ... and multiply the m
series. (A simpler proof can be obtained similarly by considering

P = 2/\[1, Pz = 1/\/1, ps = 2/\/-2, ps = 1/‘/-2, ees P2n1

1'!‘11 1/[1 - 1/p,;] and the divergence of the harmonic series.)
i=

The series of positive terms diverges; so does the series of negative
terms. Take enough positive terms so that their sum exceeds 2, then
the first negative term. Then take from the remaining positive terms
enough so that their sum exceeds 2, then the second negative term.
Etc...

SECTION 2: Comparison and Ratio Tests, Absolute Convergence

6.
11,

14,

15.

18.

19.
20,

21,

Converges only for x in [-1, 1].
(a) 4, 8, 64/6=10.7, 256/24 = 10.7, 1024/120 = 8.5, 4,096/720 = 5.7,
16,384/5,040 = 3.2.

(a) Since lim (luawl/lunl) = 1/2, Z un converges absolutely.
n—e n=1
(a) 3, 9/2, = 4.5, 27/6 = 4.5, 81/24 = 3.4, 243/120 = 2.0, 729/720
= 1.0,
ooo

Select N such that ¢ = 1 for n > N. Then

0 Ed

), anci = ) aa ,

n=N+1 n=N+1
which is convergent,
Differentiate the second identity in Exercise 9(a).
In one-sixth of the experiments an ace shows on the first throw. In
(5/6)(1/6) of the experiments an ace appears the first time on the second
throw, etc. Then use Example 2.
Both involve geometric series. The answer to (a) is (13/5)h and to (b)
is 5vh/4 seconds. For the latter we assume that an object falls 16t*feet
in t seconds. Note that the ball covers 5/13 of the length of its journey
during the first descent, which requires only 1/5 of the total time.

SECTION 3: Truncation Error E,

3.

5.

We seek n such that |r"™ /(1 - r)| < 0.001. Since |1 -r| < 2.5, it
suffices to have |r"™" 1< 0,0025 or (0.6)"™ < 0.0025 (n = 11 is adequate).
1000.

gooag
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7.

Let m be an integer greater than n. Then

m
5w
n+l

IA

J;mf(x) dx = f:f(x) dx.

Thus =
En = Z/ u = fm f(x) dx.
n+1 n

SECTION 4: Power Series

13.

This method is due to Newton.

CHAPTER 13: Taylor's Series

SECTION 1: Taylor's Series in x and in x - a

1.
16,

17,

28.

29.

30.

31,
32,

(a) Since 1/11! < 0.00001, the first five terms suffice, giving sin (1)
= 0.8414"7.

sinx=1-(x-7/2?%/2! +(x-7/2)*/4! - (x - 7/2)%/6! (showing first
seven terms).

cos x=1/2 - ({3/2)(x - 7/3) - (1/2)(x - 7/3)2 /2! + ( 3/2)(x - 71/3)* /3!
+1/2(x - 7/3)* /4! - (J3/2) (x - 1/3)%/5!

ooag
The assumption that the rule D(f + g) = Df + Dg extends to

D( i fa) = i D(fa).

n=1 n=l

(The interchange of limits, of which this is an instance, is discussed in
Chapter 20.)

- 2
1 (0) = lim e Y=* /x. Let u= 1/x and consider lim u/e"2 , making use
of the fact that " > v?/2, proved in Chapter 5. Treat {''(0) and f''' (0)

similarly; more generally, ™ (x) = e_]/ngn (x), x# 0, where ga(x)

is a rational function of x, hence £ (0) = 0,

This exercise was contributed by an electrical engineer. (a) The best
second degree polynomial is (60 - 37%) /7° - [(6 - 72/7%) /n* ]x* = 0.980
- 0.042%*. Note that it is not the front end of the Taylor's series for
cos x. (b) Introduction of x* does not provide a better fit. After differ-
entiation under the integral sign is discussed in Chapter 20 this exercise
becomes much easier.

(a) (12/7%)x = 1.216x. (b) Yes.

This is a restatement of sin 7 = 0,

SECTION 2: R.(x) in Terms of a Derivative; Newton's Method

4,
6.
10,

1.375, 1.04875, 1.0049875.
(@ 0,1, 0,1, (b) 0+x+0x* and R; ()
(Rounded off to one decimal) x» = 25.0, X3

[(5%* - 1) /(1 - X*)¥2]x* /31,
12.6, % = 6.4,

1

1
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11.

16.
17,

18.

19,

20,

21,

22,

24,

25.

26.

217,

(b) (Roundedoff)x; = 1, x2 = 3, x3 = 2.26; (c) (rounded

off) x1 = 2, % = 1,92, x3 = 1,91,

1.146.

(Rounded off to one decimal) x; = 1, X2 = 95.5, xs = 48.7, x4 = 26.3,
x5 = 16.8.

ooag

We have f(a + 1) = f(a) +f'(a) + (1/2)f'(a) + (1/6)f" ' (b) and f(a - 1)
=1f(a) - f'(a) +(1/2 " (a) - (1/6)f""'(c) wherea < b < a +1 and
a-1 <c¢ <a. From consideration of f(a + 1) - f(a - 1) and f(a + 1)
+f(a - 1) the solution follows.

From £(2) = f(x) + ' (x) (2 - x) + (1/2)f""(c)(2 - ¥*, x < c¢ < 2and

f(0) = f(x) +f'(x) (0 - x) + (1/2)f"(d) 0 - x)2 , 0 < d< x it follows that
£(2) - £(0) = 2f' (x) - (1/2) £ (d) x® + (1/2) ' (¢) (x - 2)%.

