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Section 1.1 What Is a Partial Differential Equation? 1

Solutions to Exercises 1.1
1. If u; and ug are solutions of (1), then

Ouy  Our Oug = Ouz

Since taking derivatives is a linear operation, we have

ou ou ou ou
—(c1u1 + cou2) + =—(c1ur + coug) = 01—1 + 02—2 + 01—1 e

ot ox ot ot

=0 =0

8’(1,1 8’&1 8’(1,2 8’(1,2 o
“ (W + a—x> ez (— ++—x> =0

showing that cijuy + cousg is a solution of (1).

3. (a) General solution of (1): u(z, t) = f(z —t). On the t-axis (x = 0): u( =
t=f(0—t) = f(—t). Hence f(t) = —t and so u(x, t) = f(x —t) = —(z—t) =t —x.
5. Let a = ax + bt, § = cx + dt, then

=
~

ou _ uda o5 ou . o
ox Oa 0x OB Ox Oa op
ou _ uda D5 0w o
ot da Ot 0B Ot O 0B

Recalling the equation, we obtain

ou Ou ou ou
— - = b—a)m—+(d—c)= =0.
ot "oz 0 T g tldmags =0
Leta=1,b=2, ¢c=1, d=1. Then

Ju

L0 = w=f(B) = ulw0)=f+0)
where f is an arbitrary differentiable function (of one variable).
7. Let a = azx + bt, § = cx + dt, then

u _ Duda, uds _ ou ou
dr ~ Badr  0B8or “da ‘88
ou Ouda  OudB  Ou ou

o~ aaot Togor laa M5

The equation becomes

ou ou

b—2a)— d—2c)— = 2.
- 20050 +(d- 205
Leta=1,b=2, c=—-1, d=0. Then
ou Ju
op op
Solving this ordinary differential equation in 3, we get u = 8+ f(«) or u(x, t) =

—x + f(z +2t).

9. (a) The general solution in Exercise 5 is u(x, t) = f(x +t). When ¢ = 0, we get
u(x, 0) = f(x) =1/(2? + 1). Thus

(c) As t increases, the wave f(x) = H% moves to the left.
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Figure for Exercise 9(b).

11. The characteristic curves are obtained by solving

d
dy _ 2

3 _
Ir z° = C.

1
y:§3:3—|—C = Y-

Wl

Let ¢(x, y) = y— 2x3. The characteristic curves are the level curves of ¢. The solu-
tion of is of the form u(x, y) = f(¢(x, y)) = f(y — 32°), where f is a differentiable
function of one variable.

13. To find the characteristic curves, solve g—g = sinz. Hence y = —cosz +

C or y+cosx = C. Thus the solution of the partial differential equation is
u(z,y) = f(y+cosx). To verify the solution, we use the chain rule and get
uy = —sinzf' (y+cosz) and uy = f' (y+cosz). Thus u, + sinzu, = 0, as
desired.
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Exercises 1.2

3

1. We have
O (N _ 0 () 0 (o) D (0
o\ot) ot \ox or \ot)  ox \ox)’
So
Pu_ O P
o2~ otow 0 Owot | 022
Assuming that % = gjg 7, it follows that %% = 2277;, which is the one dimensional

wave equation with ¢ = 1. A similar argument shows that v is a solution of the one

dimensional wave equation.

3. Uy =F"(x+ct)+G"(x+ct), uy = F"(x +ct) + 2G(x — ct). So uy = ¥y,

which is the wave equation.

5. (a) We have u(x, t) = F(z + ct) + G(z — ct). To determine F' and G, we use

the initial data:

1 1

u(z, 0):14—3:2 = F(x)+G(x):1_|_—gj2;

(1)

z—?(x, 0)=0 = cF'(z)—cG'(z)=0
= Fl(z)=G(z) = F(x)=G@x)+C, (2)

where C' is an arbitrary constant. Plugging this into (1), we find

1 1 1
260 +C= 7 = 6@ =g |7
and from (2)
1 1
Hence
(2, 1) = Fla+ ct) + Gz — cf) = L 1
W B = ST e Ty 1+ (@+ct)?2 1+ (x—ct)2]’

7. We have u(z, t) = F(z + ct) + G(x — ct). To determine F' and G, we use the

initial data:
u(z,0)=0 = F(z)+Gx)=0; (1)

(2—1;(3:, 0)= —2ze " = cF'(z) — G (z) = —2ze"
= cF(z)—cG(z) = /—23:679”2 dz=e +C
= F@) -G =S—+C (2
c

where we rewrote C'/c as C to denote the arbitrary constant. Adding (2) and (1),

we find )
()= tC = F@)=g [ ]
=T R ’
and from (1)
Glz) =~ e +C]
2c

Hence

1
u(z, t) = F(x +ct) + Gz —ct) = % [e*(m“tf — e (@e)*]
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8. We

9. As the hint suggests, we consider two separate problems: The problem in
Exercise 5 and the one in Exercise 7. Let u;(x, t) denote the solution in Exercise 5
and wug(x, t) the solution in Exercise 7. It is straightforward to verify that u =
u1 + ug is the desired solution. Indeed, because of the linearity of derivatives, we
have uy = (u1)e + (u2)er = c2(u1)ze + c2(u2)zs, because u; and ug are solutions
of the wave equation. But c2(u1)ze + ?(U2)ze = (U1 + U2)zx = Uze and so
Uy = c*ug,, showing that u is a solution of the wave equation. Now u(z, 0) =
uy(z, 0)+ua(x, 0) = 1/(1+22)+0, because uy (x, 0) = 1/(1+2?) and uz(z, 0) = 0.
Similarly, u¢(z, 0) = —2xe™* ; thus wu is the desired solution. The explicit formula

for u is
1 1 1 1 2 2
—— - —(z+ct)® _ —(xz—ct)
u(@, 1) 2[1+(x+ct)2+1+(x—ct)2]+2c [e ¢ '
11. We have
o’V 0 ol 9?1 ol
927 on (‘La‘@ = Lo~ far
ol oV oV —1]dI
SO
82_V — __1 821 + Ga_v
oz C |otox ot |’

To check that V verifies (1), we start with the right side

0?V ov
LCWJF(RCJFLG)EJFRGV
-1[0%1 ov
= LCO— — L
CC [8t8x+G8t]+(RC+ G)

-1
c

[g + GV] + RGV
or

=)
0?1 oI LG[ ov. ol ]

= Laer Par ¢ % Tar TEY

021 ol 0%V
Lar  Tor T o

which shows that V satisfies (1). To show that I satisfies (1), you can proceed as we
did for V or you can note that the equations that relate I and V are interchanged
if we interchange L and C, and R and G. However, (1) remains unchanged if we
interchange L and C, and R and G. So I satisfies (1) if and only if V satisfies (1).

13. The function being graphed is

1 1
u(z, t) = sinwx cos wt — 3 sin 27 cos 27t + 3 sin 37z cos 37t.

In frames 2, 4,6, and 8, t = 7, where m = 1, 3,5, and 7. Plugging this into
u(zx, t), we find

mm

. mr 1 mr 1 .
u(zx, t) = sinwx cos 4 ~gsin 2mx cos 53 + 3 sin 3mx cos

For m =1, 3, 5, and 7, the second term is 0, because cos %5~ = 0. Hence at these
times, we have, for, m =1, 3, 5, and 7,

m . 1.
u(z, Z) = sinwx cost + 3 sin 3w cos 3rt.
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To say that the graph of this function is symmetric about x = 1/2 is equivalent
to the assertion that, for 0 < x < 1/2, u(1/2 + 2, F) = u(1/2 — x, ). Does this
equality hold? Let’s check:

1 3
w(1/2 + =, %) = sinw(x+1/2)cos%+gsin37r(x+1/2)cos T
mr 1 3 mm
= CO COS —— — — CO CO:
8 T2 CO8 — 5 cos 3Tz cos — —,

where we have used the identities sinw(x 4+ 1/2) = cos7x and sin2n(z + 1/2) =
—cos 3. Similalry,

1 3
u(1/2 -z, %) = sinm(1/2 — ) cos % + 5 sin3m(1/2 — ) cos Ui
mr 1 mm
= COSTILCOS —— — — COS 3WT COS
4 3
Sou(l/2+x, 3) =u(l/2 -z, F), as expected.
15. Since the initial velocity is 0, from (10), we have
> nmwx cnmt
t) = by, sin —— .
u(z, t) 7;1 sin —— cos —
The initial condition u(z, 0) = f(z) =  sin Z£ + 1 sin 37 implies that
> 2rx
by, = _—.
; sin sin 7

The equation is satisfied with the choice by = 0, by = 1, and all other b,’s are zero.
This yields the solution

(@, 1) . 2mx 2crt
u(x = sin — cos
’ L L

Note that the condition u.(z, 0) = 0 is also satisfied.

16. Since the initial velocity is 0, from (10), we have

o0

(4

u(z, t) = Z by, sin I o CWZT
n=1

The initial condition u(z, 0) = f(z) = % sin ZZ + 1 sin 32 implies that

ib sinw*lsmﬂ—l-lin%—x
oyt " L 2 L 4 L

Clearly, this equation is satisfied with the choice b; = %, bs = %, and all other b,,’s
are zero. This yields the solution

(2, 1) = 1 T crt 4 1 . 3nzx 3crt
u(x — sin — cos — + — sin —— cos
’ 2 L L 4 L L

Note that the condition u.(z, 0) = 0 is also satisfied.

17. Same reasoning as in the previous exercise, we find the solution

(@, 1) = T crt 4 1 . 3nx 3crt 4 2 . Trx Tert
u(x — sin — cos — + —sin — cos — sin — cos .
’ 2 L L 4 L L 5 L L

19. Reasoning as in the previous exercise, we satrt with the solution

N nmtr . cnnt
E b, sm—sm .
L
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The initial condition u(x, 0) = 0
condition, we must have

is clearly satisfied. To satisfy the second intial

n=1
Thus
1 3C7Tb* oo L
4 L3 37 12er’
1 6cm L
0 L% 7 %7 6oen
and all other b8 are 0. Thus
. 3mx . 3enmt L . 6wx . 6crt
u(z, t) = sin —— sin — sin —— sin .
12¢m L L 60cm L L

21. (a) We have to show that u(3, t) is a constant for all ¢ > 0. With ¢ = L =1,

we have

u(zx, t) = sin 27wx cos 2nt = u(1/2, t) =sinmcos2nt =0 for all ¢ > 0.

(b) One way for z = 1/3 not to
is the solution that corresponds
%(:c, 0) = 0. For this solution,
all ¢.

22. (a) Reasoning as in Exercise

move is to have u(x, t) = sin3wx cos3wt. This
to the initial condition u(x, 0) = sin37z and
we also have that x = 2/3 does not move for

17, we find the solution to be

1 1
u(z, t) = 3 sin 27z cos 27t + 1 sin 47z cos 4t.

(b) We used Mathematica to plot the shape of the string at times ¢ = 0 to ¢ = 1 by
increments of .1. The string returns to some of its previous shapes. For example,
when ¢t = .1 and when ¢ = .9, the string has the same shape.

u[x_, t_]=1/28Sin[2Pix] Cos[2Pit] +1/4Sin[4Pix] Cos[4Pit]
tt = Table[u[x, t], {t, 0, 1, .1}];
Plot [Evaluate[tt], {x, 0, 1}]
1 . 1 .
?COS[Z Tt] Sin[2 x| +Z Cos[4t] Sin[4 ntx]
0.6
0.4r
0.2
2 0.4 . 8
-0.2
-0.4
-0.6

The point = 1/2 does not move.

we obtain u(1/2, t) = 0 for all t.

This is clear: If we put x = 1/2 in the solution,
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23. The solution is u(z, t) = sin2mx cos27wt. The motions of the points z =
1/4,1/3, and 3/4 are illustrated by the following graphs. Note that the point
2 = 1/2 does not move, so the graph that describes its motion is identically 0.

u[x_, t_] = Sin[2Pix] Cos[2Pit]
Plot[{u[l/4, t], u[l/3, t], u[3/4, t]}, {t, 0, Pi}]

x=1/4

x=3/4

In each case, we have a cosine wave, namely u(xg, t) = sin 2wz cos 27t, scaled by
a factor sin 27xg.

24. The solution in Exercise 22 is
1. L.
u(z, t) = 5 sin 27 cos 2wt + 7 5in 4mx cos4mt.

The motions of the points = 1/4, 1/3, 1/2, and 3/4 are illustrated by the following
graphs. As in the previous exercise, the point x = 1/2 does not move, so the graph
that describes its motion is identically 0.

u[x_, t_]1=1/2Sin[2Pix] Cos[2Pit] +1/4Sin[4Pix] Cos[4Pit]
Plot[{u[l/4, t], u[l/3, t], u[3/4, t]1}, {t, 0, Pi}]

1 1
?COS[Z nt] Sin[2 7T x] +I Cos[4mmt] Sin[4 T x]

x=3/4 X=173

Unlike the previous exercises, here the motion of a point is not always a cosine wave.

In fact, it is the sum of two scaled cosine waves: u(zo, t) = 3 sin 2wz cos 27t +
% sin 4wz cos 4nt.
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25. The solution (2) is

( t) . X mct
u(x, t) = sin — cos —.
’ L L
Its initial conditions at time ty = % are
( 3L> . T wc 3L . T 3 0
-~ )= — CO —_— - — | = — Ccos — = U;
u(x, e sin 7 S T 2% sin 7 S 5 ;

and

ou 3L TCc . TT . wc 3L wc . X 3 T . TX
E(xa o ) ! - =78

27. (a) The equation is equivalent to

10u KOu
rot ror
The solution of this equation follows from Exercise 8, Section 1.1, by taking a = —%

and b = —Z£. Thus

P

1 K
t)=f(—=z+ —t)e .
ula, 1) = f(=a+ S
Note that this equivalent to
u(, 1) = flz - Kt)e ™,

by replacing the function = — f(x) in the first formula by x — f(—rz). This is
acceptable because f is arbitrary.
(b) The number of particles at time ¢ > 0 is given by [~ wu(z, t)dz. We have

M = [%_u(z,0)dz. But u(z, 0) = f(z), so M = [ f(z)dx. Fort > 0, the
number of particles is

/Oo u(z, t)de = /O:o flx —Kkt)e " dx

— 00

et /Z flo—rt)ds = e /Z f(z)dz = Me™™,

where, in evaluating the integral ffooo f(x — kt) dx, we used the change of variables
z < x — kt, and then used M = [*_ f(z) dx.
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Solutions to Exercises 2.1

1. (a) cosw has period 2r.  (b) cos 7wz has period T = 22 = 2. (c) cos 2 has
period T' = 227”3 =3m.  (d) cosx has period 27, cos 2z has period m, 27, 37,:. A
common period of cosx and cos 2z is 27. So cosx + cos 2z has period 27.
3. (a) The period is T' = 1, so it suffices to describe f on an interval of length 1.
From the graph, we have

0 if —i<z<0,

f@_{ 1 if0<z<l
For all other x, we have f(x + 1) = f(z).
(b) f is continuous for all = # %, where k is an integer. At the half-integers,
T = %, using the graph, we see that lim,_, .+ f(h) = 0 and lim;,_,,- f(h) =
1. At the integers, x = k, from the graph, we see that lim, ..+ f(h) = 1 and
limy,_,,- f(h) = 0. The function is piecewise continuous.
(c) Since the function is piecewise constant, we have that f/(z) = 0 at all z # %,
where k is an integer. It follows that f/(z4) = 0 and f/(z—) = 0 (Despite the fact
that the derivative does not exist at these points; the left and right limits exist and
are equal.)

5. This is the special case p = 7 of Exercise 6(b).

7. Suppose that Show that fi, fo, ..., fan, ... are T-periodic functions. This
means that fj(z +7T) = f(z) forall z and j =1, 2, ..., n. Let sp(z) = a1 fi(z) +
asfo(x) + -+ + anfu(x). Then
sn(x4+T) = =arfile+T)+asfole+T)+ -+ anfu(z+T)
= arfi(@) + azfo(z) + -+ anfn(@) = sn();

which means that s, is T-periodic. In general, if s(z) = 2;11 a;fij(x) is a series
that converges for all x, where each f; is T-periodic, then

s(x+T) = Zajfj(x—FT) = Zajfj(x) = s(x);

j=1
and so s(x) is T-periodic.

9. (a) Suppose that f and g are T-periodic. Then f(z+T)-g(z+T) = f(z) - g(x),
and so f - g is T periodic. Similarly,

fla+T) _ f(=)

gz +T)  g(x)

3

and so f/g is T periodic.
(b) Suppose that f is T-periodic and let h(xz) = f(x/a). Then

paovar) = £(ZEE) = s (247)

a

= f (g) (because f is T-periodic)
= h(x).

Thus h has period aT. Replacing a by 1/a, we find that the function f(az) has
period T'/a.

(c) Suppose that f is T-periodic. Then g(f(z + T)) = g(f(z)), and so g(f(x)) is
also T-periodic.

11. Using Theorem 1,

/://Zf(‘r)d:”—/Oﬂf(x)du’c—/oﬂsinxdx_z,
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13.
/2 /2
/ f(x)d:c:/ lde =7/2.
—7/2 0
15. Let F(z) = [T f(t)dt. If F is 2n-periodic, then F(z) = F(x + 27). But

T+2m €T T+2m Tr+2m
Flz+27) = / F#)dt = / F()dt + / F(t)dt = F(z) + / F(#) dt.

Since F'(z) = F(x + 27), we conclude that
r+27m
/ f(t)dt =0.

Applying Theorem 1, we find that

T+2m 2
[ rwma= [ raa-

0

The above steps are reversible. That is,

2m x+27‘r
fydt=0 = / t)dt =0

- /f nar= "0 dt+/“2ﬁf<t>dt—/:mf(t)dt

= F(z + 27);

0

and so F' is 2w-periodic.

17. By Exercise 16, F' is 2 periodic, because fo t)dt = 0 (this is clear from
the graph of f). So it is enough to describe F' on any interval of length 2. For
0 <z < 2, we have

2z 2

* t x
F = l-t)dt=t— —| =oz— —.
@= [ a-y [=2-2
For all other z, F'(z+2) = F(z). (b) The graph of F over the interval [0, 2] consists
of the arch of a parabola looking down, with zeros at 0 and 2. Since F' is 2-periodic,
the graph is repeated over and over.

19. (a) The plots are shown in the following figures.

The Mathematica command to plot the graphs is the following:

p=Pi

Plot[x - p Floor[x/p], {x, -Pi, Pi}]

= p=T
T
(b) Let us show that f(z) =z —p [%] is p-periodic.
T +p x x
fle+p) = z+p-—p i A PR Ikt AN
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From the graphs it is clear that f(z) = « for all 0 < 2 < p. To see this from the
formula, use the fact that [t} =0if 0 <t < 1. So, if 0 <z < p, we have 0 < % <1,

S0 [%] =0, and hence f(z) =

20. (a) Plot of the function f(z) =z —2p [ ] forp=1, 2, and 7.

P=1
Plotl[x -2pFloor[ (x+p)/(2p) 1,{x,-2,2}1 P=x
1 2 P= 2 T
) /l 1 2 —4 7‘ 2 Z) % T
—1 —2 -
(b)
(x+2p)+p T+p
flx+2p) = (x+2p)—2p T = (z+2p) —2p W—l—l

R [ R e

X

So f is 2p-periodic. For —p < = < p, we have 0 < % < 1, hence [QLPP] =0, and
so f(z) =z —2p 52| = .

21. (a) With p = 1, the function f becomes f(z) = 2—2 [£1], and its graph is the
first one in the group shown in Exercise 20. The function is 2-periodic and is equal
to x on the interval —1 < z < 1. By Exercise 9(c), the function g(z) = h(f(x) is 2-
periodic for any function h; in particular, taking h(z) = 22, we see that g(x) = f(x)?
is 2-periodic. (b) g(z) = 22 on the interval —1 < z < 1, because f(z) = z on that
interval. (c) Here is a graph of g(z) = f(z)* = (z — 2 [IT“])Q, for all .

Plot[(x - 2Floor[(x+1) /2])~2, {x, -3, 3}]
1
. 2
f@)* = (z - 2[57])
3 2 1 2 3
22. (a) As in Exercise 21, the function f(z) = z —2 [2$}] is 2-periodic and is equal
to « on the interval —1 < z < 1. So, by Exermse 9(c), the function
z+1
o) = 0] = o -2 [Z]|

is 2-periodic and is clearly equal to |z| for all =1 < x < 1. Its graph is a triangular
wave as shown in (b).
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Plot[Abs[x - 2Floor[(x+1) /2]], {x, -3, 3}]

1

g9(x) = [f(z)| =

=[]

R 1 2 3
(¢) To obtain a triangular wave of arbitrary period 2p, we use the 2p-periodic
function

) =22 [ 212).
which is equal to x on the interval —p < z < p. Thus,
o) = o — 20| "3 ]

is a 2p-periodic triangular wave, which equal to |z| in the interval —p < & < p. The
following graph illustrates this function with p = 7.

p=Pi

Plot[Abs[x-2pFloor[(x+p) / (2p)]], {x, -2Pi, 2Pi}]
|

—2n e’ T 2n

23. (a) Since f(z + 2p) = f(z), it follows that g(f(z + 2p)) = g(f(x)) and so
g(f(x)) is 2p-periodic. For —p < x < p, f(x) = = and so g(f(z)) = g(z).

(b) The function e9*), with p = 1, is the 2-periodic extension of the function which
equals e” on the interval —1 < x < 1. Its graph is shown in Figure 1, Section 2.6
(with a = 1).

25. We have

[Fla+h) = F(a)] =

/0 " H)do — /0 " f(z)dz
a+h

/a f(z)dz

where M is a bound for | f(z)|, which exists by the previous exercise. (In deriving

SMh’a
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the last inequality, we used the following property of integrals:

x| <(b—a) M,

which is clear if you interpret the integral as an area.) As h — 0, M - h — 0 and so
|F(a+h)—F(a)] — 0, showing that F'(a+h) — F'(a), showing that F is continuous
at a.
(b) If f is continuous and F'(a fo x) dzx, the fundamental theorem of calculus
implies that F'(a) = f(a). If f is only p1ecew1se continuous and ag is a point of
continuity of f, let (z;_1, z;) denote the subinterval on which f is continuous and
ap isin (z;—1, ;). Recall that f = f; on that subinterval, where fiisa continuous
component of f. For a in (z;_1, z;), cons1der the functlons F(a fo x) dr and
G(a) = [ | fi(z)de. Note that F(a) a)+ [ d:c = Gla )+c Since
f;j is continuous on (x;_1, z;), the fundamental theorem of calculus implies that
G'(a) = f;j(a) = f(a). Hence F'(a) = f(a), since F' differs from G by a constant.
vspace7pt 27. (a) The function sin L does not have a right or left limit as
2 — 0, and so it is not piecewise continuous. (To be piecewise continuous, the left
and right limits must exist.) The reason is that 1/z tends to +oo as z — 07 and
so sinl/xz oscillates between +1 and —1. Similarly, as ¢ — 07, sin1/z oscillates
between 41 and —1. See the graph.
(b) The function f(z) = zsinl and f(0) = 0 is continuous at 0. The reason for
this is that sin1/z is bounded by 1, so, as & — 0, zsin1/x — 0, by the squeeze
theorem. The function, however, is not piecewise smooth. To see this, let us
compute its derivative. For z # 0,

1 1 1
f'(z) =sin = — = cos —.
r x oz

As x — 07, 1/x — +o0, and so sin1/z oscillates between +1 and —1, while
1 cos L oscillates between +o0o and —oo. Consequently, f/(z) has no right limit at
0. Similarly, it fails to have a left limit at 0. Hence f is not piecewise smooth.
(Recall that to be piecewise smooth the left and right limits of the derivative have
to exist.)

(c) The function f(z) = 2?sin and f(0) = 0 is continuous at 0, as in case (b).
Also, as in (b), the function is not piecewise smooth. To see this, let us compute
its derivative. For x # 0,

1 1
f'(z) =2z sin — — cos —.
x x

Asx — 07, 1/x — 400, and so 2zsin1/z — 0, while cos% oscillates between +1
and —1. Hence, as x — 0T, 2z sin% — €os % oscillates between +1 and —1, and so
f/(z) has no right limit at 0. Similarly, it fails to have a left limit at 0. Hence f is
not piecewise smooth. (d) The function f(z) = #3sin L and f(0) = 0 is continuous
at 0, as in case (b). It is also smooth. We only need to check the derivative at

z = 0. We have

) fig T = SO) ) Rsing o 1
FO=m = =iy =

For x # 0, we have

1 1
f'(x) = 3z%sin — — 2 cos —.
x x

Since f'(z) — 0= f'(0) as x — 0, we conclude that f’ exists and is continuous for
all .
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Plot[Sin[1/x], {x, -.3, .3}, PlotPoints » 5]

]

-0.3 0.3

Plot[xSin[1/x], {x, -.3, .3}, PlotPoints - 10]

- \/\,ﬂw

-0.2

W\/ 5

[x~28in[1/x], {x, -.1, .1}]

Plot[x73Sin[l1/x], {x, -.1, .1}]

0.0002

i

0.1 ‘V\/"""'

-0.0002
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Solutions to Exercises 2.2

1. The graph of the Fourier series is identical to the graph of the function, except
at the points of discontinuity where the Fourier series is equal to the average of the
function at these points, which is %

Function Fourier series
y y
1 _ 1
| x .‘ [} L] L ] [ ] L] x
—‘37: n ‘TE Qn 37‘5 3n n ‘TE 27: 37E

3. The graph of the Fourier series is identical to the graph of the function, except
at the points of discontinuity where the Fourier series is equal to the average of the
function at these points, which is 3/4 in this case.

Function Fourier series

5. We compute the Fourier coefficients using he Euler formulas. Let us first note
that since f(x) = |z| is an even function on the interval —m < z < , the product
f(z)sinnz is an odd function. So

odd function
1 [ ——
b, = —/ |z sinnz dx =0,
™ —T
because the integral of an odd function over a symmetric interval is 0. For the other
coefficients, we have

1 [ 1 [

a = o 7ﬂf(x)d:c:% 7ﬂ|x|d:c
1 [° 1 (7

5 777( x) :c—|—27T/O xdx
T

1 [™ 1
= —/ rdr = —2x? —.
T Jo 2r lo 2

In computing a, (n > 1), we will need the formula

/xcosaxdm: cos(a ) Lz sin(a x) O (a0),

a? a

which can be derived using integration by parts. We have, for n > 1,

1 /™ 1 [™
an, = = f(x)cosna:da::—/ || cosnx dx
) . )
2 s
= —/ T cosnx dx
™ Jo
2 [z . 1 ] ™
= — |—sInnr+ — cosnx
T |n n2 0
2 [(-1)" 1 2 .
= 2[5 =l
B 0 if n is even
o —774? if n is odd.
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Thus, the Fourier series is

T4 1
k=0

m2]= s[n_, x_ ] :=Pi/2 -4/PiSum[1l/ (2k +1)~2Cos[(2k +1) x], {k, 0, n}]

In[25]:= partialsums = Table[s[n, x], {n, 1, 7}];
f[x ] =x - 2PiFloor[(x+Pi)/ (2Pi)]
glx_] = Abs[£f[x]]
Plot[g[x], {x, -3Pi, 3Pi}]
Plot [Evaluate[{g[x], partialsums}], {x, -2Pi, 2Pi}]

The function g(x) =1 x |
and its periodic extension

Partial sums of

the Fourier series. Since we are
summing over the odd integers,
when n =7, we are actually summing
the 15th partial sum.

i, 2n

7. fiseven, so all the b,’s are zero. We have

sy

o T

1 [ I 1
ao:_/ f(x)d:c:—/ sinzdr = —— cosx
27 —7 ™ Jo m

We will need the trigonometric identity

(sin(a — b) + sin(a + b)).

sinacosb =

N =

Forn > 1,

™ 2 ™
/ f(x)cosnzdr = —/ sin z cos nx dz
T Jo

/0 %(sin(l —n)z +sin(l + n)z) dx

[‘1 cos(l—n)x—;cos(l—l-n)x] Y

N 1—-n (1+n)
1 1 1
— 1 1-n _ -1 14+n -
l—n( ) (l—i—n)( ) +1—n+1+n}

0 if n is odd

if n is even.

A 3|~ 3|~ 3o 3|
|
—_

If n =1, we have

2 (7 1 ("
ay = —/ sinz cosx dx = —/ sin(2x) dz = 0.
0 0

s s
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o . 2 4~ 1
Thus, the Fourier series is :  |sinz| = e ; =1 cos 2kzx .

9. Just some hints:
(1) f is even, so all the by,’s are zero.

2)
1 (7 2
aoz—/ xQd:c:W—.
™ 0 3

/x2 cos(ar) dz 22 coz(a x) N (-2 + a%2?) sin(ax) O (ar0)

—~~

(3) Establish the identity

a a®
using integration by parts.

11. We have f(z) = 1 — 4 cos2z and g(z) = 5 + % cos2z. Both functions are
given by their Fourier series.

13. You can compute directly as we did in Example 1, or you can use the result
of Example 1 as follows. Rename the function in Example 1 g(x). By comparing
graphs, note that f(x) = —2¢g(z + 7). Now using the Fourier series of g(x) from
Example, we get

n+1

f( :_ZZWZ i sinnx.

n=1

15. f is even, so all the b,’s are zero. We have

w=g [ forto= [eran— -2

2 T T

™ 1—e™™

0 ™

We will need the integral identity

ae® cos(bz) = be®” sin(bx)

2 2
a2+b2 a2+b2 +C (a’ +b #0)5

/e‘”” cos(bx) dx =

which can be established by using integration by parts; alternatively, see Exer-
cise 17, Section 2.6. We have, for n > 1,

2 us
an = —/ e ¥ cosnx dx
™ Jo
2 n e 1 . ™
= —|———e%sinnzx — ——e " cosnx
n?+1 n?+1 0
2 _ 2(1 = (=)™ ™)
= _ = ™ —1 n 1 =
m(n?+1) [z (=) +1] m(n2+1)
Tl 2 = 1
Thus the Fourier series is ewe“ + — 7;1 712——"_1(677 — (=1)")cosnx.

17. Setting x = 7 in the Fourier series expansion in Exercise 9 and using the fact
that the Fourier series converges for all z to f(z), we obtain

7T2:f :g g

where we have used cosnm = (—1)". Simplifying, we find

2 0 1
Tl

CoOSnNm = — =
3 ot n?
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19. (a) Let f(x) denote the function in Exercise 1 and w(z) the function in
Example 5. Comparing these functions, we find that f(z) = 2w(z). Now using the
Fourier series of w, we find

1|m = sin(2k + 1)z 1 2 &sin(2k + 1)z
S ) i Sk e/ I SA\Ah T )Y
J@) =213 kZ:O 2%+ 1 2+7rkZ:0 %+ 1

(b) Let g(x) denote the function in Exercise 2 and f(x) the function in (a). Com-
paring these functions, we find that g(z) = 2f(z) — 1. Now using the Fourier series
of f, we find

o0

4 sin(2k + 1)z
g@) =22 2%+1

(¢) Let k(z) denote the function in Figure 13, and let f(x) be as in (a). Comparing
these functions, we find that k(z) = f(z + 5). Now using the Fourier series of f,

we get
1 2Ksin(2k+1)(z+ %)
kiz)==+ = 2
(@)=3+52 ot 1
k=0
=0 =(-1*

'] e | e e ey
= 1+EZ ! ( in[(2k + 1)a] cos[(2k + 1) =] + cos[(2k + 1)z] si [(2k+1)1])
= 2 7Tk70 2I€+1 Sin X S 2 S Z|Sin 2

1 2SN (—1)F
= 4= 2k + 1)z].
2+wk702k+1cos[( + 1]

(d) Let v(z) denote the function in Exercise 3, and let k(z) be as in (c¢). Comparing
these functions, we find that v(z) = 1 (k(x) +1). Now using the Fourier series of
k, we get

(D" cos(2k + 1)a].

(w4
&

I
NG V)
+
3|
WK
2
+

21. (a) Interpreting the integral as an area (see Exercise 16), we have

1 1 n 1
apg=—+=+-—=—.
2r 2 2 8
To compute a,, we first determine the equation of the function for 7 < z < 7.

From Figure 16, we see that f(z) = 2(7 — z) if 3 < z < 7. Hence, for n > 1,

u ’
v

1 g 2’_/H,_/\
an, = = — (m —x)Cosne dx
™ 77/27T
_ l(w_x)sinn:c7T 2 T sinn:cd:C
2 no a2 w2 e on
- 2 |—m . nmw 2 ™
= ﬁ %SIHT _7T2n2 COoSnNx /2
2 [n n7r+(—1)" 1 nw
= —— |—sin— — —cos—|.
w2 | 2n 2 n? n? 2
Also,
1 (7 2/—/\4—3\
b, = —/ — (m —z)sinnz dr
™ 77/27T
B _l(w_x)cosn:c7T 2 i cosnz
2 noAx2z 7w )i on

T nmw 1
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Thus the Fourier series representation of f is

1 2 & T . nr (=)™ 1 nw
fl@) = §+ﬁnzl{_ [%sm?—k — —ECOST] cos N
| Z cos T+ Lsin | si
5y, CO8 - T g sin | sinnz o
7 J) T g@=f(-x
1 1
\ X ‘
o ‘0 m2 om I ~/2 ‘0

(b) Let g(z) = f(—=x). By performing a change of variables <> —z in the Fourier
series of f, we obtain (see also Exercise 24 for related details) Thus the Fourier
series representation of f is

1 2 & T . onm (=) 1
glx) = §+ﬁn§1{_ [% 74— e os—] cos nT
m nmw n 1 nmw
— | z—cos — + — sin — | sinnz
n 2 2 2

23. This exercise is straightforward and follows from the fact that the integral is
linear.

25. For (a) and (b), see plots.

(c) We have s,(z) = > p_, S2E2 S0 5,,(0) = 0 and s,(27) = 0 for all n. Also,
lim, o+ f(xz) = %, so the difference between s, () and f(z) is equal to m/24 at
x = 0. But even we look near z = 0, where the Fourier series converges to f(z), the
difference |s,(z)— f(z)| remains larger than a positive number, that is about .28 and
does not get smaller no matter how large n. In the figure, we plot |f(z) — s150(z)].
As you can see, this difference is 0 everywhere on the interval (0, 27), except near
the points 0 and 27, where this difference is approximately .28. The precise analysis

of this phenomenon is done in the following exercise.

" sinkx
k

n/2

n =15, 10, 15.
k=1

-2 - T 2n

-m/2
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|f(2) = s150(2)]|

.28 L J

2n

0

27. The graph of the sawtooth function is symmetric with respect to the point
/2 on the interval 0, 7); that is, we have f(z) = —f(2n — ). The same is true
for the partial sums of the Fourier series. So we expect an overshoots of the partial
sums near 7 of the same magnitude as the overshoots near 0. More precisely, since

sy(z) = SON | sz it follows that

n=1 n

N sm 27r— = N sin
(27T — —) Z Z

n=1 n=1

Zlﬂ

So, by Exercise 26(b), we have

dim o (2n= ) = gim —sx () == [ 5 e

Similarly,

(o= 5 -ov o= )l - piems Froon )]

ASN—)OO Weha,Ve—( 7T+%)—>—% andsN(%)—)ISO

lim ’f(27r—%)—51v(27r—1)’:|—g+l|%

N—oo
©  _ (2N+4+D)7

The overshoot occurs at 27 — N = NAT

N .
Z SlIl

Zlﬂ

(using the result from Exercise 26(f)).
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Solutions to Exercises 2.3
1. (a) and (b) Since f is odd, all the a,’s are zero and

9 [P
b, = —/ sinﬂd:c
P Jo p
-2 T -2
= Zeos™™ =—[(-)"-1]
nmw plo nrm

B 0 if n is even,
o A if nis odd.

nm

4 1 2k +1
Thus the Fourier series is — Z 2ET D) sin (2k + >7Tx. At the points of discon-

k=0
tinuity, the Fourier series converges to the average value of the function. In this

case, the average value is 0 (as can be seen from the graph.

3. (a) and (b) The function is even so all the b,’s are zero,

1 [P T a
ap = —/ a[(1 - (5)*]dz = —(z — =—
0
and with the help of the integral formula from Exercise 9, Section 2.2, for n > 1,

2a [P 2 nwr 2a (P , nmwr

ap, = (1—x—2)cos—d:c: 3 x“ cos — dx
P Jo p p b= Jo p
2a p? nrx p? (nm)?, 5, . nmz] P
) DY o T 2 g T ’
e [ x(mr)Q cos — + (mr)?’( + o )z° sin > 1o
da(—1)"
T 2
_1)n+1

2 o0
Thus the Fourier series is ga + 4&; ((nT)Q

cos( Ex) Note that the function
p

is continuous for all x.

5. (a) and (b) The function is even. It is also continuous for all z. All the b,s are
0. Also, by computing the area between the graph of f and the z-axis, from z =0
to x = p, we see that ap = 0. Now, using integration by parts, we obtain

’
v

——

2 [P 2 4¢ [P—"——
a, = —/ —(—C> (x—p/2)cosﬂxdx:——§/ (x—p/2)cosﬂxdx
P Jo p p p= Jo p
=0

P p [P nm
- sin —x dx
z=0 N7 Jo P

4
= ——s i(x—p/2)sinﬂx
p7 | nm p

4c p? nm

= — COS —XI
p2 TL27T2 P

{O if n is even,

P 4c
o = A (1 — cosnm)

8¢ if m is odd.

2

nem

Thus the Fourier series is

e X cos | (2k+1) T
PR Sl i
m = (2k+1)

7. The function in this exercise is similar to the one in Example 3. Start with the
Fourier series in Example 3, multiply it by 1/¢, then change 2p <> p (this is not a
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change of variables, we are merely changing the notation for the period from 2p to
p) and you will get the desired Fourier series

The function is odd and has discontinuities at x = +p + 2kp. At these points, the
Fourier series converges to 0.

9. The function is even; so all the b,,’s are 0,
1 (P 1 P 1l—e" P
ag = —/ e dp = ——e®| =2_° ;
0 cp 0 cp

and with the help of the integral formula from Exercise 15, Section 2.2, for n > 1,

2 [P nwr
ay, = —/ e ““cos —dx
P Jo p
2 1 ex nwx ex nwx ’P
= ————— |[nmpe”“sin — — p°ce” “* cos —
prtn? 1 et [ p 4 p Jlo

2pc n—c
= Mﬂ+ﬁ§p—emep]

Thus the Fourier series is

1 > 1 nmw
(1l —ecP ) = (1—eP(=1 )
pe1= M+ 2D s -1 o)

11. We note that the function f(z) = zsinz (—7 < z < 7) is the product of sinz
with a familiar function, namely, the 27-periodic extension of z (—7 < z < 7). We
can compute the Fourier coefficients of f(x) directly or we can try to relate them
to the Fourier coefficients of g(z) = . In fact, we have the following useful fact.
Suppose that g(x) is an odd function and write its Fourier series representation

o0
x) = E by, sinnz,
n=1

where by, is the nth Fourier coefficient of g. Let f(x) = g(x)sinx. Then f is even
and its nth cosine Fourier coefficients, an,, are given by

as

b b 1
ag = 515 a1 = 52; Ap = §[bn+1_bn*1] (TLZ2)

To prove this result, proceed as follows:

f(z) = sinz Z by, sinnx

n=1

= g b, sin z sin nx

= Z?" — cos[(n + 1)z] 4 cos[(n — 1)z]].

To write this series in a standard Fourier series form, we reindex the terms, as
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follows:

fle)y = > (_%"cos[(wr 1):0]) +> (%"cos[(n_ 1):0])
n=1 n=1
— 7;2 (— b"£1 cos n:c) + nzzo "2+ cos n:c)
— 2 (—b"21 cosn:c) ) + gcosx—l- i ( "2+ cosn:c)

This proves the desired result. To use this result, we recall the Fourier series from
qyn+1
Exercise 2: For -7 < ¢ < m, g(z) = o = 23>0, (U

by = —1/2 and b, = 2(72#“ for n > 2. So, f(z) = xsinz = >~ a, cosnz,
where ag =1, a; = —1/2, and, for n > 2,

sinnz; so by = 2,

1 2(_1)n+2 2(_1)71 2(_1)n+1
an = = = .
2 n+1 n—1 n? —1

Thus, for —7m < z <,

) cos T L 2(—1)n !
rsine =1 — T+2;ﬁcosnx.

The convergence of the Fourier series is illustrated in the figure. Note that the
partial sums converge uniformly on the entire real line. This is a consequence
of the fact that the function is piecewise smooth and continuous for all . The
following is the 8th partial sum.

s[n_, x ]=1-Cos[x]/2 + 2Sum[(-1)~ (k+1) / (k~"2-1) Cos[kx], {k, 2, n}];

Plot [Evaluate[{x Sin[x], s[8, x]}]1, {x, - Pi, Pi}]

1.75
()= 1 cosx+2i2(—1)"+1
sg(r)=1— —— ———~——cosnx
® 2 — n? -1
f(z) =xsine —n<z<m
P

T

To plot the function over more than one period, we can use the Floor function
to extend it outside the interval (—7, 7). In what follows, we plot the function and
the 18th partial sum of its Fourier series. The two graphs are hard to distinguish
from one another.
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f[x_] =xSin[x];

g[x_] =x - 2PiFloor[(x+Pi)/ (2Pi)];

hix_] = £[g[x]];

Plot [Evaluate[{h[x], s[18, x]}], {x, -2 Pi, 2Pi}]
1.75

27 - s 2n

13. Take p = 1 in Exercise 1, call the function in Exercise 1 f(x) and the function
in this exercise ¢g(z). By comparing graphs, we see that

1
o) = 5 (1+ J(@)).
Thus the Fourier series of g is
1 4o 1 1 2. 1
— |14+ =) ————=sin(2k+1 =—-4+ =Y ——sin(2k + 1)7z.
2< +w;(2k+1)81n( + )77:0) 2+ﬂ]§(2k+1)sm( + )7

f[x_] =Which[x<0, 0, 0<x<1l, 1, x>1, 0]
s[n_, x 1=1/2+2/PiSum[l/ (2k +1) Sin[(2k +1) Pix], {k, 0, n}];

Plot [Evaluate[{f[x], s[20, x]}], {x, -1, 1}]

Which[x<0, 0, 0<x<1, 1, x>1, 0]

The 41st partial sum of the Fourier series
and the function on the interval (-1, 1).

Ao A
_U 1 1

15. To match the function in Example 2, Section 2.2, take p = a = 7 in Example 2
of this section. Then the Fourier series becomes

T oA 1
-+ - e 2k +1
5 +7T§(2]€+1)2 cos(2k + 1)z,

k=0

which is the Fourier series of Example 2, Section 2.2.
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17. (a) Take x = 0 in the Fourier series of Exercise 4 and get

nfl

2 2 n—1 oo
o p* Ap (=1) _
o e

2 e 1 2 2 2

)
el 2k+1 24 Z(2k+1)?2 6 24 87

19. This is very similar to the proof of Theorem 2(i). If f(z) =Y, b, sin e,
then, for all z,

Zb sin( ——x Zb sm—x——f(x)

and so f is odd. Conversely, suppose that f is odd. Then f(x)cos 2 “rx is odd and,
from (10), we have a, = 0 for all n. Use (5), (9), and the fact that f(z)sin 2Fa is

even to get the formulas for the coefficients in (ii).
23. From the graph, we have

—2zx—1 if —1<2z<0,
f(x)—{

1 fo<z<l1.
So
1 if —1<z<0,
f(_x)_{—l—i-Zx if0<a <l
hence
f()if(x)—l-f(—x)i -z if —1<x<0,
e\t) = 2 Tl H0<z<l,
and

Jo(x) = 2 = 1—=x ifo<z <1,

As expected, f(z) = fe(x)+ fo(x). Note that, fo(x) = |z| for —1 < & < 1. Let g(x)
be the function in Example 2 with p = 1. Then f.(x) = g(z). So from Example 1
with p = 1, we obtain

f(x) — f(—=2) {—x—l if —1<x<0,

_ Wi Z zk f cosl(2h+ ]

N =

fe =

Note that f,(z) = 1 —x for 0 < x < 2. The Fourier series of f, follows from
Exercise 7 with p = 2. Thus

o0
2 Z n(nnx)
T
n=1
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Hence

4 & 1 2 =, sin
- — —_ 2k+1) —
L3 ook e + 23 S0
1 2 & -Hn -1 sin(nmx
= 5 —+ ;ngl [T COS(TL?TCC ” :|

Let’s illustrate the convergence of the Fourier series. (This is one way to check that
our answer is correct.)