Thus 12f'(x) | = I£(2) ] + 1£(0) | +(1/2) X +(1/2)(x - 2)®,

which is at most 4 since ¥ + (x - 2)* = 4 for xin [0, 2].

Clear for k=0, 1, 2. Assume Fz.(x) = 0 has no roots. Now Fzu: (%)

has at least one root. If it had two roots, then by Rolle's theorem,
Fzn (x) = 0 would have a root, since Fan = F'2ns;. Consider next

Fon2 (x) = 0. At the minimum value of Fans2(X), say at x = a we have
Fann (a) = F'ansz (a) = 0. But Fane (a) = Founn (3.) + azn /(Zn) !

=a®"/(2n)! > 0. Thus, the minimum value of Fzu« (x) is greater than 0.
(a) Express f(a + Ax) as f(a) +£'(a) Ax + (1/2) ' (X;) (Ax)®.

(b) Express f(a + Ax) and f(a - AX) in terms of derivatives at a and a
third derivative at Xs and at X4;. Subtract and note that [f(s)(X3)

+19(X4)]/2 = £¥(X,) for some X, between X3 and X 4.
(a) Since f' is increasing (hence one-to-one) for small h. (b) We have

f(a + h) = f(a) +hf'(a) +(1/2)f? (X)h?*, a<X,<a +h.
Also, replacing f'(a +0 h) by f'(a) +9 hf''(Xz), a < X2 < a+ 6h in
the equation f(a + h) = f(a) + hf'(a + #h), we obtain
f(a+h) =f(a) + h[f' (a) + 6hf"" (X;)] = f(a) + hf' (a) + (1/2)K*£'"(X,).
Thus 6h* ' (Xz) = (1/2) h*£'" (X,) or 260 = £'" (X;) /£'" (Xz). Let h - 0,
The correct one is b?/2, In the approximation of 1 - €™ (1 +b) use
1-b+b*/2fore®.
(b) Sincee *> Oande *=1-x+%x/2!-%x/3! +... the series of
even power terms is larger (but differs little from the otner series
when x is large).
Using 1 - x + x* /2 as an approximation of e”* we have approximately
1-y=1-(1+k)y+(1+k)*y®/2, which implies 2ky = (1 + k) *y*,
hence 2k = (1 + k)*y or y is approximately 2k.
Rewrite In(x + p) = In[p(1 + x/p) ] = In p + In(1 + x/p), etc.
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CHAPTER 14: Estimating the Definite Integral

2. The trapezoidal rule.

7. By rectangles, 0.£35; by trapezoids, 1.035; by Simpson's rule, 1.026.

10. (a) 0.842, (b) 0.836.

13. (a) Rectangular, 0.996; trapezoidal 1.107; Simpson's rule, 1.096.
(b) 1/4, 1/12, 1/60. (c) Since In 3 = 1.099, the errors are 0.103,
0.008, 0.003.

oago

20. (a) e*=¢€" +e*(x-2a)/2! +e*(x-2a)%/2! +... . (b) Factor e out
of the series in (a) and notice that this yields e* = e*e™ ", Replace a
by -y.

CHAPTER 15: Further Applications of Partial Derivatives

SECTION 1: The Charge Az and the Differential dz
2. (a) ux=2xyz, 4y =Xz, uz = Xy. (b)) Ux=-ysinx, uy=cosx,u,= 1.

9. Ar Ah dav AV AV/dV (rounded off)
0.1 0.2 4.27 4,4827 1.07
0.01 0.03 0.517 0.51227 1.00
0.001 -0.001 0.0157  0.0149949997 1.00

18, z = ¥ + any function of y.
ood

23. (a) Since fxy; would have to equal fyx the answer is mo'. (b) £(x,y)
= x*y +y® is an example.
_dx dy Ox 0X oy Y Ox 97 0y 0X Oy BY Oy 9z,
25. Weha"ez'dx"dy‘axax*ayay+az 3x+3 + +
the same six summands make up dX/dX + dY/dY + dZ/dZ = 3, as the
chain rule shows in a similar manner. (This is an instance of the invari-
ance of dimension under homeomorphisms, a topological theorem whose
proof does not require the assumption of differentiability.)
26. To obtain (b) differentiate the relation in (a) with respect to x; .

SECTION 2: Higher Partial Derivatives and Taylor's Series
3. fx = 9%° +2y® +12x - 5y + 6 fy = 4xy - 5x
fx = 18x +12 fyx = 4y - 5 fy =4y -5 fyy = 4x
faxx = 18 fxyx =0 fyxx =0 fyyx =4
f)o(y =0 fxyy =4 fyxy =4 fyyy =0
All higher partials are 0.
5. (a) 1+x*/2+y?/2
1+x+x/2+y%/2.
9. 4(0.1) +0.1+2(0.01) +2(0.01) +(0.01) (0.1)
=0.4+0.1 +0.02+0.02 +0.,001 = 0,541,

>
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12, 1+2(x-1) +2(y-1) +(x-1)% +4(x-1)(y - 1) +(y - 1)?
+2x-1%(y-1) +2x-1(y-1)? +(x-1)7° (y-1)?
ooo

15. Completing the square we have A(Ax® + 2Bxy + Cy®) = A*¥* + 2ABxy
+ACy® = (Ax + By)® + (AC - B®)y® and consider (x, y) with x= 0 and
(x, y) withy=0.