TLT{'CC

~
—
8
S~—
I
N =

Clear([s]

f[x ] =Which[x<-1, 0, -1<x<0, -2x-1, 0<x<1l, 1, x>1, 0]

s[n_, x . ]=1/2+2/PiSum[-(1- (-1)*k)/ (Pik*2) Cos[kPix]+
Sin[kPix]/ ( k), {k, 1, n}];

Plot[Evaluate[{f[x], s[20, x]}], {x, -1, 1}]

25. Since f is 2p-periodic and continuous, we have f(—p
Now

L, 1 P 1
_E/?”@M—%ﬂ@p——ﬁ®—ﬂwﬂ—o

Integrating by parts, we get

a,, / (= s—d:c
brn
p 1 /7
= —f(:c)cosﬂ o f(z)sin — dx
p pl» popl,
- M,
Similarly,
1 /P
b= - () in " g
pJp p
=0
1
= —f(x)sinw —E—/ f(z cos—d:c
nm
= ——an

27. The function in Exercise 5 is piecewise smooth and continuous, with a piecewise
smooth derivative. We have

ﬂ@—{;%

p

if 0 < <p,
if —p<a<O.
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The Fourier series of f’ is obtained by differentiating term by term the Fourier
series of f (by Exercise 26). So

8¢~ -1 (k+7m . (2k+1)x 8¢~ 1 . (2k+D)m
/ _ - ____
fi(z) = - 2 CTESIE ’ sin ’ x o Z 1 sin ’

x.
k=0
Now the function in Exercise 1 is obtained by multiplying f'(x) by —Z=. So to
obtain the Fourier series in Exercise 1, we multiply the Fourier series of f' by —2-
and get

T2kl

k=0

29. The function in Exercise 8 is piecewise smooth and continuous, with a piecewise
smooth derivative. We have

if0<x<d,
if d < |z| < p,
if —d<z<0.

c
d

fix) =

ale © |

The Fourier series of f’ is obtained by differentiating term by term the Fourier series
of f (by Exercise 26). Now the function in this exercise is obtained by multiplying
f/(z) by —%. So the desired Fourier series is

dnm

d d 2ep L1 — cos dom 2 X, 1 —cos 2L
—=f(z) = _a=p Z P (_E) sin Ex = _Z — P 4in Ex
p p ™ n p

n=1

31. (a) Iflim,_ o cos nax = 0 for some x, then any subsequence of (cos nx) also con-
verges to 0, in particular, lim,, .., cos(2nz) = 0. Furthermore, lim,, ., cos? nx = 0.
But cos?nz = HL(Q"I), and taking the limit as n — oo on both sides we get
0= % or 0 = 1/2, which is obviously a contradiction. Hence lim,,_,~, cosnx = 0
holds for no =z.

(b) If }°, _,00cosnx converges for some z, then by the nth term test, we must
have lim,,_, cosnz = 0. But this limit does not hold for any z; so the series does

not converge for any x.

33. The function F(z) is continuous and piecewise smooth with F’(x) = f(z) at all
the points where f is continuous (see Exercise 25, Section 2.1). So, by Exercise 26,
if we differentiate the Fourier series of F', we get the Fourier series of f. Write

F(x)= Ao+ Z (An cos g + B, sin Ex)

el p p
and
> nw nw
flx) = Z (an cos — + by, sin —x) .
el p p

Note that the ag term of the Fourier series of f is 0 because by assumption
02p f(z)dz = 0. Differentiate the series for F' and equate it to the series for f
and get

o0 o0
nmw nmw nmw nmw nmw nmw
E (—An— sin —x + — B,, cos —x) = E (an cos —x + b, sin —x) .
— p P p p — p p

Equate the nth Fourier coefficients and get

nm
A = A, =L,
P nm

nmw
B,—=a, = B,= ian.
nmw
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This derives the nth Fourier coeflicients of F for n > 1. To get Ap, note that
F(0) = 0 because of the definition of F(z) = [ f(t)dt. So

and so Ag = Y07, £b,,. We thus obtained the Fourier series of F in terms of the

n=1 nx
Fourier coefficients of f; more precisely,

o0 o0
b nmw nmw
:B E R E (—ianOS—x‘f‘ianSin_x) .
T~ A~ nmw P nmw P

The point of this result is to tell you that, in order to derive the Fourier series of
F, you can integrate the Fourier series of f term by term. Furthermore, the only
assumption on f is that it is piecewise smooth and integrates to 0 over one period
(to guarantee the periodicity of F.) Indeed, if you start with the Fourier series of

f’
Z( s—t+b sm?t>

and integrate term by term, you get

F(z) = /f t)dt = (an/ cosﬁtdt—i-bn/ sinﬂtdt>
p 0 p

= Z (an (n%r) si T; Odt—l-bn (—i) cos Et Z)

el nm p
iy > nmw nmw
_ 2y oy (_ibn cos o+ L sin _x) ,
TN ot nmw p nmw p

as derived earlier. See the following exercise for an illustration.
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Solutions to Exercises 2.4

1. The even extension is the function that is identically 1. So the cosine Fourier
series is just the constant 1. The odd extension yields the function in Exercise 1,
Section 2.3, with p = 1. So the sine series is

4 i sin((2k + 1)7z)
s 2k+1
This is also obtained by evaluating the integral in (4), which gives

! 2 12
by, = 2/ sin(nrx) dr = —— cosnrz| = —(1—(=1)").
0

nm 0 nm

3. The even extension is the function in Exercise 4, Section 2.3, with p = 1. So
the cosine Fourier series is

4 & 1
— = Z(—l)"“ﬁ COSNTT.

n=1

wl

In evaluating the sine Fourier coefficients, we will use the formula

/xQSinaxdx: - ((—2—1-@23;2) cos(ax)) N 2z sin(a ) O (a£0),

a3 a?

which is obtained using integration by parts. For n > 1, we have

b, = 2/1xQSin(n7T:c)d:c
0
(=2 + (nm)? 2?) cos(nm x) x sin(nmz)] |1
S R = e
_ (=2+ (em)*)(=1)" | 2
- [

2 [(_WH (1) - 1)] .

nmw (nm)
Thus the sine series representation

_1\n+1 2

2 Zl [( 711)71' + () (G 1)] sin(nmx).

5. (a) Cosine series:

b—a 21 nmb nwa nwT
felx) = + = —(sin——sin—)cos—.
( ) ™ Z p p p

Sine series:

2 (b . nTx 2 p nwa nmb
by, = — sin — dx = —— | cos — — cos — | ;
a p pnm p p
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thus the odd extension has the sine series

2.1 nwa ntb\ . nwx
fo(x):—Z— cos —— — cos — | sin —.
T n p p p

7. The even extension is the function | cosz|. This is easily seen by plotting the
graph. The cosine series is (Exercise 8, Section 2.2):

2 4o (-1
|COS$|—;—;Z(2§L)%_1COS(2TLZ).

n=1

Sine series:

4
b, = —/ cos x sin 2nx dx
™ 0
2
= - sml—i—2nx—sm(1—2n) )] dx
™ Jo
-0 =0
(=142n) w (1+2n)
9 1 1 005(72 ) 005(72 )
- _[—1+2n+1+2n_ —1+2n B 1+2n
—_ 8 n .
T owdn?2 -1’

thus the odd extension has the sine series

o0

8 n .
fo(x) = ; 7;1 m sin 2nx.

9. We have L
by, = 2/ (1 — z) sin(nmx) dr.
0

To evaluate this integral, we will use integration by parts to derive the following
two formulas: for a # 0,

/xsin(ax) dr = _z cos(ax) i Sln(cQL x) )
a a
and 2 |
/xQ sin(az) dz — 2 cosgax) _ z® cos(aw) n 2z su;(ax) L
a w .
So

/ 2(1 — z) sin(az) dz

_ 2 cos(az) x cos(ax) Lz cos(a x) n sin(az) 2w sin(ax) e

a3 a a a? a?

Applying the formula with a = nx, we get

/0 1 2(1 — ) sin(nrz) dz

—2 cos(nmx) x cos(nmx) n 2? cos(nrx) sin(nrx) 2 sin(nwz) |
2 2

(nm)3 B nm nm (nm) (nm) 0

-2((-H"-1) (=" n =" 2= -1
(nm)3 nmw nmw (nm)?

{ 4 if n is odd,

()P

0 if n is even.
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Thus

b { ﬁ ifnisodd,

0 if n is even,

Hence the sine series in

sin(2k + 1)z
7732 (2k+1)3

b[k_]1=8/Pi*31/(2k+1)"*3;
ss[n_, x ] := Sum[b[k] Sin[(2k+1)Pix], {k, 0, n}];
partialsineseries = Table[ss[n, x], {n, 1, 5}];
flx_]=x(1-x)
Plot [Evaluate[{partialsineseries, f[x]}], {x, 0, 1}]
0.25
0.2
0.15
0.1
0.05
0.2 0.4 0.6 0.8 1
Perfect!

11. The function is its own sine series.

13. We have

1
sinwx cos wxr = — sin 27wx.

This yields the desired 2-periodic sine series expansion.

15. We have
1 2eT 1
b, = 2/ e’sinnrrdr = = -———— (sinnwx — nwcosnnx) ’
0 1+ (nm)? 0
2e 2nm
- = 1 n+1 o enen
1+ (nm)? (m(=1)"") + 1+ (nm)?
2nm

17 (nm)2 (1+e(=1)"").

Hence the sine series is

> 2nm n .
Z T ()2 (1+e(—1)"*") sinnma.

n=1

31
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17. (b) Sine series expansion:

2 [*h 2 (P h
b, = —/ —xsinmd:c—i-—/ (x—p)sinmd:c
pJo a p PJao a—Pp p
2h P nrr|® p nm
= —[—x—cos— — s—d:c}
ap nmw p lo nm j, D
2h - P P
7[(x—p)( p) cos( :C) icosnﬂ':’jd:c]
(a —p)p nm a Jq nm
2h r—ap nwa p? . nma
= —[—cos——l——sm—}
palmr 5 ¥ e
2h 2
(a —p)plnm p  (nm) p
2hp . nwa 1 1
= sin —[= — ]
w2 ™ p o a-p
2hp? . nma

= 7(”/#)2(1) — a)a s —.

Hence, we obtain the given Fourier series.

Solutions to Exercises 2.5

1. We have

1 <<,
f(x)_{—1 if —1<az<0;

The Fourier series representation is

4 o0
=— E sm (2k 4+ )mx
T
k=0
The mean square error (from (5)) is
L X
2( 2
/ iz d:c—ao—§n§1(a +b2).

In this case, a,, = 0 for all n, boy, =0, bogy1 = and

4
TR
1/1 , 1
= f(x)d:c:—/ dx = 1.
2/, 2/,

1 8
E1:1—§(b$):1—ﬁx0.189.

So

Since by = 0, it follows that F; = F;. Finally,

1 8 8
E1:1—§(bf+b§):1—ﬁ—9?~0.099.

3. We have f(z) = 1 — (z/7)? for —7 < x < 7. Its Fourier series representation is

n+1

e}
E ——— COSnx.

C»DI[\D

Thus ag = 4((1)): , and b, = 0 for all n > 1. The mean square error

Wt
S
3
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(from (5)) is

1 2 2 1 2 | 52
Ey = % 771—f (x)dx—ao 5;(an+bn)
N
1" a4 8 L
= % ﬂ(l—(x/ﬂ)) dCC—§ F : 7’),4
My Y A 8 o 1
oo ) 2 gt 9 ¢ :1n4
Y 22 x5]7f 4 82N31
oo 372 5mwtllo 9 wd — n4
_ o, 2,1 4 8 |
N 3 9 7T4n:1n4
4 81
45 g n4
So
4 8
FE = R——4%.0068;
™
8 1
™
8 1
By = Fa— o2~ 0000
™
5. We have
1! 1 &
By = 3 [ P@di-d—53 (@)
- n=1
N
1, 8 1
= 1-3) bth=1-% > —
n=1 1<n odd<N

With the help of a calculator, we find that F39 = .01013 and F4; = .0096. So take
N =41.

7. (a) Parseval’s identity with p = m:

1 T 2 _ 2 100 2 2

2 J_ .

Applying this to the given Fourier series expansion, we obtain

1 (™ a2 1= 1 12 Ie= 1 2 = 1
=N = ooy o TN
m ) 4 2;7{2 12 2;7{2 6 2

For (b) and (c) see the solution to Exercise 17, Section 2.3.

9. We have f(z) = w%z —2® for -7 <z <7 and, for n > 1, b, = 13(-1)"**. By
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Parseval’s identity

N~
(12
S
e
N———
N
Il
|-
\:‘
—~
3
N
8
|
8
w
SN—
N

1 ™

= —/ (4 2mcx —i—x)d:c
T Jo

— l 7T_4x3_E 5+x_7 T
T\ 3 5 7 /) lo

1 2 1 8
_ 6 (- _2, ) __°2 6
-7 (3 5+7> 105

Simplifying, we find that

13. For the given function, we have b, = 0 and a,, = # By Parseval’s identity,

we have
1 ) I 1 70
o | f (z)dx =3 7;1 A = x)dx = Z =74 907
where we have used the table preceding Exercise 7 to compute ((4).

15. Let us write the terms of the function explicitly. We have

o0
Z COS N 1 cosr  cos2x

n=0

Thus for the given function, we have
1
b, =0 for all n,ag =1, an = 5 forn > 1.

By Parseval’s identity, we have

1 (7 1 <
3| P@r = degda
1. 1 1 1 11
== 1 - = — — — R
+2;(2n)2 2+2+2;4n
1 11
S 3tk

To sum the last series, we use a geometric series: if |r| < 1,

S
o=
1—r
n=0
Hence
=1 1 4
an T~ 9
n:04 1—-3 3
and so
i 1 14 T
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17. For the given function, we have

1
a =1, a, = —, b, =— forn > 1.
3n n
By Parseval’s identity, we have
L ﬂfQ(x)d:c = a2+1§:(a2+b2)
o . 0 2n:1 n n
1o, 1
= 1 — —_—
+22((3n)2+n2)
n=1
I R R R R
= 3titilytilw
I 11 11
-t latilw
Using a geometric series, we find
— 1 1 9
on T 3
=9 -5 8
By Exercise 7(a),
S
n:1n2 6

So
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Solutions to Exercises 2.6

1. From Example 1, for a # 0, +i, £2i, £3i, . . .,

inh %) ERAV
0T — Simnma Z ( ) inT

—e (—m <z <m);
T a—1in
n=—oo
consequently,
. o0
—ax sinha (_1)71 inx
= —nm<r<

e - ;ma+ine (-7 <zx<m),

and so, for —m < z < T,

eam _"_ e*(lm

2

sinhma 1 1 :
= —1 n mnx
2 Z (=1) (a+in+a—in>e

n=—oo

coshar =

~ asinhma i (=™ gina
™ n? 4+ a? '

n=—oo

3. In this exercise, we will use the formulas cosh(iaz) = cosax and sinh(iaz) =
isinaz, for all real @ and z. (An alternative method is used in Exercise 4.) To
prove these formulas, write

elam _"_ e*laar:

cosh(iaz) = 5 = cos az,
by Euler’s identity. Similarly,
ar e*iax
sinh(iax) = —s = isinax.

If @ is not an integer, then ia # 0, +i, £2¢, £34, .. ., and we may apply the result of
Exercise 1 to expand €®® in a Fourier series:

(ia) sinh(iwa) i (=™ pina

2 1 (iq)2
™ = n?+ (ia)

cos(ar) = cosh(iax) =

_ —asin(wa) i (=™ pina.

n=—oo

5. Use identities (1); then

2ix —2ix 3ix —3ix
. e +e e —e
cos2x +2sin3zx = +2 -
2 21
—2ix 2ix
. —3ix . 3ix
= e + + —1e
2 2

7. You can use formulas (5)—(8) to do this problem, or you can start with the
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Fourier series in Exercise 3 and rewrite it as follows:

P & _1\n inz
cosar  — asin(ra) Z (=1)"e
™ n? — a?

n=—oo
_ —asin(7a) i (=1)me™®  gsin(ra) 1 asin(ma) i (—1)neine
N ™ n? — a? T —a? ™ n? — a?

n=—oo n=1
~ sin(wa)  asin(7a) i (—=1)""e"™*  gsin(ra) i (—1)"eine
N Ta ™ (—n)? — a? ™ n? —a?

n=1 n=1
=2cosnx
—

Ta m

sin(ra)  asin(ma) i(—l)n e

n=1

sin(ma) asin(ma) w— cosSnT
D S~ -y

Ta n?2 —a?’
n=1

9. If m = n then

1 P GO _gnm o 1 P G gmm 1 P
e’ r e " fdey = — e r e e Tdey = — dr =
—p

2p J_, 2p 2p J_,
If m # n, then
1 [P . mx : 1 [P nm=
— e TP 'y = — el%xd:c
2p —p 2p —p
—1 jn=m)w 1P
= (& p
2(m —n)m —p
-, . .
_ i(m—n)m _ 71(m7n)7'r)
2(m —n)m (e c

= Sy (cosllm = m)a] — cosl—(m — m)x]) =0

11. The function in Example 1 is piecewise smooth on the entire real line and
continuous at x = 0. By the Fourier series representation theorem, its Fourier series
converges to the value of the function at x = 0. Putting 4x=04 in the Fourier series
we thus get

f(0) = 1= HhTe § CI” (ot in).

T a? +n?
=—00

The doubly infinite sum is to be computed by taking symmetric partial sums, as
follows:

oo N
T =D" n) = lm Y (=D" ,
niiooa2+n2(a+ln) N J\}Ego 77Na2+n2(a+ln)
N N
. (=n™ (=1)™n
= afm Y i Y

But

(=)
Z CL2+TI,2 :0’
n=—N

because the summand is an odd function of n. So

_sinhma < (—1)" .. asinhma = (=1)"
1= Z (a+1in) = - Z

T a? + n? a2 +n2’
=—00 =—00
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which is equivalent to the desired identity.

13. (a) At points of discontinuity, the Fourier series in Example 1 converges to
the average of the function. Consequently, at x = 7 the Fourier series converges to

% = cosh(ar). Thus, plugging = 7 into the Fourier series, we get

=(-1)"
cosh(am) = ST g~ A gy Gor  sthlm) g (avin)

a2 + n2 a2 + n2 '
n=-—o0 n=-—o0

The sum ) 7 aﬁ# is the limit of the symmetric partial sums

N n
iy, 55 =0
' a“+n
Hence Y37 =™ =0 and so
sinh(ma) < a - 1
COSh(CL?T) = T n;OO m = COth(CL?T) = ; ;OO m,

upon dividing both sides by sinh(ar). Setting t = aw, we get

o0

t 1 t
0 2 (£)2 +n? t2 + (mn)?’

n=—oo n=—oo

o0

which is (b). Note that since a is not an integer, it follows that ¢ is not of the form
ki, where kis an integer.

15. (a) This is straightforward. Start with the Fourier series in Exercise 1: For
a#0,+i,+2i,43i,..., and —7 < x < 7, we have

. o0
asinh wa -nH" .
coshaxr = E (=1) e'mr.
T

= TL2 + CL2
On the left side, we have
B ™ cosh(2 1
— cosh®(az)dr = = / cosh(2az) + 1 dx
2 J_ . 0 2

1
7T
1 1 7" 1 1
= 3 [z + % sinh(2ax)] 0" o [T+ % sinh(2ar)].

On the right side of Parseval’s identity, we have

(asinh7a)? i 1
(

2 L (Pt a?)E
Hence
1 1. (asinhma)? 1
Py [m+ % sinh(2am)| = — n;m CEEYIE
Simplifying, we get
= 1 T L.
n;m (n? + a2)? B 2(asinh7a)? [+ 2a sinh(20)].

(b) This part is similar to part (a). Start with the Fourier series of Exercise 2: For
a#0,+i,+2i,43i,..., and —7 < x < 7, we have

isinhma n
sinhar = —— E (—1)"ﬁemm.
s n“+a
n=—oo
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On the left side, we have

1 /’T cosh(2azx) — 1
————dx
0

S
%/ﬂrsmh (ax)dx = - 5

1 1 .
= 5 [—z+ % sinh(2ax)]

s

1 1 .
0= o [—7m+ % sinh(2am)].

On the right side of Parseval’s identity, we have
sinh? ra i n?
2 (n? + a?)?’

n=—oo

Hence 2
1 1. sinh®(ma) n’
> [ — T+ % s1nh(2a7r)] = 2 n;m (n? +a2)?’
Simplifying, we get
o n2 T 1
_ — m 4+ — sinh(2a7)|.
o TR i L 3 )

17. (a) In this exercise, we let a and b denote real numbers such that a? + b* # 0.
Using the linearity of the integral of complex-valued functions, we have

L +ily, = /e“cosbxd:c—l—i/e“sinbxd:c

= / (e cos bx + ie®” sinbx) dz
ibx

€

—
= /e‘”” (cosbzx + isinbz) dx

/eaaceibx dr = /ex(aJrib) dx

_ 1 ' ex(aJrib) +C,
a+1b

where in the last step we used the formula [e*® dz = Le®* 4+ C (with o = a +ib),
which is valid for all complex numbers a # 0 (see Exercise 19 for a proof).

(b) Using properties of the complex exponential function (Euler’s identity and the
fact that e*T% = e%e"), we obtain

1 .
I+, = mex(a+zb)+c
(CL+’L ) eaxelbac+c

(a+1ib) - (a+1id)

= %e“(cos b:c+isinb:c) +C
= CLQL—:I)Q [(acosb:c—l—bsinb:c) +i( —bcosb:c—l—asinb:c)] + C.

(¢) Equating real and imaginary parts in (b), we obtain

eam

I = prp (acos bx + bsinb:c)
and .
I = %W(—bcosb:c—l-asinb:c).



40 Chapter 2 Fourier Series

19. The purpose of this exercise is to show you that the familiar formula from
calculus for the integral of the exponential function,

1
/e‘”” dr = —e* 4+ C,
a

holds for all nonzero complex numbers a. Note that this formula is equivalent to

d

axr axr
—e% = ge
dx ’

X

where the derivative of %ea means

d ar __ d ax . ax o d ax . d ax
e —dx(Re(e ) +iIm (e ))—d:CRe(e )—|—zdx1rn(e ).
Write a = a4 i3, where o and 3 are real numbers. Then
P - em(aJriﬁ) _ eaxeiﬁm

= e** cos fx + ie** sin fz.

So
ie‘”” = —e*cosfr+ iie‘” sin Sx
dx dx dx
= «ae** cosfr — [e™ sin fx + i(ae‘” sin Bz + [Be™* cos 5x)
= e‘”(acosﬁx — [sin Sz +i(asin6m+6cosﬁx))
= e"(cos Bz + isin fz)(a +i0)
aeaxeiﬁm _ aeaeriﬁmaeiax
as claimed.

21. By Exercise 19,

ZL . 1 . ) 2w
/ (e’Lt 4 2672115) dt = _e’Lt 4 672115
0 1 —21 0
=1 =1

~~ =
= —ie®™ fie ™ —(—i+i)=0.

Of course, this result follows from the orthogonality relations of the complex expo-
nential system (formula (11), with p = 7).
23. First note that

1 1 it

=€ .

cost —isint e~
Hence

1 ) )
/%,dt:/e”dt:—ie”+C:sint—icost+C.
cost —isint

25. First note that
1+it (1 +it)? 1— 2+ 2it 1—t2+, 2t
= = = 1 .
1—idt (1 —idt)(1+it) 1+ ¢t2 1+2 7 1412

1+t 1—t? 2t
dt = [ — a4 [ Lt
/1—it /1+t2 +Z/1+t2

2 2t
A ——dt+i [ ——dt
/( e +Z/1+t2

= —t+2tan" 't +iln(l+#%) +C.

Hence
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Solutions to Exercises 2.7

1. (a) General solution of 3y’ 4+ 2y’ + y = 0. The characteristic equation is
A2 42X +1=0or (A+1)% = 0. It has one double characteristic root A = —1. Thus
the general solution of the homogeneous equation y” + 2y’ + y = 0 is

Yy = cleft + czteft.
To find a particular solution of " 4+ 2y’ 4+ y = 25 cos 2t, we apply Theorem 1 with

pw=1, ¢=2,and k = 1. The driving force is already given by its Fourier series:
We have b, = a, = 0 for all n, except as = 25. So «a, = (B, = 0 for all n,

except oy = A‘%i"ég and By = %, where A9 = 1—22 = —3 and By = 4.
Thus as = ;—? = -3 and (B = 12L50 = 4, and hence a particular solution is
Yp = —3 cos 2t + 4sin 2¢t. Adding the general solution of the homogeneous equation

to the particular solution, we obtain the general solution of the differential equation
Yy 4+ 2y +y = 25cos 2t

Yy = cre”t 4+ cote™t — 3cos 2t + 4 sin 2t.
(b) Since lim; .o cre™t + cate™ = 0, it follows that the steady-state solution is

Ys = —3cos2t 4+ 4sin 2¢.

3. (a) General solution of 4y” + 4y’ + 17y = 0. The characteristic equation is
4)\2 + 4\ + 17 = 0. Tts characteristic roots are

—2+4-(4)(1 —2+—-64 1
A= 1 (4 7>: 1 g :—§:|:2i.

Thus the general solution of the homogeneous equation is
y = cle*t/2 cos 2t + cze*t/2 sin 2t.

It is easy to see that y = 1/17 is a particular solution of 4y” + 4y’ + 17y = 1. (This
also follows from Theorem 1.) Hence the general solution is

1
Yy = cle*t/2 cos 2t + 02€7t/2 sin 2t + T

(b) Since limy o c1e /2 cos 2t + cpe /2 sin 2t = 0, it follows that the steady-state

solution is )

ys:ﬁ-

5. (a) To find a particular solution (which is also the steady-state solution) of
Y’ + 4y + 5y = sint — § sin 2¢, we apply Theorem 1 with =1, ¢ =4, and k = 5.
The driving force is already given by its Fourier series: We have b,, = a,, = 0 for
all n, except by = 1 and by = —1/2. So a,, = 3, = 0 for all n, except, possibly, ag,
a2, 61, and betag. We have Al = 4, A2 = 1, Bl = 4, and B2 =38. So

—B1by —4 1

@] = _— = ——

! A2 B2 32 8

—Boby 4 4

a2 = W = — = -,
2+B: 65 65
Aiby 4 1

b = ﬁ = %0 o
2. B2 32 8

g, = _Asbe _ -1/2 1

A2+ B2 65 130
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Hence the steady-state solution is

1 1 4 1
Yp = —35 cost + < sint + — cos 2t — ——sin 2¢.

8 8 65 130
(b) We have
1 1 4 1
Yp = —=cost+ —sint+ — cos2t — ——sin 2t,
8 8 65 130
1 1 8 1
(yp)/ = 3 sint + 3 cost — o5 sin 2t — o5 cos 2t,
1 1 1 2
(yp)" = gcost gsmt— £cos2t+ gSlHQt

1 4 5 1 4 5
"y / L 4 o . 14 5
() )+ 5y (8 8 8) cost ( 8 + 8 + 8) st

2 32 5 6 4 20
+|=-=- sin2t + | — + — | cos2t

65 65 130 65 65 65
= (=220 9t — Lsin2
= sin 75 T 65 130 sin 3 sin 2¢,

which shows that 7, is a solution of the nonhomogeneous differential equation.

9. (a) Natural frequency of the spring is

k
wo = \/i =v10.1 =~ 3.164.
"

(b) The normal modes have the same frequency as the corresponding components
of driving force, in the following sense. Write the driving force as a Fourier series
F(t) = ao 4+ Y. fa(t) (see (5). The normal mode, y,(t), is the steady-state
response of the system to f,,(¢). The normal mode y, has the same frequency as
fn- In our case, F is 2m-periodic, and the frequencies of the normal modes are
computed in Example 2. We have wa,,+1 = 2m + 1 (the n even, the normal mode
is 0). Hence the frequencies of the first six nonzero normal modes are 1, 3, 5, 7, 9,
and 11. The closest one to the natural frequency of the spring is w3 = 3. Hence, it
is expected that y3 will dominate the steady-state motion of the spring.

13. According to the result of Exercise 11, we have to compute ys3(t) and for this

purpose, we apply Theorem 1. Recall that y3 is the response to f3 = 5—sin 3t, the

component of the Fourier series of F'(t) that corresponds to n = 3. We have az =0,

by = 2, =1, c= .05 k=10.01, A3 = 10.01 — 9 = 1.01, By = 3(.05) = .15,
—Bsbs —(-15)(4)/(3m) Asbs

_ _ ~—.0611 and Bs = —2 _ ~ 4111.
T A2 B2 T (1.01)2+ (.15)2 0611 and /s As + B2

So
y3 = —.0611 cos 3t 4 .4111 sin 3.

The amplitude of y3 is v.06112 4 .41112 ~ .4156.

17. (a) In order to eliminate the 3rd normal mode, y3, from the steady-state
solution, we should cancel out the component of F' that is causing it. That is, we
must remove f3(t) = 223t Thus subtract 2823 from the input function. The
modified input function is dsin 3t
sin
F(t)— 3
Its Fourier series is he same as the one of F', without the 3rd component, f3(t). So
the Fourier series of the modified input function is

(2 1t
= sm t+ — Z s1n2mm++1
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(b) The modified steady-state solution does not have the ys-component that we
found in Exercise 13. We compute its normal modes by appealing to Theorem 1
and using as an input function F'(¢t) — f5(t). The first nonzero mode is y;; the sec-
ond nonzero normal mode is y5. We compute them with the help of Mathematica.
Let us first enter the parameters of the problem and compute o, and f3,, using the
definitions from Theorem 1. The input/output from Mathematica is the following

Clear[a, mu, p, k, alph, bet, capa, capb, b, y]

mu=1;
c=5/100;

k =1001/100;
p = Pi;

a0 =0;

a[n_] =0;

b[n_]1=2/(Pin) (1- Cos[nPi]);

alphO = a0/ k;

capa[n_] =k-mu (nPi/p)*2

capb[n_] =cnPi/p

alph[n_] = (capa[n] a[n] - capb[n] b[n]) / (capa[n] *2 + capb[n] *2)
bet[n_] = (capa[n] b[n] + capb[n] a[n]) / (capa[n] *2 + capb[n] *2)

1001 ,
100

L
20
1 -Cos[n ]

n?_ 1001 _ 232
lO<400+(1oo n))ﬁ

(%—nz) (1 -Cos[nn])
n2 1001 2
1r1<400+(100_2))7T

It appears that

— (1 — cos(n)) and 6, — 2 (45 —n?) (1 —cos(n))

2 1001 2 2 1001 2
10(4%+(W—”2))7T ”(ﬂ)—oJr(W—”Q))W

Note how these formulas yield 0 when n is even. The first two nonzero modes of
the modified solution are

y1(t) = agcost + By sint = —.0007842 cost + .14131 sint

and

y5(t) = as cos 5t + (5 sin 5t — .00028 cos 5t — .01698 sin 5¢.

(¢) In what follows, we use 10 nonzero terms of the original steady-state solution
and compare it with 10 nonzero terms of the modified steady-state solution. The
graph of the original steady-state solution looks like this:
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steadystate[t_] = Sum[alph[n] Cos[nt] +bet[n] Sin[nt], {n, 1, 20}];
Plot [Evaluate[steadystate[t]], {t, 0, 4Pi}]

WM
AR

The modified steady-state is obtained by subtracting ys from the steady-state.
Here is its graph.

modifiedsteadystate[t_] = steadystate[t] - (alph[3] Cos[3t] +bet[3] Sin[3t]);
Plot[Evaluate[modifiedsteadystate[t]], {t, 0, 4Pi}]

2 4 8 0 1
-0.05
-0.1

In order to compare, we plot both functions on the same graph.

Plot [Evaluate[ {steadystate[t], modifiedsteadystate[t]}], {t, 0, 4Pi}]

It seems like we were able to reduce the amplitude of the steady-state solution
by a factor of 2 or 3 by removing the third normal mode. Can we do better? Let
us analyze the amplitudes of the normal modes. These are equal to /a2 + §2. We
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have the following numerical values:

amplitudes = N[Table[Sqgrt[alph[n] *#2 + bet[n] *2], {n, 1, 20}]]
p q P

{0.141312, 0., 0.415652, 0., 0.0169855, 0., 0.00466489, 0., 0.00199279, 0.,
0.00104287, 0., 0.000616018, 0., 0.000394819, 0., 0.000268454, 0., 0.000190924, 0.}

It is clear from these values that ys has the largest amplitude (which is what
we expect) but y; also has a relatively large amplitude. So, by removing the
first component of F', we remove y;, and this may reduce the oscillations even
further. Let’s see the results. We will plot the steady-state solution ys, ys — ys,

and ys — y1 — ys.

modifiedfurther[t_] = modifiedsteadystate[t] - (alph[1l] Cos[ t] +bet[1] Sin[ t]);
Plot [
Evaluate[{modifiedfurther[t], steadystate[t], modifiedsteadystate[t]}], {t, 0, 4Pi}]

Steady-state solution

e

Modified steady-state solution

/

Modified even further steady-state solution

21. (a) The input function F(t) is already given by its Fourier series: F(t) =
2 cos 2t +sin 3t. Since the frequency of the component sin 3¢ of the input function is
3 and is equal to the natural frequency of the spring, resonance will occur (because
there is no damping in the system). The general solution of 49y = 2 cos 2¢+sin 3¢
is y = yn +yp, where yj, is the general solution of y” +9y = 0 and y, is a particular
solution of the nonhomogeneous equation. We have y, = ¢; sin 3t + c2 cos 3t and,
to find y,, we apply Exercise 20 and get

b
Yp = (Z—Z cos 2t + A—Zsin2t> + R(t),

where az =2, by =0, Ao =9—22=5,a,, =0, by, = 1, and
t
R(t) = 5 cos 3t.

Hence

2 t
Yp = gcos2t— Ecos3t

and so the general solution is

2 t
Yy = c1 8in 3t 4 co cos 3t + gcos2t— Ecos3t.
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(b) To eliminate the resonance from the system we must remove the component of
F that is causing resonance. Thus add to F'(t) the function —sin 3¢. The modified
input function becomes I, qifiod () = 2 cos 2t.

25. The general solution is y = ¢1 sin 3t + ¢ cos 3t + % cos 2t — % cos 3t. Applying

the initial condition y(0) = 0 we get ¢z + % =0orc = —%. Thus

2 2 t
Yy = cysin 3t — gcos3t+ gcos2t— Ecos3t.

Applying the initial condition y'(0) = 0, we obtain

1 t
y = 3cycosdt+ gsin 3t — gsin 2t — 5 cos 3t + §sin 3t,
1
y/(o) = 301_65
1
! — —

Thus

1 2 2 t
Y= Esin3t— gcos3t+ gcos2t— Ecos3t.
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Solutions to Exercises 2.9

1.
1

sinnx 0
— —0asn — oo.
vno| T /n
1

The sequence converges uniformly to 0 for all real z, because NG controls its size

()] =

independently of x.

5. If x = 0 then f,(0) =0 for all n. If x # 0, then applying ’'Hospital’s rule, we
find

Jim | fu(2)] = 2] lim ——2 = |$|nlggo|x|? = 0.
The sequence does not converge uniformly on any interval that contains 0 because
fn(£) = e, which does not tend to 0.

6. As in Exercise 5, the sequence converges to pointwise to 0 for all z, but not
uniformly on any interval that contains 0 because f,,(+) = e~! — e~2, which does

not tend to 0.

7. The sequence converges to 0 for all = because the degree of n in the denominator
is greater than its degree in the numerator. For each n, the extreme points of f, (x)
occur when f/ (x) =0 or

32 +1
o nx2:0 = n-nz=0 = z=—".
(1+n222?) n
Since fn(1) = % the sequence does not converge to 0 uniformly on the interval

[0, o) (or any interval that contains 0).

9. ’COE#’ < kiz = My, for all z. Since Y M}, < oo (p-series with p > 1), the series
converges uniformly for all x.

14. ’19”—0’ < ($)F = M;, for all |z| < 9. Since Y (75)" < oo (geometric series with
ratio 9/10 < 1), the series converges uniformly for all |z| < 9.

17. l(gl—i),; < k% = My, for all z. Since > M} < oo (p-series with p > 1), the

series converges uniformly for all x.
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Solutions to Exercises 2.10

3. By Theorem 2(c), the series converges for all x # 2nm. For x = 2nm, the series
pDya % =Y # is divergent.

5.  The cosine part converges uniformly for all x, by the Weierstrass M-test. The
sine part converges for all x by Theorem 2(b). Hence the given series converges for
all .

9. (a) If limg_oosinkz = 0, then

lim sin®kz =0 = lim (1 —cos’kr) =0 = lim cos’kz =1 (x).
k—o00 k—o0 k—o0
Also, if limg oo sinkz = 0, then limy_.osin(k + 1)z) = 0. But sin(k + 1)z =
sin kx cos x + cos kx sinx, so
—0
—_—~
0= lim (sinkzcosx+coskrsinr) = lim coskzsinz =0
k—o00 k—o0
= lim coskx =0or sinz =0.
k—o0
By (*), cos kx does not tend to 0, so sinz = 0, implying that x = mx. Consequently,
if # # mm, then limk — cosinkz is not 0 and the series ) ;- sinkz does not
converge by the nth term test, which proves (b).
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Solutions to Exercises 3.1

1. Uzg + uzy = 2u is a second order, linear, and homogeneous partial differential
equation. u;(0,y) = 0 is linear and homogeneous.

3. Uz —ur = f(x,t) is a second order, linear, and nonhomogeneous (because of the
right side) partial differential equation. wu;(x,0) = 2 is linear and nonhomogeneous.

5. Uty +uge = 2u is second order and nonlinear because of the term ugu,. w(0,t)+
u5(0,¢) = 0 is linear and homogeneous.

7. (a) Ugy = Uyy = 0, S0 Ugg + Uyy = 0.

(b) Uae =2, Uyy = =2, 50 Ugz + uyy = 0. (c) We have u = 7. So
—x? 492 —2xy

Uy = ———— Uy = ——————
o) T @)

and

2 (2% —3xy? -2 (23 — 3ay?
um:(—g), uyy:(—g) = Au=Ugg + uyy = 0.
(2 +y?) (=2 +y?)

(d) We have u = ﬁ Switching = and y in (c), it follows immediately that

- —y? +z? . 2zy
y = 2’ = 27
(2 +y?) (=% +y?)
and
2 (y3 —3ya? -2 (y® — 322
upy = 22383 2P Ny gy =0,
(2 +y?) (2 +y?)
(e) We have u = In(2? + y?), so
2x 2y
T ary Ty
and
92 $2—y2 2 I2—y2
Upy = (72), Uyy = (72) = Au=Ugy + uyy = 0.
(% +y?) (2 +y?)
(f) We have u = e¥ cosz, so
uy = —e¥ sin(z), uy =¥ cos(x),
and
Ugy = —€Y cos(x), Uyy =e€Y cos(x) = Au=ug +uy, =0.

(g) We have u = In(z? + y?) + €Y cosx. Since u is the sum of two solutions of
Laplace’s equation (by (e) and (f)), it is itself a solution of Laplace’s equation.

9. (a) Let u(z,y) = e*®e®. Then

Uy = ae®®eV
uy = be™ ey
Upy = a2eax eby
Uy, = b2eax eby
Ugy = abe™™ ey,
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So

Aty + 2Buyy + Cuyy + Dug + Euy + Fu =0
& Aa’e e + 2Babe® eV + Cb2e e
+Dae e 4+ Ebe™ e + Fe®@eb =
& e’ (Aa® 4+ 2Bab+ Cb” + Da+ Eb+ F) =0
& Ad® +2Bab+ Cv?> + Da+ Eb+ F =0,

because e*e?¥ #£ 0 for all x and y.
(b) By (a), in order to solve

Ugg + 2Ugy + Uyy + 2Uz +2uy +u =0,
we can try u(z, y) = e*e?¥, where a and b are solutions of
a® +2ab+b* +2a+2b+1 = 0.

But
a?+2ab+ 0> +2a+204+1=(a+b+1)%

So a+ b+ 1= 0. Clearly, this equation admits infinitely many pairs of solutions
(a, b). Here are four possible solutions of the partial differential equation:

a=1,b=-2 = u(z,y) =c"e?
a=0,b=-1 = uz,y)=e
a=-1/2, b=-1/2 = wu(zr,y) = 79”/267”2
a=-3/2, b=1/2 = u(x,y)=e "/2e/?

13. We follow the outlined solution in Exercise 12. We have

A(u) =In(u), ¢(z) =", =  Alu(x(t), t)) = A(6(x(0))) = In(e"?) = z(0).
So the characteristic lines are

x=tx(0)+2(0) = x(0)=L(zt)=

So u(zx, t) = f(L(z, t)) = f (t+1) The condition u(x, 0) = e® implies that f(x) =

e® and so
u(x, t) = e™.
o — 1
Check: Ut = — (t+1)2’ um_et+1?,
T T X L 1
ug + In(u)u, = —e®1 + T =0.

t+12 " t+1° t+1

15. We will just modify the solution from the previous exercise. We have
Alw) =u+2, ¢plx) =2%, = Au(z(t)), t) = A(o(z(0))) = 2(0)* + 2.
So the characteristic lines are
r=1tx(0)2+2)+2(0) = tx(0)*+z(0)+ 2t —x = 0.
Solving for z(0), we find

—14/1—4t(2t —x)
2 ’

z(0) =
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and so

w(z §) = f (-11 1;t4t(2t—:c)> |

Now

. =1 — /1 —4¢(2t — )
lim

t—0 2t
does not exist, but using I’Hospital’s rule, we find that

—14+ /1 —4t(2t — 2) y (1 — 4t(2t — )~ V/2(~16t + 4x)

lim = lim =z.
t—0 2t t—0 4
So )
-1 1 — 4¢(2t —
u(z, t) = ( + ( x))
2t
17. We have

Au) =u?, ¢(x) = Vo, = Alu(z(t), t)) = A(((0))) = z(0).
So the characteristic lines are
z=tx(0)+z(0) = z(0)(t+1)—x=0.

Solving for z(0), we find

2(0) = 77
and so
u(w, t) = f (t—i-—1>
Now
u(, 0) = f(z) = V3
So
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Solutions to Exercises 3.3

1. The solution is
t
Zsm— (b cos e —I-b* Siﬂc%) ,

where b, are the Fourier sine coefficients of f and b} are M times the
Fourier coefficients of g. In this exercise, b} = 0, since g = 0, by = 0.05; and
b, = 0 for all n > 1, because f is already given by its Fourier sine series

(period 2). So u(z, t) = 0.05sin7z cost.

3. The solution is
o0

u(zx, t) = Z sin(nmx) (by, cos(nwt) + by, sin(nwt)),
n=1
where b} = 0 since g = 0. The Fourier coefficients of f are by = 1, by = 3,
bs = —1 and all other b, = 0. So

u(x, t) = sinma cos(mt) + 3sin(27x) cos(27t) — sin(5mwx) cos(5nt).
5. (a) The solution is

[e.e]
u(zx, t) = Z sin(nmx) (b, cos(4dnmwt) + by, sin(4nwt)),

n=1
where by, is the nth sine Fourier coefficient of f and b} is L/(cn) times the
Fourier coefficient of g, where L = 1 and ¢ = 4. Since g = 0, we have b}, =0
for all n. As for the Fourier coefficients of f, we can get them by using
Exercise 17, Section 2.4, with p =1, h =1, and a = 1/2. We get

nm

b, = — sin 2
2 n2’

Thus

sin ¢
u(z, t) = = Z sin(nmz) cos(4nmt)

= 2 kZ:O m sin((2k + 1)7x) cos(4(2k + 1)xt).

(b) Here is the initial shape of the string. Note the new Mathematica com-
mand that we used to define piecewise a function. (Previously, we used the
If command.)

Clear[f]

f[x_]:=2x /; 0<x<1l/2
f[x ]:=2(1-x) /;1/2<x<1
Plot[£f[x], {x, 0, 1}]

Initial shape of the
string
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Because the period of cos(4(2k + 1)xt) is 1/2, the motion is periodic
in ¢ with period 1/2. This is illustrated by the following graphs. We use
two different ways to plot the graphs: The first uses simple Mathematica
commands; the second one is more involved and is intended to display the
graphs in a convenient array.

Clear[partsum]

partsum[x , t_] :=

8/Pi”2Sum[Sin[(-1)*k (2k+1) Pix]Cos[4 (2k +1)Pit]/ (2k+1)*2, {k, 0, 10}]
Plot [Evaluate[{partsum[x, 0], £[x]}], {x, O, 1}]

Approximation of the initial shape
1 of the string by the Fourier series solution
att=0

Here is the motion in an array.
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tt = Table|

Show|[GraphicsArray[Partition[tt, 4]]]

0.5 >

Plot [Evaluate[ partsum[x, t] ], {x, 0, 1}, PlotRange - {{0, 1}, {-1, 1}},
Ticks -» {{.5}, {-1, -.5, .5, 1}}, DisplayFunction -» Identity], {t, 0, 1, 1/20}];

1 1 1
0.5 0.5 0.5

e~———
-0.5 -0.5 -0.5
-1 -1 -1
1 1 1
0.5 0.5 0.5

~——
-0.5 -0.5 -0.5
-1 -1 -1

t=.5

1 1 1

0.5 0-3 05N
-0.5 -0.5 -0.5
-1 -1 -1
1 1 1
0.5 0.5 0.5

o 0.5 o~
-1 -1 -1
1 1 1

0.5 0.5 05 TN
-0.5 -0.5 -0.5
-1 -1 -1

The first frame is the initial shape at t = 0. Subsequent frames occur in icrements of time of size 1/20.

7. (a) Using the formula from the text with ¢ = 4 and L = 1, we find the

solution

[e.e]
u(zx, t) = Z sinnmx (b, cos dnnt + b), sindnwt) ,

n=1

where b,, is the nth sine Fourier coefficient of f and

b*

n

9 1
= I g(z) sinnmx dx
nm Jo
1 1 n
= g o] = o (1= (1)),

The Fourier coefficients of f. We have

1/4 3/4 1
bn:8/ :L"sinmrznd:r—l—2/ sinmr:rd:n—l—S/
0 1

(1 —x)sinnrz de.

/4 3/4

We evaluate the integral with the help of the identity

/(a—l—bas) sincr dr = —

a+ bx
c

b
coscr + 5 sincx +C (¢ #0).
c
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We obtain
‘ 1/4

x 1 .
b, = 8 ——— COSNTT + —5— sinnwe
nmw nmw
3/4
——cosmm‘
nmw 1/4

r—1

A

n2m2 4 p2p2 4
_ 8 .onm . 3nm
= W S1n T + sin T .

Thus

[e.e]
8 3
u(z, t) = Zsinmm (W (sin % + sin %) cos4nt

n=1
1

+ 2m2n?2

(1—(-1)™) sin4n7rt> :

(b) Here is the initial shape of the string approximated using a partial sum
of the series solution at time ¢ = 0.

Clear[partsum, n, t, f]
Clear|[f]
flx ] :=4x /; 0<x<1l/4
flx ]1:=1 /;,1/4<x<3/4
flx ] :=4(1-x) /; 3/4<x<1
partsum[x_, t_] = Sum[ Sin[nPi x] (
8/ (Pi*2n*2) ( Sin[nPi /4] +Sin[3nPi/4]) Cos[4nPit]
+ 1/(2n*2Pi*2) (1 - (-1)“n) Sin[4 nPit]
)
, {n, 1, 10}];
Plot [Evaluate[{partsum[x, 0], £[x]}], {x, O, 1}, PlotRange -» All]

1
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Because the period of cos4nnt and sindnrt is 1/2, the motion is 1/2-
periodic in ¢. This is illustrated by the following graphs.

Clear[tt, t]
Plot [Evaluate[ Table[partsum[x, t] , {t, 0, 1/2, .04}]], {x, 0, 1}]

9. The solution is

u(z, t) = Z sin(nmz) (by, cos(nmt) + by, sin(nnt)) ,

n=1

where b7 = 1 and all other b} = 0. The Fourier coefficients of f are

1
by, = 2/ (1 — z) sin(nrz) dz.
0

To evaluate this integral, we will use integration by parts to derive first the
formula: for a # 0,

x cos(ax sin(a x
(az) , sin(az)

i dr = — C
/:ESID((I:E) x " 2 +C,
and
2 2 2z si
/:E2 sin(az) dr = cosga z) " cos(am) 42 sur;(a x) e
a a a
thus

/ 2(1 — 2) sin(az) dz

—2 cos(ax x cos(ax 2% cos(ax sin(a x 2x sin(ax
_ 2eoslan) _wooslan) | o coslaw) | sinaz) 2w sinaz) o,
a a a a a

Applying the formula with a = nw, we get

/0 ' 21— ) sin(nma) de

2

—2 cos(nmx) x cos(nmx) g cos(nmx) sin(nrz) 2z sin(nwx) |l

(nm)3 nmw nmw (nm)? (nm)?
(1)) (U () ()
(nm)3 nm nm (nm)3

0 if n is even.

B { ﬁ if n is odd,

0
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Thus
if n is odd,

8
b, =<4 @n)°
0 if n is even,

and so

8 = sin((2k 4 1)7x) cos((2k + )wt) 1 . .
= — — t).
E @k 1 1)° + - sin(7x) sin(mt)

3
k=0
11. (a) From (11),

. nmx enmt . enmt
un(, t)-sm—(bncos——l—b;sm >,

L L L
hence

2L enm(t + 2L n(t + 2L

Up(x, t+ n_c) = sin ? (bn oS (L ) + b sin (L nc)
t t

= sin ? (bn cos(m? +2m) + by, sin(% + 27T)>

. nmx b enmt 4 b si enmt\ (2, 1)

= sin—— [ bpcos —— +bpsin—— | = un(z, ©),

L.

S0 up(x, t) has time period Since any positive integer multiple of a
period is also a period, we conclude that w,(x, t) has time period %, and
since this period is independent of n, it follows that any linear combination
of u,’s has perlod =2 This applies to an 1nﬁn1te sum also. Hence the series
solution (8) is time perlodlc with perlod , which proves (b). To prove (c),
note that

L . nwT enm(t+ L)y enm(t+ L)
Up(x, t+ E) = sin—— (bn COSTC —I—bnsmTC

. enmt
= sin— (bn cos(

t t
= (—1)"sin nry (bn Cos anw + by, sin anw >

nwL enmt . cmrt>

t
+nm) + by, sin(% + mr)>

= sin(T—mr) by, cos 7 + b sin 7

B . nr(L—x) enmt ., . cnwt
= —sin( 7 )(b cos —— + b sin 7 >

= —up(L—x,t).

Since this relation holds for every n, summing over n, we obtain

[e.e] [e.e]
:Et—l— Zu:p t—l— Zu —z,t) = —u(L — =z, t).
n=1 n=1

Think of the string at time ¢ as part of an odd 2L-periodic graph, so that we
can talk about u(z, t) for x outside the interval [0, L]. Moreover, we have
u(—x, t) = —u(z, t) and u(z+2L,t) = ’LL(:L' t). This graph moves as ¢ varies
and returns to its original shape at ¢t + 2&. The shape of the string at time



58 Chapter 3 Partial Differential Equations in Rectangular Coordinates

t+ % (half a period) is obtained by translating the portion over the interval
. Ly _ _

[—L, 0] to the interval [0, L]. Thus, u(z, t+¢) =u(r—L, t) = —u(L—=z, t),

since u is odd.

15. (a) We use Exercise 12 to solve

0%u 40U ou @
o2 ot O0x?’
u(0,t) = u(m, t) =0,

ou
u(z,0) =0, E(ZE, 0) = 10.

We have ¢ = 1, k = 3/2, L = 7, f(z) = 0, and g(z) = 10. So & = 3/2,

CTT

which is not an integer. We distinguish two cases: n < 3/2 (that is, n = 1)
and n > 3/2 (that is, n > 1). For n = 1, we have A\; = v/5/2, a; = 0 and

2 4 80
blz—/ 10sinz dxr = ——.
A 0 7T\/5

The corresponding solution in 7T is

80
/5

5
e 1% sinh gt.

For n > 1, we have

1
An = V1[(3/2)2 —n?| = 5 unZ — 9
and
2 ™
bn = —/ sin nx dx
TAn Jo
40
_ 0
nw\/m( (="
30 —
= (2k+1)m/4(2k+1)2—9 ifn=2k+1
0 otherwise.
Thus
80 —1.5¢ _: .
uw(z,t) = ——e "Pgingsinh —t
) = 2o /

@ _15tzsm [(2k+ D)z sm[\/(2k‘—|—1)2—9/4t]‘

(2k + 1)m\/4(2k + 1)2— 9

(b) The following figure shows that the string rises and reaches a maximum
height of approximately 3, and then starts to fall back down. As it falls
down, it never rises up again. That is the string does not oscillate, but
simply falls back to its initial rest position.
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u[x_, t_] =80/ (PiSqrt[5]) E~(-3/2t) Sin[x] Sinh[Sqrt[5] /2] +
40/PiE* (-3/2t) Sum[Sin[ (2 j +1) x]
Sin[Sqrt[(23j +1)22 -9/4]t]/ ((2j+1) Sqrt[(2j+1)~2-9/4]), {3, 1, 7}1;

tt = Table[u[x, t], {t, .1, 8, .6}];

Plot [Evaluate[tt], {x, 0, Pi}, PlotRange -» All]
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Solutions to Exercises 3.4

1. We will use (5), since g* = 0. The odd extension of period 2 of f(z) =
sinmzx is f*(x) = sin7z. So

u(z, t) = [sin(7z +t) + sin(rz — t)].

N | —

[Sin(ﬂ(:n + %)) + sin(m(z — %))] _

N | —

3. We have f*(z) = sin7x + 3 sin 27z, ¢*(z) = sinwz. Both f* and g¢*
are periodic with period 2 and they are odd functions. So, the integral of
g* over one period, f_ll g*(x) dx = 0. This implies that an antiderivative of
g* is also 2-periodic. Indeed, let

z 1 z 1
G(x) = / sinTsds = ——cosws| = —(1— cosmx).
0 ™ 0 ™

This is clearly 2-periodic. By (6) (or (4)), we have

u(z, ) — % [sin(r(z + 1)) + 3sin(2n(z + 1)) + sin(n(z — 1)) + 3sin(2n(z — 1))]
+% [[1 = cosm(+)] = [1 = cosm(z — )]
_ % [sin((z + 1)) + 3sin(2r(x + 1)) + sin(r(z — 1)) + Bsin(2n(z 1))
+% [cosm(z — ) — cos(x +1)].

5. The solution is of the form

u(e, 1) = S[f'@—0)+ fla+0)] +5[Cla 1)~ Gz —1)]

1
2
[(f*(:n —t)— G(z —t)) +

(f*(z+1t)+ Gz +1)],

N — N~

where f* is the odd extension of f and G is as in Example 3. In the second
equality, we expressed u as the average of two traveling waves: one wave
traveling to the right and one to the left. Note that the waves are not the
same, because of the G term. We enter the formulas in Mathematica and
illustrate the motion of the string.
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The difficult part in illustrating this example is to define periodic functions with Mathematica. This can be done by

appealing to results from Section 2.1. We start by defining the odd extensions of f and G (called big g) on the
interval [-1, 1].

Clear[£f, bigg]

flx ]:=2x /; -1/2<x<1/2
flx ]1:=2(1-%x) /;1/2<x<1
flx ] :=-2(1+x) /; -1<x<-1/2
bigg[x ] =1/2x%2-1/2

Plot[{f[x], bigg[x]}, {x, -1, 1}]

Here is a tricky Mathematica construction. (Review Section 2.1.)

extend[x_] :=x - 2 Floor[(x+1) /2]
periodicf[x_] := f[extend[x]]
periodicbigg[x_] :=bigg[extend[x]]
Plot[{periodicf[x], periodicbigg[x]}, {x, -3, 3}]
1 L
0.5¢
- 2 3
-0
_l L

Because f* and G are 2-periodic, it follows immediately that f*(x =+ ct)
and G(z £ ct) are 2/c-periodic in ¢t. Since ¢ = 1, u is 2-periodic in t.
The following is an array of snapshots of u. You can also illustrate the
motion of the string using Mathematica (see the Mathematica notebooks).
Note that in this array we have graphed the exact solution and not just
an approximation using a Fourier series. This is a big advantage of the
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d’Alembert’s solution over the Fourier series solution.

uf[x_, t_] :=1/2 (periodicf[x-t] +periodicf[x+t]) +
1/2 (periodicbigg[x -t] - periodicbigg[x +t])
tt = Table[
Plot [Evaluate[ u[x, t] ], {x, 0, 1}, PlotRange-» {{0, 1}, {-1, 1}},
Ticks -» {{.5}, {-1, -.5, .5, 1}}, DisplayFunction - Identity], {t, 0, 2.3, 1/5}];
Show|[GraphicsArray[Partition[tt, 4]]]

t=0

7. Very much like Exercise 4.

8. Very much like Exercise 8 but even easier. We have, for all z,

Q

() = —cosmx.

9. You can use Exercise 11, Section 3.3, which tells us that the time period
of motionis T = % So, in the case of Exercise 1, T' = 27, and in the case of
Exercise 5, T'= 2. You can also obtain these results directly by considering
the formula for u(z, ¢). In the case of Exercise 1, u(x, t) = §[sin(rz +t) +
sin(rz — t)] so u(z, t + 27) = §[sin(rz + 27) + sin(rz — 27)] = u(z, t).
In the case of Exercise 5, use the fact that f* and G are both 2-periodic.

10. Here is a plot with Mathematica.
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Clear[£f, u, c]

c=1/Pi

f[x_] = Sin[Pi x]

ulx_, t_]1:=1/2 (f[x-ct]+f[x+ct])

Plot[{f[x], f[x-c/2], f[x+c /2], ulx, 1/2]}, {x, 0, 1}]

f(x+cl2) S(x=cl2)
/ f(x)
1 — ! —
e
N N
/ v N\ N
/ \ N
/ u(x,1/2) N\
1
/ \
0.4 .

The string at time t = 1:

Plot[{f[x-1/Pi],

—

— flxre) ~

flx+1/Pi], u[x, 11}, {x, 0, 1}]

- ~
f(x=c)

e

-0.75

13. We have
x—+ct
g (s) ds,

—ct

u(, 1) = 5 [0+ ct) + f*(a — et)] + o

/

where f* and ¢g* are odd and 2L-periodic. So

z+ct+L

)= L fat et + L)+ fr@—ct — L)]

( t—l—L
u(x, . 5

Using the fact that f* is odd, 2L-period, and satisfies f*(L — x)
(this property is given for f but it extends to f*), we obtain

ffle+ect+L—2L)= f"(x+ct—L)
—ff(L—z—ct)=—f"(L—(z+ct) =—f"(z+ct).

fe+et+ L)
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Similarly
ffle—ct—L) = —f*(L—z+ct)
= —f"(L—xz+ct)=—f(L—(x—ct))=—f"(x—ct).

Also g*(s+L) = —g*(=s— L) = —g"(=s— L+2L) = —g" (L — s5) = —g"(s),
by the given symmetry property of g. So, using a change of variables, we
have

1 z+ct+L 1 /m—i-ct 1 z+ct

g (s)ds = — g (s+L)ds=——
2c T—ct 2c T—ct

- g (s) ds.
2c x—ct—L

Putting these identities together, it follows that u(z, t + £) = —u(z, ).

15. Let us define the function f(x) on (0, 1) and then plot it.
Clear[f]

flx ] :=4x /; -1/4<x<1/4
£lx_]:=4(1/2-x) /; 1/4<x<1/2
f[x_ ]1:=0 /; 1/2<x<1
fix_]:=4(-1/2-%x) /; -1/2<x<-1/4
f[x ]:=0 /; -1 <x<-1/2

Plot[ f[x], {x, -1, 1}]

1 L

Let us now plot the periodic extension of f

extend[x_] :=x - 2 Floor[(x+1) /2]
periodicf[x_] := f[extend[x]]
Plot[periodicf[x], {x, -3, 3}]
l L
0.5¢
-3 -2 -1 1 3
-0.5
_1 L
Periodic extension of f
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We are now ready to define v and plot it for any value of t. We plot

u(x, 1/4) along with f(z —1/4) and f(x 4 1/4) to illustrate the fact that u
is the average of these two traveling waves.

u[x_, t_] :=1/2 (periodicf[x-t] +periodicf[x+t])

Plot [
Evaluate[{periodicf[x], periodicf[x+1 /4], periodicf[x-1/4], ul[x, 1/4]1}],
{x, 0, 1}, PlotRange - All]

f(x)
Flx+1/4)
N //\
NEERN Y, N
N/ N
0.5 1
/
RV u(x, 1/4)
LV
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Next, we show the string at ¢ = 1/2.

u[x_, t_] :=1/2 (periodicf[x-t] +periodicf[x+t])
Plot [

Evaluate[ {periodicf[x], periodicf[x+1/2], periodicf[x-1/2], ul[x, 1/2]}],
{x, 0, 1}, PlotRange -» All]

1p f(x) x+12 f(x=1/2)
\ flx+ )/ \
4 N
/ /N
0.5 / 1
\ / u(x,1/2)
N/
1t v

Note that f(x + 1/2)=f(x—-1/2)
in this problem.

(b) It is clear from the graph of u(z, 1/4) that the points .75 < z < 1 are
still at rest when t = 1/4.

(c) Because f*(z) =0for .5 <z < 1.5 and u(z, t) = L(f(z+t) + f(z — 1)),
a point xg in the interval (1/2, 1) will feel a vibration as soon as the right
traveling wave reaches it. Since the wave is traveling at speed ¢ = 1 and is
supported on the interval (0, 1/2), the vibration will reach the point z( after
traveling a distance zyp — 1/2. Since the wave is traveling at speed ¢ = 1,
it will take xg — 1/2 time for the point z( to start move from rest. For all
values of t < xy — 1/2, the point xy will remain at rest. For example, if
3/4 < xg < 1, then this point will remain at rest for all time ¢ < 1/4, as we
saw in the previously.

(d) For an arbitrary value of ¢ > 0, the wave will travel at the speed of
c. Thus it will take (zg — 1/2)/c time to reach the point g located in the
interval 1/2 < x < 1.

17. (a) To prove that G is even, see Exercise 14(a). That G is 2L-periodic
follows from the fact that g is 2L-periodic and its integral over one period
is 0, because it is odd (see Section 2.1, Exercise 15).

Since G is an antiderivative of g*, to obtain its Fourier series, we apply
Exercise 33, Section 3.3, and get

L = by,
G(:E):Ao—;ZbT(mcos%:n,

n=1

where by, (g) is the nth Fourier sine coefficient of g*,

2 (L . nT
bn(g) = E/o g(z) sin Tz dz
and
L - bn(9)
Ay = ;::1 =
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In terms of b}, we have

Lby(g) 2 [* Lonm o
p— _mr/o g(:n)smL:Ed:E—cbn,
and so
_ Lmbalg) Lmbaly)  nm
Gx) = 772231 - ;;::1 o COs
= ;cbfL(l—cos(%:E)).

(b) From (a), it follows that

o

Glx+ct)—Glx—ct) = Zcb; [(1 - COS(%(ZE + ct))> - (1 - cos(nL—W(:E - ct)))}
n=1
= i —cby, [COS(%(:E +ct)) — cos(nL—W(:E - ct))}
n=1

(c) Continuing from (b) and using the notation in the text, we obtain

1 x+ct

F(s)ds = ~[G(z+ct)— Gla—ct)

2_C r—ct 2c

s L1 nmw nmw
— ;::1 —bn§ [cos(f(:n +ct)) — cos(f(:E —ct))

[ee]
= Z by sin(nL—W:L") sin(%ct

n=1

= Z by, sin(nL—W:E) sin(Apt).

n=1

)

(d) To derive d’Alembert’s solution from (8), Section 3.3, proceed as follows:

u(z, t) = Z by, sin(nL—W:L") cos(Apt) + Z by, sin(%:p) sin(Apt)

n=1 n=1
= (@) + @t ct)) + o (Gl + ef) — Gl — )],

where in the last equality we used Exercise 16 and part (c).

19. (a) The characteristic lines are lines with slope £1/c = +1 in the
zt-plane.

(b) The interval of dependence of a point (zg, tg) is the interval on the z-
axis, centered at o, with radius ctg. For the point (.5, .2) this interval is
.3 < <.7. For the point (.3, 2) this interval is —1.8 < z < 2.3.

(c) The horizontal, semi-infinite, strip S is bounded by the line z = 0 and
x = 1 and lies in the upper half-plane. The region I is the triangular
region with base on the interval (0, 1), bounded by the lines through (0, 0)
at slope 1, and through (1, 0) at slope —1. The three vertices of I are (0, 0),
(1/2,1/2), and (0, 1). The point (.5, .2) is in I but the point (.3, 2) is not
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in [.
(d) For the points (z, t) in I, u(x, t) depends only on f and g and not their
periodic extension. We have

T+t
wet) = =5lfe—n+s@ro]+z [ ats)ds
1 T+t
= §/m_t sds
_ 332 e i[(m 12 (2 1)?] = at.

21. Follow the labeling of Figure 8 in Section 3.4. Let P; = (xq, tg) be an
arbitrary point in the region II. Form a characteristic parallelogram with
vertices Py, Py, Q1, Y2, as shown in Figure 8 in Section 3.4. The vertices
P, and @)1 are on the characteristic line z + 2t = 1 and the vertex ()2 is on
the boundary line x = 1. From Proposition 1, we have

u(P) = u(Q1) + u(Q2) — u(P2) = u(Q1) — u(R),

because u(@Q2) = 0. We will find u(P) and u(Q1) by using the formula
u(z, t) = —4t2 + x — 2% + Stz from Example 4, because P, and @ are in
the region 1.

The point ()1 is the intersection point of the characteristic lines x — 2t =
xo — 2ty and x + 2t = 1. Adding the equations and then solving for z, we

get
_xo+ 1 — 2t
T=—
The second coordinate of )1 is then
. 1 —z9+ 2ty
-

The point ()2 is the intersection point of the characteristic line x + 2t =

xg + 2ty and x = 1. Thus
. To + 2tg — 1
= —

The point P, is the intersection point of the characteristic lines z+2t = 1
and z — 2t = 1 — (zg + 2tp — 1). Solving for z and ¢, we find the coordinates
of P, to be

3—x9— 2t —1 4 x¢ + 2ty
r=—— and t=—"7#¥4—-—"—.
2 4
To simplify the notation, replace xg and tg by « and y in the coordinates of
the points Q1 and P, and let ¢(z, t) = —4t% + 2 — 2% + 8tz. We have

u(z, t) = u(Q1) —u()

_ x+1—2t 1—x+2t " 3—xz—2t —1+x+2t
N 2 ’ 4 2 ’ 4

= 5—12¢t— 5z + 12tx,

where the last expression was derived after a few simplifications that we
omit. It is interesting to note that the formula satisfies the wave equation
and the boundary condition u(1, t) = 0 for all ¢ > 0. Its restriction to the
line x + 2t = 1 (part of the boundary of region I) reduces to the formula for
u(z, t) for (z, t) in region I. This is to be expected since u is continuous in

(z, t).
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Solutions to Exercises 3.5

1. Multiply the solution in Example 1 by % to obtain

312 o e—(2k+1)2t

u(z, t) = 2 o sin(2k + 1)z.
k=0
3. We have
ane "t gin (nz),
where
66 [7/? 66 [
b, = — xsinnx dx + —/ (m — x) sinnx dz
T Jo ™ w/2
_ 66 [ zcos(nx) n sin(nx)\ |7/2
oo n n? 0
_1_@ —(m — =) cos(nz) sin(nz)\ |~
™ n n?2 w/2
_ S(_Besln) | snind) | Feodh), sinth)
i n n n n
_ 132sin(ng)
o1 n?
(=nF e
_ 132 TR T) if n=2k+1,
0 if n = 2k.
Thus
132 X e~ (Rt gin((2k + 1)x)
) = =2
5. We have
u(z, t) = ane_(m)zt sin(nmz),
n=1
where

1
b, = 2/ zsin(nmx) dr = 2 [—
0

x cos(nmx) Sin(nﬂ':p)] ‘1

nw n? w2 0
1
cosn —1)nt
nm nm
So
) _ 2 .
2 Z 1) e~ () gin(nr)
" )
7T n=1

69

7. (a) From the figures in Example 1, we can see that when ¢ is equal to 1
the temperature is already below 50 degrees. We will give a more accurate
approximation. Let us first check the solution by plotting an approximation

of the initial temperature distribution.
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Clear[f, partsum]
f[x_] :=100
partsum[x_, t_, n_] :=
400/ PiSum[E~ (- (2k+1)~2t) Sin[(2k+1) x]/ (2k +1), {k, 0, n}];
Plot [Evaluate[{f[x], 50, partsum[x, O, 20]}], {x, O, Pi}, PlotRange - All]
120 /\ /\
100 \/\V/\V VA\/\\/
807
60
40
20
0.5 1 1.5 2 2.5 3
Let us now examine the temperature distribution, starting with ¢ = .5
to t = 1.2 with increments of ¢ = .1.
tt = Table[

Plot [Evaluate[{ partsum[x, t, 10] , 50}], {x, O, Pi},
PlotRange - All, DisplayFunction -» Identity], {t, 0.5, 1.2, 1/10}];
Show|[GraphicsArray[Partition[tt, 4]]]

(=5 (=6 (=7 (=8
60 60 50 50
40 40 \\
50 50 50 50
30
(=9 (=1 =11 =12

It appears that the maximum temperature dips under 50 degree between
t =.9and t = 1. You can repeat the plot for t = .9tot = 1, using increments
of .01 and get a more accurate value of ¢.

(b)
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Plot3D[partsum[x, t, 20], {x, O, Pi},

At time t = 0. the initial {t, 0, 5}, PlotRange -> All, ViewPoint -» {3, 3, .4}]

temperature is 100, except at
the endpoints, which
are kept at 0 degree. u(x, t)
2
t 5 X
As t increases, the temW
the bar tends to 0 This 3 dimensional plot shows the
uniformly. temperature across the whole bar as a function
of time.

To prove that the temperature tends uniformly to 0 in the bar, you can
proceed as follows (this is more than what the question is asking for): for
t >0 and all z,

o

400 _ 2, 8in(2k + 1)z
|’LL(ZL'7 t)| = 7 Ze (2k+1) tw
k=0
400 X 5, 400N, ok
= =m0 ()
k=1 k=1

400 1
= —(1- .
T 1—et

As t — oo, the last displayed expression tends to 0, which shows that u(z, t)
tends to 0 uniformly in x.

9. (a) The steady-state solution is a linear function that passes through the
points (0, 0) and (1, 100). Thus, u(x) = 100z.

(b) The steady-state solution is a linear function that passes through the
points (0, 100) and (1, 100). Thus, u(xz) = 100. This is also obvious: If
you keep both ends of the insulated bar at 100 degrees, the steady-state
temperature will be 100 degrees.

11. We use the solution outlined in the text. We have the steady-state
solution

~0-100

1+ 100 = 100(1 - ).

up ()

Then

ug(z, t) = Z b~ (1)t sin(nmz),
n=1
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where

1
b, = 2/0 (30 sin(mz) — 100(1 — x)) sin(nmz) dx

: : __ 200
=30 if n=1, 0 if n#1 =22

A

1 1
= 60/ sin(mx) sin(nrx) dr — 200/ (1 —x) sin(nmzx) dx
0 0

30— 20 ifp=1,
= 200

Thus So
200 o e~ ("t g
u(x, t) = uy(x)4uz(x, t) = 100(1—z)+30e™ ™t sin rr—— Z c sm(mr:n)'
(et n
13.  We have uj(z) = —2z + 100. We use (13) and the formula from
Exercise 10, and get (recall the Fourier coefficients of f from Exercise 3)
50
u(z,t) = ——ax+100
77
132 1"
-I-Z [ > Sm(z 2) — 100 (LH e sinna.
—lr n nm

15. From (14), we have b,, = 0, since f(z) —ui(x) = 0. Hence ua(z, t) =0
and so u(z, t) = uy(x) = steady-state solution. This is obvious on physical
grounds: If the initial temperature distribution is already in equilibrium,
then it will not change.

17. Fix ty > 0 and consider the solution at time ¢ = #:
u(x, to) Z by, sin —:L"e —Anto

We will show that this series converges uniformly for all z (not just 0 < z <
L) by appealing to the Weierstrass M-test. For this purpose, it suffices to
establish the following two inequalities:

) |bn sin "T“:Ee_A%M < M, for all x; and
(b) X2y My, < oo

To establish (a), note that
L
/ flx sm—:nd:n < %/ ‘f(:n)sm%:n dz

(The absolute value of the integral is

|bn| =

< the integral of the absolute value.)

L
< %/ |f(xz)| de = A (because |sinu| <1 for all u).
0

Note that A is a finite number because f is bounded, so its absolute value
is bounded and hence its integral is finite on [0, L]. We have

2. 2

nmw 2 2 comtg 2
|b smfzne A”to| < Ae Mt = Aem Tz "

c27'r2t0 n
< A(e_ L2 > = Ar",
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c27'r2t

where r = e 17 < 1. Take M,, = Ar™. Then a holds and ) M, is
convergent because it is a geometric series with ratio r < 1.
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Solutions to Exercises 3.6

1. Since the bar is insulated and the temperature inside is constant, there is
no exchange of heat, and so the temperature remains constant for all ¢ > 0.
Thus u(z, t) = 100 for all ¢ > 0. This is also a consequence of (2), since in
this case all the a,,’s are 0 except ag = 100.

3. We apply (4):

[e.e]
_n2
u(x, t) =ag + g ane "t cos ni,
n=1

where
1 w/2 1 w/2
ag = —/ 100:13d:£—|——/ 100 (7 — x) dz
T Jo T Jo
50 o|™/2 50 | 25 25
- — Z(r = = — —m =25
7o 7T(7T @) /2 Tt ™
and
92 w/2 9 w/2
an, = —/ 100:L"cosn:13d:n—|——/ 100 (7 — z) cosnz dx
T Jo T Jo
200 (cosnx xsinnz) |7/2
- = — +
T n n 0
200 cosnx (m—x)sinnz\ |7
+— (———+
T n n w/2
_ 200 cosn g %sinn%_{_cosn%_%sinn%_i_cosnw
T n? n n?2 n n?2 n?
200
- = (2cosn5—(1+(—1)n)>
™ 2
0 if n=4k+1 or n = 4k + 3,
= 0 if n =4k or n =4k + 3,
—209 ifn=4k+2=202k+1).
So

2 1
u(x, t) =257 — 200 Z (76_4(2k+1)2t cos(2(2k + 1)z),

5. Apply the separation of variables method as in Example 1; you will
arrive at the following equations in X and 7"

X' kX =0, X(0)=0, X'(L)=0
T — kc*T =0

We now show that the separation constant k£ has to be negative by ruling
out the possibilities £k = 0 and k > 0.

If K =0 then X” =0 = X = ax+b. Use the initial conditions X (0) =0
implies that b = 0, X’(L) = 0 implies that a = 0. So X =0 if k£ = 0.
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If £ > 0, say k = p?, where p > 0, then
X" 12X =0 = X = ¢ coshpux + cosinh pa;
X(0)=0 = 0=c;X = cosinhpz;
X'(L)=0 = 0=copucosh(uL)

= 62:0,

75

because 1 # 0 and cosh(uL) # 0. So X = 0 if £ > 0. This leaves the case

k = —p?, where p > 0. In this case
X”—l—uzX:O = X = cjcosux + cosin pux;
X(0)=0 = 0=c;X = cysinpux;
X'(L)=0 = 0=cyucos(ul)
= c¢g=0or cos(uL) =0.
To avoid the trivial solution, we set cos(uL) = 0, which implies that

2k +1 k=0,1,....
( +)2L 077

Plugging this value of k£ in the equation for 7', we find
T+ 23T =0 = T(t) = Bye ¢t = Bre—(2hD5)"¢t

Forming the product solutions and superposing them, we find that

t) = ZBke_“zc ZBke (k) F)" “sin [(21@ + 1)—:E .

2L

To determine the coefficients By, we use the initial condition and proceed

as in Example 1:
u(z, 0) = f(x) = f(z kZOBk sin [(Qk‘ + 1)E$} ;

= f(z)sin [(2n+1)5 2]

= ZBk sin [(21@ + 1)—:4 sin [(211 + 1)

2L 2L }

L
= /f(:n)sin 2n—|—1)i$}d:p

= ZBk/ sin [ (2k + 1)%4 sin [(271—1— 1)%4 dx

L . ™
= /0 f(x)sin [(271 + 1)E$} dx

L
T
:Bn/0 sin [(211—1—1)%:13} dx,
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where we have integrated the series term by term and used the orthogonality
of the functions sin [(Qk‘ + 1)%:@ on the interval [0, L]. The orthogonality
can be checked directly by verifying that
L
/ sin [(2k‘ + 1)14 sin [(271 + 1)14 dr =0
0 2L 2L
if n # k. Solving for B,, and using that

L
in? o] dw= L
/0 sin [(271—1— 1)2L:E} dx = 5

(check this using a half-angle formula), we find that

B, = %/OL f(z)sin [(271 + 1)%4 dzx.

7. In the first part of this solution, we will justify term-by-term integration
of the series solution. Recall that the solution is given by

where a, is the cosine Fourier coefficient of f. Since f is a temperature
distribution, we can suppose that it is bounded; hence |f(z)| < M for all z,
where M is a constant. Hence

<v 5L
2 L nmw 2 (L —= nwx
= — _ < —
|an| 7 /0 f(x) cos 7 dr| < L/o |f(:13)|‘cos 7 ‘d:p

2 L 2
< Z | Mdrx==LM=2M,
L Jo L

and so, for t > 0,

%)
Ju(z, £)] < laol +
n=1

(o]
2 nmx )2
an€ ’\”tcos—L ‘S lag| + 2M g e Mt < 0.
n=1

. )24 . .
To see that the series > 2, e Ant is convergent, write

2

—>\2t _ tc27'r2 n _ tc27'r2 n n
e =\(e L2 <le L2 =r",

2_2
_tefm . .
where r = e 127 < 1. Thus the series converges by comparison to a

geometric series with ratio 0 < r < 1. From this it follows that, for fixed
t > 0, the series ag + Y oo ane_A%t cos "7 converges uniformly for all z,
by the Weierstrass M-test. Thus we can integrate the series term by term
(Theorem 3, Section 2.7) and get

=ag :0
—N— — N —

1 [k I - 1 [k
E/o u(x, t)de = E/o aod:E—l-E_:ane_)‘%tf/o cos?d:p

n=1
1 L
- w=1 [ f@a
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where the last equality follows from the definition of ag. Thus at any time
t > 0, the average of the temperature distribution inside the bar is constant
and equals to the average of the initial temperature distribution f(x). This
makes sens on physical grounds since the bar is insulated and there is no
exchange of heat with the surrounding, the temperature may vary but the
total heat inside the bar remains the same, and so the average temperature
remains the same at any time ¢ > 0.

9. This is a straightforward application of Exercise 7. For Exercise 1 the
average is 100. For Exercise 2 the average is ag = 0.

10. Using the relation sinazsinbz = %[cos(a — b)z — cos(a + b)z], we

2
obtain, for m # n,

L
/ sin px sin pnx dz
0

1 (L
= = / [ cos(tm — pn)x — COS(tn, + o)z da
0

2
1 1
= ————sin — )L —
1
= — [Sin i L €08 pip L — €OS fiyy, L sin pu, L]
2(fim — Hn)

———gin + L

1
————— | sin pu,, L cos u, L + cos pp, L sin u, L

= [ftm sin iy, L cos pi L — fin €OS iy L sin pu, L] /(/‘i - /Lgn) .
We now show that g, sin g, L cos piy L — iy, cos pp Lsin p,, L = 0, by using

(7), which states that tan(uL) = —£ for all 4 = ;. In particular, cos uL #
0. Dividing through by cos g, L cos p, L # 0, we find

Lo, SIN o L €OS o L — o, c0s i Lisin p, L = 0
& pmtan pp L — pp tan py, L =0

~ _Nm'u_n +Nn'u_m =0,
K K

which establishes the desired orthogonality relation.
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11. To do this problem, as well as Exercises 12-14, we will need the numer-
ical values from Example 3. This will be done entirely on Mathematica.
In the first window, we plot f(z), tanz, and —z, and find numerical

values for the roots of tanx = —x.

flx_]:=x
Plot[£[x], {x,0,1}]

1

Plot[{Tan[x], -x}, {x%,0,20}]

11
=T

~—

approxsol={3,5,8,11,14.3,17.5};

sol=Table[
FindRoot [Tan[x]==-x, {x, approxsol[[j]]}],

{3,1,6}]
{{x>2.02876}, {x—4.91318}, {x—>7.97867}, {x—11.0855}, {x— 14.2074}, {x > 17.3364}}

In the second window, we form a partial sum of the series solution.
This requires computing numerically the generalized Fourier coefficients of
f(x). We then evaluate the partial sum solution at time ¢ = 0 (this should

approximate f(z)), and plot it against f(x).




Section 3.6 Heat Conduction in Bars: Varying the Boundary Conditions 79

u6[x_,t_]= Sum[c[j] Exp[- sol[[j,1,2]]1%2 t] Sin[sol[[],1,2]] x],
{j,1,6}]

@ *-115858 c[17] 5in[2.02876 x] +e 241393t ¢[2] Sin[4.91318 x] + e ®3-5591t c[3] Sin[7.97867 x] +
@ 122-889% 01471 8in[11.0855x] + @ 291-851t ¢[5]1 5in[14.2074 x] + e 2%9-5%% ¢[6] Sin[17.3364 x]

c[j_]:=1/Integrate[Sin[sol[[j,1,2]] x]1*2,{x,0,1}] *\
Integrate[f[x] Sin[sol[[j,1,2]] x] ,{x,0,1}]

tableofcoeff=Table[Chop[c[]j]], {]j,1,6}]

{0.729175, -0.156164, 0.0613973, -0.0321584, 0.0196707, -0.0132429}

Plot [Evaluate[{f[x],u6[x,0]}],{x,0,1},
AspectRatio->1.7/2.7, Ticks—>None]

In the third window, we plot the series solution at various values of t.

tabplot=Table[

uéb[x,tl],

{t,0,1,.2}1;

Plot [Evaluate[{tabplot, .1}],{x,0,1},PlotRange->{0,1},
AspectRatio->1.7/2.7,Ticks->None]

1

13. The solution is given by (8), where ¢, is given by (11). We have
1 1 1
/ sin? pprdr = = / (1 —cos(2upz) dx
0 2 Jo

_ 1 (;p — Lsin(2unsfz)> ‘(1] = % (1 L Sin@#n)) -

2 2py, 2
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Since p, is a solution of tan u = —u, we have sin p, = —py, COS iy, SO
Sin 24y, = 28in iy, COS fy, = —2fiy, COS? fin,
and hence
! 1
/ sin? ppx de = 3 (1 + cos? ,un) .
0
Also,
1/2 1
/ sinunzndznz—(l—cosﬂ—n).
0 Hn, 2

Applying (11), we find

1/2 1
o / 100 sin ppx dx / sin® n dz
0 0

= @(1—008#—”)/% (1+C082Mn)

Hn, 2

200(1 — cos “7”)
fin (1 + cos? i)

Thus the solution is

e}

200(1 —cos &) _
t _= _/J'Tbt 1 .
u(x, t) E o (LT cos? 1) e sin pu,x

n=1

15. Following the solution in Example 2, we arrive at the following equa-
tions

T' — kc*T = 0,
X'~ kX =0, X'(0)=0, X'(L) = —xX(L),

where k is a separation constant. If £ = 0 then

X"=0 = X=ax+b,
X'0)=0 = a=0
X'(L)=-kX(L) = b=0;

so k = 0 leads to trivial solutions. If & = a? > 0, then, as in the text,

we conclude that X = 0. This leaves the case k = —u? < 0. In this case

X (x) = ¢y cos px + cosinpr. From X'(0) = 0 it follows that co = 0 or X =

cacos pux. Set co =1 to simplify the presentation. From X'(L) = —xkX (L),

we find that —psin uL = —k cos L. Hence p is a solution of the equation
u cosplL

1
== or cotul =—p.
Kk sinpl K

Let pu,, denote the nth positive solution of this equation, and let X, (z) =
cos ppx. Solving the equation for T for each pu,, we find

_ 2,2
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and hence, by superposing the product solutions, we arrive at
o
2,2
u(zx, t) = Z Cp, COS i we” ¢ Hnt,
n=1

To prove that the X,,’s are orthogonal, see Exercise 19. The proof involves
ideas that will be studied in greater detail in Chapter 6, in the context of
Sturm-Liouville theory.

Using the initial condition, it follows that

u(x, 0) = f(z) = chXn(:n).
n=1

Multiplying both sides by X, and integrating term by term, it follows from
the orthogonality of the X,, that

=0 if m#n

L 00 L
/0 ) Xon(a) o= 3 /0 X, ()X (x) dt.

Hence . .
/ f(@)Xp(x) dx = cn/ X2(z)dx
0 0

or

1 L

Cp = — f(@) X, (x) dx

Kn Jo

where

L
/{n:/ X2(z)dx .
0

Let us evaluate k,. Recall that u, is a solution of cot Ly = % . We have

L 1 [L
Ky = / coszun$d:p:§/ (1+ cos2u,x) dz
0 0
L1 0 L L1 0o I
= ——sgsin = ———8ln .
24,unS 'un:EO 24,unS fin

In order to use what we know about p,, namely, that it is a solution of
cot Ly = %,u, we express the sine in terms of the cotangent, as follows. We
have

. . 2sinacosa

sin2a = 2SIDOZCOSO£:ﬁ

sIn“ a + cos“ «
cot «

cot2a+1’

2

where the last identity follows upon dividing by cos® «. Using this in the

expression for k,, we find
1 cot pp L

+ - ' 2

dpn, 1+ cot® pu, L
1 (u/w)
20t 1+ (pin/K)?
_
2(k% + 7))

Rp =

O o o
+
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17. Part (a) is straightforward as in Example 2. We omit the details that
lead to the separated equations:
T — kT =0,
X"—kX =0, X' (0)=-X(0), X'(1)=-X(1),

where k is a separation constant.
(b) If K =0 then

X"=0 = X=azr+b,
X'(0)=-X(0) = a=-b
X'(1)=-X(1) = a=—(a+b) = 2a=—b;

= a=b=0.

So k = 0 leads to trivial solutions.
(c) If k = a® > 0, then

X" —2X =0 = X = ¢ coshpux + cysinh pz;
X'(0)=—-X(0) = pcx=—c
X'(1)=—-X(1) = pecysinhp+ peg cosh pp = —cy cosh ju — casinh p
= pcysinh g — ¢p cosh = —c¢p cosh p — cosinh p
= pcypsinh g = —cosinh p
= pcysinhp = 2—1 sinh p.

Since p # 0, sinh p # 0. Take ¢; # 0 and divide by sinh ¢ and get
,uclzc—l = P=1= k=1
I
So X = ¢y coshx + cosinh z. But ¢; = —co, so
x

X =cycoshx + cosinhx = ¢y coshx — ¢; sinhx = c1e™™.

Solving the equation for T, we find T'(t) = e!; thus we have the product
solution

where, for convenience, we have used ¢y as an arbitrary constant.

(d) If k = —a? < 0, then

X”—l—uzX:O = X = cjcos pux + cosin ux;

X'(0)=—-X(0) = pcy=—c

X'(1)=—-X(1) = —pcysinp+ jcy cos = —c1 CoS it — cosin i
= —uc1sinp —c1Ccos = —Cc1Ccos i — casinp
= —pcysinpy = —cgsinp
=

. C1 .
—pcy sin = — SIn [,
n

Since p # 0, take ¢; # 0 (otherwise you will get a trivial solution) and divide
by ¢1 and get

plsing = —sing = sinp=0 = pu=nm,
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where n is an integer. So X = ¢j cosnmx + cosinnmx. But ¢ = —cop, so
X=—-¢ (mr cosnmwx — sin mr:n).

Call X,, = nmcosnmx — sinnwx.
(e) To establish the orthogonality of the X,,’s, treat the case k = 1 separately.
For k = —pu?, we refer to the boundary value problem

X"+ X =0, X(0)=—-X'(0), X(1)=—-X'(1),

that is satisfied by the X,’s, where u, = nw. We establish orthogonality
using a trick from Sturm-Liouville theory (Chapter 6, Section 6.2). Since

X5 = iy X and X} = pi X,

multiplying the first equation by X, and the second by X, and then sub-
tracting the resulting equations, we obtain

X X! =12 X Xy, and X X! = 12 X0 X
Xn X — XXy = (4 — 1) X X,
(XnX;n - XmX;z)/ = (Ngz - N?n)Xan

where the last equation follows by simply checking the validity of the identity
X, X! — X X! = (XX}, — X X0)'. So

1 1
— ) Xp(x)dr = n:E/:E—m:E;L:E/ZL'
i) [ Xo@X@)de = [ (X@X00) - Xul@) X (@) d
1
= Xa()X]y(@) — Xon(@) X, ()]

because the integral of the derivative of a function is the function itself. Now
we use the boundary conditions to conclude that

X () X1 (1) — Xon(2) X\ ()]

0
= Xn(1)X,(1) - ( )X (1) — X(0)X,,(0) + Xim(0)X,,(0)
= _Xn(l)Xm(l) (1)Xn( ) Xn(O)Xm(O)_Xm(O)Xn(O)

= 0.
Thus the functions are orthogonal. We still have to verify the orthogonality
when one of the X,,’s is equal to e™*. This can be done by modifying the

argument that we just gave.
(f) Superposing the product solutions, we find that

u(x, t) = cope™* t—l—ch "
Using the initial condition, it follows that
’LL(:L', O)Zf( = coe +ch

The coefficients in this series expansion are determined by using the orthog-
onality of the X,,’s in the usual way. Let us determine ¢g. Multiplying both
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sides by e™* and integrating term by term, it follows from the orthogonality

of the X,, that

=0

1 1 00 T
/ f(x)e dx = co/ e 2 dy + Z cn/ Xp(z)e Fdx.
0 0 — Jo

Hence

1 1
/ f@)e ™ dx = CQ/ e 2% dx = ¢
0 0

Thus

1—e2
2

) 2 1
co = ¢ / f(z)e " du.
—1/

e2

In a similar way, we prove that

where

1 1
Cp = —
Rn

f(@) X, (x) dx
0

1
/{n:/ X2(z)dx .
0

This integral can be evaluated as we did in Exercise 15 or by straightforward
computations, using the explicit formula for the X,,’s, as follows:

/0 ' X2(2) da

19.
equations

X// _

2

cos® nrx 4 sin® nrx — 2nw cos(nwx) sin(nrz)) do

1
. 2
/ (’I’LTF cosnmxy — Ssin ’I’L7T£E) dx
0
(n?r
=(n?n2)/2

/1

0
1 1

/ n’m? cos® nrr dr + / sin’ nrz dx
0 0

=0

A

=1/2

1
—2n7r/ cos(nmx) sin(nmx) dx
0

n’r? +1
2

(a) Following the solution in Exercise 16, we arrive at the following

T — kT =0,
X'(0) = X(0), X'(1)

kX =0, =—-X(1),

where k is a separation constant. We will not repeat the details.

(b) If k=0 then

X"=0 = X=azr+b,
X'(1)=-X(1) = a=-a = a=0
X'(0)=X(0) = a=b=0;



Section 3.6 Heat Conduction in Bars: Varying the Boundary Conditions 85

so k = 0 leads to trivial solutions. If k = o > 0, then

X"—a?X =0 = X = ¢ coshax + cysinhaz,
X(0) = ¢, X'(0) = acy,
X(1) = ¢y cosha + cosinh o, X'(1) = aeg sinh a0 + aep cosh o,
X'(0)=X(0) = c=ac
X'(1)=-X(1) = —(cicosha+ cysinha) = acy sinh a + acy cosh a.

Using acy = ¢1, we obtain from the last equation

C1 . .
—(c1 cosh @ + — sinh ) = ey sinh a + ¢ cosh a.
o

Fither ¢; = 0, in which case we have a trivial solution, or

—(acosh a + sinh o) = a(asinh a + cosh )

—2acosha = (a? + 1) sinh .