16. A test for maximum or saddle point. Most advanced calculus books cover
this result.

CHAPTER 16: Algebraic Operations on Vectors

SECTION 1: The Algebra of Vectors
1, Scalars.
2. (b) 10, direction tan™' (-8/6), approximately south-east.

3. (@) (-5V2, 5v2), (o) (9v2/2, -9v2/2), (& (5,0).
4, @ (2,3, (© 0,9, (@ (-6, -9).
5
1

. (o) (1, 3, 2).
. (a) Their total production, (b) The first firm tripling its production.

12. (a) (30, 21, 50, 75, 18), (b) (3, 2, 4, 7, 1).

13. (a) The first vector has magnitude v208, the second, v200. (b) The
second, (c) the first.
16. c, lcl, 1A].

18. (4, 51/3, 3(4, 5), (4, 0) - (3, 5).

ooo
23. (a) It is usually defined as Z x? (if the series converges).
i=1 - -
(1) Y1/4" = {173, (@ ) 1/n* <1+),1/[n(n-1)]=2.
n=1 n=1 n=2

Hence, the vector has length less than v2; in fact its length is V7° /6.

SECTION 2: The Dot Product of Two Vectors
6. (c) The dot product is 3 # 0.
16. (a) 1, (b) 1.

18. (3, 4) +(5, 7) - (6, 8), 3[(4, 5)(6, 7]
goag
21, (a) Revenue from chairs. (b) Revenue from chairs and desks.
(¢c) Cost of producing chairs and desks. (d) Revenue is more than

cost, a desirable situation in a business.
27. It breaks even.

SECTION 3: Directional Derivatives and the Gradient
6. (a) Two, (b) perpendicular to the direction of vf,

9. vf=(4x, -6y) = (8, -6) gives the direction, tan” (-6/8).
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12,

All are 0 (recall that we assume that they are defined).

-(0 cosax cos By, - Bsin ax sin By)

CHAPTER 17: The Derivative of a Vector Function

SECTION 1: The Position and Velocity Vectors

1,

(a) The hyperbola xy = 1 to the right of x = 1. (d) dx/dt =1,
dy/dt= -1/t*~ 0ast -, 1Vl -1, andV - (1, T0).

(b) R() = (cos t°, sin t’), V() = 3t*(-~sin t*, cos t®).

(e) | \Nf(t) | — wast — «; the particle moves arbitrarily fast.

(c) 1V(t) | behaves like 32t and the direction of V(t) approaches the
vertical.

(@ R(0) = (0, 0), V(0) = (100,100V3)

(b) R= (10000v3/32, 15000/32) V = (100,0)

(c) R= (10000V3/16,0) V= (100, -100V3).

ood

(b) Consider the line L passing through the bow and the initial position
of the ball. The vertical deviation of the arrow from this line at time t
is the same as the distance the ball has fallen at time t, (If there were
no acceleration, then the arrow would remain on L and the ball at rest.)
(c) All that we need is that the arrow and ball are subject at all times
to equal accelerations. See discussion of (b).

SECTION 2: The Derivative of a Vector Function

1. (a) Circle of radius 10.
(b) V =207 (-sin 27t, cos 2mt) A = 407m2%(-cos 27t, - sin 27t)
10. If F is perpendicular to V, then A+ V = 0and d(V- V) /dt =0
Hence V- V is constant,
11, (a) Differentiate the relation R. K = 0.
12. (@) V =2(- tsint®, tcos t?)
A =2(- 2t° cos t® - sin t?, -2t* sint® + cos t*)
13. (a) dR/dtis perpendicular to R, (b) No, e.g. R= (cos(t’), sin(t’)).
0oood
19. ( a) Yes. If V(t) = (x(t), y(t)) and y(t) = mx(t), m constant, then
y(t) = mx(t). "(b) No. Consider circular motion with constant speed.

SECTION 3: Tangential and Normal Components of A
3'ANdsds_qus_<p__Q

dt dt ds dt dat ~ " dt

4, Use Exercise 3.
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Quadrupled; halved.
(b) Speeding up.

o o
. .

Oooo
17. (a) Since At = dv/dt = k we have v = kt + vo. (b) Since Ax=k

2 4oy _ds do _ d¢
= v* /(radius of curvature) = (dt) ( ) Gt " at = Var Ve have

d¢/dt = k/v. (c) From d¢/dt = k/(kt + Vo) it follows that ¢ = In(kt +vo)
(d) Since v = kt + vo his speed is getting arbitrarily great (but,

let us agree, not to exceed the speed of light). By (c) ¢increases
without bound, hence the spiral. Since radius of curvature equals
v? /k, the path continually gets straighter.

18. See discussion of Exercise 17.

19. Differentiate the equation (ds/dt)® = (dx/dt)* + (dy/dt)* with respect
to t and solve for d*s/dt*.

22. Differentiate the equation T . T = 1 with respect to t.

CHAPTER 18: Curve Integrals

SECTION 1: The Curve Integral of a Vector Field (P,Q)

4, (¢) The work done by F= (x*, y + 1) in pushing a particle once around
the circle. (d) The net loss of fluid over the circle if the velocity

vectoris V = (y + 1, - x %),
12. 7(2) + 10(3) = 44,

15. Using arc length s as a parameter, we have fc (%xg dax + -g% dy)

- (dxdx dy
- Jc ‘ds ds dsds

17. Write cos ¢ = dx/ds and sin ¢ = dy/ds. (This result is needed in
Exercise 10 of the next section.)

)ds = f 1 ds = arc length of C.

SECTION 2: The Curve Integral of a Gradient Field V F
2. One such F is x* /2 + 3xy + 2y°.
One such F is -e * cos y.
(a) a/(87¢), (b) equal.
V= gradient F will do pick F.
(a) Yes, F(xy) = x° y» (b) No, Py # Qx,
(c) Yes, F(x, y) = xX* + 3xy - 2y°.
ooo
9. Letwbe the absolute value of the component of W alongthe route. Thenthetotal
time is 1/(V+w) +1/(V -w) =2/(V -w/V) which is less than 2/V if w # 0.
10. Let ¢ be the angle from W to a tangent line on the curve and v be the

forward speed of the plane along the curve. Inspection of the triangle
whose three sides are V, W, v and which has angle ¢ opposite V shows

that v = vV? - W% sin® ¢ + W cos ¢. Thus, the time for the trip is

IO W
e e o e
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f@ “f ds _fw/Vz-W2 sin2<t>-Wcos<¢>d

cv T JeJVi-Wesinf¢+Weceosd  Je VE- W2sinthp-W2cosih OO

WS- Weos g, | ¢ W Wi
() c

V- W2 vi-owez 98

VVE -
>£—Vﬁ%ds= ﬁﬁl_—z-—:lﬁ ds > fd—‘;’=timeforthetrip

when there is no wind. We assumed that W> 0 and also made use of
Exercise 17 of the preceding section, The formula for v may also be
obtained from the law of cosines: V? = v* + W* - 2vW cos ¢ (solve for
v using the quadratic formula;

v=Wecos¢p + VW?cos ¢ - (W? - V)

and since v is positive, the +is used.)

SECTION 3: Other Notations for Curve Integrals

2.
3.
4.

7,
8.
9

P= 3%y +f(x), f arbitrary.
3x*y? /2 +(y), f arbitrary.
(@) [2x/(x* +y®)]dx + [2y/(x* +y*)]dy, (b) [, dF = O (since F(3, 0)

= F(0, 3)).
F(4, 8) - F(1, 1) = e*sin 8 +In(81) - e sin 1 - In 3,
It is sensitive only to the direction of flow along (parallel to) the border.
Since F is constant, F(B) - F(A) = 0, where A and B are the ends of C,
So the integral is 0. Or one could observe that since the level curve
is perpendicular to the gradient, the integrand Fx dx/dt + F, dy/dt is
identically 0.

CHAPTER 19: Green's Theorem

SECTION 1: Green's Theorem

7.
12.

14,

18,

37/2. Note that (a) is easier.

Letting the velocity vector of heat flow be (m) we have

f(-Ty dx + Tx dy) = 0 for each closed curve, hence, by Green's
theorem fn (Ty + Txx)dA = 0 for each region bounded by such curves.

Considering small R shows that T,, + T,y = 0.
1/m. Use of a table of integrals materially shortens the computations
in (c).

ooo
(a) For instance, (-%) fAB (- ydx + xdy) = (1/2)(a1b: - azb;), as is com-
puted by setting y = az + [(x - a;) /(b1 - a;)](b: - az) and therefore dy
= [(bz - az) /(by - a;) ]Jdx. The area is
(1/2) [(a1bz - azby) - (a1cz- azcy) + (bicz - baer)].
(d) No. The area of an equilateral triangle of side s is V3 g? /4, which

is irrational when s® is rational. If the triangle has integral coordinates,
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then the Pythagorean theorem shows that s’ is an integer. This
violates (c).

23. If the formula for area found in Exercise 18(a) has a negative value,
then ABCA is clockwise; if positive, counterclockwise. (If 0, then the
three points are colinear, as may be shown by analytic geometry.)

SECTION 2: Magnification in the Plane: the Jacobian

2. (a) The rectangle parallel to axes with opposite vertices (2, 0) and
(4, 37/2). (b) The parallelogram with vertices (2, 5), (4, 10),
(2-37/2), 5-77/2), (4-371/2, 10-T1/2).
The area is 4/3.
(c) 3, and the direction of Cs is counterclockwise.

ooo

s

13. From (1)(1) = 1 we obtain
1= XuUxYuly + Xullx¥vVy + XvVxVuly + XvVxyv Vy. Replace uxyu in the
first monomial by - Vxyy and vxyv in the fourth monomial by - uxyu.
The result coincides with the product of the two Jacobians.
(¢) If you look through the wrong end of a telescope that magnifies by
the factor a you will see everything '"magnified' by the factor 1/a,
that is, shrunk by the factor a. Part (b) shows that this is also so for
magnification that varies from point to point, as in an imperfect lens.

16. This is analogous to substitution in the definite integral f: (%) dx,
x = h(u), where we have [} (%) dx = [Pt h)(dx/du)du. The two-
dimensional formula is plausible, for if
> 1(Flus, v) (3(x, ¥) /2 (a, W) | As
i=1 Cui, vi)
is an approximation of [; (f - F)(3(x, y)/2(u, v)) dA based on the parti-

tion R;, Rz, ..., Ra and points P; = (u:, vi), then F(R:), F(Rz),...,
F(Ra) is a partition of S and the area of F(R:) is approximately
(x, y)/(u, v) 1 Ai. Hence, the approximating sum is

Uiy Vi)

Z f(xi, yi) B

approximately n
i=1

where B; = area of F(R:) and (xi,y:) = F(ui,v:), a point in F(R;);

the latter sum is an approximation of [(f dA.