If o > 0, then the left side is < 0 while the right side is > 0. So there are
no positive solutions. Also, if a < 0, then the left side is > 0 while the right
side is < 0. So there are no negative solutions. Hence the only solution that
satisfies the equation and the boundary conditions is the trivial solution in
the case k = o? > 0.

(c) The separation constant must be negative: k = —u? < 0. In this case
X (x) = ¢y cos px + cosin pz. From X'(0) = X (0) it follows that ¢; = pcs.
Hence X (x) = copcos px + cosin pzx, where co # 0. From X'(1) = —X (1),
we find that —cou?sinp + coprcospp = —capucos p — cosinp. Hence p is a
solution of the equation

—p?sinp 4 ppcosp = —pcosp —sinp = 2ucosp = (u? —1)sinp

Note that 4 = £1 s not a solution and cos u = 0 is not a possibility, since
this would imply sin ¢ = 0 and the two equations have no common solutions.
So we can divide by cos u(u? — 1) and conclude that p satisfies the equation
tanp = “3‘_‘ 7. This equation has infinitely many solutions p = +u,, that
can be seen on a graph. We take only the positive u, since we do not gain
any new solutions in X for —u,. Write the corresponding solutions

X =X, =cp(pincos ppx +sinpy,), (n=1,2,,...)
The corresponding solutions in 1" are
T (t) = e #at,

(e) We can prove that the X,, are orthogonal on the interval [0, 1] as follows.
(The ideas in the proof will be studied in greater detail in Chapter 6, in the
context of Sturm-Liouville theory. They will also appear when we establish
the orthogonality of Bessel functions (Chapter 4) and Legendre polynomials
(Chapter 5).) We will not need the explicit formulas for X,, and X,,. We
will work with the fact hat these are both solutions of the same boundary
value problem

X"+ 12X =0, X(0) = X'(0), X(1)=—-X'(1),
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corresponding to different values of u = p, and p = py, with gy, # py. So
X! = p2 X, and X! = 12 X,,.

Multiplying the first equation by X, and the second by X,, and then sub-
tracting the resulting equations, we obtain

X X! =12 X Xy, and X X! = 12 X0 X
X Xy, — X X, = (Ngz - N%n)Xan
(XnX;n - XmX;z)/ = (ki — i) X X

where the last equation follows by simply checking the validity of the identity
X, X! — X X1 = (XX}, — XmX2)'. So

1 1
— u? ) Xp(x)der = W)X (2) — X (2 ;L:L"/:U
um)/oXm()X()d /O(X()Xm() Xon(2) X5, () d

= Xal@)X0y(2) = X@)Xi(0)]

because the integral of the derivative of a function is the function itself. Now
we use the boundary conditions to conclude that

X () X1 (1) — Xon(2) X\ ()]

0
Xa(1)X,,(1) — ( )X (1) — Xn(0)X,,(0) + X (0) X,,(0)
= _Xn(l)Xm(l) (1)Xn( ) Xn(O)Xm(0)+Xm(0)Xn(0)

= 0.

Thus the functions are orthogonal.
(f) Superposing the product solutions, we find that

o
) =>> caTn(t) Xn(x
n=1

Using the initial condition, it follows that

u(zx, 0) ch

Multiplying both sides by X, and integrating term by term, it follows from
the orthogonality of the X,, that

=0 if m#n

1 oo 1
/0 f(:n)Xm(:n)dm:;cn /0 X (2) Xon(2) da.

Hence 1
/ f = Cn/ szz(
0
or
1 1
Rn
where
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Solutions to Exercises 3.7

3. We use the double sine series solution that is outlined in the text.

nwy

. . mnT
uw(z, y, t Z Z 'mn COS Amnt + By, SIN Ay t) sin ——sin—=,

n=1m=1

where a and b are the dimensions of the membrane,

m2  n?
__I_b_2’

4 b ra
By = —/ / f(x, y) sin T in MY g dy,
(Ib 0 0 a b

4 b a
":ab/\mn/o /0 (

Applying these formulas in our case, we find

Amn = Vm?2 + n2,

B* _{%:% if(mvan):(1’2)’
mn 0

A, = CT

sin % dx dy.

otherwise,

because of the orthogonality of the functions sinmnz sinnmy and the fact
that g contains only the function sin 7wz sin 21y. We also have

1,1
By = 4/ / z(1 —x)y(1 — y) sinmnz sinnry dx dy
0
1

1
— 4/ (1 — x) sinmnx d:n/ y(1 —y) sinnmy dy
0 0
_ % if m and n are both odd,
B 0 otherwise.

Refer to Example 1 of this section or Exercise 9, Section 3.3, for the com-
putation of the definite integrals. Thus

u(z, v )=

64 sin((2k 4+ 1)7x) sin((20 + 1)7y)
;0[2% ((2k + 1) (20 + D)n2)? cos \/(2k + 1) + (20 + 1)t

2
+— sinmzsin(27y) sin(vV/5t).

V5

5. We proceed as in Exercise 3. We have

u(x, y, t Z Z mn COS Amnt + By, Sin Ay t) sinmrx sin nry,

n=1m=1

where A\, = vVm?2 +n?, B,,, =0, and
4 1 1
B’ = 7/ / sinmmz sinnmy dz d
o 7 ), ydx dy

4 /1 / !
= sinmnmx dx sinnmy dy
vm? +n? Jo 0

- \/W+WLW if m and n are both odd,
B 0 otherwise.
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Thus

(:L' Y, ):

(o oo o]

Z 16 sin((2k + 1)7z) sin((2 + 1)7y)

in\/(2k +1)2 4 (20 + 1)%
k=0 1=0 V(2k+1)2+ (21 +1)2 (2k+1)(2l+1)ﬂ25m\/( )2+ ( )
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Solutions to Exercises 3.8

1. The solution is given by

u(z, y) = Z By, sin(nmx) sinh(nmy),

n=1
where
9 1
By = —0 i
sinh(2n7r)/0 xsin(nmx) dx
B 2 _zcos(nmzx)  sin(nmx) ‘1
~ sinh(2n7) nm n? w2 0
~ sinh(2nw) nw  sinh(2nm) nm
Thus,
uf Z% in( ) sinh( )
u(z, y) 2 siuh (2nm) sin(nmz) sinh(nry).
3. The solution is given by
ZA sin( nh( ( y))—l—ZDnsin(nwy) sinh(nmx),
n=1
where
9 2
A, = 1 —
sinh(%“)/o 00 sin( ) dx
B 2 —@cosmm ‘2
~ sinh(ZF) | nw 2 1o
200
= (11— —1)"
01— cos(-1))
B % if n is odd,
N 0 if n is even;
and
9 1
D, = ——— [ 100(1 - y)si
sinh(2n7r)/0 00(1 — y) sin(nmy) dy
B 200 (-1+y) cos(nmy) sin(nmy) ‘1
~ sinh(2n7) nm n? 72 0
B 200
~ nwsinh(2n7)
Thus,
400 <X sin M)sinh(@(l—y)) 200 = sin(nmy) sinh(nrx)
u(, y) = — - (ki) +—Z - :
o= (2k + 1) sinh( 2T 0 nm sinh(2n)

5. Start by decomposing the problem into four subproblems as described
by Figure 3. Let u;j(z, y) denote the solution to problem j (j =1, 2, 3, 4).
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Each u; consists of only one term of the series solutions, because of the
orthogonality of the sine functions. For example, to compute uq, we have

ui(z, y) = Z Ay sinnme sinh[nr(1 — y)],

n=1

where
2

n — .
sinh nm

1
/ sin 7Trx sinnmx dz.
0
Since the integral is 0 unless n = 7 and, when n = 7,

_ 2
( sinh 77

1
sinh 77

1
/ sin? 7rx dx =
0

Thus

ui(z, y) = sin 7z sinh[77(1 — y)].

sinh 77

In a similar way, appealing to the formulas in the text, we find

1
ug(z, y) = g sin 7z sinh(7y)
1 . .
us(z,y) = . sinh[37(1 — z)] sin(37y)
1 . .
ug(z, y) = e sinh 67z sin(67y);
’LL(ZL', y) = ’LL1(517, y) +’LL2(ZE, y) + ’LL3(ZE, y) +’LL4(ZE, y)

1
= sin 7rrx sinh[77 (1 — y)] +

b 7 sin(mz) sinh(my)

sinh 7

. sinh[37(1 — z)] sin(37y) + o

sinh(67x) sin(67y)

7. (a) From Example 1, the solution is

where

asinh(Z22) Jo

1 2 [@ nmTT
_ — ) sin — dx
Slnh(n—ﬂ—b) a f2( ) a

1

a

0
= ———b
: nmby) Y
sinh (")

where b, is the sine Fourier coefficient of fy(z), as given by (3), Section 2.4.
Replacing B,, by its value in terms of b, in the series solution, we obtain
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(a). In the general case, we refer the series solution (9). It is easy to see, as

we just did, that

bngl)
1 2 [ nwx 1
Ay = 2 in "% de = —— b (fu).
S - /0 A T e = ()
bn(g1)

Cp = / yd L )
" smh ) b g1(y)sin v= sinh("7¢) 9/
bn(g2)

D, = /gg sin ydy ———by(92)

smh ) b sinh(2Fe) "

where, b,(f) denotes the nth sine Fourier coefficient of f. So, in terms of
the Fourier coefficients of the boundary functions, the general solution (9)

becomes

hZ
—|— Zb (f2) sinﬂxL

sinh "—”b

sinh 2Tz
—I—Zb 92) sian = b

nwa
inh #7% b
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Solutions to Exercises 3.9
1. We apply (2), witha=b=1:

(o o IENNe o]

x,y) = Z Z E, i sinmmx sinnmy,

n=1m=1

where

E,.. = m / / rsinmmx sinnwy dr dy

_1-(yn

4 1 1
= — - rsinmmx dx sinnmy d
w2<m2+n2>/o /0 e

7T4(m;£:- o7 Sl—l)n (_:L' cos(m ) N Sil’l(’;}’l,;p)) ‘(1]
— (

m m2r
4 1y
74(m? + n?) m

Thus

8 [e.e] [e.e] _1 m . .
u(z, y) = ) ;::mE:: 2 T Qk(—i— 1))2)m(2l<: 1) sinmmx sin((2k + 1)7y).

3. We use the solution in the text:
o0 o0

u(z, y) = ur(z, y) +uz(z, y) Z Z Epnsinmrx sinnmy + ug(z, y),
n=1m=1

where u; is the solution of an associated Poisson problem with zero boundary
data, and us is the solution of the Dirichlet problem with the given boundary
data. We have

E = = sinmx sinmmx sinnmy dx d
0if me1, 172 if m=1  =12C00

A

—4 1 1
= m/o sinrx sinmmx d:n/o sinnmy dy
0 ifm # 1,

Thus

8

—4 1
ui(x, y) = — sin(mx) sin((2k + 1)my).

73 — (I1+(2k+1)2)(2k+1)

To find wue, we apply the results of Section 3.8. We have

[e.e]
E By, sinnmx sinh nry,

n=1
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where
9 1
B, = —— / rsinnmz dx
sinh(n)
B 2 ( 1)n+1
- sinh(nw) nm
Thus )
[e.e] n+
2 Z L sinnmx sinh nry,
™ = nsinh(nm)
and so
—4 = 1 _
u(z,y) = 3 sin(7x) Z (1 TR sin((2k + 1)7y)

n—l—l

[e.e]
2 .
+— E sm nmz sinh nry.
AN smh (nm)
n—=

5. We will use an eigenfunction expansion based on the eigenfunctions
¢(z, y) = sinmmz sinnmy, where An(z, y) = —7%(m?+n?) sinmnz sinnry.

So plug
o o
= Z Z FE o sinmmx sinnmy

n=1m=1

into the equation Au = 3u — 1, proceed formally, and get

A S | Eppsinmrzsinnry) =3 00 5> | Epysinmrzsinnry — 1
oo i > EmpnA (sinmaa sinnmy) =33 00 1 Y| Epy, sinmaz sinnay — 1
S > —Emnm?(m? + n?) sinmra sinnry
=33 > | Eppsinmrasinnry — 1
S S (34 @2(m? 4+ n?)) Eppn sinmaz sinnmy = 1.
Thinking of this as the double sine series expansion of the function identically

1, it follows that (3 + 72 (m2 + nz))Emn are double Fourier sine coefficients,
given by (see (8), Section 3.7)

(3 + 72 (m2 + nz))Emn = / / sinmmx sinnmy dx dy
_ )" 11— (1)
N mm nm

B 0 if either m or n is even,
B 6 if both m and n are even.

™mn
Thus
0 if either m or n is even,
Eipn = 16 if both m and n are even,
wzmn(3+7r2 (m2 +n2))
and so

16 o — sin((2k 4 1)mwz) sin((2 + 1)7y)
o2 ZZ (2k+1) 20+ 1)(3+72((2k +1)2 + (21 + 1)?))
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Solutions to Exercises 3.10

1. We use a combination of solutions from (2) and (3) and try a solution
of the form

u(x, y) = Z sinma [ Ay, coshm(1 — y) + By, sinhmy].

n=1

(If you have tried a different form of the solution, you can still do the prob-
lem, but your answer may look different from the one derived here. The
reason for our choice is to simplify the computations that follow.) The
boundary conditions on the vertical sides are clearly satisfied. We now
determine A,, and B,, so as to satisfy the conditions on the other sides.
Starting with (1, 0) = 100, we find that

[e.e]
100 = Z A, coshm sinmax.
m=1
Thus A,, coshm is the sine Fourier coefficient of the function f(x) = 100.
Hence
200
mm coshm

[1—(=1)"].

2 ™
Amcoshm:—/ 100sinmzdr = A, =
™ Jo

Using the boundary condition u,(z, 1) = 0, we find

0= Z sinma [ Ap,(—m) sinh[m(1 — y)] + mBy, coshmy| ‘y:l
m=1

Thus o
0= Z mB,, sinmx coshm.

m=1
By the uniqueness of Fourier series, we conclude that mB,, coshm = 0 for
all m. Since m coshm # 0, we conclude that B,, = 0 and hence

200 v= [1 — (=)™
Z[ (=)™

i him(1 —
sk, Snma cos [m(1—y)]

’LL(ZL', y) =

cosh[(2k + 1)(1 —y)].

400 & sin[(2k + 1)x]
Z (2k + 1) cosh(2k + 1)

3. Try a solution of the form

u(x, y) = Zsin ma [ Ap, coshm(1 — y) + By, sinhmy].

n=1
Using the boundary conditions on the horizontal sides, starting with u,(z, 1) =
0, we find

o0
0= E mB,,, sinmx coshm.

n=1

Thus B,, = 0 for all m and so

u(z, y) = Z sinmx A, coshm(l —y).

n=1
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We now work with the Robin condition u(z, 0) 4 2u,(z, 0) = g(x) and get

[ee] [e.e]
Z sinmxA,, coshm — 2 Z sinmzA,,msinhm = g(z)

n=1 n=1

= g(x)= Z Ay, sinma [ coshm — 2m sinhm|

n=1
2 ™
= Ap[coshm — 2msinhm)| :;/ g(z) sinmzx dz
0
o A= 2 /W (z) sinmaz d
"™ r[coshm — 2msinhm] J, JAE) BT OF,

which determines the solution.

5. We combine solutions of different types from Exercise 4 and try a solution
of the form

u(z, y) = Ag + Boy + Z cos %:ﬂ[;‘lm cosh[%(b —y)|+ Bnm sinh[?y]].
m=1

Using the boundary conditions on the horizontal sides, starting with u,(z, b) =
0, we find that

o
0= By + Z %Bm cos %:p cosh [%b].

m=1

Thus By = 0 and B,,, = 0 for all m > 1 and so

Ap + Z Ay, cos %:p cosh[%(b —)].

m=1

Now, using u(z, 0) = g(x), we find

g(z) = Ao+ Z Ay, cosh]

mm mm
—b

a
m=1

| cos —.
a

Recognizing this as a cosine series, we conclude that

1 a
Ao = —/ g(z) dx
aJo
and 5 fo
Am cosh[mb] = —/ g(z) cos Ui dx;
a a Jo a
equivalently, for m > 1,
A _#/a (:E)cosmzndzn
"™ acosh[ZZh] J, g a '

7. The solution is immediate form (5) and (6). We have

(o]
u(x, y) = Z B,,, sinmax sinh my,

m=1
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where B,, are given by (6) with f(z) = sin2z. By the orthogonality of the
trigonometric system, we have B, = 0 for all m # 2 and By = Wi(%)
Thus

w(z, y) = — - sin 2z sinh 2
u(z, ————sin 2x sinh 2y.
Y 2cosh(27r)S v Y

9. We follow the solution in Example 3. We have

w(@, y) = w(z, y) +uz(z, y),

where -
ui(z, y) = Z B,,, sinmx sinh my,
m=1
with
2 T 2
Bp=———— [ sinmade = ———(1—(=1)™);
mm cosh(mm) /0 S, cosh(mw)( (=1)")
and -
ug(z, y) = Z Ay, sinma coshim(m — y)],
m=1
with
2 4 2
Ap=—— | sinmzrdr=——(1— (=1)™).
7 cosh(mm) /0 ST O = cosh(mw)( (=1)")
Hence

u(x, y) = % Z %sin mx [sinlrlnmy + cosh[m(m — y)]]
m=1

_ 4 i sin(2k + 1)z [sinh[(2k‘ +1)y]
g k=0

2k + 1) cosh[(2k + )] | (2k+ 1) +Cosh[(2’f+1)(7f—y)]]-
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Solutions to Exercises 4.1

1. We could use Cartesian coordinates and compute u, Uy, Ugzz, and gy,
directly from the definition of u. Instead, we will use polar coordinates,
because the expression z2 4+ y? = r2, simplifies the denominator, and thus it
is easier to take derivatives. In polar coordinates,

x rcosf  cosf 1
wz,y)=5—%5=—5—= =r" " cosf.
e+ vy r r
So
-2 6.3 R R _ -1
Up = —T “cosB, U =2r "cosf, ug=-—r "sinf, wugg= —71 " cosb.

Plugging into (1), we find

1 1 2 cosf 0 0
V2u = wup + —up + —ugg = coS7 _LosT COsT _ 0 (ifr#0).
r 72 73 73 73
If you used Cartesian coordinates, you should get
2z (2% — 3y?) 2z (22 — 3y?)
Upg = — 555 and uyy = —— 505",
(22 +y?) (22 4+ y?)
3. In polar coordinates:
1 2 B B
u(r, 6) == :>uT:—T—2, Urr = 3, ug =0, ugg = 0.
Plugging into (1), we find
1 1 2 1 1
Vzu:urr—l—;uf—l—r—zuggzr—g—r—szr—s (fOI‘T’?éO).

Thus u does not satisfy Laplace’s equation.

5. In spherical coordinates:
u(r, 0, ¢) = 1° = upyp = 67, up = 0,up9 = 0, ugy = 0.

Plugging into (3), we find

U2y — 0*u  20u 1 (82u 0 0?

52 gy oz 692+00t969+csc 98(;52) 6r + 6r = 12r.

7. In spherical coordinates:

1 2

u(r, 0, ¢) = r =, = Upp = pt

— 7 ug = 0,ugg = 0, ugy = 0.

Plugging into (3), we find

0%u 20u 1
Viu=o 4220

0
2 T rar 2 ——+cot 6 —u—l—csc2 00—

06? 00 0¢?

—— =0 (forr #0).

o3 3

(82u 62u> 22

9. (a) If u(r, 6, ¢) depends only on r, then all partial derivatives of u with
respect to 6 and ¢ are 0. So (3) becomes
Pu  20u 1 (82u 0 0? > B 0%u  20u

2 (L f ot pesc?on) = o 228
or?2  ror 1r2 or?  ror

2,
Viu= 962 90 52
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(b) If u(r,0,¢) depends only on r and 6, then all partial derivatives of u
with respect to ¢ are 0. So (3) becomes

2 _ - = - - _
Viu=gzto5 Tlge tooti 5

0%u 2@ 1 (82u 8u>‘

11. (a) This part follows from the fact that differentiation is a linear
operation. Hence

V2(au + Bv) = aV3(u) + BV (v).

So if V2u = 0 and V?v = 0, then V?(au + Bv) = 0, implying that au + Bv
is harmonic.

(b) Take u(x, y) = « and v(z, y) = x. Clearly, uzs = uyy = 0 so u and
hence v are harmonic. But uv = 2?; so (uv)y, = 2 and (uv),, = 0. Hence
V2(uv) = 2, implying that uv is not harmonic.

(c) If u is harmonic then g, + uyy = 0. We have

() 2z = (2uug)y = 2(ug)? +2utyy  and  (u?)y, = (2uuy), = 2(uy)*+2uny,.
If u? is also harmonic, then

0= (u?)ue + () yy = 2(uz)?® + 2utgy + 2(uy)? + 2uuy,
=0

= 2((uz)? + (uy)?) + 2u (ugy + uyy)
= 2((uz)? + (uy)?),

which implies that both u, and wu, are identically 0. This latter condi-
tion implies that u is constant on its domain of definition, if the domain
is connected. This result is not true if the domain of the function u is not
connected. For example, suppose that u(z, y) = 1if x > 1 and u(z, y) = —1
if z < —1. Clearly, u is not constant and both u and u? are harmonic. (For
the definition of connected set, see my book “Applied Complex Analysis and
Partial Differential Equations.”) Examples of connected sets are any disk,
the plane, the upper half-plane, any triangular region any annulus.

(d) This part is similar to (¢). We suppose that the domain of definition of
the functions is connected. (Here again, the result is not true if the domain
is not connected.) Suppose that u, v, and u? + v? are harmonic. Then

Ugz + Uyy = 0; Ugg + Vyy = 05
=0 =0
2 2 2 2
2((ug)” + (uy) ) + 2u (uge + uyy) +2((vz)” + (Uy) ) + 20 (Vge + Uyy) .

The last equation implies that (ug)? + (uy)? + (vz)? + (vy)? = 0, which, in
turn, implies that u, = u, = v, = v, = 0. Hence u and v are constant.
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Solutions to Exercises 4.2

1. We appeal to the solution (5) with the coefficients (6). Since f(r) = 0, then
A,, = 0 for all n. We have

B, =

| =
Q
3
S—
o
N
o
S
—
‘Q
3
3
S~—
3
Q
3

O@lJ&
e [ ssas ers = )

a%Jl(an)QO ols)sas 65—27"
4 on

P RATREL

4

= m foraﬂnZl.

nYl n

0

Thus

3. Asin Exercise 1, f(r) =0 = A, =0 for all n. We have

1

2 2
B, = —— nr)rd
Othl(Oén)Q/o Jo(apr)rdr
2

an /2
p— d
PN AP NP / Jo(s)sds

an /2

Thus
u(r, t) = Z %Jg(anﬂ sin(ay,t).

5. Since g(r) = 0, we have B,, = 0 for all n. We have

2 1
A, = 72/ Jo(arr)Jo(anr)rdr =0 for n # 1 by orthogonality.
Ji(an)? Jo
Forn =1,

2 1
— Jo(orr)?rdr =1,
Jl(al)Q/o olear)

where we have used the orthogonality relation (12), Section 4.8, with p = 0. Thus

A =

u(r, t) = Jo(agr) cos(aqt).

7. Using orthogonality as in Exercise 5, since f(r) = Jo(asr), we find that A, =0
for all n # 3 and A3 = 1. For the B,’s, we have

2 ! 9
L A / (1= 1) Jo(anr)r dr

2 o 2 = a,T
s | @ = sds ets = aun).

a5(]1
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The last integral can be evaluated by parts: u = a2 — s?, du = —2s, Jo(s)sds =
dv, v =sJ1(s). So

2 2 2 an an
SRS AT [(a" )N ), +2/0 s Jl(S)dS]
_ 4 on 2
= agjl(any/o s¥J1(s) ds
4 On
= St 2| (v (), Section 48)
n n 0
_ 4.Ja ()
B a?zjl(an)2
8 . 2
= m (using J2 (o) = a_Jl(an))-
Thus
= Joomr)
( ) JO(O‘3T) COS(Ozgt + 82 afT(aj)Sln(ant).

9. (a) Modifying the solution of Exercise 3, we obtain

u(r, t) = Z MJQ(O["T) sin(apct).

— agcdi(an)?

(b) Under suitable conditions that allow us to interchange the limit and the sum-
mation sign (for example, if the series is absolutely convergent), we have, for a given

(r; 1),

oo 12
cliglo U(T, t) = cliglo Z %J@ (OénT) Sin(anct)
— . Ji(an/2) .
= 2 G, enr)nlanct
= 0

3

because lim._, % = 0 and sin(ayct) is bounded. If we let ui(r, t) denote

the solution corresponding to ¢ = 1 and u.(r, t) denote the solution for arbitrary
¢ > 0. Then, it is easy t check that

1
’U,C(T, t) = _ul(ra Ct)'
C

This shows that if ¢ increases, the time scale speeds proportionally to ¢, while the
displacement decreases by a factor of %

11. (a) With f(r) = 100, we have from Exercise 10,

200 ¢ a,r
A, = —— —r)rd
a2J1(an)/0 Jol a rrdr
200 n Qnr
200 an 200
a2 Jy (cm)2 1(5)s o andi(am)
Hence
e Jo a"T a2y

u(r, t) _2002 T Py
an lan
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The solution represents the time evolution of the temperature of the disk, starting
with an initial uniform temperature distribution of 100° and with its boundary held
at 0°. The top and bottom faces of the disk are assumed to be completely insulated
so that no heat flows through them.

(b) The maximum value of the temperature should occur at the center, since heat
is being lost only along the circumference of the disk. Of all the points in the disk,
the center is least affected by this loss of heat. If we takea=1,c=1,andt =3
in the solution to part (a), we obtain

o0

u(r, 3) _2002 Jolanr) —sa?.

anjl an

S
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To plot the solution, we need the zeros of Jy(x). You can find these zeros by using the FindRoot command to solve

Jo(x)=0 or, better yet, you can use the built-in values, as we now show. First, load the following package
<< NumericalMath ‘BesselZeros'
Here are the first 7 zeros of Jy(x).
BesselJZeros [0, 7]

{2.40483, 5.52008, 8.65373, 11.7915, 14.9309, 18.0711, 21.2116}

To get the 3rd zero, you can use the following
BesselJZeros[0, 7]1[[3]1]

8.65373

An approximation to our solution, using 2 terms of the series solution is

Clear|[u]
u[r_] = 200 Sum[BesselJ[0, r BesselJdZeros[O0, 7][[j]1]/
(BesselJZeros[0, 7][[j]] BesselJ[1l, BesselJZeros[O0, 7]1[[3]111)
E” (-3 BesselJZeros[0, 7]1[[3j1172), {3, 1, 2}]

200 (2.33781x10°BesselJ[0, 2.40483 1] -1.06105x10 %" BesselJ[0, 5.520087r])

Note that the coefficients are very small. We will not get a better approximation by adding more
terms.

Plot[u[r], {r, 0, 1}]

4x1070}
3x10 |
2x10 70}

1x10 76}

0.2 0.4 0.6 0.8 1
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Solutions to Exercises 4.3

1. The condition g(r,d) = 0 implies that af, = 0 = bf,.. Since f(r,0) is
proportional to sin 26, only bs ,, will be nonzero, among all the a,, and b,,. This
is similar to the situation in Example 2. For n =1, 2, ..., we have

2 2m
bow = —— 1 —7r%)r?sin 26 n1) sin 20r d6 d
2, o 2/0 /0 (1 —r%)rsin 20.J2 (g 1) sin 20r r

=7

2 2 9
= — in? 20dA(1 — r?)r3 J. nr)d
Py APYRE /0 /0 sin ( ro)re Jy(ag nr) dr

2 1
= 7J3(a2 )2/0 (1 —rHr3Jy(ag ,r) dr
2 2 4J4(an)
= w5 5 n) = 35—
J3(azn)? a3, a(azn) a3, J3(azn)?

where the last integral is evaluated with the help of formula (15), Section 4.3. We
can get rid of the expression involving J4 by using the identity

Ty @) - pir (@) = 2L ().

With p =3 and & = asg ,, we get

=0
—
Ja(oan) +Ja(az ) = ; J3(oon) = J4(042,n):a2 J3(.n).
So
,
A Ja(az)
Thus

Ja(oa nr)

u(r, 0, t) = 243111292

cos(ag pnt).
2. 53, Tl 02n)

3. Since f(r,0) is proportional to sin6, only by ,, will be nonzero, among all the

Gmn and by, This is similar to the situation in Example 2. Forn =1, 2, ..., we
have
271'
bin = 27TJ2 o)’ / / 4 — 2 TSlnHJl( )sm@r df dr
(5] nT
= ———— [ 4=r>r2J d
2J2(a17n) /0 (4= rf)rtA(=5=) dr
32,]3(0[17")
af ,J2 (o n)?
128

ainJQ(alyn)

where we evaluated the last integral with the help of formula (15), Section 4.3, and
then simplified with the help of the identity

J3(al,n) -

J.
a1m z(al,n)
(see Exercise 2).
For the part of the solution coming from the condition g(r,0) = 1, see the
solution to Exercise 1, Section 4.2. Thus

T =R aon

u(r, 0, t) = 128s1n92 » cos( 42 sin( 2’ t).

al nJQ(

ao nd1(00.n)
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5. We have @,y = by, = 0. Also, all @, and b}, are zero except b;,n- We have

2 2w
Vs = —————3 / / (1 — r3)r? sin 20.J3 (g, ,7) sin 20r d dr.
’ wag nJ3(0 n) 0
The integral was computed in Exercise 1. Using the computations of Exercise 1,
we find
B 24
2 O‘%,nl@(aln)'
hus

Ja(ag nt)

a2 n']3 (012 n)

u(r, 0, t) = 243111292

sin(ag pt).

7. The partial differential equation is
Upp = 02(uw+ %UT—F T%’U,gg), for0<r<a, 0<60<2m, t>0.
The boundary condition is
u(a, 0, ¢t) =0, for0<6<2m, t>0.
The initial conditions are
u(r, 6,0) =0 and w(r, 6, 0) = g(r, 0), for0<r <a, 0<0<2m.
(b) Assume that u(r, 0, t) = R(r)©(0)T(t). Since u(r,,0)=0forall0 <r <a
and 0 < 0 < 27, we set T(t) = 0 to avoid having to take R(r) = 0 or ©(f) = 0

which would lead to trivial solutions. Separating variables, as in the text, we arrive
at

u(r, 0, t) Z Z Im (amnr) o cosml + bk, sinmf)| sin (am;d> :

m=0n=1

(¢) From (b),

(r, 0, 1) Z Z XmnC (an;nr) [aFn cosmb + b, sinmb)] cos (O‘m: Ct)

m=0n=1

and hence

g(r, 0) = ut(r 6, 0)

_ Z Z O[mnc (Olmnr) [a:‘nn cos mb + brnn sin mH]
a

m=0n=1

—a?,(r) =b2,(r)

o0 o0 o0
Q€ QmnT QmnC AmnT\ .
+ { E n;" a;‘,me( n;" )cosm9+ El%bfnnbfm( n;" )smm@}.
n=

m=1 n=1

(d) Thinking of the result of (c) as a Fourier series (for fixed r and 0 < 6 < 27)

g(r, 0) = ai(r) + Z r) cosmb + bl (r) sinmf),
m=1
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we see that we must have

. 1 [ N\ aonC oonT
ag(r) = %/0 g(r, 0)do = ZTG’OHJO( " );

n=1

1 i > mn mn
ay (r) = —/ g(r, 0) cosmf df = Z a " Caf,me (a T) ;
0

2w a
n=1
and
1 & = mn mn
bi%(?"):%/o g(T,t?)siandG:;a b ()
form=1,2,....

(e) We now let r vary in [0, a] and view the expansions in (d) as Bessel series.
Then, by Theorem 2, Section 4.8, we must have

a 2 e QonT
S * (1) J. ( ) d
@on QonC a2J1(040n)2/o a(r)Jo a )"

1 a 2w oonT
S 0 ( n ) 6 d
7Ta0ncaJ1(a0n)2/0 /0 9(r, 0)Jo a )" "

which implies (17). Also, form =1, 2, ...,

2 e mn
ay., = a4 E / ar (r)Jm (a T)Td?"
amn 0

AmnC a Jerl(

a 2m
= E / g(r, 0)J ) cos(mb) r df dr,
wamncaJm+1 amn)? Jo Jo

which implies (18), and
a 2 @ OnT
brw = (1) T (2225 ) 7
mn amnC a Jm+1(amn)2 / ( )J a "

2m
= / / (r, 9)J, am" ) sin(md) r do dr,
7TOMnnCCLanJrl amn

which implies (19).

9. (a) For [l = 0 and all & > 0, the formula follows from (7), Section 4.8, with
p=k:

/TkJrle(r) dr = TkJrleJrl(T) + C.

(b) Assume that the formula is true for I (and all £ > 0). Integrate by parts, using
u=r2dv=7r*1J,11(r)dr, and hence du = 2[r?1dr and v = r**1.J 1 (r):

/Tk+1+2le(T)dT = /TQZ[TkJrle(T)] dr
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and so, by the induction hypothesis, we get

nr2n(il—1
/Tk+1+2ljk (T) dr = k+1+2le -2l Z —l - TL ) Tk+2linjk+n+2(7") +C

_ k+1+2le 1( )

n+12n+ll| k+1+2l7(n+1)
+Z (—(nt1) Jetnt1)+1(r) +C

l
—1)ma2m]!
— Tk+1+2ljk+1(T) + Z (( )_m)' Tk+1+2l7m(]k+m+l(r) +C

l mz l'
= Z pRAR2=m g g1 () + C,

m=0
which completes the proof by induction for all integers £ > 0 and all [ > 0.

11. The solution is similar to the solution of the wave equation. The only difference
is the equation in 7', which is in this case

T = —\T

with solution
T(t) = Ce=< M = Qe @mnt/a,

The other parts of the product solutions are as in the wave equation

Jm (amnr) [amn cos mb + by, Sin m@] .
a

Thus the solution is

u(r, 0, t) == Z Z Im (am"T) [amn cos mb + by sinm@] e~ Amnt/a®

m=0n=1

Using the initial condition u(r, 8, 0) = f(r, 6), we see that the coefficients a,,, and
bmn are determined by (12)—(14), as in the case of the wave equation.

13. The proper place for this problem is in the next section, since its solution
invovles solving a Dirichlet problem on the unit disk. The initial steps are similar
to the solution of the heat problem on a rectangle with nonzero boundary data
(Exercise 11, Section 3.8). In order to solve the problem, we consider the following
two subproblems: Subproblem #1 (Dirichlet problem)

1 1
(ul)rr+;(ul)r+T—2(U1)ee = 0, 0<r<1, 0<6<2m,
ui(l, 0) = sin36, 0<0<2m.

Subproblem #2 (to be solved after finding u1(r, 8) from Subproblem #1)

(u2)e = (u2)pr + L(u2)y + H(us)ps, 0<r<1,0<6<2m, t>0,
us(1,60,t) = 0, 0<6<2m, t>0,
us(r, 6,0) = —uq(r, 0), 0<r<1, 0<6<2m.

You can check, using linearity (or superposition), that
’LL(T, 95 t) = ’Lbl(T, 9) +’LL2(T, 95 t)

is a solution of the given problem.
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The solution of subproblem #1 follows immediately from the method of Sec-
tion 4.5. We have
ua(r, 0) = r®sin 36.

We now solve subproblem #2, which is a heat problem with 0 boundary data and
initial temperature distribution given by —us(r, ) = —r3sin36. reasoning as in
Exercise 10, we find that the solution is

uz(r, 0, t) = Z banJ3(aznr) sin(36)e *sn’

n=1
where
b =2 //Qﬂ 3 sin? 30.J5 (3, 7)r d d
n = r° sin QzpT)r r
3 TTa(aan)? A 33
—9 1 4
= — r*Js(as,r) dr
e [ )
=2 L ™ ds)ds (where )
= —— s s)ds (where ag,r = s
Jilasn)? o3, Jo 7 ’
-2 1 4 Qszn
o Jy(azn)? a—?ms Ta(s)
B -2
N O‘3n']4(a3n)'
Hence
agnT —a2 ¢t
u(r, 0, t) = r* sin 30 — 2sin(30) Z 3n

a3nJ4 a3n
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Exercises 4.4

1. Since f is already given by its Fourier series, we have from (4)

u(r, ) =rcosf = x.

3. Recall the Fourier series of the sawtooth function

£(0) = Z sin nf

n

—

n=

(see Example 1, Section 2.2). From (4)

n

o0 . 9
u(r, 0) = Zrnsmn .
n=1

5. Let us compute the Fourier coefficients of f. We have

7@ 71’/4 25'

df = —
w0 = o 2’
1 /4 1 ™ 1
an:E cosnf df = Esinnt? :Esinﬂ;
T Jo nmw 0 nmw 4
1 /4 1 ™ 1
bn:E sinnf df = —Ecosnﬁ :E(l—cosﬂ).
T Jo nmw 0 nmw 4
Hence
25 100 <= 1
f(0) = ?5 + —20 7;1 - (sin Z—Wcosnﬁ + (1 — cos %) sinn@) ;
and

25 100 o 1
u(r, 0) = — + Z - (sin % cosnf + (1 — cos %) sinn@) r’.

7. Using (6), we have

o0 . 9 . 9
u(r, 0) = Zrnsmn =tan~! (77"8111 ) =tan~! ( L ) .
n
n=1

1—rcos6 1—=x

Let =5 <T < 7, and set

T—u(x,y)—tan1<1y ) = tanT:ly

- —x
= y=tan(T) (1 —x).
Thus the isotherms are straight lines through the point (1, 0), with slope —tanT.

9. u(rf) =2r?sinfcosd = 2zy. So u(xry) = T if and only if 2zy = T if and only
ify= %, which shows that the isotherms lie on hyperbolas centered at the origin.

11. (a) If u(r, ) = u(0) is independent of r and satisfies Laplace’s equation, then,
because u, = 0 and u,,, = 0, Laplace’s equation implies that

1
—2’(1,99 =0 or ugy — 0.
r
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The solution of this equation is
u(f) = ab + b,

where a and b are constants.
(b) Using the boundary conditions

U(O):Tl = b=1T

ua)=Ty = aax+TH =T
T — T

a= "=\

(0%

=

Thus

LT

u(6) 0+ T

is a solution that satifies the boundary conditions u(0) = T} and u(«a) = Th

the circular boundary, u satsifies u(f) = 222110 + T3.

109

. On

13. We follow the steps in Example 4 (with a = %) and arrive at the same equation

in © and R. The solution in © is
0,(0) =sin(4nd), n=1,2,...,
and the equation in R is
R’ +rR — (4n)*R = 0.
The indicial equation for this Euler equation is
PP —(n)? =0 = p=-+4n.

Taking the bounded solutions only, we get

R,(r) = rin,

Thus the product solutions are 4"

of the form

o0
u(r, 0) = Z by, ™ sin 4nf.
n=1
To determine b,,, we use the boundary condition:

r= 1

Uy (7, 9)’ L =sinf = Z bpdnr*™ ! sin 4nf ,—q =sind
n=1

= Z bpdn sindnf = sin 6

n=1

2 71'/4
= 4nb, = —/ sin # sin4nf db.
/4 Jo

sin 46 and the series solution of the problem is
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Thus
2 71’/4
b, = — sin 6 sin 4n6 do
™ Jo
1 /4

= —/ [— cos[(4n + 1)0] + cos[(4n — 1)6]] dO

™ Jo
1 [ sin[(4n+1)0]  sin[(4n —1)6]] |7/4
o i dn +1 4dn —1 0
1 [ sin[(dn+1)% sin[(4n—1)F
T __ dn +1 4dn —1
1 [ cos(nm)sinf]  cos(nm)sin
o i dn +1 4dn —1
I Ve S B
a ™m 2 |4n+1 4n-—1
7 (_1)n+1\/§ 4
o T 16n2 —1°

Hence
4/2 K (—1)ntt
u(r, §) = :T/_ Z £6n2) — 1T4" sin 4nf.

n=1
15. This is immediate by superposition and linearity of the equation. Indeed,
V?u = V?u; + V?us =040 =0.
We now check the boundary conditions. For § = 0, we have
u(r,0) = uy(r,0) + uz(r,0) =Ty + 0 =T1.
For 0 = «a, we have
u(r, @) = ur(r, @) +ua(r, @) =To + 0 =Ts.
For r = a, we have

u(a, 0) = ui(a, 0) +ua(a, 0) = g(0) + £(0) — g(0) = f(0).

17. Since u satsifies Laplace’s equation in the disk, the separation of variables
method and the fact that u is 27-periodic in 6 imply that u is given by the series (4),
where the coeflicients are to be determined from the Neumann boundary condition.
From

u(r, 0) = ap + Z (%)n [an cosnf + b, sinnd],
n=1

it follows that

n—1

up(r, 0) = Z (nr ) [an cosnb + b, sin n9] .
n=1

an

Using the boundary condition u,(a, 8) = f(6), we obtain

f() = Z g[an cosnf + by, sinnd).

n=1
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In this Fourier series expansion, the n = 0 term must be 0. But the n = 0 term is
given by

1 2w
27
thus the compatibility condition
27
£(6)do =
0

must hold. Once this condition is satsified, we determine the coefficients a,, and b,
by using the Euler formulas, as follows:

1 2m
Dan==[ f(6) cosnbdo
a T Jo
and ,
1 us
Dby == [ f(6)sinnd db.
a T Jo
Hence
a 2 a 27
ay = — f(@)cosnbdfd and b, =— f(6) sinnd db.
nm 0 nm 0

Note that ag is still arbitray. Indeed, the solution of a Neumann problem is not
unique. It can be determined only up to an additive constant (which does not affect
the value of the normal derivative at the boundary).

19. For |z| < 1,
log(1 — b= —log(l—2) = E —Zn.
g(l—2z) g(1—2) p

Taking imaginary parts and using z = re’® = r(cos @ + isin 0), we get

log(l—2)"' = Zr"

n=1

in

o0
»cosnb +isinnd
E :r

S
—

o0 o0 .
ncosnd »Sinnd
= E r +1 E r—;
— n n

n=1 n=1

Im (10g(1 —2)71) = Im (Z COSTL@ Z s1nn9>

o0 .
nSinnd
= g r .
n

n=

—

But

Im (log(1 —2)"") = —Im (log(l — 2))
= —Arg(1—2)=—-Arg[(1—2)—1dy] = Arg[(1 — x) + iy]

- Y
— tan !
an (1_35)

— tan-? rsinf
o 1—7rcosf )’
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This is valid for all 0 < r < 1 and all 6, since in that case 2 +%? < 1 and therefore
the point (1 — z, y) always lies in the right half-plane, where Arg (z + iy) can be
expressed as tan~!(y/z). Here Argz denotes the rincipal branch of the argument
(see Section 12.5 for further discussion).

21. Using the fact that the solutions must be bounded as r — oo, we see that

¢1 = 0 in the first of the two equations in (3), and ¢z = 0 in the second of the two
equations in (3). Thus

The general solution becomes
) a\n .
u(r,0) = ag + Z(;) (an cosn + by sinnb), r > a.
n=1
Setting r = a and using the boundary condition, we obtain

f(0) = ao + Z (an cosnb + by, sinnb),

n=1

which implies that the a, and b,, are the Fourier coefficients of f and hence are
given by (5).

23. Using Exercise 5 and formula (6), we find

u(r, 0
(r 2 T n rn
n=1

) = %4_@ > l (sin ("4—”) cosn9+(1—cos (%))sinn@)

25100 >, [ sinnf n(@—%)
- ?—F?;(nrn B nrh )

25 N 100 tan-1 r~1sing tan—1 r~'sin (6 — )
= — 4 — [tan — | —tan
2 T 1—7r"1cosf 1—r—1lcos (9—%)

25 100 -1 sin 6 . sin (9 - %)
= 24— ltan ' ([ —— ) —tan' [ ———— 41|,
2 T r — cosf r—cos(@—%)

To find the isotherms, let 0 < 7" < 100, then

2 1 in 0 in(@—Z=
ulr, ) =T & T= % + 100 pan~t (7 ) gt RV ) (0%
2 T r —cosf r—cos(@—%)

s 25 sin 6 sin (9 — E)
& —(7T-Z)=tan' | ——— ) —tan ! | ————2L_ | .
100 ( 2 ) an (r—cos@) an (r—cos (60— %))
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sinf Sin(efg)
r—cos r—CoSs 07§)
sin O sin 97%)
1+ r—cosf  r_cos 97§)

(sin@—sin (9— %)) — sin 6 cos (9— %) — cosfsin (9— %)

rZ2 —rp (cos@—l—cos (9— —)) + cos 6 cos (9— %) + sin @ sin (9— %)
(sin9 — sin (9 — %)) —sin%

r2—r(cost9+cos (9——)) +cos

r(\/isint?—sint?—l-cosﬁ) —1
V272 —r(\/ﬁcost?—l-cost?—l-sin@) +1

:c—l-(\/i—l)y—l
V2(@2+y?) — (V2+1)z—y+1

oo i 5)]

The equation becomes of the isotherms becomes

or

V2@ o) - (VE+1)a—y+1=Ke+ K(V2-1)y— K

(o ) 4 e (-3

1
4
1+vV2+ = +l—i+£2 -V2+
(o) s g (o)

(1-%) (1-K?).

Thus the isotherms are circles with centers at

and radii

(RS TN
\/% (1-%) (1— K2).

113
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It is now straightforward to check that all these circles pass through the points
(1, 0) and (ﬂ f)
25. The hint does it.