17. (a) Because ""magnification' ought to behave like that. Also, in one-
dimensional magnification, we have the chain rule dy/dx = (dy/du)(du/dx).
(¢) Chain rule,

SECTION 3: Hyperbolic Functions
6. (b) Recall that lim tanhu = 1.

o ooo

10. Use the formulas for cosh and sinh in terms of €* and e™ *.
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1.

10,

13.

14,

20.

18.

23.

CHAPTER 20: The Interchange of Limits

(o) If Ix) > 1, then f(x) = 1; (1) = £(-1) = 1/2; if |x| < 1, f(x) = O.
Thus at all a other than 1 and -1, f is continuous.

(2) £(0) = 1. (b) Since (1 +nx*)/(1 +nx) = (1/n +x*)/(1/n + %),
f(x) = ¥* /x= x when x > 0,

1+2) - @q4+iy _
. . x X . e’ -¢
(a) lim lim = lim v
y—0 X —400 y—-O
y
V(oY _
S P ()
y—0 y

since lir (e’-1) /y = derivative of €’ at y=1. (b) If a and b are
consta%ts, lim [(1 + ay)® - 1]/y = d(1 + ay)° /dy at y = 0, thus ba,
Thus 9 y=0 5

1+ -a+D* [(A+2D)* - 1] - (1 +LF -1
lim = lim
y—0 y y—0 y

=2-1=1, and}(i_xg 1=1.

Let g(x) = x. 15. (a) Oand 1, (b) 0 andO.

(a) Somewhere a tangent line is parallel to the chord from (g(a),f(a))
to (g(b), f(b)). (b) No. Consider two points on a helix such that the
chord joining them is parallel to the axis of the helix.

ooo

Let § = angle BOP. Then Q = (1, §) and P = (cos 6, sin 8), whence R
has the x coordinate (8 cos 8 - sin 68)/(8 - sin ), which approaches
-2as 6 - 0. (Use L'hdpital's rule three times, or, perhaps, the ap-
proximations cos 8 = 1 - 92 /2 and sin6 =6 - 8°%/6.)

CHAPTER 21: Growth in the Natural World

t= 38.3. 13. 200.

From dP/P"* = kdt, we deduce that -100P™>* = kt + C where C < 0.
Thus P = [-100/(kt + C) ]'°°, whose denominator becomes 0 when kt + C
= 0; t = -C/k is doomsday.

(a) About 41. (b) About 65.

ooag

The inflection point suggests (34).

31. (a) Assuming that the death rate remains constant, we have dP/dt = kP?

- cP, where k and c are positive constants. (b) There are three cases:
P(0) = c¢/k, P(0) > c/k, P(0) < c¢/k. If P(0) = c/k, then P is constant.

[ This depends on the uniqueness of solutions of differential equations of

the form dy/dx = f(x, y)]. If P(0) > c/k, then, since dP/dt = kP(P - c¢/k),
as long as P(t) > c¢/k, P(t) is increasing. Thus P(t) - ¢/k >0 and, apply-
ing the same method we used in solving Eq. (27), we obtain P(t) = (c/k)/
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14,

15,

16.

17,

20.
21,

(1- e, where q is a negative constant. Doomsday occurs at t = -q/c.
If P(0) < c¢/k, similar reasoning shows that P(t) —0 as t — o,

CHAPTER 22: Business Management and Economics

(a) Double the order size and halve the frequency. (b) Halve the order
size and double the frequency.

The cost due to "P'" is proportional to A, hence cannot be influenced.

(a) A debatable and crude assumption. As area A is expanded about a
warehouse, the distances increase and are proportional to VA, hence

to the average distance, too,

(a) One dollar kept in the bank would provide a rate of profit r. Hence
the present value of the (constant)profit function r is 1. Thus

1= [ e ™ rdt.
0

(a) g(T) represents the present value of the three factors in thedeci-
sion. (b) When we scrap we would expect the revenue rate to exceed

the rate at which the scrap value declines by exactly the rate of return
on the scrap.

ooao
(a) The present value of G dollars plus an expenditure at the rate of
B dollars per year is G + [“e " Bdt = G + B/r; similarly, the present

o
value of the electric stove and electricity to be used is E + A/r. The
electric stove is more economical when E + A/r < G + B/r, that is
r(G-E) > A-B. (b) Yes, for r(G - E) is the rate of return of
investment of G - E, and A - B is the initial rate of extra cost for
electricity, The return on the investment of G - E should more than
cover the extra cost of electricity.
(b} If p is the lower price and p + 1 the higher price, then the number
sold at the higher price is9 - (p + 1)® and the number sold at the lower
price is (9 - p?) - (9 - (p + 1)®). Hence, the revenue function is
(p+1)[9-(+1)?] +p[(p +1)* - p°], which has a maximum at p
= (v22 - 1)/3. (His revenue is then 11.7).
To simplify the arithmetic maximize u® = x*y*[(180 - 2x -y)/5].
(b) In this case (merger) note that by cutting production in half the
total profit is increased.

CHAPTER 23: Psychology

For the octave from 500 to 1000 cycles we would evaluate

[199°(1/2,22) x %% dx, asin (13). As in (25), this is (0.651)(1000%"%

500
- 500%%2 ) =0.651(119,1 - 73.8) = 29.5; hence around 30 or 31 keys.

Similar arithmetic shows that the octave from 1000 to 2000 cycles re-
quires about 2% as much, and hence, since 2% = 1,61, about
49 keys.