27. (a)a=c=1, F(r,0) = (1 —r¥)rsinf, G(0) = sin20. Using the notation of
Exercise 25, we have

uy (r, 0) = r*sin 26.
Also by Example 2, Section 4.3, we have

Ji(aq nT)

F(r,0)=>01-r )Tsmt?—lﬁsmﬁzﬁ
Oéln 2(%1,n

We now find the Bessel series expansion of u;. Since u; is proportional to sin 26,
we only only need by, (all other a,,, and b,,, are 0). We have

2

1
bey = ——— 2J. nr)rd
2, J3(Oé2,n)2/o rJa (g nr)rdr

) az.n
= 47)2/0 53J2(s) ds (s=agnr)

O‘Qyn']3 (a2,n

2 az,n

= 7[ 3J3(S)] 0

a2 n 3(0[2 n)

2

@z nds(2n)

Thus

Ja(va,nt)

up (r, 0) = r? 511129—28111292 Ta(aan)
Q2,nJ3(Q2,n

and

o(r, 6, t)_lﬁsm@ZM —adnt 23111292 _a02nr) o

—af,Ja(arn) a2nd3(Q2.n)

and so

Jl OzlnT) o 2 4

a1
al nJQ(al n)

u(r, 0,t) = r?sin26+ 16311192

JQ OQ T 2
—2sin 26 g N e a2,nt

1z nd3(a2n)

= 16 s1n92 Ji(a1,n7) 670‘1 »t 4 2in 26 Z J2a72"r>)(1 — efo‘gx"t)

al nJQ Q1n (6%) nJB(a2n
(b) The steady-state solution is

Ja(oanr)

up (r, 0) = r? 311129—23111292& SACTIE
2,nJ3 ((2,n
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29. (a) Recalling the Euler formulas for the Fourier coefficients, we have

u(r, 0) = ag + il (g)n [a,, cosnb + by, sinnb]

1 2m

2 |, f@)d0

2m 1 2m
neod nf inno d¢ sinnfd
z:: [/ f(¢) cosng dg cosnd + ~ /0 f(¢)sinngdps ]
1 2m
- 5| s
[e'e] n 2m
+Z(£) [%/o f(#)[ cosne cos nb + sin ng sin nf] d(b]
n=1
2m 2m
= [ s d¢>+z ) = [ 1@ cosnto 0o
2m
_ /f

(b) Continuing from (a) and using Exercise 28, we obtain

1+2Z( ) cosn(f — ¢)] do.

1 27 1—(£)2
u(r,d) = —
(r, 0) 21 J, f(¢)1—2( )cos@-i—( )2
1 2 a? —r?
— % f(9) a? — 2ar cos(0 — @) + r? @

= /Qﬂf P(r/a, 0 — ¢) do.



116  Chapter 4 Partial Differential Equations in Polar and Cylindrical Coordinates

Solutions to Exercises 4.5

1. Using (2) and (3), we have that

00 o,
= AnJ /\n inh /\n ) /\n =
u(p, z) ;::1 0(Anp) sinh(A,2) .
where o, = gy is the nth positive zero of Jy, and
A, = ’ | 1000w
" T SimhOwmh)alJy(an)? fy T PII0VRPIP AP

200 1
sinh(2an)Jl(an)2/0 o(anp)p dp

200 on
N Jo(s)sds (let s = ap
sinh(2an)aglj1(an)2/0 o(s)sds (let s = app)
200
- J
Sinh(2an)a%Jl(an)2[ 1(s)s]
200

sinh(2a, ) J1 (o)

Qn

0

So
Jo(app) sinh(a, 2)
= 200
Z sinh(2a,)ap J1 (o)

1
200 2

2
A, = Jolanp)pd
sinh(2a) 1 (a2 /0 o(@np)pdp

An

200

2
N let s = an,
sinh(2an)agljl(an)2/0 Jo(s)sds (let s = anp)

200 El
= J
sinh(2ay,)a2 J1 (a,)? [72(s)s]
100.J1 (%)

sinh(2ay, ) anJ1 (0 )?

0

So

J1(%)Jo(anp) sinh(av,2)
=100 Z = :

u(p; 2) h(2an)anJl(an)2

5. (a) We proceed exactly as in the text and arrive at the condition Z(h) =

which leads us to the solutions

Qo

Z(2) = Zy(2) = sinh(\,(h — 2)), where A\, = -

So the solution of the problem is
u(p, z) = Z CnJo(Anp) sinh(A,(h — 2)),
n=1

where
2

a?Ji(ay,)? sinh(A,h)

Cn = /0 ' f(p)Jo(Anp)p dp.
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(b) The problem can be decomposed into the sum of two subproblems, one
treated in the text and one treated in part (a). The solution of the problem
is the sum of the solutions of the subproblems:

Z (A Jo(Anp) sinh(A,2) + Cy Jo(App) sinh(\,(h — z))),

where )
A, = ) JoOnp)p dp,
a2Jy (ay,)?sinh(A,h) / Falp)Jo(Anp)p dp
and ) .
Cn = a?Jy(ay)? sinh(\,h) /0 F1(p)Jo(Aap)p dp.

7. Let z = A\p, then
4 _\ 4
dp dx
and the equation
sz//—l-pR/ —/\2sz — 0’

which is the same as

d*R dR
2 2 2p
pd2+pd /\pR_Ov
becomes 2R iR
2 2 2 2
Ap d2+/\pd —Ap°R=0
or d2 J
R R o
d:L'2+ %—ZER—O,

which is the modified Bessel equation of order 0. Its general solution is
R(x) = c11p(z) + coKo(x)
or
R(p) = c1lo(Ap) + c2Ko(Ap).
9. We use the solution in Exercise 8 with a =1, h =2, f(z) = 10z. Then

1 2 nmz
B, = 7/ Ozsin — dz
" Io (%) Jo 2

_ 40 _1\n+1
B nm I (”7”)( 1 '

Thus
U(p, Z) =

11. We have a = 10, h =6,

u(p, 0) = 56, for 0 < p < 10,
u(p, 6) =78, for 0 < p < 10,

56 for 0 < z < 4,
u(10, 2) = {78 for 4 < z < 6.
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Hence the solution is

>, Jo(%n2) sinh( %)

, = 156 -
(p ) — anJl(Oén sin h(gan)
00 o . 6 2)
Jo(222) sinh(= ”( nz
112 10 By Io(

* Zomh(om) sinh(3ay, +Z o ) sin == 6

n=1 5

where
1 6 nmz
B, = 7/u10,z sin — dz
" 31o(1%=) Jo ( ) 6

1 4 nmwz 6 nmz
= — 56/ sin—dz—|—78/ sin—dz]
31p(24m) [ 0 6 4 6

2 2
’I’L7TI(](T) 3
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Solutions to Exercises 4.6

1. Write (1) in polar coordinates:

¢rr + %(br + %2(2599 - —k(b (b(CL, 9) = 0

Consider a product solution ¢(r, ) = R(r)0(¢). Since ¢ is a polar angle, it follows
that
O(0 + 2m) = ©(8);

in other words, © is 27-periodic. Plugging the product solution into the equation
and simplifying, we find

R'©+ LR'© + 3 RO" = —kRO;

(R"+ LR +kR)© = —%RO";

TQ%N—‘,-T%—FIW"Q:—%N;
hence
/! /
TQ%-FT%-FICTQ:)\,
and
@//
_6:)\ = 0"+X0=0,

where A is a separation constant. Our knowledge of solutions of second order linear
ode’s tells us that the last equation has 2m-periodic solutions if and only if

A=m?, m=0,=+1, £2,....

This leads to the equations
0" +m?e =0,

and
1! !

T2§+TE+I€T2:WL

These are equations (3) and (4). Note that the condition R(a) = 0 follows from
¢(a,0) =0 = R(a)O(#) =0 = R(a) =0 in order to avoid the constant 0 solution.

2 = rPR'+7rR + (kr* —m*)R=0.

3. Let ¢pmn and ¥, be as in Exercise 2. We will evaluate

27 a

I = / /(bfml(r, O)rdrdb
0 0
27

= / cos? mOdo / T (Anr)?r dr
0 0
= 11125

where m # 0. We have

27 27
1 20
11:/ costt?:/ ﬂ:w,
0 0 2

a 2
I :/0 T Anr)?r dr = %ngl (mn)s

and

by (12), Section 4.8. Thus

7TCL2

I = thg%Fl (amn)



120

Chapter 4 Partial Differential Equations in Polar and Cylindrical Coordinates

If m =0, then
27 a
I = / / ®3,,(r, 0)r dr df
o Jo
27 a
= / d@/ Jo(Nor)?r dr
= 71a?J? 1 (Qmn)-
Finally,

2m
I = / /1/) (r, O)r drdf

= / sin m@d@/ Jmn(Anr)?r dr
0 0

ma
= J2 +1(amn)

5. We proceed as in Example 1 and try

= i i AmnT ) (Amn cosmb + B, sinmfb) = i i Omn(r, 0),

m=0n=1

where Gun (7, 0) = Jmn(Amn®) (Amn cosml + By, sinmf). We plug this solution
into the equation, use the fact that V?(¢yn) = —A2,, ¢mn, and get

2 (Z Z(bmn(ra 9)) = 1- Z Z(bmn(ra 0)

m=0n=1 m=0n=1
m=0n=1 m=0n=1
= 3N Rl ) =13 > dn(r, 0)
m=0n=1 m=0n=1
= (1- O‘?nn)(bmn(ra 0) =
m=0n=1

We recognize this expansion as the expansion of the function 1 in terms of the
functions ¢,,,. Because the right side is independent of 6, it follows that all A,,,
and B, are zero, except Ag . So

(l—a )Aonjo(aon) )—1,

WK

n=1

which shows that (1 — «2,,)Ag n = ao., is the nth Bessel coefficient of the Bessel
series expansion of order 0 of the function 1. This series is computed in Example 1,
Section 4.8. We have

> 2
1= — Jolagnr) O0<r<l1.
;a0njl(a0n) 0( 0 )
Hence
2 2
A=) o = o o) O = T a2, Janm i (@)
and so

0) = nl).
T Z 1_a )QO nJI(aO n)JO(aQ T)
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7. We proceed as in the previous exercise and try

= i i AmnT) (Amn cos mb + By, sinmb) = i i Gmn(r, 0),

m=0n=1

where ¢un(r, 0) = Jm(AmnT) (Amn cosml + By, sinmf). We plug this solution
into the equation, use the fact that VZ(¢yn) = =2, dmn = —2,,,dmn, and get

2 (i i(ﬁ)mn(r, 9)) = 2+4+1r3cos36

m=0n=1

= D Y YV ($mn(r, 0)) =2+ 17 cos 30

m=0n=1

= ZZ A2 Gmn (1, 0) = 2 4 1° cos 36.

m=0n=1

We recognize this expansion as the expansion of the function 2 + 3 cos 36 in terms
of the functions ¢,,,. Because of the special form of the right side, it follows that
all Ay, and B, are zero, except Ay, and A3z ,. So

o0

Z _agnAO,nJO(aOnT) = 2

n=1
and -
cos 36 Z —a3, Az nJ3(aznr) = r® cos 36.
n=1

Using the series in Example 1, Section 4.8:

> 2
1= —= . 1,
,; comTi (o n>J0(a07 r) 0<r<
we find that
> 4
2= — = _Jo(apar) O 1,
ngl o nJ1(o.n) o(a0.ar) =TS
and so
o0 o0 4
Z —ag, AonJo(aonr) = Z mJg (ao,.n1),

n=1 n=1
from which we conclude that
4
a0 Any = —
aOn O aO,njl (aO,n)
or A
Agn = S
n O‘gm']l (aoyn)

From the series in Exercise 20, Section 4.8 (with m = 3): We have

> 2
= Z — _J(az.r) 0<r<l,

n—1 a3,nJ4(a3,n>

we conclude that

2
n - — A n "
ngl a3, nJ4 a3 n) Jg(a& T) 7;1 Q3 413, JB(OZg T)
and so
-2
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Hence
u(r, 0) = i 3_74%(@0 nt) + cos 30 Z 72573(@37"1").
n—1 aO,n'Jl (a07n) ag nJ4(O[3 n)
9. Let

o if0<r<1/2,
h(”_{o if1/2<r <1

Then the equation becomes V?u = f(r, 6), where f(r, ) = h(r)sinf. We proceed
as in the previous exercise and try

i i I AmnT) (Amn cosmb + By, sinmb) = i i Omn(r, 0),
m=0n=1

m=0n=1

where @un(r, 0) = Jn(AmnT) (Amn cosml + By, sinmf). We plug this solution
into the equation, use the fact that V?(¢yn) = =2, dmn = —2,,,Gmn, and get

2(2 > bumnlr, 9)) = h(r)sinf

m=0n=1

= Z Z V2 (¢mn(r, 0)) = h(r)sinfg

m=0n=1

= ZZ 2 Omn(r, 0) = h(r)sinf.

m=0n=1

We recognize this expansion as the expansion of the function h(r)sinf in terms of
the functions ¢,,,. Because the right side is proportional to sinf, it follows that
all A,,,, and B, are zero, except By ,. So

sin 6 Z _a?nBl,nJI (1) = h(r)sin,

n=1

which shows that —a?, By ,, is the nth Bessel coefficient of the Bessel series expan-
sion of order 1 of the function h(r):

2 2 1/2 2
—OélnBLn = m‘/o T Jl(O[LnT) d?"

2 Otl,n/2 9
= J d
Oz:inJQ(Oél,n)2 /0 s s)ds

2 9 Otl,n/2
= —— = _&2J
ai’yng(al,nys 2(5)0
JQ(OZLH/Z)

201 pJa(ann)?

Thus

o0

JQ Oéln/Z)
u(r, 6) —smﬁz 2a1nJ2 L) Jl(OélnT)

11. We have u(r, ) = uy(r, 0) +uz(r, ), where u1(r, 6) is the solution of V2u = 1
and u(1, §) = 0, and wua(r, ) is the solution of V2u = 0 and u(1, #) = sin26. By

Example 1, we have
=2
ui(r, ) = Z m%(aﬂ);
n=1 " n
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while ug is easily found by the methods of Section 4.4:
uz(r 0) = r? sin 20.
Thus,

— -2
u(r, ) = r?sin 20 + Z Jo(anr).
n=1

' a3 T ()
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Solutions to Exercises 4.7

1. Bessel equation of order 3. Using (7), the first series solution is
2k+3 1 23 1 2 1 27
O - T
k'k+3 1-6 8 1-24 32  2-120 128

5. Bessel equation of order % The general solution is

y(x) = ClJ%"‘CQJ?%

- Cl(1.1£(g) (;) 1- 1}(;) (;)_Jr)

te ( 1(71> (E)7%_1 1}(5) (;)_Jr)
nd (1

Using the basic property of the gamma function an

jw

5), we have

So

2 12 =z
([ Z2_2Z_ e
2 7T:E( ) ( 2x 2 )
2 [(x2 2 n n 2 /1 n T
— e — [ - o] — [ =4+ 2 ...
W 3 30 Nrz\z " 2
9. Divide the equation through by 22 and put it in the form

1 29
y+y+

y=0 forz>0.

Now refer to Appendix A.6 for terminology and for the method of Frobenius that
we are about to use in this exercise. Let
2?2 -9

pa) =1 for qlr)= "3

The point = 0 is a singular point of the equation. But since xp(z) = 1 and
22 q(x) = 22 — 9 have power series expansions about 0 (in fact, they are already
given by their power series expansions), it follows that x = 0 is a regular singular
point. Hence we may apply the Frobenius method. We have already found one
series solution in Exercise 1. To determine the second series solution, we consider
the indicial equation
r(r —1) +por +qo =0,

where po = 1 and ¢ = —9 (respectively, these are the constant terms in the series
expansions of zp(z) and z%q(z)). Thus the indicial equation is

r—9=0 = r;=3, ro=-3.

The indicial roots differ by an integer. So, according to Theorem 2, Appendix A.6,
the second solution y» may or may not contain a logarithmic term. We have, for
x>0,

yo =ky Inz + 273 Z bmz™ = kyp Inx + Z bpx™ 3,

m=0 m=0
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where a9 # 0 and by # 0, and k£ may or may not be 0. Plugging this into the
differential equation
3:2y” —|—33y/ 4 ($2 _ g)y =0

and using the fact that y; is a solution, we have

y2 = kyilnz+ > bpa™
m=0

= kY lnz+ kL — 3™,
vh vy Inz + x—!-mzzo(m 3)bmx ;

YT - e m—
v = kyflnx+kzl+k;72+n;(m—3)(m—4)bm$ °

/ o0

= kyInx+ 2/€ﬂ — ky—; + Z(m— 3)(m —4)bm$m75§
X X m—0

2y + b + (2% — 9y

= kayInx + 2kxy) — ky; + Z (m —3)(m — 4)bpa™ 3

m=0

+kzy) Inx + kyy + Z (m — 3)byz™ 3

m=0
+(2% = 9) [kyiInz + Z byx™ 3
m=0

=0

= klnz[2%y] +ay] + (#* — 91 |

+2kxy] + i [(m —3)(m — 4)by, + (m — 3)by, — by | 2™ >

m=0

[eS)
—|—$2 E bmxmfl%
m=0

= 2kay, + Z (m — 6)mbyz™ 3 + Z bnz™t

m=0 m=0
To combine the last two series, we use reindexing as follows

(m — 6)mby,z™ 3 + Z bpz™ !

m=0 m=0

= —S5bhz ?+ Z (m — 6)mby,z™ 3 + Z by_ox™ 3

m=2 m=2

= —Sbhiz ?+ Z [(m — 6)mby, + bm,g] ™3,

m=2

Thus the equation

22yl 4+ zyh + (22 — 9)y2 = 0

implies that

2kxy) — bz~ + Z [(m — 6)mby, + bm,g]xmfg =0.

m=2
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This equation determines the coefficients by, (m > 1) in terms of the coefficients of

y1. Furthermore, it will become apparent that k cannot be 0. Also, by is arbitrary

but by assumption by # 0. Let’s take by = 1 and determine the the first five b,,’s.
Recall from Exercise 1

_t# 12 1 a7
N=1768 1-24 32 2120 128

So
y1_1-68 1-24 32 2-120 128
and hence (taking k = 1)

oz 6k a3 10k x° n 14k 27 n
T [ JR— JR— e
NTT68 1.2432 " 2.120 128

The lowest exponent of x in

2kxyy — bbyx ™% + Z [(m — 6)mby, + bm,g] ™3

m=2

is 272, Since its coefficient is —5b;, we get b; = 0 and the equation becomes

2y + Z [(m — 6)mby, + by—o]z™ .

m=2

Next, we consider the coefficient of z71. Tt is (—4)2by + bg. Setting it equal to 0,
we find

b 1
by = —2

8 8
Next, we consider the constant term, which is the m = 3 term in the series. Setting
its coefficient equal to 0, we obtain

(—3)3()3 +b1=0 = b3=0

because by = 0. Next, we consider the term in x, which is the m = 4 term in the
series. Setting its coefficient equal to 0, we obtain
(=2)4by+b2=0 = b*lb*1
4+ b2 = 4= gb2 = e

Next, we consider the term in x2, which is the m = 5 term in the series. Setting its
coefficient equal to 0, we obtain b5 = 0. Next, we consider the term in x3, which
is the m = 6 term in the series plus the first term in 2kzy]. Setting its coefficient
equal to 0, we obtain

k 1
b - = k=—-8by=—=.
0+ 4+8 0 = 8b4 3

Next, we consider the term in z*, which is the m = 7 term in the series. Setting
its coefficient equal to 0, we find that b7 = 0. It is clear that bs,,11 = 0 and that

Lpmetr v Ly Loy
~——ylhe+—+—+—x+--
g 2 8z 64
Any nonzero constant multiple of 32 is also a second linearly independent solution
of y1. In particular, 384 ys is an alternative answer (which is the answer given in
the text).

11. The equation is of the form given in Exercise 10 with p = 0. Thus its general
solution is
y = c1do(x) + Yo (x).
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This is, of course, the general solution of Bessel’s equation of order 0. Indeed, the
given equation is equivalent to Bessel’s equation of order 0.

13. The equation is of the form given in Exercise 10 with p = 3/2. Thus its general
solution is

y = clx3/2J3/2(3:) + 023:3/2}/3/2(33).
Using Exercise 22 and (1), you can also write this general solution in the form

sinx COS &

Yy = Czx [ — cosx] + cox [— —sinzx

= ¢ [sinz —zcosx] + ca[—cosx —xsing].

In particular, two linearly independent solution are
y1 =sinx —xcosx and Yy, =cosx + rsinz.

This can be verified directly by using the differential equation (try it!).

15. All three parts, (a)—(c), follow directly from the series form of Jy,(x) (see (7)).

17. We have
y = z Pu,
y = —pr P lu+a P
y' = plp+ Dz P 2u42(—p)z P + P,
zy' +(1+2p)y +2y = z[plp+ Da P2y — 2pz Pt/ + z Pu]

+(1+2p)[—pr P lu+ 2P| +zzPu

= o P o + [—2px + (14 2p)a]u/

+p(p+1) — (14 2p)p + 2°]u]

= o PP + o’ + (2 - pPhul.

Thus, by letting y = x7Pu, we transform the equation
zy’ + (14 2p)y + 2y =0

into the equation

a7 Pz + zu’ + (2® — pP)u] =0,

which, for x > 0, is equivalent to
22" 4 zu’ + (22 — p*u =0,
a Bessel equation of ordr p > 0 in u. The general solution of the last equation is
u=c1Jp(x) + c2Yp ().

Thus the general solution of the original equation is

Y = ciz7PJp(x) + coxPY,(x).
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21. Using (7),

S (W
Ji(x) = Zm(z)

B \fZ EIT k+ 2%

k 22kl€| ka
- \/72 k! 2k |\/_ 92k (by Exercise 44(a))

k=0
22. (a) Using (7),
R G VAT
Ja(x) = ém@)

$2k+2

_ \/5 i (-1)*
Voo = kI k+2+%)22k+2
\/7 k 992k+1L| p2k+2
- Z k' (2k + 3)(2k + 1)! 22+2
1 1
T(k+2+ 2) Ik+1+ 2) (k+1+ 5) then use Exercise 44 (b))

_ \/7 Z o ik; 2) ;2642 (multiply and divide by (2% + 2))
_ \/:i ((23:%)%)3;% (change k to k — 1)

N \/72_: 21{?31) Lt

- \/72 \/75_02 2k+;

sinx
= — | —cosx+—— .
T x

1

25. (a) Let u= 2e 20000 Y (u) = y(t), e+ = ‘14—2 u?; then

a

dy dY du I (_p—lat=b) ,de _d / —1(at—b) ) _ vyt —at+b v b —L(at—b)
= Y G = g (V) Sy e,
So

Y//efater + Y/gefé(atfb) + YefaiH»b — 0 = Y// + gy/efé(atfb) + Y — 0,

upon multiplying by ¢4 ~t. Using u = 2e~2(2=0) we get

1
Y'+-Y' +Y =0 = Y +uY’ +24%Y =0,
u
which is Bessel’s equation of order 0.

(b) The general solution of u?Y” + uY’ + u?Y = 0 is Y (u) = c1Jo(u) + c2Yo(u).
But Y (u) = y(t) and u = %e*%(at*b), SO

2 2
y(t) —ClJO( e z(at b))+02}/0( e 2(at b))
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(¢) 1) If e =0 and c2 # 0, then
2
y(t) = ca¥p(Sem 2070,
a

Ast — oo, u — 0, and Yy(u) — —oo. In this case, y(t) could approach either 400
or —oo depending on the sign of ¢o. y(t) would approach infinity linearly as near
0, Yo(x) = Inz so y(t) ~ In (—e 2(‘”4’)) ~ At.

(ii) If ¢1 # 0 and ¢o = 0, then

2
y(t) = erJo(Se5(at=0)),
a

Ast — oo, u(t) — 0, Jo(u) — 1, and y(t) — c¢;. In this case the solution is
bounded.

(i) If ¢ # 0 and c2 # 0, as t — oo, u(t) — 0, Jo(u) — 1, Yo(u) — —o0. Since Yj
will dominate, the solution will behave like case (i).

It makes sense to have unbounded solutions because eventually the spring wears
out and does not affect the motion. Newton’s laws tell us the mass will continue
with unperturbed momentum, i.e., as t — oo, y” = 0 and so y(t) = c1t + c2, a
linear function, which is unbounded if ¢; # 0.

31. (a) From I'(z) = [; t*~'e~"dt, we obtain

)= / e tdt = —e"
0

=0
—

r'(2) :/ te tdt = —te”" +/ e tdt=1.
0 0 0
(b) Using (15) and the basic property of the gamma function

[ =4 = 4 = 1
_%F(—%) = F(—%) = —2./7 (see Exermse 5) = F(—%) = %\/;

o0

:1'

)

0

33. (a) In (13), let u? = t, 2udu = dt, then

F(x):/ t* et dt:/ u2(m71)67“2(2u)du:2/ w2 e dy,
0 0 0

(b) Using (a)
2/ u2m7167“2du2/ vV LemV gy
0 0

4/ / e~ (W) 20-1020=1 gy iy
o Jo

(c) Switching to polar coordinates: u = rcosf, v = rsiné, u? + v? = r?, dudv =
rdrdf; for (u, v) varying in the first quadrant (0 < v < oo and 0 < v < ), we
have 0 <6 < 7, and 0 < r < oo, and the double integral in (b) becomes

I()T(y)

T'(x)'(y) / / —r (rcos 0)2*~(rsin 0)%Y~trdrdd

=I'(z+y)

% o0
- 2 / (cos 0)2*(sin 0)%~d0 2 / P2ty =1e=r% gy
0 0

(use (a) with « + y in place of x)

(a)
= 2F(3:—|—y)/5(0059)29”*1(31119)29*1619,
0
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implying (c).
41. Let I = Oﬂ/2 sin?®*1 9 df. Applying Exercise 33, we take 2z — 1 = 0 and
2y—1=2k+1,s0x = % and y = k+ 1. Then

T(L)T(k+1) STk 2 /T k!

Tk+1+3) (k+1HDk+3)  @k+DI(k+3)
Asin (a), we now use I'(k + 3) = % 7, simplify, and get
22k(/€!)2

2k+ 1)



Section 4.8 Bessel Series Expansions 131

Solutions to Exercises 4.8

1. (a) Using the series definition of the Bessel function, (7), Section 4.7, we have

2k
d:cz 2Pk'F k+p+1) (2)
7 (—1)k d % (—1)*2k 1 sx\2k-1
N kZZPk'F(k—l-p )d:c( ) _I§2Pk!1“(k+p+1)§(§)

7 s (— ) ()2k 1
N k:ozp(k DIN(k+p+1) \2

(—1)m 2m+1
= _ZZPm'F(m—l-p—l-Q) (2) (set m=Fk—1)

x P (_1)m 2m~+p+1 7 7:0
) 7nZ: miT(m +p +2) (2) =z PJpt1(z).

d x P
()]

To prove (7), use (1):
d p P P P
E[m Jp(x)] = 2P dpo1(z) = 2P Jp_i(x)dx = 2P J,(x) + C.
Now replace p by p+ 1 and get
/prrlJp(x) dr = 2P I, (z) + O,
which is (7). Similarly, starting with (2),
d —p —p —p —p
E[m Jp(@)] == Pdpyi(z) = — [z Pdppi(x)de=a"PJp(x)+C
= /xprerl (x)de = —z"PJy(x) + C.
Now replace p by p — 1 and get
/xprrlJp(x) dv = -2 P, 1 (z) + C,

which is (8).
(b) To prove (4), carry out the differentiation in (2) to obtain

eI () — pr Py (0) =~ Phpa(e) = ed)@) - plye) = —adp (),

upon multiplying through by zP™!. To prove (5), add (3) and (4) and then divide
by « to obtain

Jpr(2) = Jysa(w) = 2J1(2).
To prove (6), subtract (4) from (3) then divide by .

3. /xJO(x) dx = xJ1(z)+ C, by (7) with p = 0.
5. /Jl(x) dx = —Jo(z) + C, by (8) with p = 1.

7. /xBJQ(x) dz = 2* J3(z) + C, by (7) with p = 2.
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/Jg(x) dr = [z 2 J3(x)] dw
J3(z)dx = dv, 2z dr = du,v = —x~ 2 Jy(2)
/ 1J2( Ydr = —Jo(z) — 22~ 1y () + C

11. By (2) with p = 1,

l\)|>—‘

S @%(&;w)

2 1 [cosx smx 2 sinx
= —\/—xz —cosx | .
T T T

1
Jg/Q(.I) = —XxI2 p

Js(z) = §J4(x) — Jy(a)
_ % [ng(x) - Jg(x)] — Jy(x) (by (6) with p = 3)
_ (i_S - 1) Ja(z) — ;Jg(x)
_ (i_S - 1) (%Jg(x) - Jl(x)> —215(@) (by (6) with p=2)
_ (% - 1372> Ta(z) — (i—f - 1) Ji(z)

_ _12 (ﬁ _ 1) Jo(z) + (33%4 — 2—34- 1) J1(x).

15. (a) and (b) We will do this problem on Mathematica. Let us make some
comments about the equation % = cosz. This equation is equivalent to the
equation tanx = z, which we have encountered in Section 3.6. It is clear from
the graph that this equation has one root zj in each interval (—% +km, 5+ kw),
k=0,1,2,.... We have xyp = 0 and the remaininng roots can be obtained by
iteration as follows. Take the case £ = 1. Start at z; = 7 and go up to the line
y = x then over to the right to the graph of tanz. You will intersect this graph at
the point zp = 7 + tan~! 7. Repeat hese steps by going up to the line y = z and
then over to the right to the graph of y = tanx. You will intersect the graph at
2o = m+tan~! z;. As you continue this process, you will approach the value of x.
To find xj, start at z; = k7 and construct the sequence z, = k7 +tan~' z,_;. Let
us compute some numerical values and then compare them with the roots that we
find by using built-in commands from Mathematica.
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grphl = Plot[{x, Tan[x]}, {x, 0, 3Pi/2}, AspectRatio-» 1.5,
PlotRange -» {-2, 5}]

5

<
Il
=

/

y=tanx

a2l Sm 3n/2
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z[1] = Pi
z[k_] := N[ArcTan[z[k-1]] +Pi]
Table[z[k], {k, 1, 10}]

7, 4.40422, 4.48912, 4.49321, 4.4934, 4.49341, 4.49341, 4.49341, 4.49341, 4.49341

Iterative process to approximate
the first root of tan x = x

pts = Table[{z[k], Tan[z[k]]}, {k, 1, 5}]

{{m, 0}, {4.40422, 3.14159},
{4.48912, 4.40422}, {4.49321, 4.48912}, {4.4934, 4.49321}}

grph2 = ListPlot[pts, PlotStyle » PointSize[0.02]]

e
4
. Plot of points generated
3 by iterative process.
2
1
%2 3.4 3.6 3.8 1.2 4.4

Show|[{grphl, grph2}, AspectRatio-» 1.5,
PlotRange -» {-2, 5}]

The points

(m+ tan_lzk, %)
on the graph of tan x,
showing a fast convergence to
to the root of the equation
tanx =x.

/2 / T
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If you want to use a built-in command to find the root, you can do the following
(compare the result with the iterative process above).

FindRoot [Tan[x] = x, {x, 4}]

{x—>4.49341)

17. (a) From (17),

2 2 ¢
A, = 7/ VJo(ax)x de = /J a;x)rdr
J O[J f 0 J ) Jl(aj)Q 0 0( J )
2 COL]‘
= = Ji d let ovjz =
P APRE / o(s)sds (let ajz =s)
2 T 2ehi(ay
= 7J1(s)s = e 1(0@)2'
a3 Ji(ay)? a1 (ay)
Thus, for 0 < x < 1,
= 2¢1(a
Jo(a;x).
= aidile; o

(b) The function f is piecewise smooth, so by Theorem 2 the series in (a) converges
to f(x) for all 0 < 2 < 1, except at x = ¢, where the series converges to the average

value 71"(”);“67) -1

19. (a) This is a Bessel series of order 4. By Theorem 2, we have

2 1
A, = 7/ 2t Jy(ay 2)x dz
J J5(O[4 j)2 0 4( 4,5 )

Qg5
= - Ji(s)s®ds (let ay o =s
T S s (et =

Q4,5

2

g jIs(aa ;)

2
= 7;} S 55
af ;Js(0u )2 (%)

Thus, for 0 < x < 1,

o)
22 J4 O[4J.I
(%] JJ5 OZ4J
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To describe the Bessel series, we need the zeros of Jy(x). These are built-in the program. To recall them, load the
package as previously.

zerolist=BesselJZeros[4, 20]

{7.58834, 11.0647, 14.3725, 17.616, 20.8269, 24.019,
27.1991, 30.371, 33.5371, 36.699, 39.8576, 43.0137, 46.1679,
49.3204, 52.4716, 55.6217, 58.7708, 61.9192, 65.067, 68.2142}

Now the partial sums of the Bessel series can be defined as follows:

partsum[x_, n_] :=Sum[2/ (zerolist[[]j]] BesselJ[5, zerolist[[j]]])
BesselJd[4, zerolist[[j]] x], {j, 1, n}]

Here are graphs of some partial sums , compared with the graph of the function

tt := Table[partsum[x, n], {n, 1, 20, 5}]
Plot [Evaluate[{tt, x*4}], {x, 0, 1}]

1

21. (a) Take m = 1/2 in the series expansion of Exercise 20 and you’ll get

> J1/2 QT
=2 for 0 1
Z aj J3/2 aj or <oz <l

where «; is the jth positive zero of J; /o(x). By Example 1, Section 4.7, we have

/2 .
Jija(x) = —_sinz.

So

aj=gn forj=1,2,....

(b) We recall from Exercise 11 that

5 /s
J3o(x) =) — (smx —cosx) .

T x
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So the coefficients are

I
aj Jza(ay)  gm Jz a(jm)

and the Bessel series expansion becomes, or 0 < z < 1,

N Z(_Uﬂ'l\/?m(ajx).

(c) Writing J; /2(x) in terms of sin 2 and simplifying, this expansion becomes

VT = Z(—l)jlﬁJ1/2(aj$)

= , 2 | 2
= (—I)Jl\/: sin oy
— I\ Ty

<

2 2 (=1 sin(jrx)
L

™~

Upon multiplying both sides by +/x, we obtain

— (-1t
g ———sin(jrz) for 0 <z <1,
J

j=1

Tr =

SR

which is the familiar Fourier sine series (half-range expansion) of the function

fz) ==

23. Just repeat the computation in Exercises 20 with m = 2 and you will get, for
0<x<l,

25. By Theorem 2 with p = 1, we have

2 1
Aj = 7‘/1 Jl(alij) dx

Ja2(a5)* Jy

a1, J2(a1,;)
2

= al,jJQ(al,j)Q[_JO(S)

—2[Jo(ay ;) = Jo(%52)]
52 (an,5)?
—2[Jo(ay ;) = Jo(%52)]
a5 Jo(an,5)?

2 o
= 72/(1_11 Ji(s)ds (let a1z =)
2
Q5

(by (8) withp =1)

&1,
2

3
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where in the last equality we used (6) with p = 1 at x = aq ; (so Jo(au ;) +J2(aq ;) =
0 or Jo(alyj) = —JQ(al J)) Thus for0<z < 1,

Jo a1 J Jo(a;j )]
—2 g ix).
a,jJo(aq ;)2 Tilen,)

27. By Theorem 2 with p = 2, we have

2 1
A = ——— V(s 7)) dx
J J3(O[27j)2‘/% 2( 2,5 )
2 *2.5 1
= — Ja(s)s  ds (let ag ;2 = s
J3(ag, ;)2 /%T] 2(s) ( 2 )
2 1 2.9
= ———[-5"J
J3(Oz2,j)2[ ° (®) 224
_ 2 _J1(0427j)+2°71(a§’j)
Ji(az,;)? a2, a2,

(because J3 = —Jp at a zero of Jo by (6))

—2[J1(az ) — 2J1(%%2)]
sz, jJ1(az,;)?

Thus, for 0 < x < 1,

7_22 Jl OZQJ 2J1( )

(6%} JJ1 (%) J>2

JQ(O&QJ{E).

29. By Theorem 2 with p = 1, we have

1 2
A = —— J ix/2)xd
J 2J2(Oz1,j)2/0 i(azge/Dede
2 / L.

N B — Ji(s)sds (let oy j2/2 = s).

af jJa(a,5)? Jo ’
Since we cannot evaluate the definite integral in a simpler form, just leave it as it
is and write the Bessel series expansion as

Q14
= Z — [/ Ji(s)s ds] Ji(o jz/2) for 0 <z < 2.
=1 Y 2(1,5) 0

31. p =1,y = caJi(Ax) + «2Y1(Az). For y to be bounded near 0, we must
take ¢ = 0. For y(1) = 0, we must take A = \; = a1, j = 1,2, ...; and so
y =yi = c131( ;).

33. p=1,y= c1J1(Ax) + Y1 (Az). For y to be bounded near 0, we must

ay .

take c; = 0. For y(m) = 0, we must take A = \; = 22 = j, j =1,2,... (see
Exercises 21); and so

L 2 .
y =1y =c1;Ji( - T)=c1; gsm(ﬂ)

(see Example 1, Section 4.7).

35. (b) Bessel’s equation of order 0 is xy” + 1y + zy = 0. Take y = 2~ 2u. Then
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Substituting into Bessel’s equation and simplifying, we find

3 1 1
(azu”—u’—k Eu) + (u’— %u) +zu=0 = '+ (1—|— @)u: 0 (x).
Since Jo(z) satisfies Bessel’s equation, it follows that u = \/zJy(z) is a solution of
the last displayed equation (x).

(c¢) Let v = sinz. Then v 4+ v = 0. Multiplying this equation by w and () by v,
and then subtracting yields

= (uv/ — u/v)/ =

w' —ovu” = = ——uw
4227

@U’U
which implies (c), since fzuv = —(u” 4+ u)v from (b) (multiply the displayed
equation in (b) by v).

(d) is clear from (b).

(e) Integrating both sides of the equation

/ 1N
('LL'U — U 'U) = @UU
from (c), we obtain

1
/M—qud:c =w —vv+C.

So for any positive integer k,

@k+1)m 4 ) , , |@k+D)7 (2k+1)7
/ @u(x) sinzdr = wv —u'v
2

km

= UCcosx —u’sinx’
2km

— —(u(2k7r) + u((2k + 1)77))-

2km

(f) Consider the integrand in (e), “(ﬁ)%. This is a continuous function on

[2k7, (2k 4 1)7]. We have S22 > 0 for all z in (2kn, (2k 4 1)7), because sinz > 0

422

for all z in (2km, (2k+1)7). Assume that u(z) does not vanish in (2k7, (2k+ 1)).
So u(z) > 0 or u(x) < 0 for all x in (2kw, (2k + 1)7). Take the case u(x) > 0 for

all z in (2k7, (2k + 1)7). Then “ES0T 0 for all z in (2km, (2k + 1)7), which

implies that
CRHDT 4 (2) sin
————dz > 0.
~/2k7'r 42 v

By continuity of w, it follows that u(2k7) > 0 and u((2k + 1)m) > 0, and so (e)
implies that

dx <0,

/(%Jrl)7T u(z)sinz
2

km 4$2

which is a contradiction. Thus u(z) is not positive for all = in (2k7, (2k+1)7) and
so it must vanish at some point inside this interval. A similar argument shows that
u(z) cannot be negative for all z in (2kw, (2k + 1)7), and thus v must vanish at
some point in (2km, (2k + 1)7).
(g) From (f) it follows that u has infinitely many zeros on the positive real line; at
least one in each interval of the form (2km, (2k 4+ 1)7). Since these intervals are
disjoint, these zeros are distinct. Now Jy and u have the same zeros, and so the
same applies to the zeros of Jj.

Note: You can repeat the above proof with sin x replaced by sin(x —a) and show
that « (and hence Jy) has at least one zero in every interval of the form (a, a + )
for any a > 0.

One more formula. To complement the integral formulas from this section,

consider the following interesting formula. Let a, b, ¢, and p be positive real numbers
with a # b. Then

¢ c
/0 JIp(az) Jp(bx)x dr = ERp)

—a?

[aJp(be) Jp—1(ac) — bJy(ac) Jp—1(bc)].
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To prove this formula, we note that y; = Jp(ax) satisfies

ey +ay + (@2® — pP)y1 =0

and yo = Jp(bx) satisfies

a?yy + wyy + (V*a? — p)y2 = 0.

Write these equations in the form

(zy1) +yi + ———y1 =0

and
b2 — 2

(ajy;)/ + y’2 + prl =0.

Multiply the first by y2 and the second by y — 1, subtract, simplify, and get
/ /
v (21) —yi(zys)” = y1ye(b” — a®)z.
Note that d
/ /
v2(21) = (wge) = ——[y2(9h) — yi(wyh)].
So

d
(b — a®)yryox = 7 [y2(33y/1) — Y (‘Iyé)]a

x
and, after integrating,

C

~ z Y21 — 19

C

(b* —a?) /0 C y1(z)y2(z)z de = [ya2(xy)) — v (zyh)]

o
On the left, we have the desired integral times (b — a?) and, on the right, we have
c[Jp(be)ad)(ac) — bJy(ac)J, (be)| — clady(0)J,(0) — bJ,(0)J,(0)].

Since Jp(0) = 0 if p > 0 and Jj(x) = —Ji(z), it follows that J,(0)J,(0) —

Jp(0)J,(0) = 0 for all p > 0. Hence the integral is equal to

j /O Tolaz) Ty (b dz = 7 [, (be)Jp ac) — by(ac)Ty(be)].

— a2

Now using the formula

Jp(z) = %[prl(x) — Jpr1(x)],

we obtain

I= 2(1)270_(12) [, (be) (Jp-1(ac) — Jys1(ac)) — by(ac)(Jp-1(be) — Jpy (b))].

Simplify with the help of the formula

T (@) = Ly (a) — Jya (2)

and you get
I = g 900 (o) = (2, (a0) = Ty (a0))
~by(ae) (Jy1 (be) — (L (be) — Ty (be)))]
= s lady(be) Ty (ac) = bJy(ac) Ty (bo)],
as claimed.

Note that this formula implies the orthogonality of Bessel functions. In fact its
proof mirrors the proof of orthogonality from Section 4.8.
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Solutions to Exercises 4.9

1. We have
I . I .
Jo(z) = —/ cos (—xsinf) df = —/ cos (zsin 6) d6.
T Jo m™Jo
So Lo
=— do =1
o)== [
For n # 0,
1 us
In(z) = —/ cos (nf — z sin6) db;
T Jo
S0

1 ™
Jn(0) = —/ cosnf df = 0.
0

s

3. taking imaginary parts from teh series in Exampe 2, we obtain

nmw
. _ 7 . nm
sinx H_ZOO (x) sin 5
= ; Jn(x) sin % + ; Jp(x) sin %
= Z Jn(x) sin o Z J_p(z)sin (T)
n=1 n=1
= Y Jakn (@) (=DF =D T @i (@)
k=0 k=0

k=

(=)

5. All the terms in the series
1= Jo(@)* +2> Ju(2)?
n=1

are nonnegative. Since they all add-up to 1, each must be less than or equal to 1.
Hence
Jo(z)? < 1= |Jo(z)| <1

and, for n > 2,
2Jn(2)? < 1= |Ju(2)| < %
7. We have f(t) = f(r —t) and g(t) = —g(w — t). So

g /2 g
/0 fetydt = / F(t)g(t) dt + / T 0oy

/2 0
/ f(t)g(t)dt—/ fr—z)g(r —x)dx (let t =7 —x)
0 /2

/2 /2
/ F(t)g(t)ydi — / F(2)g(x) dz = 0.
0 0
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Solutions to Exercises 5.1
1. Start with Laplace’s equation in spherical coordinates

J%u  20u 1 (82u

du 5, 0%u
(1) W—"_;EJ’_T_Q + cot @— + csc 9—)—0,

002 o0 2

where 0 < r < a,0< ¢ <27, and 0 < 6 < 7. To separate variable, take a product
solution of the form

u(r, 6, ¢) = R(r)0(0)®(¢) = ROD,

and plug it into (1). We get
2 1
R'6® + ZR'OP + — (RO"D + cot YRO'® + csc? § ROD" ) = 0,
T T

Divide by RO® and multiply by r2:
R// R/ @// @/ @//
r2§+2rE + 5 +eotfg +csc219E =0.

Now proceed to separate the variables:

/! !/ 11 / @//
r2%+2r% =— (%—l—cot@%—l—csf@;) .

Since the left side is a function of r and the right side is a function of ¢ and 6, each
side must be constant and the constants must be equal. So

R// R/

2
oo —
r R + TR w
and 1 @/ @//
6+C0t96 +csc29$:—,u.

The equation in R is equivalent to (3). Write the second equation in the form
1’ / i

6+cot9%+u:—030203;

@// @/ @//
in?6 [ — 0— =——
Sin (@ + cot ) +,u> >

This separates the variables # and ¢, so each side must be constant and the constant
must be equal. Hence

1 !/
sin? @ (6——l-cott99 +,u> =v

O O
and
@//
V:—g = " 4+vd=0.

We expect 2m-periodic solutions in @, because ¢ is and azimuthal angle. The only
way for the last equation to have 2m-periodic solutions that are essentially different
is to set v = m?, where m = 0, 1, 2, .... This gives the two equations

" +m*® =0
(equation (5)) and
11 !/
sin? 0 (% + cot 9% + ,u> =m?,

which is equivalent to (6).
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3. From Section 5.5, we have
1
Py(z) =1, P(z)=2z, P)= 5(3352 —-1).