1+ [22°(1/2.22) x**® dx (about 31), and
1+ [2°°(1/2.22)x %% dx (about 49).
1000
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7. (b) Since logioy = logioa + n logioX, n is the slope of the line when
the data is plotted on log-log paper. (c) Semilog, with the x axis
logarithmic.

10. (b) f(x) = c + (t/k) Inx.

ooag

14. (c) VX2 +y° /2

16. (a) O (none knew at the beginning). (b) 1 (all know). (c) Yes, as
long as p # 1. (Since 0.80p +0.20 > 0.80p + 0.20p = p, and 0.92p
+0.08 > p). In case of avoidance we have (0.80p + 0.20) -p = 0.20
(1 - p); in the case of shock we have (0.92p + 0.08) - p= 0.08 (1 - p).
The dog "learns more' by avoiding the shock than by being shocked.
(d) After avoidance, p = 0.20; after shock, p= 0.8, The smallest
increase in p occurs after shock. After two shocks, p is (0.92)(0.08)
+0.08 = 0,1536 ... etc. (e) Since p increases at each stage and is
bounded by 1, it has a limiting value. More precisely if pn denotes
p at n” stage, wehavep; =0 < pp < p < .. < 1. LetP= lni_n; Pn.

Since pna = 1,08 - 0,08p. we have P = 1,08 - 0.08P, hence P = 1,
Thus P= 1,

17. (a) -k2X and -czy represent "'fatigue''--the effect of previous buildups;
(b) kiyand c1x; (c) ks and cs, which are independent of x and y.

CHAPTER 24: Traffic

SECTION 1: Preliminaries
2. (c) 1/2.
3. (b) The improper integral f0°°(2x/[1r(1 +x%) ]) dx is divergent; we may

say that the expected gap is infinite. (The experimental average gap
would tend to get arbitrarily large as more experiments are performed.)

9. (c¢) 17, since the first die can show any one of its six faces. Rather
than speak of the "first" and "second" dice, it may be clearer to speak
of one die "thrown with the left hand" and the other with the "'right hand,*
so that the feeling of simultaneity is preserved. The experiments may
be performed that way.

10. (a) 1/2°, (b) ). n/2" = 2.
n=1
12, (d) 1/e=e™. Actually (b) does hold for all n.

SECTION 2: The Exponential (Poisson) Model of Random Traffic.
8. From ) Pu(x) = 1and (20) (for k = 1) it follows that ) (x" /nle ™ = 1.
n=0

n=0
oono

21. Since £f(0 + 0) = £(0)£(0) we have £f(0) = 0 or 1, If £(0) = 0, then (0 +y)
= £(0) f(y), that is, f(y) = 0; thus f(y) = 0 for all y (if we agree to inter-
pret 0°= 0). If £(0) = 1let £(1) = a. Thus £(2) = f(1 + 1) = f(a)f(1) = a°,
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and similarly, f(n) = a" for any positive integer n. Since 1= f(-n +n)
= f(-n) f(n), £(-n) = a™ for any negative integer -n. Also f(1/n + 1/n
+..+1/n) =a=[f(1/n)]", thus £(1/n)= Va. (Observe that f(x) = 0
since f(x) = [£(x/2) ]>.) Thus f(m/n) = (Va)™ = a™/*. By continuity,

f(x) = a* for all x.

SECTION 3: Cross Traffic and the Gap between Cars

4,
9.

13.

15,

16.

= e

23.

24,

RN i o

When c is large, then w is close to "expected initial distance' 1/k.
The probability equals (probability that the car from the west is

at least a distance ¢ from him) X (probability that the car from the
east is at least a distance ¢ from him). (Note: same as if eastbound
traffic doubled in density.)

(b) p(2) = p(38) =... =0. Itis interesting to compare W for this
traffic to W for the traffic randomly distributed, same k and c. For
this uniform traffic W = (1/2) (0) + (1/2)(25) = 12.5. For random
traffic, W= 100 (e%? - 1-1/2) = 14.9, which is larger. However,
random traffic has the advantage that any northbound driver eventually
can cross.

(b) 10 X 4 = 40 minutes.

ooo

(¢) By Schwarz's inequality we have

f: xf(x)dx=f: [x Vi(x) ][ E(®) ]dx
= {f:[x (x)]2 dx}l/z {j;[\/f(—x)]de} = [f:x f(x) dx]l/z[j: (%) dx]l/z’

which establishes the desired inequality. (d) Equality occurs only if

xJf(x) is proportional to vf(x), that is: x is constant, which is not the
case.

CHAPTER 25: Rockets

Doubling ¢ doubles v; - vo; doubling dm/dt has no effect; doubling m;-me
has an intermediate effect since In(1 + 2x) < 21In(l +x) forx > 0
(x=m; - mo). To obtain the inequality take logs of 1 + 2x < (1 +x)*,
Both produce the same effect, as (10) shows, increasing vi - vo by 50%.
(b) The work would be finite,

The precise answer is (82) (4000/4082) mile-pounds.

4 miles per second.

0 miles per second.

It is smaller than the escape velocity. (Consider the reversed trip.)

oao

To show that for y > 0, y* < 2(e’ - 1 - y), use Taylor's series for e’
or else Example 5, Section 2, Chapter 5, where it is shown that

e > 1+y+y*/2fory>0.

(b) The time T, required to reach the maximum height mentioned in

Exercise 22 is (1/k)In(C/32). The time T; required to reach the same
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25,

26.

(3]
.

8.

height when there is no air resistance is (using formula y = 16t?)