So
1
Py(cos@) =1, Py(cosf) =cosf, Pa(cosh) = 5(3 cos? 6 —1).
Next, we verify that these functions are solutions of (7) with u = n(n + 1), with
n = 0, 1, 2, respectively, or u = 0, 2, 6. (Recall the values of p from (14).) For

w =0, (7) becomes
0" + cot 00’ = 0,

and clearly the constant function Py(cos 6) = 1 is a solution. For u = 2, (7) becomes
0" + cot 0" + 20 = 0.

Taking © = P;(cosf) = cosf, we have © = —sinf, and ©” = —cosf. Plugging
into the equation, we find

0
0" + cot 00" 420 = —cos + %(—sin@) +2cosf =0.
sin

Finally, for p = 6, (7) becomes
0" + cot 00" + 60 = 0.
Taking © = P5(cos§) = (3 cos?§ — 1), we have
O’ = —3sinfcos b,

0" = -3 (cos?§ —sin”0) ,

0
" +coth0' +60 = —3(cos’f —sin®0) + Z?So
in

(—3sinf cos )
+3(3cos? 0 — 1)
= 3(cos?f +sin?6) —3=0

4. When m = 0, P(cos ) = Pi(cosf) was treated in Exercise 3. When m = 1,
P} (cosf) = —/1 —cos? 0 = Vsin?# = sinf. You should note that 0 < 6 < 7, so
sin @ > 0, thus the positive sign in front of the square root. With m =1 and p =1,
equation (6) becomes

0" + cot 00’ + (2 — csc® §)© = 0.

Taking © = P} (cos §) = sin 6, we have ©' = cosf, ©” = —sinf. So

0
0" +cot O’ + (2 —csc?0)® = —sinf + ZOS
i

1 .
ocost?—i- (2— - 29) sin 6

Sin

=—sin20

1 —
= sinf+ — (COS29— 1) =0.
sin 6
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Solutions to Exercises 5.2
1. This problem is similar to Example 2. Note that f is its own Legendre series:
f(0) =20 (Pi(cos ) + Py(cosb)).

So really there is no need to compute the Legendre coeflicients using integrals. We
simply have Ay = 20 and A; = 20, and the solution is

u(r, 0) =204 207 cos 6.

3. We have -
u(r, 0) =Y Anr™Py(cosf),
n=0
with
2 1 /7
A, — ”; / F(6)Pa(cos 6) sin6 d6
0

n+1 (2 o+l [T
= ”;‘ / 100 P,,(cos ) sin 6 db + ”2"‘ / 20 P, (cos 0) sin @ df.
0 x

Let © = cos 6, dr = —sinfdf. Then

A, = 50(2n+1) /1 P, (z)dx+10(2n +1) /0 P, (z)dz.
0

—1
The case n = 0 is immediate by using Py(z) = 1,
1 0
A0:50/ d:c+10/ dx = 60.
0 ~1

For n > 0, the integrals are not straightforward and you need to refer to Exercise 10,
Section 5.6, where they are evaluated. Quoting from this exercise, we have

1
/ Py, (x)dx =0, n=1,2 ...,
0

and L
_ (=) (@2n)! _
/0 P2"+1(x)d$_22"+1(n!)2(n+1)’ n=0,1,2,....

Since Py, (z) is an even function, then, for n > 0,

/0 Pon(z) dzx = /01 Pon(z)dz = 0.

-1

Hence for n > 0,
Ay = 0.

Now Pa,+1(z) is an odd function, so

0 1 —1)"*(2n)!
/1 Poyi1(x) da = —/0 Ponyi(z) de = _22n4(rl(72!)g(n)+ 1)’

Hence forn =20, 1, 2, ..,

1 0
A2n+1 = 50(47’L + 3) / P2n+1($) dx + 10 (47’L + 3) / P2n+1($) dx
0

(—1)"(2n)! (1))
22n+l(ph2(n + 1) 22n+l(ph2(n+ 1)
(—1)" @2n)!
21 ()2 (n + 1)
(—1)" 2n)!
P (2 (n+ 1)

= 50(4n +3)

—10(4n +3)

= 40(4n+3)

= 20(4n+3)



Section 5.2 Dirichlet Problems with Symmetry 145

So

u(r, 6) = 60 + 20 Z dn + 3)%@#1 Pon 1 (cos ).

5. Solution We have

ZA r" Py (cos6),

with
2 1
A, = ”+ / F(0) P, (cos §) sin6 do
= 2”; L / cos 6 P, (cos ) sin 6 df
0

on+1 [t
_ nt / 2 Py(z) dx,
2 0

where, as in Exercise 3, we made the change of variables x = cosf. At this point,
we have to appeal to Exercise 11, Section 5.6, for the evaluation of this integral.
(The cases n = 0 and 1 can be done by referring to the explicit formulas for the
P, but we may as well at this point use the full result of Exercise 11, Section 5.6.)

We have
! I 1
2Py(x)dx = =; | zPi(z)dx = =;
0 2" Jo 3
1
—1)"1(2n —2)!
/ngn(x)d:c: 2( ) (;L ) con=12...;
0 22n((n —DNH)2n(n+1)
and
1
/xP2n+1(x)d:c:O; n=12,....
0
Thus,
1 1 31 1
A frd _ = = A = - — = — An :0, :1,2,3,...;
°To2 Ty Moz g St "

1
2
and for n =1, 2,

22n)+1 (=1)""(2n —2)!
2 227((n—1))2n(n + 1)

(1) (2n — 2)!

Aon = 27 (n— 1))2n(n+ 1)

=(4n+1)

So
1) (4n +1)(2n — 2)!
220+ ((n — D))2n(n + 1)

1 1 ,2n
u(r, ) = 1 + §rcost9 + Z Py, (cos ).
7. (a) From (8)

u(r,0) = 50 + 25 Z dn + 3)%@"“ Ponsa(cos6) .

n=0
Setting ¢ = 7, we get
m (=1)"@2n)! T
U(T, 5) = 50+ 257120 47’L + 3 WT P2n+1(COS 5)
=0
(=D)"(2n)! T

= 50+252 (4n + 3)

20t ) e 1 1)

= 50
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This is expected, since the points with § = 7 are located halfway between the

boundary with The temperature at these points is the average value % or 50.
(d) For # = 0, we have

u(r, 0) + u(r, )

2
- (-1 (n) -
I
= 50425 7;0(477, + 3)WT (P2n+1(COS O) + P2n+1(COS 7T))
— 50,

because Pojp41(c0s0) = Pop11(1) = 1 and Papy1(cosm) = Popg1(—1) = —1. This
makes sense because the average of temperatures equidistant from v = 50 in a +z
symmetrical environment ought to be 50 itself.

9. We first describe the boundary function. From the figure, we see that there is
an angle 6y, with cos 8y = —%, and such that

[ 70 if0<0 <6y,
f<9)_{55 if Oy <0 <.

Appealing to (5), we have

A, = 2”;1/ﬂf(0)Pn(cost9) sin6 d
0
= 2”;1/00 70 cos 6 Py, (cos ) sin 6 df
0
+2”2+ ! /; 55 cos 6 Py (cos 0) sinf do
0
_ 2”;1/1%5513"(0 dt+2n+1/11 70 Py (1) dt,

3

where we have used the substitution cosf = t, dt = —sinfdf, and cosfy = —
For n = 0, we have Py(z) =1 and so

1
3

1

=3 |69

3

4
5 + (70)(5)] = 65.

For n > 1, we appeal to Exercise 9(a) and (c), Section 5.6. The results that we
need state that forn=1, 2, ..,

and

Thus, for n > 1,

A = 2EE (p-h - pa-p)
+%( 1 ( ;)_PnJrl(_%))]
= S (Patg) - Pty

So
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Solutions to Exercises 5.3
1. (c) Starting with (4) with n = 2, we have

5 (2—m)! ,
Yom(0,0) =] ———F PJ" 6)em?
2, ( a¢) A (2+m)| 2 (COS )6 )
where m = —2, —1, 0, 1, 2. To compute the spherical harmonics explicitely, we will

need the explicit formula for the associated Legendre functions from Example 1,
Section 5.7. We have

Pya) =1 —2%); Pyl(z)=lavI—a% PY(z) = Py(x) = 371,
Pl(z) = —3zv1 — 22; P}(x) = 3(1 — 22).
So

YQ,fl(oa ¢) =

531 ’ 57 it
= EF§COS€\/1—COS Oe

151 ; / j
g 5 cos @ sin Pe P = g 6% cos 0 sin fe %,

Note that since 0 < § < 7, we have sinf > 0, and so the equality v/1 — cos? § = sin 6
that we used above does hold. Continuing the list of spherical harmonics, we have

Ya0(0,0) = % g i_ 8;: Py(cos f)e ™

i300529—1 1

5 2
5 Z\/;(3cos 0—1).

The other spherical harmonics are computed similarly; or you can use the identity
in Exercise 4. We have

- —— 3 /5 —
Yoo = (1Y 2=Ys o= \Vr sin? fe—2i¢

= §\/131112962“15.
4V 61

In the preceding computation, we used two basic properties of the operation of
complex conjugation:

W~
3

az = az if a is a real number;

and
—1ia

et =¢ if a is a real number.
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Finally,

S 3 /5 —
You = (—1)1}37,1:—137,1:—5 6—ﬂcos€sine*1¢

= —§Ui cos 0 sine*?.
2V 6w

3. To prove (5), we use the definition of the spherical harmonics, (4), and write

27 T
/ / Ym0, 8)Y s s (0, ¢) sin 6 df dop
0 0
=1

=II

27 s
= C/ e'me eim/¢d¢/ P (cos ) PT¥ (cos §) sin 6df,
0 0

where C is a constant that depends on m, n, m’, and n/. If m # m’, then I = 0,
by the orthogonality of the complex exponential functions (see (11), Section 2.6,
with p = 7). If m = m’ but n # n’, then II = 0 by the orthogonality of the
associate Legendre functions. (Make the change of variable cosf = = and then use
(6), Section 5.7.) Thus if (m, n) # (m’, n’), then the above double integral is 0.
Next we prove (6), but first note that the left side of (6) is what you would get if
you take (m, n) = (m/, n’) in (5). This is because

Ym,n(oa (b)Ym,n(oa (b) = |Ym,n(93 ¢)|2 .
Here again we are using a property of complex numbers, which states that
2Z=|z|*> for any complex number z.

Using (4), we have

i V(0. )F (0, &) sin 6 d6
0

=T =II

12 (2n+1)(n — m)!

_ imeo 7im¢d
27 Jo ©c ¢ 2(n+m)!

/ [P (cos §)]” sin 6d .
0

We have

1 27 . ¢ . ¢ 1 27
- = ime ,—imé g4 dé =1
27 Jo c e ¢ 2 /0 ¢ ’

because €¢™? =M% = 1. Also, II = 1 by (7), Section 5.7. (You need to make a
change of variables in the integral in I1, x = cos §, dx = —sin 6 df, before applying
the result of Section 5.7). |

5. (a) If m =0, the integral becomes

2m 1 o
bdp = —¢2’ — 272,
0 2" lo
Now suppose that m # 0. Using integration by parts, with u = ¢, du = d¢, dv =
e”mé p = ——e "M% we obtain:
—u =dv )
2T A /—M 1 ) ™ 1 21 )
/ (b efzqu d¢ — |:¢ - efzmqb T efzmqb d¢
0 —im 0 im Jy
We have _
eﬂmﬂ(ﬁ:% = [cos(mqﬁ) - isin(mqﬁ)’ = 1,
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and
o . 27
/ emimd dy = / (cos meo — isin m(b) do
0 0
B 0 ifm#0,
- 2 ifm=0
So if m #£ 0,
27 2
pe—imd gy — 2T _ 2T,
0 —im m

Putting both results together, we obtain

2m 27 - .
—imé B =L ifm #0,
perdp = {27r2 if m = 0.

0

(b) Using n =0 and m = 0 in (9), we get

Agoy = i LO—!/Qﬂ(bd(b/ﬂP( 0) sin 0 df
0,0 = oy : v(cos 0) sin

2\/_/ \/_sm@dﬂ

1 us
= Wﬁ/@ sinfdf = /7

Using n =1 and m = 0 in (9), we get

Ay = 1./31/2ﬁ¢d¢/ﬁp( 0) sin 6 d@
1,0 = o a1 ) A 1(COS Sin

=0
—_—~
- L §<22>/1P<>d
= s . ) () dx
f— 0,

where we used fil Py(z)dx = 0, because Pij(x) = z is odd. Using n = 1 and
m = —11in (9), and appealing to the formulas for the associated Legendre functions
from Section 5.7, we get

27 _
71

/3 2! g
A1 = Py 4#0'/ “bd(b/ 0059 sin 6 df

31 [T 1
= —i E§/0 sin? 0 do (Pfl(cosﬁ):§sin9)
_ i fm
4V 27

Using n = 1 and m = 1 in (9), and appealing to the formulas for the associated
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Legendre functions from Section 5.7, we get

e
T

30

—_——
1 2m ) ™
_ -2 —i¢ 1 :
A = 5\ 1r 2!/0 pe d(b/o P;(cos 0) sin 6 df

—
= i,/i/ —sin?6df (Pl(cosf) = —sinb)
87 Jo
3

N
- iV

(¢) The formula for A, o contains the integral foﬁ PY(cos @) sinfdb. But P) = P,,
the nth Legendre polynomial; so

vl

/ P%(cosf)sinfdf = / P, (cos @) sin 6 db
0 0

where the last equality follows from the orthogonality of Legendre polynomials (take
m = 0 in Theorem 1, Section 5.6, and note that Py(z) =1, so fil(l)Pn(x) dz =0,
as desired.)

7. (a) The boundary function is given by

100 if —Zg<T
(6, ¢) = { 0 otherwise.

The solution u(r, 0, ¢) is given by (11), where the coefficients A, are given by (8).
Since the integrand in (8) is 2m-periodic in ¢, the outer limits in the integral in (8)
can be changed to —m to 7 without affecting the value of the integral. So we have

Ap = /ﬁ/o F(O, §)Y nm (6, ¢)sin 6 do dp

/4 T
- 100/ /Ynym(o,(b)smodod(b.
0

—7/4

(b) Using the explicit formulas for the spherical harmonics from Exercise 1, obtain
the coefficients given in the table.

If m =n =0, then

=2
100 71’/4 ™
/ sin 0 do dg = 501/
0

AO,O =5 =
2\/7? —7/4

If m = 0 but n # 0, then A,,, contains the integral fil P.(z)dx (n=1,2,...),
which is equal to 0 by the orthogonality of the Legendre polynomials; and so A, =
0 if m = 0 and n # 0. For the other coefficients, let us compute using the formula
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for the spherical harmonics:

on+1(m—m) [™* _, ”
Ay = 100, 2nFLn=m)t / e~ 4 / P™(cos 0) sin 0 do
4 (n+m)! /4 0

—2 gjp m©
_msm 1

/4 1
= 100\/2”+1ﬂ/ (cosm¢—isinm¢)d¢/ P™(s)ds
-1

n+m

200 /2n+1 —m)! / m(
= sm— P’
n+m

The integral I, = fil P (s)ds can be evaluated for particular values of m and n
(or you can use the general formula from Exercises 6). For example, if m =n =1,
then

=half area of a disk of radius 1

—_—~
1 1
/ Pf(s)ds:— / V1—s2ds :—g.
1 1

So

200 /3 O' T, T
A= s 4(_5)__25\/3_”'

The other coefficients are computed similarly by appealing to the explicit formulas
for the associated Legendre functions from Section 5.7 and using the preceding
formulas.

(¢) Using an approximation of the solution with n running from 0 to 2 and m
running from —n to n, we get

u(r,0,¢) = 2; 2; A ™Yo (6 2; 2; A Yo (6, ¢).

Now substituting the explicit formulas and values, we obtain

u(r, 6, ¢)
~ 1950400+ 7 Y1 —1A1 1+ 7Y A +17Ye 0As o+ 177V 0400

1 1 /3 - 1 /3 -
. - - 2w —i¢p - Rt ip
= 2ﬁ50ﬁ+r 5\ ox sinfe 25V 31w + 5\ 3r sinfe'? 25v 3w

3 /5 , 5 3 /5 , 5
2 02 —2i¢ in2 et
—\/— 0 1 — + -4/ = 0 1 —
+r 4\/675111 e OO\/G:+4\/6:sm e OO\/(;]
=cos ¢ =cos2¢p
—_——~ —
5 i —id 1 2 —2i¢
— 25475 grsmo (%) 12512 L sin2 0 (%)
T

3 1
- 25+75§rsm9cos¢+ 125 12 = sin? 0 cos 2¢ .
v

9. We apply (11). Since f is its own spherical harmonics series, we have

u(r, 0, 6) =Yoo(0. 0) = 5= W
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11. The solution is very much like the solution of Exercise 7. In our case, we have

[2 1(
Anm = n+ —m) / ﬂm‘lbd(b/ P (cos @) sin 6 df
n+m

/3
= 50\/271—1—1( m)/ (cosm¢ — isinma) d(b/ P (s
4 (n+m)!
n+

1 !
_ 100 /2 1 (n—m)! sm—/ Pros
4 (n+m)!

100 [2n+1(n—m)! m)
= — Inma
m 4 (n+m)! m)

where I,,,, = fil P™(s)ds. Several values of I, were found previously. You can
also use the result of Exercise 6 to evaluate it. |

+
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Solutions to Exercises 5.4

5. We apply Theorem 3 and note that since f depends only on r and not on 6
or ¢, the series expansion should also not depend on 8 or ¢. So all the coefficients
in the series are 0 except for the coeflicients A; ¢ o, which we will write as A; for
simplicity. Using (16) withm =n=0,a =1, f(r, 0, ¢) =1, and Y5 ,0(0, ¢) = ﬁ,
we get

) 1 27 T 1
A = 7// /j()\y-r)—TQSinﬁdegbdr
! ]%(O‘%,j) o Jo Jo W
=27 =2

2 1
1 ™ s . )
= W‘/O d(b‘/o Sln@d@A ]0()\07j T)TQ dr
357
4 1
= i/ jo(Xo, jr)r?dr,
0

J % (O%, j)
where Ao j = a1 ;, the jth zero of the Bessel function of order 1. Now

[ 2 .
Jijo(x) = —sinz

(see Example 1, Section 4.7), so the zeros of J; o are precisely the zeros of sinz,
which are jm. Hence

Also, recall that

(Exercises 38, Section 4.8), so

1 1 1 . .
/ jo(Xo,jr)r¥dr = / Jo(jmr)rtdr = / 75111(]#1") r2dr
0 0 0

jmr
_(cnpitt
=0T
—_—
1t
= — [ sin(jwr)rdr
JT Jo
(_1)j+1
(Gm)*
where the last integral follows by integration by parts. So,

_ Avm (=)

I RGm) (m)E

This can be simplified by using a formula for j;. Recall from Exercise 38, Sec-

tion 4.7,
. sinx — xcosx
]1(@:7.
Hence
2(im) Sm%—jwcos(jw)r [—cosow)r [<—1>j+1]2 |
171UT) = - = - = : = _ ,
1 () I in G
and

AJ = 4(_1)J+1ﬁ5
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and so the series expansion becomes: for 0 < r < 1,

1= S At yEERIT 6, )

Jrr

> 1
_ A(—1)i+1 sin jmr
2; (VR

_ i2(_1)j+lsinj7rr'

jmr

It is interesting to note that this series is in fact a half range sine series expansion.
Indeed, multiplying both sides by r, we get

S
:—Z 1)7+1 sinjmr 0<r<1),

which is a familiar sines series expansion (compare with Example 1, Section 2.4).H

7. Reasoning as we did in Exercise 5, we infer that the series representation is of
the form

> AYoo(6, d)jolay 1),
Jj=1

2m
A = o // /]0 (Ao, j7) Tsmﬁdﬂdgbdr
3
=27

1 27 s 1 4
= d(b/ sin@d@/j Ao, jr)redr
\/_Jl(a%j)/o 0 0 oLho.57)

4/ L
_ QL/ jo(Aor)rt dr,
]1(a%,j) 0
1

where A\, ; = « 1 the jth zero of the Bessel function of order 5. Again, from

Exercise 5:
() /2 .
Jij2(T) = sinx,

where

and

So
' ! ! sin(jnr)
/ oo, r)rtdr = / Jo(jmr)rt dr = / ———rtdr
0 0 0

Jrr

1)]+1
( )3

= —/ sin(jm r)rs dr

—6 + j°m) (=17
(jm)*

=(—6+452n?)

3

where the last integral follows by three integrations by parts. So,

4T (1 (=6 + j°n%)
AGm Gt

A; =
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From Exercise 5,

4, [sin(jm) — jmcos(jm) 47 — cos(jm) 47 (—1)7+ 47 1
Ji(gm) = (§m)2 ] _[ g ] _[ jm ] - (Gm)A’
&)
(64T
Ay = a1y T,

and so the series expansion becomes: for 0 < r < 1,

o0

2 i1 singjmr 9 oy 1
o= A1) (=6 + ) =
; (jm)3r 2\/m
_ oo 2 J+1 +j27r2)si%1j;”"'
2 Grpr

Here again, it is interesting to note that this series is a half range sine series expan-
sion. Indeed, multiplying both sides by r, we get

S SR N TR

j=1

which is a sines series expansion of the function f(r) =73, 0 <r < 1.
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Solutions to Exercises 5.5

1. Putting n =0 in (9), we obtain

1 (0 — 2m)! o
(@) =35 2 (- 10 — m)'(0—2m)!x0 '

m=0
The sum contains only one term corresponding to m = 0. Thus

0!
Py(z) = (—1)0m$0 =1

because 0! = 1. For n = 1, formula (9) becomes

M
1 2 —2m)!
_ = Z ( m) gl=2m

21 —m)!(1 —2m)!
where M = ; = 0. Thus the sum contains only one term corresponding to m = 0
and so

1 0 2!
Pi@) = 1D 5mme =

For n = 2, we have M = 2 =1 and (9) becomes

—m)!(2 —2m)!
m=0 m=1

1 , Al LA—2)0
= 5 Y em 1ol ¢
1, 1 3 e

= 4656 +4( 1)2 = 57~

1
v* 4oz (1)
1
2°

For n = 3, we have M = 351 =1 and (9) becomes

1
1 (6 — 2m)! .
P = —_— m
3(2) 23Z 13— m)I(3— 2m)!"

I | R IR TR
= D gEE® Tt mm®

5, 3
= —r — =X.

27 T3

For n = 4, we have M = % =2 and (9) becomes

2
1 m (8_2m)| 4—2m
Pile) = 3D (-1 ml(d—m)(4—2m)!"
m=0
B NI S PR B
24 0'4'4' 24 11312! 24 21210!

= §(35:c — 3022 + 3)
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3. By the first formula in Exercise 2(b) (applied with n and n 4 1), we have

Py (0) = Pont2(0) = = P2y(0) — Pa(n41)(0)
(2n)! ne1_ (2(n41))!
= (—1 22"(71!)2 _(—1) + 22("+1)((n—|—1)!)2
(2n)! L (2n+2)(2n+ 1)((2n))

= V' T Y g s 2
~ @ e )
. )n22(3(n73!!)2 :1+ 2(71:(;)4(_23;_ 1)]

= (- >"22(32!!>2 " %111))]

— )

5. Using the explicit formulas for the Legendre polynomials, we find

/ Piy(z)dz = / (23 — Zx)dx
. 2t T

— 54 3
= "3

Another faster way to see the answer is to simply note that Ps is an odd function, so
its integral over any symmetric interval is 0. There is yet another more important
reason for this integral to equal 0. In fact,

1
/ P,(z)dx =0 foralln #0.
—1

This is a consequence of orthogonality that you will study in Section 5.6.

7. Using the explicit formulas for the Legendre polynomials, we find

/01 Py(z)dz = /Ol(gﬁ - %) dz

This integral is a special case of a more general formula presented in Exercise 10,
Section 5.6.

9. This is Legendre’s equation with n(n + 1) = 30 so n = 5. Its general solution
is of the form

y = abs(@)+c@s(@)
1
= 13(632° = 702% + 152) + ¢5 (1 — 1527 + 302" + )
= ¢1(632° — 702° + 15z) + ¢ (1 — 1527 + 302 + - - +)

In finding Ps(x), we used the given formulas in the text. In finding the first few
terms of Q5(x), we used (3) with n = 5. (If you are comparing with the answers in
your textbook, just remember that ¢; and ¢ are arbitrary constants.)

11. This is Legendre’s equation with n(n + 1) = 0 so n = 0. Its general solution
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is of the form

y = c1Py(x)+ c2Qo(x)
+ 2y By
= ct+cl|lr——=z —z
re 6 5!
.Ig .IS
= 01+02<ZE+?+€+"'>

where we used Pp(x) =1 and (4) with n = 0.

13. This is Legendre’s equation with n(n + 1) = 6 or n = 2. Its general solution
is y = c1Pa(z) 4+ c2Q2(z). The solution will be bounded on [—1, 1] if and only
if ¢ = 0; that’s because P is bounded in [—1, 1] but Q2 is not. Now, using
Py(z) = (322 — 1), we find

y(0) = c1P2(0) + c2Q2(0) = —%1 + c2Q2(0)

If ¢ = 0, then ¢; = 0 and we obtain the zero solution, which is not possible (since
we are given y'(0) = 1, the solution is not identically 0). Hence c2 # 0 and the
solutions is not bounded.

15. This is Legendre’s equation with n(n + 1) = 56 or n = 7. Its general solution
is y = c1P7(x) + c2Q2(z). The solution will be bounded on [—1, 1] if and only if
¢z = 0. Since Pr(z) is odd, we have P;(0) = 0 and so

1= y(O) = 01P7(0) =+ 02Q7(0) = CQQQ(O).
This shows that ¢ # 0 and the solutions is not bounded.

17. (To do this problem we can use the recurrence relation for the coefficients,
as we have done below in the solution of Exercise 19. Instead, we offer a different
solution based on an interesting observation.) This is Legendre’s equation with

1

n(n+1) =2 orn = 1. Its general solution is still given by (3) and (4), with n = £:

Yy = c1y1 + c2y2,

where
1,1 1 1/1 1
33 +1 I-29ld+1i+3
yi(z) = 1_2(22| )$2+(2 )2(24' )(5 )$4+
3., 21,
= ot t
and
L 1)ty Logy i 1)t 42)(L+4a
o) = oo DD BEIG VGG
= $+ix3—|—£x5+...
24 128

Since y1(0) = 1 and y2(0) = 0, 1 (0) = 0 and y5(0) = 1 (differentiate the series term
by term, then evaluate at x = 0), it follows that the solution is y = y1(z) + y2(z),
where y; and yo are as describe above.

19. This is Legendre’s equation with ¢ = 3. Its solutions have series expansions
Y= Zﬁ:g amz™ for —1 < x < 1, where

o mm+l)—p
T m42)(m+1)

Since y(0) = 0 and y/(0) = 1, we find that ap = 0 and a3 = 1. Now because the
recurrence relation is a two-step recurrence, we obtain

O=ayg=ac=a4="-"-
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The odd-indexed coefficients are determined from a;. Taking 4 =3 and m =1 in
the recurrence relation, we find:

2-3 1
az = a] = —=.
(3)(2) 6
Now using m = 3, we find
3(4) -3 9 1 3

and so forth. Thus the solution is

3 3 5,
=r————z°+---.
Y 6 10

23. Using the reduction of order formula in Exercise 22 (with n = 0) and the
explicit formula for Py(x) = 1, we find for —1 < & < 1,

1
W) = A0 [ =

1
= /—1_x2d:c
1 1 1
- _/ — da
2 1+ —-1+=x
1 1 1
_ 5(ha|1+3;|_ha|gc_1|):_m(| ”')

2 | — 1]
- 11 (1—1—35)
I R G

In evaluating the integral, we use the partial fraction decomposition

1 1 1/ 1
1—22 (1-2)(1+2) 2\14+2 —1+z/)°

You should verify this identity or derive it using the standard methods from calculus
for partial fraction decomposition. The second comment concerns the absolute
value inside the logarithm. Because —1 < z < 1, we have |1 + 2| = 1 4+ z and
| =14 2| =1— . So there is no need to keep the absolute values.

29. (a) Since
’(x +iv/1— 22 cos )"
it suffices to prove the inequality
’x + iﬂcos@’ <1,
which in turn will follow from

2
’x—i—i\/l—chosH’ <1.

For any complex number « + i3, we have |a +i3[?> = o? + 3. So

2
’x—l—i\/l—chosH’ = 2?2+ (V1 — 22cos0)?

n
= ’x—i—i\/l—chosH’ ,
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which proves the desired inequality.
(b) Using Laplace’s formula, we have, for —1 <z < 1,

Po(@)| = =

/ (x +ivV1—2a2cosh)” d9’
™ |Jo

1 s

—/ (x+iv1—2a2cosh)”
™ Jo

1 T
L / 6 (by (a))

T
= 1

IN

IN

31. Recall that if « is any real number and k is a nonnegative integer, the kth
binomial coeflicient is

(a> e Da =2 02D g >

and ( g ) = 1. With this notation, the binomial theorem asserts that
(1+x)* —Z( ) , —l<z<l.
k=0

(a) Set o= —1, and obtain that

o0

Z 22k k' o", lv] < 1.

Solution We have

()

k factors

—_
7N
w||

—_
|
—_
"
/‘\
w||
—_
|
—~
=N
|
—_
S—
"

2k (2-1)-(2-2)---(2- k)
(D% (2K)! _ (=D*(2k)!

1 —
k2
1-1 (-3 (2k — 1)
- ws () (55)
1 k
= E zk [1-3.--(2k —1)]
1 (=DF[1-2-3-4---(2k—1)-(2k)]
Tk 2k 2-4---(2k)
1 (=" (2k)!
k!
1
k!

2k 2R(K1)  22k(k!)2

So, for |v| < 1, the binomial series gives

1 e e —1/2 =
= - Y /_Z( /> Z k22kk' v*

k=0 =0
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(b) We have

1
14+ (—2zu + u?)

(—l)k %(—2xu + u2)k

>

k=0
NS @R SR
- kzzo( 1) 22k(k!)2j¥0<j )( 27u)

>

k
Z(_l)k ﬂ(_l)kﬂ'#zkﬂ'xkﬂ'ukﬂ'u%

S T PR (R (k=)
oo k
: (2F)! k=g, ki
= —1)7 i T kti
kZ:o;( T TR TR

Let n =k +j,s0 k =n —j and j cannot exceed n/2, because 0 < j < k. Hence

n/2

1 G n R (2(n —j))! 22
Ve rrenr B SR Dl vy g )

Z u" Py (x)
n=0
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Solutions to Exercises 5.6

1. Bonnet’s relation says: Forn =1, 2, ...,
(n+ )P, 11(x) + nPyr_1(z) = 2n + 1)xP,(z).

We have Py(z) =1 and Py(x) = . Take n = 1, then

2Ps(x) + Po(x) 3xPy(x),

2Py (z) = 3z-z—1,
L, o
Py(z) = 5(33: —1).

Take n = 2 in Bonnet’s relation, then

3P3({E) + 2P1({E) = 5$P2({E),

3Ps(z) = 533(%(3332—1))—23;,

Py(z) = —a°— 2%
Take n = 3 in Bonnet’s relation, then
4Py(z) + 3Py(x) = TzPs(x),

4Py(z) = 7x(§x —-xz) - g(x2 -1),

1
P4($) = Z |:?$4 — 15$2 + =1.

/1 z Py(z) dz = /1 Py(2) Py(2) dz = 0,

—1 —1
by Theorem 1(i).

5. By Bonnet’s relation with n = 3,

TePs(x) = 4Py(x)+ 3Px(z),
xPs(x) = %P4($)+2P2(x).

So

/1 2 Po(2)Py(2) dz = /1 (%P4(x) + %g@:)) Po(x) dz

—1 —1

4 [t 3 ! )
= = Py(x) Py(z)dx + = [P2(x)])” dx
7)., 7).,
32 6
- 75T

where we have used Theorem 1(i) and (ii) to evaluate the last two integrals.

1
7. / 22 Py(x) dr = 0, because 22 is even and P;(z) is odd. So their product is

-1
odd, and the integral of any odd function over a symmetric interval is 0.
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9. (a) Write (4) in the form
(2n +1)Po(t) = Py (t) — Py (1)

Integrate from z to 1,

(2n+1)/:Pn(t)dt = /;leﬂ(t)dt—/ P (t)dt

= (Pnfl(x) - Pn+1(x)) + (Pn+1(1) - Pnfl(U)-

By Example 1, we have P,41(1) — P,—1(1) =0. Soforn=1, 2, ...

/ Po(t)dt = JT[Pn,l(x) — Poyi()].

163

(b) First let us note that because P, is even when is even and odd when is odd, it

follows that P,(—1) = (—=1)"P,(1) = (—=1)". Taking x = —1 in (a), we get

/71 P, (t)dt = 2n1+ T Pn-1(=1) = Pun (1] = 0,

because n—1 and n+1 are either both even or both odd, so P,_1(—1) = Pp41(—1).

(c) We have
0_/11Pn(t)dt_/iPn(t)dH/;Pn(t)dt'
So
/man(t)dt - _/;Pn(t)dt
_ ‘JT[P"”@)_P"“(@]
= s (Pan(®) — Paa()
11. (a)

1 1 1
/ xPy(x) d:c:/ xdr = =;
0 0 2

1 1 1
/ xPy(x)dx = / r?de = -
0 0 3

(b) Using Bonnet’s relation (with 2n in place of n):

1
P = ——[(2n + 1) Panta1(2) + 2nPap—1(2)] .
In+1
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So, using Exercise 10 (with n and n — 1), we find

/lepzn(x) dv = 4n1+1 [(271—1— 1)/01 Py () d:c+2n/01 Py (1) dx]
S T S
- L:F)Z 2%2721')2(71); 0 [(2” + 1)% A+ 1)n2]
N 4(;3? 22n2721')2(n>+ oy [+ 1)

(—1)"*(2n — 2)!
22n((n — 1)))2n(n + 1)

Using Bonnet’s relation (with 2n + 1 in place of n):

$P2n+1 = [(27’L + 2)P2n+2($) + (27’L + 1)P2n($>] .

in+3

Now using Exercise 10, it follows that fol x Popi1(z) dz = 0.

13. We will use D" f to denote the nth derivative of f. Using Exercise 12,

1
/ (1—x2)P13(x)d:c—213 B / DB[(1 - 23] (2> - 1)B¥dz =0

-1

because D*3[(1 — 2?)] = 0.

15. Using Exercise 12,

/1 2" Py(z)de = (=D" /llD"[x"](xQ—l)"d:c

-1 27!
—1)n 1
2 -1
_1 n s 1 s
= ( 2,3 / (cos® @ — 1)" sin6df = 2—n/ sin®"*! 9do
0 0
(Let = cosf, dx = —sin6df.)
1 71'/2 1 g
= = 0?1 gdo + — [ sin®**' 0do
2n Jo 2" Jrj2
1 71’/2 1 71’/2
- o 021 9dg + > /. sin2" (0 + g)do
0
1 71’/2 1 71’/2 T
= — 0"t 0do + — cos®™ 1 0do  (sin(f + =) = cos )
2n Jy 2n 2
_ l /2 2 g — l 22n(n!)2 _ 2n+1(n!)2
2n 2n (2n+1)! 2n+ 117
0

where we have used the results of Exercises 41 and 42, Section 4.7.
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17. Using Exercise 12,

/1n(1—x)P2(x)d:c (_21;! 11D2[1n(1_x)](x2_1)2dx

. 2
|
- 5 e e
-1 -1 1 -1
= — 1)?2de = — 13 =—.
5 ) fwHDide=grl@+ )7 =3
21. For n > 0, we have
—(n—1)!
D"[In(1—z) = ——~.
[In(1 — z)] A=z

/ In(1 —z) Py(z)de = (;}73:1 11D"[1n(1_x)](x2_1)"dx

()" n—1) [P (+ )" (-1
- 2mn) /,1 (1—x)» dz
=1t | —t
= o 71(x+1) dzr = Sn(n 1) (x+1) »
- —2

nn+1)

For n = 0, we use integration by parts. The integral is a convergent improper
integral (the integrand has a problem at 1)

/1 In(1 — z) Py(a)dz = /1 In(1 — z) dz

—1 1

1
= —(1l-2)ln(l—2)—2| =-24+2In2.
—1

To evaluate the integral at = 1, we used limg_,1(1 — z)In(1 — z) = 0.
27. Let f(z)=|z|, -1 <z <1. (a) We have

1
Ay = l/ |x| Po(z) dx
2J4

1
1
= /xdx:—
0 2

2+1 1
A = 2l |z| xdx =0
2 )
(Because the integrand is odd.)

5 (1 1
Ay = 5/ |x|§(3x2—1)d:c

-1

1
= §/ x(3x2—1)d:c:§.
2 )y 4

(b) In general Asgy1 = 0, because f is even, and

dn+1 [*
Aop n2+ / || Pon () dz
1

= (4n+1)/0 x Py (z) dx

(=1)"*!(2n — 2)!
920 ((n— 1)2n(n + 1)

= (4n+1)
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by Exercise 11
29. Call the function in Exercise 28 g(z). Then

(12l +2) = 5 (lal + Pi()).

N~

g(z) =

Let By denote the Legendre coefficient of g and Ay denote the Legendre coefficient
of f(x) = |z|, for —1 < & < 1. Then, because P;(z) is its own Legendre series, we

have
. 1 Ag if k#1
Tl LA+ 1) ifk=1

Using Exercise 27 to compute Ay, we find

1 1 1
Bo=-Ag=-, Bi==+-A1=~+0=>Boy1 =0, n=1,2
0 o=, B 2+ 1 +0 5 Ban1 0,n=1,2,...,
and
1 (—1)"*+1(2n — 2)! [dn +1
B2n:_A2n: .
2 22ntl((n —1)HY2n \ n+1

31. (a) For —1 < z < 1, we use the result of Exercise 30 and get and the Legendre
series

In(1+ x) In(1— (—x))

= 1n2—1—zﬂPn(—x)

—n(n+1)

o0

— m2-1- Z(—U"% Pa(),

n=1

because P,(—z) = (—1)"P,(x).
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Solutions to Exercises 6.1

1. Let f;j(x) = cos(jmzx), j =0, 1, 2, 3, and g;(z) = sin(jnrz), j = 1, 2, 3. We
have to show that f02 fj(@)gr(x) dx = 0 for all possible choices of j and k. If j = 0,
then

2 2
-1 2

/ fi(@)gr(x)dr = / sin krx de = — cos(krz)| = 0.

0 0 km 0

If j #0, and j = k, then using the identity sin «cosa = %sin 2a,
2 2
/ fi(x)gj(x)dx = / cos(jmz) sin(jrx) dx
0 0
1 2
= —/ sin(2jmx) dz
2 Jo

-1
= ——cos(2jmx)

2
45m ’

=0.
0
If j #0, and j # k, then using the identity

sincos =

(sin(a + B) + sin(a — B)),

N~

we obtain

[ fwm@ar =
0

2
sin(kmzx) cos(jrx) dz

wl»—tC\

/ sin(k + j)ma + sin(k — j)mz) da

2

-1 1 1
= 2_(k - cos(k + j)mx + - cos(k —j)mc) ’0 =0.

5. Let f(z) =1, g(x) = 2z, and h(z) = —1 + 4z. We have to show that

/71 f(@)g(x)w(z)dx =0, /71 f@)h(z)w(z)dx =0, /71 g(x)h(x)w(x)dr = 0.

Let’s compute:
/ f(z d:c—/ 2z\/1 —22dx =0,

because we are integrating an odd function over a symmetric interval. For the
second integral, we have

[ somatoras = [ 1eayi= R

= /(—1+4c0529)sin29d9
0
(x =cosf, dv = —sinfdf,sinf >0 for 0 <0 < m.)

/ sin 9d9+4/ (cos fsin 0)* df
0 0

T cos20 [T 1
/ S 1044 / (3 sin(26))* df
0 0

_ —E—l-/ 1_COS(49>d9:0
0 2
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For the third integral, we have
1 1
/ g(x)h(z)w(x)de = / 22(—1 + 42%)\/1 — 22 dx = 0,
-1 -1
because we are integrating an odd function over a symmetric interval.
9. In order for the functions 1 and a + bx + 22 to be orthogonal, we must have
1
/ 1-(a+br+2*)dr=0
-1
Evaluating the integral, we find

2
= 2a+-=0

b 1
ar + — g2 + Zg3
-1 3

1
2 3 ’

1
a = ——.
3

In order for the functions x and % +bx + 22 to be orthogonal, we must have

1
1
/ 1~(§+b:c+x2)xdx:()
—1

Evaluating the integral, we find

12 b3 141 _
R e

b =

S wlo

13. Using Theorem 1, Section 5.6, we find the norm of P, (x) to be

- (f o) - () -

Thus the orthonormal set of functions obtained from the Legendre polynomials is

V2
— Y _P(2), n=0,2 ...
g1 (@)

17. For Legendre series expansions, the inner product is defined in terms of
integration against the Legendre polynomials. That is,

1
P)= [ f@P @ = A,

where A; is the Legendre coefficient of f (see (7), Section 5.6). According to the
generalized Parseval’s identity, we have

o0

[ e Z \PHQ

)
]+1 27 +1

2

I
Yo

(The norm || P;|| is computed in Exercise 13.)
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Solutions to Exercises 6.2

1. Sturm-Liouville form: (xy’)/ + Ay =0, p(z) =z, g(z) =0, r(x) = 1. Singular
problem because p(z) =0 at x = 0.

5. Divide the equation through by x2? and get y?// - g—; + A% = 0. Sturm-Liouville
form: (%y’)/ + AL =0, p(x) = L, g(x) =0, r(x) = 1. Singular problem because
p(z) and r(x) are not continuous at z = 0.

9. Sturm-Liouville form: ((1—x?) y’)/—i-)\y =0,p(x)=1-22% q(x) =0, r(z) = 1.
Singular problem because p(£1) = 0.

13. Before we proceed with the solution, we can use our knowledge of Fourier
series to guess a family of orthogonal functions that satisfy the Sturm-Liouville
problem: yi(z) = sin L;lx, k=0,1,2,.... It is straightforward to check the
validity of our guess. Let us instead proceed to derive these solutions. We organize
our solution after Example 2. The differential equation fits the form of (1) with
p(z) =1, ¢(x) =0, and r(z) = 1. In the boundary conditions, a = 0 and b = T,
with ¢; =ds = 1 and ¢2 = d; = 0, so this is a regular Sturm-Liouville problem.
We consider three cases.

CASE 1: A < 0. Let us write A = —a?, where a > 0. Then the equation becomes
y" — a?y = 0, and its general solution is y = c¢; sinh ax + ¢ coshax.  We need
y(0) = 0, so substituting into the general solution gives co = 0. Now using the
condition 3/ (7) = 0, we get 0 = ¢jcosh arr, and since cosh z # 0 for all x, we infer
that ¢y = 0. Thus there are no nonzero solutions in this case.

CASE 2: )\ = 0. Here the general solution of the differential equation is y =
c1x + c2, and as in Case 1 the boundary conditions force ¢; and ¢z to be 0. Thus

again there is no nonzero solution.

CASE 3: ) > 0. In this case we can write A = a? with o > 0, and so the
equation becomes y” 4+ a?y = 0. The general solution is y = c¢; cos ax + co sin a.
From y(0) = 0 we get 0 = ¢3 cos0 + c2sin0 or 0 = ¢;. Thus y = casinax. Now
we substitute the other boundary condition to get 0 = caarcosam. Since we are
seeking nonzero solutions, we take co # 0. Thus we must have cosar = 0, and
L;l' Since A = a2, the problem has eigenvalues

N ELER 2
k — 2 )
and corresponding eigenfunctions

2k+1
2

hence a =

Y = sin z, k=0,1,2,....
17. Case I'If A = 0, the general solution of the differential equation is X = ax +0b.
As in Exercise 13, check that the only way to satisfy the boundary conditions is to
take a = b= 0. Thus A =0 is not an eigenvalue since no nontrivial solutions exist.
Case II If A = —a? < 0, then the general solution of the differential equation
is X = c¢1 cosh ax + co sinh az. We have X’ = ciasinh o + coar cosh aex. In order to
have nonzero solutions, we suppose throughout the solution that ¢; or ¢z is nonzero.
The first boundary condition implies

cit+aco =0 ¢4 =—acs.
Hence both ¢; and ¢y are nonzero. The second boundary condition implies that
c1(cosh a + asinh o) + eo(sinh o + accosh ) = 0.
Using ¢; = —acs, we obtain
—acg(cosh o + asinh o) + ca(sinha + acosha) = 0 (divide byes # 0)
sinha(l—a?) = 0
0

sinha =0 or 1 — a?
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Since a # 0, it follows that sinh v # 0 and this implies that 1 —a? = 0 or o = #1.
We take o = 1, because the value —1 does not yield any new eigenfunctions. For
« = 1, the corresponding solution is

X =cjcoshz + cosinhx = —cy cosh x + co sinh
because ¢; = —ace = —cg. So in this case we have one negative eigenvalue \ =
—a? = —1 with corresponding eigenfunction X = cosh z — sinh x.

Case III If A = o? > 0, then the general solution of the differential equation is
X =cicosax + cosinax.

We have X’ = —cjasin ax + coa cos ax. In order to have nonzero solutions, one of
the coefficients ¢ or co must be # 0. Using the boundary conditions, we obtain

c1 + aco

ci(cosa — asina) + ca(sina + acosa) =

The first equation implies that ¢; = —ace and so both ¢; and co are neq0. From
the second equation, we obtain

—acg(cosa — asina) + ca(sina + acosa) =

—a(cosa — asina) + (sina + a cos a)
sina(a? +1)

Since a? + 1 # 0, then sina = 0, and so « = n7w, where n = 1, 2, .... Thus the
eigenvalues are
A = (nm)?
with corresponding eigenfunctions
Yn = —NT COSNTT + sin nmwx, n=12,....