(1/4) V(C - 32) /¥ - (32/K*) In(C/32). We show that T is greater
than T;. The inequality Tz > T? is equivalent to

116 [Cksz 3_22 1(52 > [ln( V]2,

Note that C> 32, as was shown in Exercise 21, and let C = 32x, x> 1.
The above inequality becomes

1_[ 2(x-1 32
16 Kk? k2
a simple consequence of Exercise 23.

No. Consider the extreme case, V5 = (4000)(0.012). The (16) gives

]nx]> ?12 (In x)?,

v* = (4000)(0.012) + (4000)* (0.012)( = —=) = (4000)%(0.012)(= )

4000
If r approaches a limiting position r* then v approaches a limiting non-

zero velocity v*, Indeed v > v* and v* = v(4000)? (0.012)(1/r*). But an
object travelling with a velocity that is always greater than some fixed
positive number travels an infinite distance, in particular goes beyond
r*, its alleged limiting position.

Using (16) we have v? = 47.2 + (4000)? (0.012)(% -

1 .
2000 ) and total time

, 000
is jj::o (1/v)dr. Now v* = -0.8 + 192,000/r. We must evaluate

i VE/(-0.8r +182,000) dr = 1/¥0.8 [ " vr/(340,000-1).
Evaluate this either by a substitution r = 240,000 sin’# or use of the
formula for [ m-—x-) dx from an integral table. The time is
(1/+0.38)[ V4000 V236,000 + 240,000 sin~ (236/240) ] seconds, or

(1.12) [(63.2)(486) + (240,000)(1.39)] = (1.12)(30, 700 + 334,000) = 408,000

seconds or about 113 hours.

CHAPTER 26: Gravity

(a) rd would be veloc1ty of particle moving on circle of radius r and
angular velocity 8; r would be velocity if particle were restrained to the
ray. (b) If the particle moved on a circle of radius r and angular ve-
locity § it would have velocity v = r9 hence r(§)? = r(v/ r)2 =v?/r, in
agreement with results in Chapter 17 The expression rd is equal to the
acceleration if r were constant.
Success is not expected.
The latter, by Kepler's third law., First mean radius is r
+ [(1/2)(200 + 600) ]; the second is r + [(1/2)(150 + 700) ], where r is the
radius of Earth.

96> T
(4317.5)3 ~ (4400,5)3

, whence T = 98.8 minutes.
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15,

117,

19,

20.

18.

24,

25,
28.

29.
33.
35.
317,

40.

This reduces to the equation [% f(x)dx = 0 if f(- x) = f(x), a result obtain-
able by the substitution u = -x or by showing that f; f(x)dx = - f_‘lf(x)dx.
(a) The 'area is swept out at constant rate' (II). (b) IandII

(¢) I, IO, IIL
o0o0o

(a) We have d®x/dt* = -kx and d® y/dt* = -ky. According to Exercise 16,

x=a; cos vkt +a; sinvkt and y = b, cosvkt + b, sinvkt. Att=0, y=0
and dx/dt = 0; thus b; = 0 and a; = 0. We have x/a; = cos Vkt and y/b;

= sinvkt and thus x® /a} +y%/b3 = 1. (b) The time to complete an orbit
is determined by k; the period is 27 /Vk.

From formula (19) A: = -47%a® /T?*r?. In this case a = r = 240,000 and
A: = (4000/240,000)% (-32) /5280 miles per second per second or A

= -(1/60)® (0.006). Thus

0.006 _ 4w *(240,000)
(60)2 ~ T? ’

whence T may be found. (About 27.8 days, with this data.)
I = ake*?§ = ake* h/(e¥®)? = ak h e-k¢

f=-ak®he* §=-ak’he* h/r’ = - B’k*/r°.

Thus ¥ - r§% = -*K#/r® - rh? /r* = - (W*K® +1h?)/r°.

Appendix A: Analytic Geometry

(a) (x-1)% +(y+1)? =25 (b) No, for (4.5 - 1)* + (2.5 + 1)?

= 24.5 # 25.

They may look colinear but (3) shows that they are not.

(a) y-5=(-3/2)(x-2); (c) yes.

(a) (s8,0,0), (0,3,0), (0,0,2) respectively.

(a) The plane parallel to the xz plane, passing through (0, 3,0),

(b) The plane parallel to the xy plane, passing through (0,0, 2),

(c) The plane perpendicular to the xy plane and passing through

(1,1,0) and (1,0,0), (d) Empty, (e) The spherical surface of radius
V5 and center at the origin.

(a) (straight) line, (b) (straight) line, (c) horizontal curve congruent
to the curve 1 = xy, (d) the axes, (e) a curve whose shadow on the xz
plane by light parallel to the y axis is the curve z = x*,

(a) r*=1/(sin 20), (b) r=1/(cos § +sinh), (c) r= 2 cos f+4 sin 0.

(@) 2 +y* =4y, (B) V¥ +y% = ™0™ | () (& +y*) = 2xy.
Length of string in both cases is 10. In the first case use foci (4,0) and
(-4,0); in the second case, (0,4) and (0, -4).
The tacks would be 6 feet apart and the string would be 10 feet long.
Simply use the definition of the hyperbola.
(b) F=(1/2,0), directrix x = -1/2.
The length of string 2a is now the ''slant'' distance along a generator of
the cone between the equators of the two spheres perpendicular to the
axis of the cone.
(a) Rewrite each in the form r = pe/[1 + cos(§ - B)]. Thus r =
5/(3+4cos 6) =(5/3)/[1+(4/3) cos (6 - 0)], whence e = 4/3 (and p = 5/4).
The eccentricities of the others are 3/4, 1, 4/3. (b) hyperbola,
ellipse, parabola, hyperbola.
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14,
15,
16,
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23.

24,

25.

26.

11,

() r?=3rcosfh +4r sin g, hence x* +y* = 3x + 4y. Complete the
square. (b) r(3cosf +4sinh) =1or 3x +4y =1,

Appendix B: The Real Numbers

(b) For instance, a> 0, b> 0, a-b < 0. Thenla -bl=b - a,
lal =a, |bl =b. Fromb - a < ¢ we wish to deduce a< b +c. But
this is clear for a - b < 0 impliesa - b < ¢, hencea <b +ec.

(a) 3.769230, (b) 0.428571, (c) 0.6250, (d) 0.1176470588235294.
(a) (d) (e) (f) can easily be put in the form m/n. In the text it is
proved that 7 is irrational; we do not prove that V2 is irrational.

(a) 62,395/9990, (b) 20,162/990.

Yes; for instance, the set of negative irrational numbers.

(a) 10. (b) 10.

Appendix C: Functions

-1, 4, -21 respectively.
@) =1, ' (b) =2, f'(c) = 3.
(a), (d) and (e) are one-to-one; (a), (b) and (e) have their range Y;
(a) and (e) are one-to-one correspondences between X and Y.
(15,1), (1,2), (4,3), (27,4).
(2) 120, (b) 24.
(a) Vertical, (b) at most once, (c) exactly once.
1 (1) =3 £71(6) = 2.
They are equal.
(b) 1/2 and 1/2.
4,
f is also a one-to-one correspondence, Proof: If f(x;) = f(x2) then
f(f(x1)) = f(f(x2)) or (f - f)(x1) = (f- £)(x2), hence x; = x;. Also if y is
in X, theny = (f - f)(x) for some x in X, hence y = {(f(x)); thus y is the
image of an element on X, namely the image of f(x).
(a) Maternal grandmother, (b) paternal grandmother, (c) maternal
grandfather, (d) siblings, (e) cousins.
This is the Newton recursion for 4. (a) 5/2= 2.5, 41/20 = 2.05,
3281/1640 = 2.0006. (b) The values approach 2. (No proof expected.)
(a) All. h=h- f where f(1) = 1 and £(2) = 2. (b) All, in fact. Let
g(l) = 2and g(2) = 1. Then

h=h-f=(h-g) o g.
) -

They are one-to-one correspondences andf=¢g , g=f ',

Appendix D:
(@ 1-1/5=4/5.
Appendix E: Length, Area, and Volume
The expected number of intersections of a flat surface randomly placed
in space with the lines is (intuitively) proportional to its area. More-

over, the expected number of intersections of a convex surface with the
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lines is proportional to its average shadow on the xy plane; for if the
shadow meets a line, the surface cuts it, generally, twice. For a
sphere of radius a, the average shadow is 7 a® and the surface area is
4ra’®, Thus, the surface area of any convex body is four times its
average shadow.

Appendix F:
1x-9] 1x - 9] Ix - 9|
8. (a) !&-@I=&—+@S 5 c 3

Thus, if we make |x - 9] < (3)(0.04), we have |x - 91/3 < 0.04.
Thus 6§ = 3(0.04) = 0.12 suffices.

11. Since Ir" - 0] = | |rf" - 0|, the result for -1 < r < 0 follows from
Theorem 8. The case r = 0 is trivial.
17. (b) No.

18. (a) f(x) = x in this case, hence differentiable, (b) trouble in defining
f(x), (c) yes, the resulting f would be continuous and nowhere dif-
ferentiable.

Appendix G:

2. (a) 1/2-1/30r -1/2+2/3, (b) 2/3-2/50r -1/3 + 3/5.

() 1/2+1/4-1/3-1/90r -1/4+1/3 +2/9, (d) 2/3 +1/21.
4, () (x+2)(2x-1)(x+2), (b) itis prime, (c) since B® - 4 AC

= 57> 0 it is not prime., Write it as 2(x* + (1/2)x - 7/2)

=2(x-(-1+ V67 /9)(x - (-1 -V57)/4) = (2x-(-1+V57)/2)(x-( - 1-V57)/4).
5. (a) (x-2)(x* +2x+4), (b) (x-YV4E +¥V4x+¥V1e6).

1.5 1l

6. () it s =2 2 e
. x*+x2 +1  x2 +x+1 x? -x+1

2x° +1 2 8 J
- (A G = ¥z Tx-2 Tx-oF

X 1’ 1
(b) (x+1)2 x+1 (x+1)2

X3-5X2+9X'f1__ 1 X
© T DE-9E - x-32 " xTal

10. 21is a root. The representation is

1723 + (-4/23) x -10/23
X- 2 4x2 +2x + 3

11, Twenty in either case.

12. (a) X _ -2V5 1 , 1-3V5 1
: (x +3x+1)2 ~ 25 (x-('?’;@)) 10 (X_(-3«;¢5‘>>2
L 25 1 PCLE I S
25 <x_<—3;\/5_)> 0 (. (-32-J5—>)
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X _ 1 -3 6 1 4x - 8
(o) (x-1%@GE +1) 12 [(x-l) PRS- T x+D MCE —x+1)]

5
x"+1 .2 x-1
13. (a) xr1 0% Txox+1
4
X 2 1
(®) (x% +1)2 Sl iT e
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