21. If A = &2, then the solutions are of the form c¢; cosh ax + ¢ sinh ax. Using
the boundary conditions, we find

y0)=0 = =0
y(1)=0 = cosinha=0.

But a # 0, hence sinh a # 0, and so ¢ = 0. There are no nonzero solutions if A > 0
and so the problem as no positive eigenvalues. This does not contradict Theorem 1
because if we consider the equation y” — Ay = 0 as being in the form (1), then
r(z) = —1 < 0 and so the problem is a singular Sturm-Liouville problem to which
Theorem 1 does not apply.

25. The eigenfunctions in Example 2 are y;(z) = sinjz, j =1, 2, .... Since f is
one of these eigenfunctions, it is equal to its own eigenfunction expansion.

29. You can verify the orthogonality directly by checking that
27
/ sin % sin % dx =0 if m #n (m, n integers).
0

You can also quote Theorem 2(a) because the problem is a regular Sturm-Liouville
problem.

33. (a) From Exercise 36(b), Section 4.8, with y = Jy(Ar) and p = 0, we have

2\? / () Prdr = [y (@))? + Xa?[y(a)]”
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But y satisfies the boundary condition 3’ (a) = —xy(a), so

2)‘2/()a[y(T)]2r dr = @&’ [y(a)]* + Na?[y(a))%;
¢ 2 _ a® [ o[Jo(Mwa))? 2
[werrar = 5 |22 o)
- % [[Jo(Awa)]® + [J1(Aea)]?]

because, by (7), [Jo(A\ra)]* = [%Jl()\ka)f.
(b) Reproduce the sketch of proof of Theorem 1. The given formula for the coeffi-
cients is precisely formula (5) in this case.

35. Because the initial and boundary values do not depend on 0, it follows that the
problem has a radially symmetric solution that does not depend on 6. Following
the steps in the solution of Exercise 10, Section 4.2, we find that

u(r, t) = ZAke*)‘itJO()\kr) (t>0,0<r<1),
k=1

where, due to the Robin boundary condition, the radial part R in the product so-
lutions must satisfy the boundary condition R'(1) = —R(1). (If you separate vari-
ables, you will arrive at the equation in R that is treated in Example 6.) Considering
that R(r) = Jo(Ar), this condition gives AJj(A\) = —Jo(A). Using Ji(r) = —J1(r),
we see that A is a solution of equation (7): AJ1(A) = Jo(A). Setting ¢t = 0 and using
u(r, 0) = 100, we find that

100 = Y ApJo(Aer),
k=1

which is the series expansion in Exercise 34. Thus

B s Jo(Ar)
u(r, t) = 200 kZ:l A2 ([Jo(A))2 + [ (A\)]2)

e M T (M) (> 0,0 <7 < 1).
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Solutions to Exercises 6.3

1. (a) The initial shape of the chain is given by the function
f(z) = —-.01(x—.5), 0<z<.5

and the initial velocity of the chain is zero. So the solution is given by (10), with
L = .5and B; =0 for all j. Thus

) = 2 Ay (0,2 cos (/25 1),

To compute A;, we use (11), and get

A = 2 /0'5(—.01)(33—.5)570(@]-\/%) dz

Ji ()
.5
- J%Z;/o (2= 5)Jo (0522 da

Make the change of variables s = a;Vv2z, or s* = 2ajz, so 2sds = 2ajdx or
dr = 25 ds. Thus

02 [ 5
4; = Jz—)/o (—?S —.5)Jo(s)

where we have used the integral formula (15), Section 4.3, with a = a = a;. We
can give our answer in terms of J; by using formula (6), Section 4.8, with p = 1,
and x = o;. Since a; is a zero of Jy, we obtain

%Jlmj) = Jo(a) + Ja(a) = o).

So

Thus the solution is

u(z, t) =

where g ~ 9.8 m/sec?.
Going back to the questions, to answer (a), we have the normal modes

uj(z, t) = %JO (aj\/%) cos (@%t) .

The frequency of the jth normal mode is
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A six-term approximation of the solution is
0 04 Q;
u(z, t) = E: () Jo (on\/2:c) cos (\/29 5 t) .

Jj=1

At this point, we use Mathematica (or your favorite computer system) to approxi-
mate the numerical values of the coefficients. Here is a table of relevant numerical
data.

] 1 2 3 1 5 6
a; | 240483 | 5.52008 | 8.65373 | 11.7915 | 14.9309 | 18.0711
v; | 847231 | 1.94475 | 3.04875 | 4.15421 | 5.26023 | 6.36652
A; | 005540 | —.000699 | .000227 | —.000105 | .000058 | —.000036

Table 1 Numerical data for Exercise 1.




174

Chapter 6 Sturm-Liouville Theory with Engineering Applications

Exercises 6.4

1. This is a special case of Example 1 with L = 2 and A = o*. The values of o
are the positive roots of the equation

1
cosh 2o’

cos2a =

There are infinitely many roots, «,, (n =1, 2, ...), that can be approximated with
the help of a computer (see Figure 1). To each «,, corresponds one eigenfunction

cosh 2a,, — cos 2ar,

X, (x) = cosh ax — cos apx — (sinh o, — sin )

sinh 2¢v,, — sin 2a;,

5. There are infinitely many eigenvalues A = a*, where « is a positive root of the
equation

1
cosha’

Cos ¥ =

As in Example 1, the roots of this equation, a,, (n = 1,2, ...), can be approxi-
mated with the help of a computer (see Figure 1). To each «,, corresponds one
eigenfunction

cosh a,, — cos ay,

X (x) = cosh apx — cos ax — (sinh cv,x — sin )

sinh o, — sin a,

The eigenfunction expansion of f(z) =z(1 —z), 0 <z < 1, is

f(x) = Z Aan(x),

where

fol z(1 —2) X, (x)dx '
Jy X2(z) d

After computing several of these coefficients, it was observed that:

An ==

1
/ X2(x)dr =1 foralln=1,2,...,
0

Ay =0 foralln=1,2,....
The first three nonzero coefficients are
Ay =.1788, A3 =.0331, As;=.0134.

So
F(z) ~ 1788 X1 (z) + .0331 X5(z) + .0134 X5(),

where X, described explicitely in Example 1. We have

Xi1(z) = cosh(4.7300x) — cos(4.7300 x) + .9825 (sin(4.7300 x) — sinh(4.7300 x)),
Xa(z) = cosh(1.0008 ) — cos(1.0008 z) + 1.0008 (sin(1.0008 ) — sinh(1.0008 x)),
Xs(z) = cosh(10.9956 ) — cos(10.9956 =) + sin(10.9956 x) — sinh(10.9956 z),
Xi(z) = cosh(14.13722) — cos(14.13722) + sin(14.1372 x') — sinh(14.1372 ),
Xs5(x) cosh(17.2788 ) — cos(17.2788 x) 4 sin(17.2788 ) — sinh(17.2788 ).

9. Assume that p and X are an eigenvalue and a corresponding eigenfunction of
the Sturm-Liouville problem

X"+ puX =0, X(0)=0, X(L)=0.
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Differentiate twice to see that X also satisfies the fourth order Sturm-Liouville
problem

X®W —AX =0,
X(0)=0, X”(0)=0, X(L) =0, X"(L)=0.

If o and X are an eigenvalue and a corresponding eigenfunction of
X"+puX =0, X(0)=0, X(L)=0,
then differentiating twice the equation, we find
XW 4 X" =0, X(0)=0, X(L)=0.
But X” = —pX, so X — 12X = 0 and hence X satisfies the equation X(*) —\X =

0 with A = p2. Also, from X(0) = 0, X(L) = 0 and the fact that X" = —uX, it
follows that X" (0) =0 and X" (L) = 0.



176

Chapter 6 Sturm-Liouville Theory with Engineering Applications

Exercises 6.6

1. Ugzyy = 0, Uszae = 4!, Uyyyy = —4, V4 = 0.

3. Let u(x, y) = 77 and v(z, y) = = - u(x, y). We know that u is harmonic
(Exercise 1, Section 4.1), and so v is biharmonic by Example 1, with A =0, B =1,
C=D=0.

5. Express v in Cartesian coordinates as follows:
v = 712cos(20)(1 —r?)
= 7?[cos? 0 —sin? 0](1 — r?)
= (@ -y)(1- @ +y?).
Let u = 22 — y?. Then u is harmonic and so v is biharmonic by Example 1, with
A=1,D=1,B=C=0.

7. Write v = r% - " cosnf and let u = r" cosnf. Then u is harmonic (use the
Laplacian in polar coordinates to check this last assertion) and so v is biharmonic,
by Example 1 with A=1and B=C =D =0.

9. Write v = ar?Inr + br? + clnr +d = ¢ + 1, where ¢ = [ar? + c]Inr and
1 = br?+d. From Example 1, it follows that 1 is biharmonic. Also, Inr is harmonic
(check the Laplacian in polar coordinates) and so, by Example 1, ¢ is biharmonic.
Consequently, v is biharmonic, being the sum of two biharmonic functions.

11. Since the boundary values are independent of 6, try for a solution a function
independent of § and of the form u = ar?Inr + br? +clnr + d. We have

ur = 2arlnr 4+ ar + 2br + - 2arInr 4+ r(a + 2b) + <
r r

Now use the boundary conditions to solve for the unknown coefficients as follows:

w(l,0)=0 = b+d=0,

u(2,0) =0 = 4aln2+4b+cln2+d=0,
u(l,0)=1 = a+2b+c=1,

(2,0 =1 = 4a1n2+2a+4b+§:1.

Solving this system of four equations in four unknowns, we find

o 22 2 22
T3 4m2’ VT 3—-4m2 °T 3—4m2’ ‘T 3-4m2’

a

and hence the solution

u(r, 0) = (r*lnr —2In(2)r* + 2In7 + 21n2).

3—4In2

13. We follow the method of Theorem 1, as illustrated by Example 2. First, solve
the Dirichlet problem V2w = 0, w(1, 0) = cos26, for 0 < r < 1,0 < 6§ < 27.
The solution in this case is w(r, ) = r?cos26. (This is a simple application of
the method of Section 4.4, since the boundary function is already given by its
Fourier series.) We now consider a second Dirichlet problem on the unit disk with
boundary values v(1, 6) = %(w.(1,60) — g(#)). Since g(d) = 0 and w,(r, ) =
2r cos 20, it follows that v(1, 6) = cos 26. The solution of th Dirichlet problem in v
is v(r, @) = 72 cos 20. Thus the solution of biharmonic problem is

u(r, 0) = (1 — r?)r? cos 20 + 12 cos 20 = 2r? cos 20 — r* cos 26.
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This can be verified directly by plugging into the biharmonic equation and the
boundary conditions.

15. We just give the answers details: w(r, §) =1, V2v =0, v(1, §) = 3(1 —cosb),
o(r, 0) = —4rcosb; u(r, 0) = —ircosf(1 —r?) + 1.
17. (1, 0) = 0 implies that w = 0 and so v(1, §) = -2 S0
v(r, 0) = 1 [ao + i " (cos nf + by, sinnf)]
3 2 — 3

where a,, and b,, are the Fourier coeflicients of ¢g. Finally,

u(r,0) = (1 —r*)v(r,0) = —%(1 —r?) [ao + Z r"(cos nd + by, sin nﬁ)] .
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Exercises 6.7
12. Correction to the suggested proof: yo = Iy and not Jj.

15. Repeat Steps 1-3 of Example 2 without any change to arrive at the solution
Z o, cos(kct) + By sin(kZct)) o (r),

where the ks are the positive roots of (16). Putting ¢t = 0 we get 0 = >_°° | a, ¢y (1),
which implies that «,, = 0 for all n. Differentiating with respect to t then setting

t = 0, we obtain
= kpcBudn(r)
n=1

which implies that

1 1
/ g(r)on(r)rdr = kflcﬁn / (;5721 (r)rdr
0 0

or

fo r)rdr
k%cﬁn fo (;5,21 Tdr

The integral fol @2 (r)rdr is given by (23).

17. Let uq(r, t) denote the solution of the problem in Example 3 and let ua(r, t)
denote the solution in Example 3. Then, by linearity or superposition, u(r, t) =
up(r, t) + uz(r, t) is the desired solution.

19. Sketch of the solution:

u(Ta t) = ZAn(t)¢ (T)
wi(r,t) = Y AL(E)dn(r)

Viu(r, t) = ZkﬁA
n=1

u = -V = AL (t) = -2k}

where A,, is a constant. So

)= A= Fulg, (r).
n=1

Setting t = 0, we get, for 0 <r < 1,

100 = f: A (r)

n=1

Thus A, is as in Example 1.
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Solutions to Exercises 7.1
1. We have

|1 if—a<zxz<a, (a>0)
fl@) = { 0 otherwise,

This problem is very similar to Example 1. From (3), if w # 0, then

1 [ 1 [ inwt]* 2si
= —/ f(t) coswtdt = —/ coswtdt = [smw ] — Zomaw.
T J o T .

—a W W

a2
T J_ oo T J_ 4o T

Since f(x) is even, B(w) = 0. For |z| # a the function is continuous and Theorem
1 gives

If w =0, then

flw) ==

™

2a [°° sin aw coswzx
S — 75
0 w

For x = +a, points of discontinuity of f, Theorem 1 yields the value 1/2 for the
last integral. Thus we have the Fourier integral representation of f

1 if || < a,
dw =< 1/2 if|z| =a,
T Jo v 0 if |z] > a.

2a [°° sinaw cos wx

3. We have

[ 1—=cosz if—7/2<z<m/2,
@) = { 0 otherwise.

The solution follows by combining Examples 1 and 2 and using the linearity of the
Fourier integral, or we can compute directly and basically repeat the computation
in these examples. Since f is even, B(w) = 0 for all w, and

2 71’/2
Alw) = —/ (1 — cost) coswt dt
T Jo
25si 2 2
= 2sin(rw/2) —/ [cos(w + 1)t + cos(w — 1)t] dt
W T Jo
_ 2sin(rw/2) 1 [51 n(w + 1)t smw ] (w £ 1)
W s w+1 w —
2sin(mw/2) 1 sin(w + 1) g sm(w—l 5
= - +1
Tw m w+1 w—1 (w# +1)
_ 2sin(rw/2) 1 [cos*GE  cos &F
N Tw 7r w+1 -1
94
_ sin(rw/2) 2 cos E,
W ml— w2 2
If w==+1,
2sin(£r/2) 2 [7/?
Alw) = 2sin(Em/2) )——/ cos? t dt
+7 T Jo

2

2 2 (™%
_ ___/ ltcos2t, 2 _1
I T 2

(Another way to get this answer is to use the fact that A(w) is continuous (whenever
f is integrable) and take the limit of A(w) as w tends to £1. You will get 3.
Applying the Fourier integral representation, we obtain:

2 [ [si 2 = — i
_/ (s1n(7rw/ ) _ s 22> coswzdw = f(x) = { L —cosw }f |xI i
0

T w 1—w 0 if |z

wl=\t¢|=\
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5. since f(x) = e~1*! is even, B(w) = 0 for all w, and

2 (o)
Alw) = —/ e coswt dt
T Jo
2 et >
= = 5 [~ cos wt + wsin wt]
Tl4+w 0

2 1
14 w?’

where we have used the result of Exercise 17, Sec. 2.6, to evaluate the integral.
Applying the Fourier integral representation, we obtain:

~Jal 2/00
e = —
™ Jo
if0<ax<1,

1
fl@) = { 0 otherwise,

is neither even nor odd. We will need to compute both A(w) and B(w). For w # 0,

Truz coswz dw.
w

7. The function

1 1
A(w) = —/ coswtdt = — ;
o T

s

1 [t 11
B(w) = —/ sinwtdt = —
0 T

s

1 sinw

w

— COosw
w .

If w = 0, just take limits of A(w) and B(w) as w tends to 0. You will find: A(0) = <
and B(0) = 0. Thus we have the Fourier integral representation of f

1

s

9. The function
T

2—x
—2—zx

0

flz) =

o0
—/ (sinwcoswz + (1 — cosw) sinwz), dw =
0

0 ifz<0oraxz>1,
1/2 ifz=0o0rz=1,
1 ifo<z<1.

if —-l<z<1,
ifl<ax <2,
if =2 <z < -1,
otherwise,

is odd, as can be seen from its graph. Hence A(w) = 0 and

B(w) = / ) sinwt dt
2 2 [? )
= = tsmwtdt—i— (2 —t)sinwt dt
Q 1
2| —t L coswt
= —|—cos wt dt
T | w w
2 — / cos wt ]
+— | - CcOS wt
s

2
= [2sinw — sin 2w] .

Tw?

Since f is continuous, we obtain the Fourier integral representation of

2 (1
flz) = —/ —5 [2sinw — sin 2w] sin wz, dw.
Tty w
11. For the function
Flx) = sinz if0<z<m,
10 otherwise,
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we have
1 /7.
Aw) = —/ sint cos wt dt
™ Jo
1 T :
= — [sin(1 +w)t + sin(1 — w)t] dt
27T 0
1 [ecos(l+w)t cos(l—w)t]|"
1 1
27 [ 17w | 1-w 0 w7y
_ 1 Jeos(w+ )7  cos(l —w)r 1 1
T or 14w l—w ltw 1-w
1 [coswm  coswm 2
o2 | 14w l-—w 1—w?
I S 1].
p T —y [cos wr + 1]
1 (" . .
B(w) = —/ sint sin wt dt
™ Jo
1 s
™ Jo
1 [sin(1+w)t sin(l—w)t]|"
1 - 1
2 [ 1+w L—w ], s
1 [sin(w+Dm  sin(l —w)m
o0 14w 1—w
B sin wm
(1 —w?)

Thus the Fourier integral representation of f is

1 /1 i
flx) = _/ [M coswx + % sinwx] dx.
0

1—w? —w

13. (a) Take z =1 in the Fourier integral representation of Example 1:

2 [*° sinw cosw 1 *° sinw cos w T
z ——dw== = —dw = —.
0 2 0 4

181

T w w
(b) Integrate by parts: u = sin® w, du = 2sinw cosw dw, dv = ﬁdw, v = —%:
=0
o0
> sin? w sin® w °° gin w cos w s
5 dw = +2 ———dw =5,
0 W wo |, 0 w 2
by (a).
o0 : 2
15. / SHiwcos 2w dw = 0. Solution Just take z = 2 in Example 1.
0
17.

0 if z <0,
dv=< /2 ifz=0,
me " ifx > 0.

/Oo €os Tw + w sin zw
0 1+ w?

Solution. Define
0 if x <0,
flx)=< =n/2 ifz=0,
me * ifx>0.
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Let us find the Fourier integral representation of f:

1 (o)
A(w) = — / me” ¥ coswx dr =
T Jo 14+ w?
(see Exercise 5);
1 /> .. w
B(w) = — e  “sinwzr dr = ——,
T Jo 14+w

(see Exercise 17, Sec. 2.6). So

*° coswx + w sin wx
p— d
f(x) ‘/0 1 + w2 w,

which yields the desired formula.

19. Let f(x) = e~ where a > 0. Then f, satisfies the conditions of Theorem
1, f is continuous and even. So it has a Fourier integral representation of the form

el :/ A(w) cos wz de,
0

where

2 o0
Alw) = —/ e coswx dx
0

T
2a

m(a? + w?)’

where the integral is evaluated with the help of Exercise 17, Sec. 2.6 (see Exercise
5 of this section). For z > 0, the Fourier integral representation becomes

o0
oo _ 2a coswx

——d > 0).
T Jo a?+4w? w (z20)

23. (a)

Si(—z) = /O h %dt
“sin(—u) " ot u—
/o (—u) (-1)d (Let t.)
= —/ Smu du = —Si(x).
0

u

Thus Si(z) is an odd function.
(b) limg . o Si(x) = lim, .o —Si(z) — 5, by (8).

(¢) We have
oo s2n+1
sint = HZ:O(—l) ES —o0<t< oo
sint = .t .
— = HZ:O(_U T oo <t<oo (Divide by t.)

By a well-known property of power series, a power series may be integrated term
by term within its radius of convergence. Here we are dealing with power series
that converge for all ¢; thus we may integrate them term by term on any interval.



Section 7.1 The Fourier Integral Representation

In particular, we have

t

t
Z 2n+1)>dt

©ve
0{ 2n+1>/ &0
v

1 2n+1’
2n+1)'2n+1 0

[/)

Si(z) =

Il
Mg%%

3
Il

I
Mg

n=0

n 1 2n+1
(=1) (2n+1)!(2n + 1) o

/smt /smt
Si( /Sl_ntd_/wd_/smt

Il
g

25. We have

So

27. Let u=1—cosz, du =sinzx, dv = xl—gd:c, v = —%. Then
b b b .
1 — cos 1 — cos S
/ . xd:c _ T +/ inx o
a T T " 0 T

_ COSl;)_l _ COSCCLL_l—l-Si(b)—Si(CL),

where we have used the result of Exercise 25.

183
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Solutions to Exercises 7.2

1. In computing f, the integral depends on the values of f on the interval (—1, 1).
Since on this interval f is odd, it follows that f(z)coswz is odd and f(z) sin wx is
even on the interval (—1,1). Thus

1 > —iwT
flw) = E‘/foo f(x)e dx

=0

1 1
= — f(x) coswxdx—— f ) sinwz dx
V2T /4

2i /1, p
= — sin wzx dx
V2r Jo
21 coswx’l

V2n w

,\/Ecosw—l
= 4/ ——
T w

3. We evaluate the Fourier transform with the help of Euler’s identity: e
coswx — tsinwzx. We also use the fact that the integral of on odd function over
a symmetric interval is 0, while the integral of an even function over a symmetric
interval [—a, a] is twice the integral over [0, a].

T 1 > —twx
fo) = <= [ s

sin z(cos wx — isinwz) dzx

0

—lwr __

7.

=0

sin x cos wx dr — —— sin z sin wx dx

=l .
= T / —cos(w + 1)z + cos(w — 1)x] dx.

If w=1,
~ i i T
1) =— —cos2zx + 1] do = ———.
foy=——= [ I o= —27
If w =1, we find similarly that

~ VLS
f(=1) = i
V2
(You may also note that fis odd in this case.) For w # £1, we have

s

~ ; 1 1
flw) = —\/;_W (w+1sin(w+1)x—w_lsin(w—l)x)o
i . I
= \/E(w_i_lsm(w—i-l)w—w_lsm(w—l)w)
1 1
IR SR SR
\/?(w—i-l( ) sinwn w—l( ) sinw)
1 1
= Sln’LU?T( —+—)
w+1 w-1

\/_
_\/7nw7r
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Check that as w — =+1, f(w) — f(:l:l).

5. Use integration by parts to evaluate the integrals:

N 1 >~ —twx
f) = —= [ fla)e s

(1 —|z|)(coswa — isinwz) dx
RNy ——

=0

= — |z|) coswz do — — 1— |]) sinwa dx
\/27‘(/ V2

’U

= 1—x) coswxdm
r/
smwx) !

2 1
11—z + / sin wx dx
V2 (( ) w 0 2w Jo

1
\/Ecoswx
o T w?
0
21— cosw

T w?

7. Before we compute the transform, let us evaluate the integral

I= / re " dy  (w #0)

by parts. Let v = z, dv = e~"“* dx; then du = dr and v = ﬁeiiwx = ief“’“ﬁ,
because % = —i. So
—twx . L —twx i —twx . L —twx 1 —twx
Te dr =1i—e —— |e dr =1i—e +—e +C.
w w w w

We are now ready to compute the transform. For w # 0, we have

~ 2 10 .
flw) = E/@ xe " dx

2 |: —iwx 4 1 iwx:|
= 1—e€ —F€
\ 27T w2 0

/2 10 ) —10 7w —1
— = |:,L-_€101w+ 672] .
m w w

In terms of sines and cosine, we have

10

Jw) = 2 [iz}—o(cos(lo w) —isin(10w)) +

™

cos(10w) — isin(10w) — 1]
2

w

_ 2 [10 sin(10w) | cos(10w) —1 (10 cos(10w) sin(l()w))] '

2 2

m w w w w

9. In Exercise 1,

x (area between graph of f(x) and the zaxis) = 0.
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In Exercise 7,
f(()) L x (area between graph of f(x) and the zaxis) 100
= r ween gr x) an xaxis) = .
V2 srap V2

11. We use the identity FF(f)(xz) = f(—z). In case f is even, this identity

becomes FF(f)(x) = f(—z). Consider g(x) = H% and, for convenience, let us

_1
1+w? -

Fle ") (w) = \/gﬁ = \/gg(w)-

Multiplying both sides by \/g and using the linearity of the Fourier transform, it

follows that
f<\/§e'f'><w> — g(w).

by the reciprocity relation. If we use the symbol w as a variable in the Fourier

transform, we get
1 T
)= [l lwl
d (1 + x2> \/;e ’

sin ax
T

write it as g(w) = Recall from Exercise 5 that

So

13. We argue as in Exercise 11. Consider g(x) = where we assume a > 0.
For the case a < 0, use sin(—azx) = —sinax and linearity of the Fourier transform.
Let f(z) = 1if |z| < a and 0 otherwise. Recall from Example 1 that

Fr@)w) =230 2

Multiplying both sides by \/g and using the linearity of the Fourier transform, it

follows that
f<\/§f<x>><w> — g(w).

Fo- 55 (\[310) =510

by the reciprocity relation. Using the symbol w as a variable, we get

sin ax T \/§ if |w| < a,
F =[5 w) = |
T 2 0 otherwise.
15. Consider the function in Example 2,

@) e ™ ifx >0,
xr) =
0 if x <0.

So

If @ > 0, then (see Exercise 17)

1 1—idw/a B a —iw
F(f(ax))(w) = o Var(l+ (wja)?) = Von(a +w?)

faz) e ifx >0,
ar) =
0 ifx <0.

But
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Hence

g(w) = 2= _ o F(f(ax) (w):

a? + w?

and so
V2me®® if x <0,

Flo) = Vanf(-az) = { 0 itz >0

Using the variable w,

V2me®™ if w <0,
0 if w > 0.
If a < 0, use the identity

F(f (=) (w) = F(f(2))(~w)

(see Exercise 17 with a = —1) to conclude that

Flo)(w) 2me®  if w > 0,
9)(w) =
0 if w < 0.

17. (a) Consider first the case a > 0. Using the definition of the Fourier transform
and a change of variables

F(flaz))(w) = % /  Haz)e da
11 - ST dy ar = T = l
= EE/,OOJC(MQ d (az = X, dv = ~dX)

w

= Lrpn).

If a < 0, then

F(f(az))(w) = ﬁ /  Faz)e du

1 1 - Cw
= _ *139”6[
T /Oo f(x)e T

= 2Fn®).
Hence for all a # 0, we can write
=270 (%)
(b) We have
Fle ) = 2
By (a),

ol . 121 22
P = 3\ — Ve

(c) Let f(x) denote the function in Example 2. Then g(z) = f(—x). So
-~ 1+dw

o) =T = ey
Let h(z) = e~ 1*I. Then h(z) = f(z) + g(x). So

- S d—iw l+iw 21
hw) = Jlw) +g(w) = Vit w?) VR tw?) \/;1+w2'
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19. Using the definition of the Fourier transform
Fla-a)w) = <= [ j-aed
z—a))lw) = — T —a)e T
V21 J oo
1 o -
= — —iw(@ta) g —a=X, dr=dX
T)e T T—a , dx

V2T /700 fl@) ( )

7iwaL > T e*iwx ‘r:efiaw w
= e [ @)t de = R ()

21. We have }'(e*ﬁ) = %e*“ﬁ/‘l, by Theorem 5. Using Exercise 20, we have

CcosT

er?

) = f(cosxe*xz)

1 ( Jw;a)z 4 7<w+4a)2)
= —=\ € &
2v/2

F(

23. We have F(1-L5) = /e "I, Using Exercise 20, we have

THa?
cosx + cos2x COS T cos 2z
( 1+ 22 ) (1+x2)+ (1+x2)
1
= 3 g(eflwfll + e~ lw+1] + e~ lw=2] + €7|w+2|)'
25 Let

1 if ] < 1,
g(x)—{ 2

0 otherwise,

and note that f(z) = cos(z) g(z). Now F(g(x)) = \/g% Using Exercise 20, we

have
F(f(@) = F(eoszg())
1 J2/sin(w—1)  sin(w+1)
T2 ?( w1l " Twrl )

27. Call g(x) the function in the figure. The support of g is the interval (a, b), that

has length b — a. Translate the function by ”Ta in order to center its support at
the origin, over the interval with endpoints at (—bfTa, bfTa) Denote the translated

function by f(z). Thus, g(z) = f (v — &%), where f(z) = h if |2| < 52 and 0
otherwise. By Example 1 and Exercise 19,

w) = e fw)

Il
o
l
|
g
>
|

Il

[
>
Sy

29. Take a = 0 and relabel b = a in Exercise 27, you will get the function f(x) = h
if 0 < < a. Its Fourier transform is

f(W) I zhefi%w sin (T) .

™ w
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Let g(z) denote the function in the figure. Then g(z) = 1z f(z) and so, by Theo-

rem 3,

1.d -

g(w) = Elﬂf(w)

_ iﬁu l<—>]
7 adw w

_ i\/@“%w lacos(%) —isin (%) sin(%)]
™

a w

31. Let f(z) =1if —a < < a and 0 otherwise (Example 1), and let g(z) denote
the function in the figure. Then g(x) = 22 f(x) and, by Theorem 3,

gw) =~ fw)

- 2 d? sinaw
o Vrdw? w

2 2aw cos aw + a’w? sinaw — 2 sin aw

T w3

33. Let g(x) denote the function in this exercise. By the reciprocity relation, since
the function is even, we have F(F(g)) = g(—z) = g(x). Taking inverse Fourier
transforms, we obtain F~!(g) = F(g). Hence it is enough to compute the Fourier
transform. We use the notation and the result of Exercise 34. We have

9(x) = 2f2a(2) = fa(z).

Verify this identity by drawing the graphs of fo, and f, and then drawing the graph
of fou(x) — fa(x). With the help of this identity and the result of Exercise 34, we
have

Gw) = 2fa(w) = fa(w)
_ 8a sin? (aw) _ da sin® (42)
O TV2r 4aw)? Vo2r o (aw)?
B 4 sin? (aw) sin? (%)
a2r w? B w?

35. (a) Apply Theorem 5 with a = 2, then

37. By Exercise 27,
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By Theorem 3(i)
2 d 1 2
va —z — —w*/4
(ze™) “dw ( \/ﬁe )
Iy

&
2V2

1 if |2 < 1,
g(x)—{ 2

0 otherwise,

39. Let

and note that f(z) = zg(z). Now F(g(x)) = \/EM By Theorem 3(i)

F(f(x)) = Flzg(z))
o d 2 sinw
aw (Vo)
. /2 wcosw — sinw

= 1 —
T w?

T w

41. We have f(ﬁ) = \/ge*“”'. Soif w >0

X Cm d —w T
f(m)(’u))—l 5%6 = —1 26 .
Ifw<0
T md T,
f(m)(w)—z\/;%e —z\/;e .
If w=0,

T 1 *
]:(—l—i-xQ)(O)_ _27T‘/7001+x2 der =0

(odd integrand). We can combine these answers into one formula

Fis)w) = —i\/gsgn (w)e 1L,

43. Using linearity,

.7-'((1 — x2)eﬂ”2) = .7:(67962) — f(x%ﬂcz).

By Theorem 3(ii) and Exercise 27,

1 1 d?
.7-'((1 - x2)eﬂ”2) = e T _mwi/d

d
Flze3@-D%) = i—(f(e*é@*lf))
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49.
~ 2 1 1 2 s
) = o= _ —a?/ay ~Ja|
@ = g = F (e (| f5e )
Hence
1 <1 @b |7
hz) = fxglx)=— — e 1 Zeltlge
@ = Jew == [ ST
1 X (@—p)?
_ - “1tl
= e T e I"dt.
il
51. Let ]
N 1 if o] < 1,
fw) _{ 0 otherwise.
Then

h(w) = flw)e =%,
)= e 5% and f(z) = /2922 Thus

1 © _@»? [2sint

1 [ _@-o2sint
= —_ (& 2 —dt
T™J_ oo t

53. Let f(z) = ze /2 and g(z) = =",
(a) F(f)(w) = —iwe™ 5, and F(g)(w) = J=e~ 1.
(b)

2

We have F~1(e~ 2%

LW _w? w?
= —1—¢€ 4 e 2
V2
2
. _gw=
= —1 e 34.

fxg = fﬁl(—iﬂe%”%)

In computing F~* (673%2), use Exercise 10(a) and (5) to obtain

2 1 (==z)2 1 22
fﬁl(eiaw ) e e da  — e da,

191

55. We use the uniqueness of the Fourier transform, which states that if h=k

then h = k.
(a) Let h=fxgand k =gx* f and use Theorem 4. Then

F(h) = F(f) - Flg) = Flg) - F(f) = Flg * [)-
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hence f*xg=gx* f.
(b) Let u= fx(g*h)and v=(f*g)*h. Then

Fu) = F(f) - Flg«h)=F(f) - (Flg)- F(h))
= (F(N)-Fl9) - F(h) = F(f xg) - F(h)
= F((fxg)xh)=F(v)

Hence u =v or f*(gxh) = (f xg) *h).
(c) Use Exercisel:

F(fa) = F(f(x — a)) = e F(f).
So

F((f*9)a) = F(frgle—a))=e"""F(fxg)

F(fa)
—_——~—

= e "F(f) F(g9) = F(fo)F(g) = F(fa *g).

Thus (f * g)a = fa * g. Similarly, (f x¢)e = f * (9a)-
57. Recall that f is integrable means that

| l@lds < oc.

If f and ¢ are integrable, then

f gl \f_/ f(o — t)g(t) dt.

So, using properties of the integral:

dx

léu»mmwx " fe -ty de

[
\/ﬁ/ / Fe — t)g(t)] du dt

(Interchange order of integration.
=[N (@)|d

,ﬁg/ / F(o — ) de lg(t) dt

IN

IN

(Change variables in the inner integral X =z —t.)

IN

\/E/ |d$/o:o|g(t)|dt<oo;

thus f * g is integrable.
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Solutions to Exercises 7.3

1.
P _ o
oz 9x2’
1 ou

Follow the solution of Example 1. Fix ¢ and Fourier transform the problem with
respect to the variable x:

2

wﬂ(w, t) = —w?au(w, t),
1 T d
u(w, 0) .F(l m x2) 7€ dtu(w, 0)=0.

Solve the second order differential equation in u(w, t):
u(w, t) = A(w) coswt + B(w) sin wt.

Using 24i(w, 0) = 0, we get

=0 = B(w)w=0 = B(w)=0.

—A(w)w sinwt + B(w)w cos wt
t=0

Hence
u(w, t) = A(w) cos wt.

Using t(w, 0) = \/Ze~ "I, we see that A(w) = /Ze~ "l and so

u(w, t) = \/gelwl cos wt.

Taking inverse Fourier transforms, we get

o0
u(z, t) = / eI cos wt e duw.

3.
ou_ 100
ot 40x2’

u(z,0) = e
Fix t and Fourier transform the problem with respect to the variable z:

d . w?
Eu(wa t) - _Iu(wa t)a

(w, 0) = F(e ") =

Solve the first order differential equation in @(w, t):

2

u(w, t) = A(w)e” .

Using u(w, 0) = %67%, we get A(w) =

Q(w, t) =
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Taking inverse Fourier transforms, we get

1 >~ 7”’—2(1+t) ixw
u(zx, t) = ﬁ e 1 e dw.

Pu 0%
gu _ 294
ot? Ox?’

2sinx ou

Fix t and Fourier transform the problem with respect to the variable z:

2

Eﬂ(w, t) = —w?u(w, t),

N B sin x oy 1w <1
aw, 0) = F( =) w) = f(w) = { 0 if jw| > 1,
d

Eﬂ(w, 0)=0.

Solve the second order differential equation in u(w, t):
u(w, t) = A(w) cos cwt + B(w) sin cwt.
Using 24w, 0) = 0, we get

u(w, t) = A(w) cos cwt.

~

Using u(w, 0) = f(w), we see that

~

u(w, t) = f(w) coswt.
Taking inverse Fourier transforms, we get

1 RPN . 1 1 .
u(w, t) = E/ f(w) cos cwt e dw = = / 1COS cwt € dw.

7.
ou ou
—+3—=0
Ox + ot ’
u(z,0) = f(z).
Fourier transform the problem with respect to the variable z:
d .
Zlw, 1) = —=i(w, 1),

~

u(w, 0) = F(u(z, 0))(w) = f(w).
Solve the first order differential equation in @(w, t):
a(w, t) = A(w)e 51,
Using the transformed initial condition, we get

U(w, t) = flw)e "5,

Taking inverse Fourier transforms, we get

wlx o L BN e*i%t eimw _ L <2 eiw(mf‘%) — T — E
@n=—=[ fw dw= = [ e aw= a5,
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ou Ou
2— _——_— =
t or Ot 0,

u(z,0) = 3cosz.

The solution of this problem is very much like the solution of Exercise 7. However,
there is a difficulty in computing the Fourier transform of cos x, because cos z is not
integrable on the real line. One can make sense of the Fourier transform by treating
cosz as a generalized function, but there is no need for this in this solution, since
we do not need the exact formula of the Fourier transform, as you will see shortly.

Let f(x) = 3cosz and Fourier transform the problem with respect to the
variable x:

d
t2iwi(w, t) — Eﬂ(w, t) =0,

u(w, 0) = F(3cosz))(w) = f(w).

Solve the first order differential equation in @(w, t):
i(w, t) = A(w)e 57
Using the transformed initial condition, we get

i(w, t) = f(w)e 57

Taking inverse Fourier transforms, we get

1 ESEIPN w3
u(x, t) = E/ f(w)eil?tg e1mw dw

L% v g
_ w)e@ETF) dw
iglmﬂ)

3 3
= flz+ %) = 3cos(z + %)

11.
ou_ou
ox  Ot’
u(z,0) = f(z).
Fourier transform the problem with respect to the variable z:
Liw, 1) — wwiw, 1) =0
7 uw, t) —iwu(w, t) =0,

i(w, 0) = f(w).
Solve the first order differential equation in @(w, t):
a(w, t) = A(w)e™.
Using the transformed initial condition, we get

a(w, t) = f(w)e™.

u(z, t) = —/ A(w)efmt e duw

1 U
= / (w)e™ @+ duy
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13.
o,
ot 0x?’
(e, 0) = f(x).

Fix t and Fourier transform the problem with respect to the variable z:
d . 9
Eu(w, t) + tw*u(w, t) = 0,

u(w, 0) = f(w).
Solve the first order differential equation in @(w, t):

t2w?

u(w, t) = A(w)e™ 2

~

Use the initial condition: A(w) = f(w). Hence

~ £2,2

lw, 1) = flwyeF

Taking inverse Fourier transforms, we get

202

u(z, t) = \/% /Z f(w)ei 2 e duw.

15.
0%u ou

— — =-u

ot? a7
u(z,0) = f(z), w(z,0)=g(z).

Fourier transform the problem with respect to the variable z:

d? d . N
—u(w, t) + 2Eu(w, t) +u(w, t) =0,

dt?

~ n d_. ~
Solve the second order differential equation in u(w, t). The characteristic equation
is A2 42X\ 4+ 1 = 0. Since we have a repeated root A = —1, the general solution is

of the form:
t(w, t) = A(w)e™" + B(w)te .

The initial condition #(w, 0) = f(w) implies that f(w) = A(w). So u(w, t) =
f(w)e™"+ B(w)te~". The condition £a(w, t) = g(w) implies that — f(w)+ B(w) =

g(w) or B(w) = f(w) + g(w). So

a(w, t) = fw)e™ + (F(w) + glw))te ™.
Hence Taking inverse Fourier transforms, we get

~

u(z, ) = \/%/O; (Fw)e™ + (f(w) + G(w))te™") e dw

= e*t\/% /700 f(w) e duw + teft\/% /700 (A(w) + g(w)) e dw
= e 'f(x) +te” (fz) + g(2).

17.
Pu  O*u

2 dat

[ 100 if]z] <2,
u(,0) = { 0 otherwise.
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Fourier transform the problem with respect to the variable z:

2

wﬂ(w, t) = w'i(w, t),

i(w, 0) = Flw) = 100\/?“ 2w,

w

Solve the second order differential equation in u(w, t):
i(w, t) = A(w)e """ + B(w)e” "

Because a Fourier transform is expected to tend to 0 as w — +oo, if we fix t > 0
and let w — oo or w — —o0, we see that one way to make u(w, t) — 0 is to take
B(w) = 0. Then @(w, t) = A(w)e~*"t, and from the initial condition we obtain

B(w) = f(w). So

_ 2 sin 2
i(w, t) = flw)e ™" = 100\/;Sln Yemw’t,

w

Taking inverse Fourier transforms, we get

1 [ 2 sin 2 .
— / 100\/jSln W emwt gizw gy,
V2T J oo T w

100 [*° sin2w
— —

u(z, t)

— 2 ;
w”t emcw d’LU

T ) W
19.
*u  Pu
otz Otdx?’

Fourier transform the problem with respect to the variable z:
2

~ d_.
wu(w, t) = —wQEu(w, t),

a(w, 0) = F(w), Lagw, 0) = glw).

dt
Solve the second order differential equation in u(w, t). The characteristic equation
is A2 +w?\ = 0, with roots A = 0 or A = —w?. The general solution is of the form:

A(w, t) = A(w) + B(w)e "t

The initial condition @(w, 0) = f(w) implies that f(w) = A(w) + B(w) or A(w) =
flw) — B(w). So R

i(w, t) = f(w) + B(w)(e ™ = 1).
The condition £7(w, 0) = g(w)

So

i(w, #) = i, £) = ) - L2 =t 1) = Fu) + L1 ooy

Taking inverse Fourier transforms, we get

u(z, t) = L/ﬁoo (A(w) + M(l _ €7w2t)) I

27 J—o w?
Lo L g

= — we”“”dw—k—/ 1—e"¥ e dw
T A Nz T )
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21. (a) To verify that

x+ct
u(e,t) = 3lfe )+ f+ e + 50 [ gls)ds

N~

is a solution of the boundary value problem of Example 1 is straightforward. You
just have to plug the solution into the equation and the initial and boundary con-
ditions and see that the equations are verified. The details are sketched in Section
3.4, following Example 1 of that section.

(b) In Example 1, we derived the solution as an inverse Fourier transform:

1 RPN 1 .
u(z, t) = E/ [f(w) coscwt + —g(w) sincwt]e™” dz.

cw

Using properties of the Fourier transform, we will show that

[f(x —ct) + f(z +ct)];

N~

(1) \/% /Z Fw) cos cwte™ dw =

1 o] 1/\ ) o 1 x+ct
(2) Nors Eg(w) sincwt e dw = 3 t g(s) ds.

To prove (1), note that
eicwt + e*icwt
cos cwt = —

SO

~

1 > X
— w) cos cwte™* dw
=/ Jw

1 1 RPN , 1 L .
- - iw(z+ct) d iw(z—ct) d
5 [——27r /700 flw)e w—_27r /700 flw)e w

_ %[f(x+ct) + f@—ct));

because the first integral is simply the inverse Fourier transform of Zevaluated at
x + ct, and the second integral is the inverse Fourier transform of f evaluated at
x — ct. This proves (1). To prove (2), we note that the left side of (2) is an inverse
Fourier transform. So (2) will follow if we can show that

—ct

3) ]-'{ /m s ds} — %g(w) sin cut.

Let G denote an antiderivative of g. Then (3) is equivalent to
2
F(G(z+ ct) — G(z — ct)) (w) = —G'(w) sin cwt.
w

Since G’ = iwG , the last equation is equivalent to
(4) F(G(z+ct)) (w) — F(G(z —ct)) (w) = 2iG(w) sin cwt.
Using Exercise 19, Sec. 7.2, we have

F(G(x+ct)) (w) — F(G(x —ct)) (w) = €“"F(G) (y}) - e’“f”]—'(G) (w)
— ]:(G)(w) (ewtw _ e*lctw)

= 2iG(w) sincwt,
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where we have applied the formula

. elctw _ e*lctw
sin ctw = -
21

This proves (4) and completes the solution.

23. Fourier transform the boundary value problem

u 282u+k8u <z< t>0
ot CaxQ Ox’ oS ETSO ’
u(z,0) = f(z),
and get
d
S, 1) = —w? a(w, t) 4 ikwi(w, t) = G(w, t)(—w? + ikw),

u(w,0) = f(w).
Solve the first order differential equation in @(w, t) and get
A(w, t) = A(w)e( ¢ w kvt
The initial condition @(w, 0) = f(w) implies
(w, t) = f(w)e~C W Hikw)

Taking inverse Fourier transforms, we get

1 RPN . _
u(z, t) = E/ f(w)e(*62w2+lkw)temcw dw

1 ® o —c2w?t iw(z+kt)
= — w)e e dw.
= Jw

25. Using the Fourier transform, we obtain
2

Eﬂ(w, t) = Awli(w,t),

Uw,0) = flw),  —a(w, 0)=gw).
Thus , ,
t(w, t) = A(w)e™ " + B(w)e™.

Using the initial conditions:

~ -~ ~

i(w, 0) = fw) = A(w)+B(w) = f(w) = A@w) = f(w) - Bw);

and
%a(w, 0)=g(w) = —cw?A(w)+cw’Bw)=g(w)
= —A(w)+ B(w) = i(;?
=~ flw) + 2B(w) = 2
= Bw) - 3 (Fw)+ 22).

199
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Hence
u L (7 9 —cw’t 1 (= g cw?t
o (ecw2t 4 efcw2t) ’g\(w) (ecw2t _ eicw%)
= f(w) 5 +i .
g(w)

= f(w) cosh(cw?t) + 5 sinh(cw?t)
cw

Taking inverse Fourier transforms, we get
u(z, t) = L /oo Flw) cosh(cw?t) + glw) sinh(cw?t) | €™ dw.
Vo J—so cw?
27. Fourier transform the boundary value problem:

d
Eﬂ(w, t) = —ictw®u(w, t),

Apply the initial condition:

Inverse Fourier transform:

u(z, t) =
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Solutions to Exercises 7.4

1. Repeat the solution of Example 1 making some adjustments: ¢ = 3, g;(z) =

%e*%,
wed) = feol)
_ %/Zf(s)%e#ds
= % 1le#ds (v:x\;;, dv:—%ds)
= 20 Ij{leqﬁds

VE S
= 10 (erf(%)—erf(%)).

3. Let us use an approach similar to Example 2. Fourier transform the boundary
value problem and get:

d
Ea(wa t)
I2

w?
u(w,0) = F(70e T)="7T0e 2.

—w?ti(w, t)

Solve the equation in u:
2
a(w, t) = A(w)e ™"
Apply the boundary condition:

w?

U(w, t) =T70e” 2 )eﬂ”zt = 70e~ W (t+3),

Inverse Fourier transform:

1 1
wz, t) = F (7oe*w2<t+%>) (o =t+3)
0, w2 1
= - V2 +1 a) =
d ( e (=577
0 __.
= e~ R

V2t +1

where we have used Theorem 5, Sec. 7.2.
5. Apply (4) with f(s) = s*:

u(z, t) = frg(x)

1 1 e z—s)2
——/ 5267( 7 ds.
\/ﬂ V2T J s
You can evaluate this integral by using integration by parts twice and then appealing
to Theorem 5, Section 7.2. However, we will use a different technique based on the
operational properties of the Fourier transform that enables us to evaluate a much

more general integral. Let m be a nonnegative integer and suppose that f and
s™ f(s) are integrable and tend to 0 at +00. Then

% 1 Z 5 f(s)ds = (i) [ df:n F (f)(w>]

This formula is immediate if we recall Theorem 3(ii), Section 7.2, and that

w=0

o~

o0 == [ " ols)ds.
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We will apply this formula with

1 @=s?
f(s) = ﬁe ¢
We have
F (Le#> (w) = e ™rF (Le%> (w) (by Exercise 19, Sec. 7.2)
V2t V2t

= wremw't = o—(watw’) (See the proof of Th. 1.)

So

_(@=9)?
t

u(z, t) = ds

1 1 <,
_ s“e
V2t V2T J oo

[ d? 1 (@52
- ‘_d—wzf(ﬁe )“‘”L_o

_ -d_2€(iwx+w2t):|

_d’LU2 w=0
F 4 .
= —|—- e*(“’“*wm(ix + 2wt)]
| dw w=0

= et (g 4 2ut)? 4+ ate sty

w=0
= 2242

You can check the validity of this answer by plugging it back into the heat equation.
The initial condition is also obviously met: u(z, 0) = z2.

The approach that we took can be used to solve the boundary value problem
with f(z)a™ as initial temperature distribution. See the end of this section for

interesting applications.

7. Proceed as in Example 2. Fourier transform the problem:

d ~
d—?ﬂ(w, t) = —t2w(w, t), a(w, 0) = flw).

Solve for u(w, t):
543

U(w, t) = flw)e ™ 5.
Inverse Fourier transform and note that

u(z, t) = f*F 1 (efwu;) .

With the help of Theorem 5, Sec. 7.2 (take a = g), we find

Fi (67102%3) = V3 e " as,

Thus

1 o0 V3 _sa—9?
’LL(.I, t) = E ‘/700 f(s)\/T?e 4t3 dS
\/5 /Oo  3(z—s)2
= s)e” a3 ds.
2\/ 7Tt3 —00 f( )

9. Fourier transform the problem:

du ~
Eﬂ(w, t) = —e tw?a(w, t), a(w, 0) = f(w).
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Solve for u(w, t):
A(w, t) = f(w)e ™ 0=,

Inverse Fourier transform and note that
u(z, t) = fxrF! (67“’2(178%)) .

With the help of Theorem 5, Sec. 7.2 (take a = 1 —e™*), we find

2
—1( _—w?(1—e t)) b Trer—a
4 (e \/_\/l—e Vo=

Thus

I 52

6 4(1—et) (s,

u(x, t
@0 =57= e / £(5)
11. This is a generalization of Exercise 9 that can be solved by similar methods.

Fourier transform the problem:

du 9 =N 2
Eu(w t) = —a(t)w u(w, t), u(w, 0) = f(w).

Let B(t) denote an antiderivative of a(t), hence B(¢ fo . Then u(w, t):

i(w, t) = f(w)e*w23<t>.
Inverse Fourier transform and note that

u(z, t) = fxF ! (efsz(t)) .

With the help of Theorem 5, Sec. 7.2 (take a = B(t)), we find

1 (€7w2B(t)) I e
2B(0)

Thus

2

u(z, t) = f(s)e” TB® ds.

e ).

13. If in Exercise 9 we take

100 if || < 1,
otherwise,

then the solution becomes

 (z=9)?
e 40-e7% (s,

ul, 1) = \/%\/?70—7 /

Let z = Then

r—s dz = —ds
2v1—e—t’ 2V1—e"t"

z+1

Vit .2
u(r, t) = ———=2V1—e" t/2 “ dz
\/_\/1—6 ¢
J1_e—t
- 24/ 1—
100 2y/1—e—?

_ .2
= ezdz

NG
2y/1—e—t

x+1 x—1
= 50 f{ —— | —erf | —————— .
[er (2 1—et> . (2\/1—et>}
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As t increases, the expression erf ( 5 \/%) —erf ( 5 \/—) approaches very quickly
erf (IT“) —erf (I—gl), which tells us that the temperature approaches the limiting

distribution
1 -1
oo (247) it (551

You can verify this assertion using graphs.

15. (a) From the definition

2/79672
— e ? dz
‘\/_

- __/ e dz (2=-2Z, dz=—dZ)

erf(—x)

= —erf(z

Thus erf is an odd function.
(b) From the definition

2 [0 .

erf(0) = \/—%/0 e * dz=0,
2 o0

erf(c0) = \/—%/0 e dz =1,

by (4)m Sec. 4.2.
(¢) By the fundamental theorem of calculus,

d
d_/ e dz
2
>

—z 0

d
Eerf(x) =

e

g

for all . Thus erf is strictly increasing.

(d) We have
%(xerf(x) + %eﬂf = erf(z) + x%erf(x} - \2/—:;67962
= ef(z)+ \2/—”%6*%2 - \2/—”%6*%2 (by (c))
= erf(x).
Thus
/erf(x) dz = (xerf(z) + %eﬂcz +C.

(e) From the power series expansion of
o0
2"
Z ) (—o0 < 2 < ),

we obtain the power series

(_;)n - 2}(_1)"% (00 < 2 < 00).

. . . 2 . .
Since the power series expansion for e™*" converges for all z, we can integrate it
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term by term over any interval. So we have

erf(z) = e % dz

| Ty ifa<z <),
fl@) = { 0  otherwise,

then
_(z=9)?
izt ds.

u(z, t) =

20\/_ /

(b) Let z = £=%, dz = =%2. Then

C\/_
u(z, t) = 20\/_20\/_ e 4y
C\/t

- Ble()- ()]

19. Using (4) with f(x) = Tp, then

_(e=9)?
u(z, t) 1%t ds.
u 20\/ /
_ x—s _ —ds
Let z = 2D dz = PR Then
To /°° 2
w(z, t) = 2c\/t e * dz =Ty,
(2, 1) 2e/mt oo 0
y (4), Sec. 7.2.
21.

23. The solution of the heat problem with initial data f(x) is given by (4), which
we recall as follows

u(z, t) = gi * f(x),

where g¢(x) is Gauss’s kernel,

1
gu() = — e /0P,

Let ug(x, t) denote the solution of the heat problem with initial data f(z — a).
Applying (4) with f replaced by (f)q(z) = f(x — a), we obtain

uz (2, t) = ge * (f)a(@)-

By Exercise 47(c), Sec. 7.2, we know that the convolution operation commutes
with translation. So

uz(x, t) = g * (f)a(®) = (9¢ % fla(®) = u(z = a, 1).
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25. Let us(z, t) denote the solution of the heat problem with initial temperature
distribution f(z) = e~ @D Let u(z, t) denote the solution of the problem with
initial distribution e=**. Then, by Exercise 23, ug(x, t) =ulx — 1, t)

By (4), we have

u(zx, t) =

1

2 2 2
e 7 /(4ct) xe T

cV2t

We will apply Exercise 24 with a = ﬁ and b = 1. We have

So

and hence

ab 1 1
atb | 42" o 1
B 1
1 4-4c2t
B 1
2(a+b) 257 +1)

u(z, t)

ug(z, t) =

V2t
Vacct +1°

1

42?4ty —a?
e * e
cV 2t

1 C\/% __a?

— . e 1+4c2t
/2t 4c2t +1
1 2

R v v=-4
VARt + 1 ’

1 _ (z=1)?

— e 1+4c2t
42t + 1

27. We proceed as in Exercise 25. Let ug(z, t) denote the solution of the heat
problem with initial temperature distribution f(z) = e~@~2/2. Let u(x, t) denote
the solution of the problem with initial distribution e=e’/2, Then, by Exercise 23,

ug(z, t) =u(z —2, t)

By (4), we have

We will apply Exercise 24 with a = ﬁ

So

u(z, t) =

1 2 2 2
—x°/(4c*t) —x°/2
& * e .
cV2t

and b = 1/2. We have

ab 1 1
ath 8 meg
1
T 2+ 4et
1 B 1
2a+b) 2 +3)

u(zx, t

2e\/t
Vacct +2°

1 2 2 2
_ —x°/(4c*t) —z°/2
& * e
cV2t

= 1 . 20\/E 67 2+gfj:§t
V2t VA2t +2

V2c?t +1
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and hence
1 _ (2=2)?
us(x, t) = ————=e 2%,
2c2t 4+ 1

29. Parts (a)-(c) are obvious from the definition of g:(x).
(d) The total area under the graph of g:(x) and above the x-axis is

o0 1 o0 2 2
) dx A
/700 9:() cV 2t /700

20\/% > 2
e
V2t J_ oo

x
d = ——, dzx =2cVid
z (z VA = 2cVtdz)

\/5/ e dr =V 2m,

by (4), Sec. 7.2.

(e) To find the Fourier transform of g.(z), apply (5), Sec. 7.2, with
1 1 1
=, — =2cV2t, — =c%.
“Taer v2a VEL L T
We get
1 2 2
gi(w) = f(efx /(4e t)) dx
9u(w) cV2t
1 2 2
= X 2c\/2te” ¢
cV2t
—c?tw?
= e .

(f) If f is an integrable and piecewise smooth function, then at its points of conti-
nuity, we have

lim g+ f(x) = f(2).

This is a true fact that can be proved by using properties of Gauss’s kernel. If we
interpret f(z) as an initial temperature distribution in a heat problem, then the
solution of this heat problem is given by

u(z, t) = g¢ x f(x).

If t — 0, the temperature u(z, t) should approach the initial temperature distribu-
tion f(x). Thus lim; 0 g: * f(z) = f(x).
Alternatively, we can use part (e¢) and argue as follows. Since

}ir%]:(gt) (w) =lime

So
lim F (g, + f) = lim F(g:) F () = F (f)-

You would expect that the limit of the Fourier transform be the transform of the
limit function. So taking inverse Fourier transforms, we get lim; g g * f(x) = f(x).
(Neither one of the arguments that we gave is rigorous.)

A generalization of Exercise 5 Suppose that you want to solve the heat equation
Ut = Uy, subject to the initial condition u(x, 0) = 2™ where n is a nonnegative
integer. We have already done the case n = 0 (in Exercise 19) and n = 2 (in
Exercise 5). For the general case, proceed as in Exercise 5 and apply (4) with

f(s) =s™:

u(@, t) = [fxgi(x)

1 1 /°° o @=)? d
— Y S e t S.
V2t V2T J oo
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Use the formula

with !
(z—s)2
fls) = == 5
V2t

&
2t
1 (w—s5)2 . 2
Fl——e w) = ef(uuerw t)
()

(see the solution of Exercise 5). So

and

u(z, t) = (i)" [d—

—(lwz+w?t)
dwn ]

w=0
To compute this last derivative, recall the Taylor series formula
— /() n
fla) =) ——@-a"

n!
n=0

So knowledge of the Taylor series gives immediately the values of the derivatives at

a. Since -
(aw)"
aw __
e = Z n!
n=0
we get _
[d—J.eaw] =dl.
dwI w=0
Similarly,

o 0 if k is odd,
[d—w’“ ]w_o_ VG ip = g5,

Returning to u(z, t), we compute the nth derivative of e~ (1w +©*) yging the Leibniz
rule and use the what we just found and get

d"” 2, .
u(x, t) — (,L)n |: nefw telwm:|
dw w=0
— -\ . n dj —w?t dnij —twx
= 025 ) a ™ wm
Jj=0 w=
[5] 2 n-2j
( )n ( n > d~ —w3t d / —iwx
= (3 . B} . 27
=0 2] dw?7 dw J w=0
oy e
= ()" ( ) ) - (—ix)" =2
=\ 7t

For example, if n = 2,

1 P .
t7(25)! -
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which agrees with the result of Exercise 5. If n = 3,

u(z, t)

1 3 (94\1 _
= Z( 3- ) t2))! cx237% = 23 4 6ta.
2j

il
=0 7

209

You can easily check that this solution verifies the heat equation and u(z, 0) = z3.

If n =4,

2\ 25 ) )

Jj=0

) o
£ (24)! :
Z( y ) QDY a2 — g 1oga? 4122

Here too, you can check that this solution verifies the heat equation and u(z, 0) =

x?.

We now derive a recurrence relation that relates the solutions corresponding to
n—1,n, and n+1. Let u,, = u,(z, t) denote the solution with initial temperature

distribution u, (z, 0) = ™. We have the following recurrence relation

Upt1 = TUp + 210Uy 1.

The proof of this formula is very much like the proof of Bonnet’s recurrence formula
for the Legendre polynomials (Section 5.6). Before we give the proof, let us verify

the formula with n = 3. The formula states that uy = 4ug + 6tus.

Sine uy =

axt 4+ 12t2? + 1212, ug = 23 + 6tx, and uy = 2% + 2t, we see that the formula is true
for n = 3. We now prove the formula using Leibniz rule of differentiation. As in

Section 5.6, let us use the symbol D" to denote the nth derivative, We have

(e 1) = (@)
= @
= @
= @
= @

= @

= z(@)" D" (67(“’““”2”)’

r n—+1
d e(iwx+w2t):|
n+1
| dw w=0
—DnJrl ef(iwm+w2t):|
L w=0

—Dn (Def(iwx+w2t)):|

w=0

:D" (—(m: + 2wt)ef(“”+w2t))}

w=0

:D" (—(m: + 2wt)ef(“”+w2t))}

w=0

[—p» (e*@wuwzt)) (iz + 2wt) — 2nt D" (e*““f“w%))}

w=0

= Uy + 2ntu,—1.

+ 20t (i) Dt (et

w=0

w=0
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Solutions to Exercises 7.5

1. To solve the Dirichlet problem in the upper half-plane with the given boundary
function, we use formula (5). The solution is given by

u(z, y) 2/00 G

T oo (=8)+y?
soy [ ds
T )y (@ —8)?+y?

- B (5 (52))
T Y Y

where we have used Example 1 to evaluate the definite integral.

3. We appeal to the Poisson integral formula (5). In evaluating the integral, we
will come across the improper integral

Y /°° CoS S
= ——— ds,
T ) oo S2 +y2

which is a nontrivial integral. In order to evaluate it, we will appeal to results
about Fourier transforms. Fix y > 0 and consider

yv2

"= TR

(—o0 < 8 < 00).

The Fourier transform of h(s) is

~ y 71511)
Y / cos sw — ¢ sin sw
= — S S E— ds
™ §2 + 42
_ Y COS swW
) 2ty 7 d

because the sine integral has an odd integrand, so its value is 0. Let us now use a
table of Fourier transforms to evaluate the Fourier transform of h (see also Exercise
12, Section 7.2). From entry 7, form the table of Fourier transforms, Appendix B.1,

we have
h(w) = e ¥l (y >0, —o0 < w < 00).
So
(1) g/ c2ossw2 ds = e7vIv| (y >0, —00 < w < 00).
T ) oo S°TY

We are now ready to evaluate the Poisson integral for the given boundary function



Section 7.5 A Dirichlet Problem and the Poisson Integral Formula 211

()
u® y) lﬁm@—ﬁruﬂ“

L,
= wlm@—@uwfi
~ fa-s)

T ) oo 52+y2

B g/oo cos(x—s)ds

e 3|

s (Change variables s =z — S.)

T S2+y2
y/°° cosxcoss—i—sinxsinsd
= — S
2 1 o2
T J oo s 4y

=0

,—/ﬁ

ycosx/Oo coss +ysinx/°° sin s d

= S S
T oo 52+y2 T oo S2 +y2

(The integrand is odd in the second integral.)

o0
COS §
= cosxg/ ﬁds
T ) S°1+Y

= cosxe Y,

where we have used (1) with w = 1. It is instructive t check that we have indeed
found the (bounded) solution to our Dirichlet problem: u(x, y) = cosze Y. We
have u;, = —cosre™¥ and uyy = cosze Y. S0 Uy, + uyy = 0. This shows that u is
a solution of Laplace’s equation. Does it satisfy the boundary condition? Let’s see:
u(z0) = cosz = f(x). Yes, it does. Can you guess the solution of the Dirichlet
problem with boundary condition f(z) =sinz?

5. Appealing to (4) in Section 7.5, with y = y1, y2,y1 + y2, we find

F(Py)w) = el F(B,)(w) = e W, F(Py ) (w) = e Wil

F(Py)(w) - F(Pyy)(w) = e~¥tvlemvalvl = e=tntvallvl = F(py, 1) (w).

But
F(Py)(w) - F(Py,)(w) = F(Py, x Py, )(w),

Hence
F(Pyy1y,)(w) = F(Py, * Py,)(w);
and so Py, 1y, = Py, * Py,.

7. () If f(z) = ﬁ, then in terms of the Poisson kernel, we have from (3), Sec.

7.5,
) = 3/5 R0

The solution of the Dirichlet problem with boundary value f(z) is then

e, 1) = Py £2) = 3 [ 2R Pulo) = 1 2P o),

by Exercise 5. More explicitely, using (3), Sec. 7.5, with y 4+ 2 in place of y, we

obtain
y+2 - l Y+ 2
e 2R 2Pt (2P
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(b) The boundary function, ﬁ, takes values between 0 and 1/4. For 0 < T < 1,
the points in the upper half-plane with u(z, y) = T satisfy the equation

2?24+ (y+2)?2 - 55(y+2)=0
2+ (y+2-37)° = wre-
These points lie on the circle with radius ﬁ and center at (0, 77 — 2).

9. Modify the solution of Example 1(a) to obtain that, in the present case, the

solution is T
u(z, y) = =2 [tanl (a+x> +tan~! (a—x)] .
™ Y Y

To find the isotherms, we must determine the points (z, y) such that u(z, y) = T.
As in the solution of Example 1(b), these points satisfy

z? + (y - acot(§)>2 = (CLcsc(7;—T)>2 :

0 0

Hence the points belong to the arc in the upper half-plane of the circle with center
(0, acot(%)) and radius acsc(%). The isotherm corresponding to 7' = & is the
arc of the circle

x? 4 (y - acot(g))Q = (GCSC@)Q’

or
2

%+ y2 =a”.
Thus the isotherm in this case is the upper semi-circle of radius a and center at the
origin.

13. Parts (a)-(c) are clear. Part (e) fellows from a table. For (d), you can use (e)
and the fact that the total area under the graph of P,(z) and above the z-axis is
V3P (0) = vIme 0 — v/,
(f) If f is an integrable function and piecewise smooth, consider the Dirichlet prob-
lem with boundary values f(z). Then we know that the solution is u(zx, y) =
P, « f(z). In particular, the solution tends to the boundary function as y — 0. But
this means that lim, .o P, * f(z) = f(z).

The proof of this fact is beyond the level of the text. Another way to justify
the convergence is to take Fourier transforms. We have

F(Pyx f)(w) = F(Py)(w) - F(f)(w) = e F(f)(w).

Since limy_.g e vlwl = 1, it follows that

lim F(P, « )(w) = lim e () (w) = F(f)(w).
y— y—
Taking inverse Fourier transforms, we see that lim, .o P, * f(z) = f(z).

The argument that we gave is not rigorous, since we did not justify that the
inverse Fourier transform of a limit of functions is the limit of the inverse Fourier
transforms.
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Solutions to Exercises 7.6

1. The even extension of f(z) is

fe(x)—{ 1L if-1<z<l,

0 otherwise.

The Fourier transform of f(z) is computed in Example 1, Sec. 7.2 (with a = 1).
We have, for w > 0,

2 sinw

Fe(H)(w) = F(fe)(w) =/ =

™ w

To write f as an inverse Fourier cosine transform, we appeal to (6). We have, for

x>0,
\/7/ Fe(f)(w) cos wz dw,
or
9 % sinw 1 ifo<a<l,
—/ coswzxdw=<¢ 0 ifzx>1,
TJo W I oifr=1

Note that at the point * = 1, a point of discontinuity of f, the inverse Fourier
transform is equal to (f(z+) + f(z—))/2.

3. The even extension of f(z) is f.(z) = 3e 2%l We compute the Fourier
transform of f.(x) by using Exercises 5 and 17(a), Sec. 7.2 (with a = 2). We have

Flraw) =322

Fupn) = FUrw) = 22

To write f as an inverse Fourier cosine transform, we appeal to (6). We have, for

x>0,
\/7/ Fe(f)(w) cos wz dw,

367296:%/00 coswr
T Jo 4+ w?

So, for w > 0,

or

5. The even extension of f(z) is

fulz) = cosr if =27 <z < 2m,
10 otherwise.

Let’s compute the Fourier cosine transform using definition (5), Sec. 7.6:

i) = =2 [ cosreosurds
= \/7/27T [cos(w + 1)z + cos(w — 1)x] dx

2 [sin(w+ Dz sin(fw— 1)z

_ 12 1
2 p [ wrl T wot |, w7V
1 /2 [sin2(w+ 1) sin2(w— )7

_ 12 1
2 w[ w+1 w—1 (w#1)
1 /2 |sin27w  sin27w

= o4/= 1
2V [ w1 + w—1 ] (w#1)

2 w
—sin 2nw—— 1).
\/;sm www2 — (w#1)



214  Chapter 7 The Fourier Transform and its Applications

Also, by I’'Hospital’s rule, we have
. 2, w
lim 4/ = sin2rw——— = V2,
w—0 V w? —1

which is the value of the cosine transform at w = 1.
To write f as an inverse Fourier cosine transform, we appeal to (6). We have,
for z > 0,

2 [ w . cosr if0 <z <2m,
— —— sin 2mw cos wx dw = .
T Jy w?—1 0 if x > 2.

For x = 2m, the integral converges to 1/2. So

2 [ 1
—/ 2L sin 27w cos2rwdw = —.
T Jy w?—1 2

7. The odd extension of f is

1 ifo<z <1,
folx)=¢ -1 if —1<z<0
0 otherwise.

To avoid computing the Fourier transform of f, from scratch, let us introduce the

function
1if —f <<y,
g(z) = ,
0 otherwise.

From Example 1, Sec. 7.2, we have

Flo)w) =/ 2%
Note that f,(z) = g(z — ) + g(z — 3). So
Flf)w) = Flgle — 5)w) + Flgla — 5))w)
= e TF(g)(w) + e F(g)(w)  (Exercise 20, Sec. 7.2)

_92isin &
2isin g

= Flg)w) (74" + +ebv)

~ [2sin? w2

™ w

Applying (10), Sec. 7.6, we find

Fulf)(w) = iF (o) (w) = 2\/?11 w2 _ [21-cosw

w ™ w

The inverse sine transform becomes

2 [*1-
flz) = —/ = OO sinwa duw.
0

s w

9. Applying the definition of the transform and using Exercise 17, Sec. 2.6 to
evaluate the integral,

2 o0
Fo(e ") (w) = 4/ —/ e ?" sinwaz dx
T Jo
2 672x ) 0
= = — [~wcoswz — 2sinwz]
T 44w =0

e
o T4+ w?’
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The inverse sine transform becomes

2 [ee)
flz) = ;/0 4+ww2 sin wzx dw.

11. The odd extension is
sin 2x

fo('r) = { 0

To evaluate the Fourier transform of f,, write f,(z) = sin2z - g(x), where

if —7m<z<m,

otherwise.

() 1 if —m<x<m,
g\r) =
0 otherwise.

Then by Exercise 20(b), Sec. 7.2, we have
F(fo) = F(sin2zg(z)) = % (Fl9w =2) = Flg)(w +2)).

By Example 1, Sec. 7.2,

So

\/51 sin(w—2)  sinw(w + 2)
?E( w—-2 w42 )
- \/51 sinTw  sinmTw

= ?Z(H_erz)

- \/52sin7rw

n Tiw?—4

Applying (10), Sec. 7.6, we find

2 sin Tw
s =1 o =24/— .
FuA)) = iF () () = 2/ 507
The inverse sine transform becomes
4 [ sinTw .
f(x)—;/o w2_4smwxdw.

13. We have f.(z) = H% So

1
Fol—)=7F
(=)

by Exercise 11, Sec. 7.2.

15. We have f,(z) = 1755 So

1 .
Fs <—1+x2> =F

by Exercise 35, Sec. 7.2.

cosx
1+z2 -

17. We have f.(z) = So

CcosT

CosS T

fc(1+x2> _]:(l—i-x2

) - \/g (e*'w*” +e*<w“>) (w > 0),

215
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by Exercises 11 and 20(b), Sec. 7.2.
19. Let f. denote the even extension of f so that f.(x) = f(z) for all z > 0. Then,

for w > 0,
2 o0 2 o0
\/j/ f(x) coswa dx = \/j/ fe(x) coswz dx
™ Jo ™ Jo
21 [
\/;5 /700f8(3:)coswxdx

(The integrand is even.)

Fe(f)(w)

1 (o)
= — o(z)(coswxr —isinwz) dx
= st )
(The integral of fe(x)sinwz is 0 because the integrand is odd.)
1 e -
= — e(z)e " dx
=/ @
= F(fe)(w).

We proceed in a similar way when dealing with the sine transform. Let f, denote
the odd extension of f. The f(z) = fo(z) for > 0 and

Fs(Hw) = \/g/ooo f()sinwz dz = \/g/ooo folz) sinwz d
_ \/gé/o:ofo(x)sinwxdx

(The integrand is even.)
1 o0
= i— fo(x)(coswa — isinwz) dx
V 27T w/foo
(The integral of f,(z)coswz is 0 because the integrand is odd.)

= E/,OO fo(x)e "% dx
= iF(fo)(w).

21. From the definition of the inverse transform, we have F.f = F. 1 f. So F.F.f =
FF L f = f. Similarly, FoFs f = FsF 1 f = f.
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Solutions to Exercises 7.7

1. Fourier sine transform with respect to x:

=0
g~ R 5 p—"—
B(w, 1) = —w?i,(w, ) + /2w 50, 1)

dt

Lis(w, t) = —w?ug(w, t).

dt
Solve the first-order differential equation in @s(w, t) and get

s(w, t) = Aw)e "

Fourier sine transform the initial condition

A, 0) = Alw) = Fu( ) (u) = Toy 2=

Hence
N 21— cosbw
Us(w, t) = ST P vt
T w

Taking inverse Fourier sine transform:

2 [ 1—cosbw _,z2, .
e lSinwzdw.
0

t)==
ula, ) = = -

3. As in Exercise 1, Fourier sine transform with respect to x:

=0
g~ N 5 p—"—
B(w, 1) = —w(w, 1) + /2w w0, 1)

dt

Lis(w, t) = —wug(w, t).

dt
Solve the first-order differential equation in @s(w, t) and get

Us(w, t) = A(w)e ™",

Fourier sine transform the initial condition

us(w, 0) = A(w) = Fo(f(2))(w) = \/gew-

Hence
2 2
Ty(w, £) = || Zeve 0t = | 2 em(wthu),
s T

Taking inverse Fourier sine transform:

2 o0
/ e~ (W) Gin 4 dw.
0

u(z, t) = -

If you Fourier cosine the equations (1) and (2), using the Neumann type

5.
condition 9
u
—(0,2) =0
20,1 =0,
you will get
=0
d
Lac(w, 1) = [ = wie(w, 1) - V2 Sulo, 2]
dz
Lie(w, t) = —c2w?u.(w, t).

dt
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Solve the first-order differential equation in u.(w, t) and get

2,2

Ue(w, t) = A(w)e L.
Fourier cosine transform the initial condition
uc(w, 0) = A(w) = Fe(f)(w).

Hence
Us(w, t) = Fe(f)(w)e ="

Taking inverse Fourier cosine transform:

u(x, t) =4/ = / Fe( *C“’tcoswxdw.

7. Solution (4) of Example 1 reads

u(z, t) \/7/ fS e~ sin wt dw,
fo(w) = \/g/“; f(s)sinwsds.

2 o0 o0
u(z, t) = —/ f(s)sinwsdsefczwztsinwtdw

T Jw=0 Js=0

2 [ o0
= —/ f(s)/ sinws sinwt e~ ¥ tdwds

T Js=0 w=0

where

So

Use sin Asin B =

- \/% /Sj) f(s)\/g/wojo [cos(w(x — s)) — cosw(x + s)]e*g“’ztdwds.

Evaluate the inner integral by appealing to a result of Example 4, Sec. 7.2, which
we recall in the following convenient notation:

/2 /Oo —aw? d 1 22
- e COSTW aw = e 4da,
m w=0 V 2@

[cos(A — B) — cos(A+ B)].)

N~

Hence
2 > —cZw?t
— cos( (z—s)) —cosw(z + s)]e dw
T
= /= / cos(w(z — s))e —wt gy \/7/ cosw(z + s)e —wt gy
(z—5)2 (z+5)?
= |: 12t — e 4c2t };
\/ic\f
and so

u(x,t) =

(z=5)2 _ (zts)?
[ 42t — e 42t ]ds.

20\/_

9. (a) Taking the sine transform of the heat equation (1) and using u(0,t) = Tp
for t > 0, we get

d 2 2~ \/5 .
p us(w,t) =c¢ [— w s (w, t) + ;wu((), t)},



Section 7.7 Problems Involving Semi-Infinite Intervals 219

or

d 2
— g (w, ) + Aw?ts(w, t) = 2 \/ijo.
dt T

Taking the Fourier sine transform of the boundary condition u(z,0) = 0 for x > 0,
we get Us(w,0) = 0.
(b) A particular solution of the differential equation can be guessed easily: us(w, t) =

% Io  The general solution of the homogeneous differential equation:

d
o Us(w, ) + s (w, ) = 0

is us(w, t) = A(w)e*g“ﬁt. So the general solution of the nonhomogeneous differ-

ential equation is
~ 2 T
us(w, t) = A(w)efczwth /222
T w

Using 7, (w, 0) = A(w)\/g% =0, we find A(w) = _\/g%. So

us(wt) = \/zﬁ - \/zﬁeg“ﬁt.
T w T w

Taking inverse sine transforms, we find

2 [ [T T
u(w,t) = —/ (—O - —Oec2w2t> sin wx dw
™ 0 w w
=sgn(z)=1
—_—
2 [ sinwzx 2Ty [°° sinwz
= T —/ dw — =2 PR et dy
T Jo w T Jo w
_ 7 2Ty [° Sinwxefc%”ztdw

7T 0 w
11. We will solve the Dirichlet problem
Ugg + Uyy =0 O<z<1, 0<y)
U(O, y) = 0; g_::(x, O) = 0, u(l, y) —=e Y.

Cosine transform with respect to y:

=0
0
2 —~ u
dd?uc(x, w) — w?ie(x, w) — % 8—y(x, 0)=0
2 o~ o~
dd?uc(x, w) = w?.(z, w).

The general solution is

Ue(z, w) = A(w) cosh wzr + B(w) sinh wa.

Using
80, w) = 0 and (1, w) = Fule V) = \/?;
w1+ w?
we get
2 1 1
Aw)=0 and B(w)= \/;1—1-—102 e
Hence

o )= 2 1 sinhwz
el W)= V7l+4+w? sinhw
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Taking inverse cosine transforms:

( ) 2/°° 1 sinhwz d
u\xr = — ——F ————— COS .
T ), T+ w? sinhw Y

13. Proceed as in Exercise 11 using the Fourier sine transform instead of the cosine
transform and the condition u(x 0) = 0 instead of uy(x, 0) = 0. This yields

The general solution is

Us(x, w) = A(w) cosh wz + B(w) sinh wa.

Using
2w
As = d As 1; = Js )= - 5
Us(0, w) =0 and us(l, w) = Fs(e™Y) ”wl—i—wQ
we get
2w 1
A = d B Y e
(w)=0 an (w) \/;1—1-102 sinh w
Hence

s ) = 2 w sinhwz
usx’w_\/wl—l-wQsinhw'

Taking inverse sine transforms:

2/°° w sinhwzx .
0

ulz, y) = = 1+ w? sinhw

15. We will solve the Dirichlet problem
Ugz + Uyy = 0 0<z, 0<y)

u(x, O) =0, u(oa y) = f(y)a

where
1 if0o<y<,
f(y)_{o if 1<y.

Sine transform with respect to y:
=0
Nealy (x 27 2 _
Tt (1, w) — ws(z, w) + /Zwu(z, 0) =0

2 o~ ~
dd?us(x, w) = wis(z, w).

The general solution is
Us(x, w) = A(w)e™™® 4+ B(w)e ™.

Since we expect a Fourier transform to be bounded and since w and = are > 0, we
discard the term in e"”* and take

Us(x, w) = A(w)e™™".
Transforming the boundary condition:

21 —cosw

(0, w) = A(w) = Fs(f(y)(w) =1/ =

s w
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Hence
=N 21—cosw _
Us(x, w) =4/ ———e
s w

wxT
Taking inverse sine transforms:

2 [*1-—
u(z, y) = —/ ST Y e sin wy dw.
™ Jo w

221
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Solutions to Exercises 7.8

1. As we move from left to right at a point xg, if the graph jumps by ¢ units, then
we must add the scaled Dirac delta function by ¢d,, (). If the jump is upward, c is
positive; and if the jump is downward, c is negative. With this in mind, by looking
at the graph, we see that

(6-2(x) +6-1(x) — 61 (z) — d2(z)) -

N~

F(@) = 5 6t g 61(@)— 61 ()~ da() =

3. We reason as in Exercise 1; furthermore, here we have to add the nonzero part
of the derivative. We have

0 if v < =2,

-1 if —2<z< -1,
if —1l<ax<l,
0 ifx > 1,

Using unit step functions, we can write

f(@) = —(U-2(x) = U1(2) + (U-1(x) = U(2)) + 6-1(x) — 2 52().

Exercises 5, 7, 9, and 11 can be done by reasoning as in Exercises 1 and 3. See
the Answers in the back of the text.

13. We do this problem by reversing the steps in the solutions of the previous
exercises. Since f(x) has zero derivative for x < —2 or & > 3, it is therefore
constant on these intervals. But since f(z) tends to zero as © — +oo, we conclude
that f(x) = 0forz < —2 or x > 3. At x = —2, we have a jump upward by one unit,
then the function stays constant for —2 < x < —1. At x = —1, we have another
jump upward by one unit, then the function stays constant for —1 < z < —1. At
x = 1, we have another jump upward by one unit, then the function stays constant
for 1 < x < 3. At z = 3, we have a jump downward by three units, then the
function stays constant for x > 3. Summing up, we have

0 ifx< -2,

1 if —2<z< -1,
flz) = 2 if —l<z<l,

3 ifl<ax <3,

0 if3<ux.

15. We reason as in the previous exercise and find that f(z) = 0 for x < —1. At
x = —1, we have a jump downward by one unit, then the function has derivative
f'(z) = 2x for =1 < x < 1, implying that the function is f(z) = 22 + ¢ on this
interval. Since the graph falls by 1 unit at = —1, we see that f(z) = 22 — 2 for
-1 <x < 1. At x =1, we have a jump upward by one unit, then the function
stays constant and equals 0 for z > 1. Summing up, we have

0 if v < —1,
flz) = 2 -2 if —1<x<1,
0 if1 <.

17. We use the definition (7) of the derivative of a generalized function and the
fact that the integral against a delta function 4, picks up the value of the function
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at a. Thus

(@ (), f(x)) (b(x), =f'(2)) = —(d(), f'(x))

—(0o(x) = d1(x), f'(z)) = —f(0) + f'(1).

19. From Exercise 7, we have ¢/(z) = 1 (U_2q(x) — U_a(2)) — 2 (Ua(z) — U24()).
Using the definition of the unit step function, we find

@@), f@) = (o)~ Uma(w)) — ~ (Ua(e) — Unae), F2)
- /Oo [ (U 2a() — U a(a)) — - (Uale) ~ Una(a))| () da

21. From Exercise 7, we have ¢/(z) = 2 (U_2q(2) — U_o(2)) — 2 (Ua(z) — U24(2)).
Using (9) (or arguing using jumps on the graph), we find

F'(2) =~ (5-20(2) 00 2)) ~+ (50 @) ~020(x)) = = (5-20(x)~3a(x) 0 (&) +620 ().

a

23. From Figure 19 we see that ¢ has no jumps on the graph. So, as a generalized
function, the derivative has no deltas in it and

0 if v < =2,

-1 if —2<z< -1,
¢ (z) = 1 if —1l<az<l,
-1 ifl<z<?2,

0 ifx > 2.

In terms of unit step functions, we have

Thus, using (9),

(b”(:t) e —(5,2(35)—5,1(35))4—(5,1(x)—51 ($))—(51 (.I)—52($)) = —0_9+20_1—201+0>.

25. Using the definition of ¢ and the definition of a derivative of a generalized
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function, and integrating by parts, we find

(@' (), f(@)) = —((x), f'(x)) = —/jo ¢(x)f'(x)d
0 1
= —/71 2(3:—|—1)f/(3:)d:c—/0 —2(z—1)f"(z)dx

= 2z + 1)f(2) +2/ flz)de +2(x — 1)f ]-2/10

= —2f(0)+2/71f(x)d:c+2f(0)—2/0 f(z)d

= 2(Uor(@) - Uo(a)), (@) — 2(Uo(a) — Us(@)), Fla))-
= 2(Ui(@) = Uo() — 2(Us(w) — Us (), F(@)).

Thus
¢'(z) =2(U_1(z) — Uo(2)) — 2(Uo(z) — Ur(2)).

Reasoning similarly, we find

(@"(2), f(2)) = —(¢(z), ['(x)) = —/jo ¢'(z)f'(z)d

_ _z/olf/(x)d:c+2/olf’(x)d

= =2(f(0) = f(=1)) +2(f(1) = f(0)) = 2f(=1) — 4f(0) + 2f(1)
= <2571 - 450 + 251, f($)>

Thus
(b”(.f) = 25,1 - 450 + 251

27. We use definition (7) of the derivative of a generalized function and the fact
that the integral against a delta function d, picks up the value of the function at a:

(0 (x), f(x)) = —{do(x), ['(x)) = —f'(0);
similarly,
(05 (2), f(2)) = —(da(x), ['(x)) = —f'(a)

and

(657 (), f(2)) = (=1)"(d(x), fT(2)) = =" (a).
29. We use (13) and the linearity of the Fourier transform:

1

F(38) —26_2) = E(

3 — 2%,

31. We have (sgnz)’ = 20o(x). This is clear if you draw the graph of sgnz, you
will see a jump of 2 units at x = 0, otherwise it is constant. Hence

2

F((sgnz)') = F(280(z)) = Nors

But
F((sgnaz)') =iwF(sgnw).
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So
7 2 121

—1 I

]:(sgnx):—é]:((sgnx)’):—a~ﬁ: ——

33. Using the operational property in Theorem 3(i), Section 7.2, we find

iif(u,l - Uy)

Flz(U_y— Ur)) o

d ) : 7 )

— i_ _ elw _"_ e*lw

dw [ V2T w V2T w ]
i) d e —e™
Vor dw w
B 1 d [21’ sinw
Vo dw
2 [w cosw—sinw]

V2T 2

. 2[wcosw—sinw]
= /2| =——"].

] (Recall ™ — e™™ = 2jsinu)
w

w

2

s w

The formula is good at w = 0 if we take the limit as w — 0. You will get

.. /2w cosw —sinw .2 .. —wsinw
f("”(“1‘”1>)—$%Z\/;[T]—Z\/;$%T—O-

(Use 'Hospital’s rue.) Unlike the Fourier transform in Exercise 31, the transform
here is a nice continuous function. There is a major difference between the trans-
forms of the two exercises. In Exercise 31, the function is not integrable and its
Fourier transform exists only as a generalized function. In Exercise 33, the function
is integrable and its Fourier transform exists in the usual sense of Section 7.2. In
fact, look at the transform in Exercise 31, it is not even defined at w = 0.

An alternative way to do this problem is to realize that

(b/(x) =—0_1—0+U_1— U;.

So
F(@'(x) = F(=0-1—-0+ U1~ U)

_ L (_ iw _—iw e + -eiw>

= I e e v
But

f((b’(x)) = iwf(¢(x)).
So
Flo(x)) = %f(em—i-e*“”—i-iew —iew )

7 7
= 2cosw + —(2¢sinw
V21w [ w( )]

/2 [wcosw—sinw]
= /2| —77].
2

s w
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35. Using linearity and (15), we find

a (23: 7 (Uj = Uj+1)) = —\/; 23: j(e*ij“f _efz'(j+1>w)

j=—3 TW ;"3

. 3
_ oW (] _ p—iw
\/ijggje (1—e™)

3

i —iw - —ijw
= —mw(l—e )Z]e J

. 3
¢ —iw . —ijw 1jw
= — 27”0(1—@ )Z](e Jw el

. 3
= e (1—e™) Y (20 sinjw)

—w 3
\/g(ewi—l) Zj sin(jw).

37. Write 72(x) = 22Uo(x), then use the operational properties
F(r*(x) = F(2°Uo(x))

= T F W)

_ ot J1
a Vo dw? | w
27 1 /21
= —=—==i/—-—.
Vor w3 T w3
39. We have

So

o 1 621'10 eiw _ e*iw _ 6721'10
= 57 e + ]
= \/Z2_w [sin(2w) + sinw] .
Hence
F (@) = 7 (/@) = <= binf2u) + sinu] = —= =t 2nw

flx)=—-U_2x)+2U_1(x) — Ui(z) +d_1(z) — 252(x).
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F(f'(x) = F(-U_ax)+2U_1(x) — Ui(z) +5_1(x) — 202(x))
—i e?tw —i ew —i et 1 .. 2 oiw

+2 — = + e — e
V2r w V2T w V2r w V2T V2T

Hence

1 25w Tw —iw ) )
— e + 2e 2| |

43. Given f(x) = e ® if z > 0 and 0 otherwise, we see that f/(z) = do(x) — e if
x > 0 and 0 otherwise. Hence f'(z) = do(x) — f(z) and so

F(f (@) = F(dolx) = f(z));

wF (f(z)) = E—f(f(x)%
1 1
= FU@) = 7= 15
1 1—ww
= F@)=7=170

45. You may want to draw a graph to help you visualize the derivatives. For
f(z) = sinx if || < 7 and 0 otherwise, we have f”(z) = cosz if |z| < © and
0 otherwise. Note that since f is continuous, we do not add delta functions at
the endpoints z = +7 when computing f’. For f”, the graph is discontinuous at
x = +7 and we have

/' (x)=—0_n + 6 —sinz

if |z] < 7 and 0 otherwise. Thus
() = =0_r +6; — f(x) for all 2.

Taking the Fourier transform, we obtain

F(f'@) = F(—b-r+0x—f(x));
SEF(f(@) = =™ e F (1))
=2 cos(mw)
= (1 —|—’LU2).7: (f(x)) — L (eirrw 4 e*’iﬂ'w)

2

ﬁ

> F () = o= T

47. In computing the Fourier transform F (f * f), it is definitely better to use the
formula F (f = f) = F (f) - F(f), since we already have F (f) = \/;# So

T a?4w? "

CL2

F(fef)=2

7 (a2 +w?)?’
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The second method is used here only to practice this method, which is a lot more
useful in other situations. From Example 8, we have

"= a?f — 2ady.
So from 2 d2f
a2\l =gt

we have

F(gmren) = #(5er) =7 (s -20m) )

—w?F (fxf) = F((a®f=f—2ad=*[))
/2

——

= a*F(f*f)—2aF (60 * f)

2a
V2T

2 a
F(f=f)= \/;m]:(f)-
Writing F (f * f) = F (f) - F(f), we conclude that

0=\

72 a?

T @+ P

= F(f*f)- F(f)-

Thus

and that
F(f=f)

49. From Example 9, we have
f=0_1—0d1.
So from J if
Iz (f * f) = Ir * f
we have

Lren = Lopaa-s)er

= b f b fi= o=(fla+ )~ [l - D).

Using the explicit formula for f, we find

L if —2<2<0,

d Var
E(f*f): —# ifo<z<2,
0 otherwise,

as can be verified directly from the graph of f x f in Figure 18.
51. Using (20), we have

(b * 1/) = (3571) * (52 - 51)
= 3571 * 52 — 35,1 * 51

1 3
— [30_142 — 36— = —1[01 — 9
Jon (30142 141] o [61 — do]
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53. Using (20), we have
oxY = (571 + 252) * (5,1 + 252)

= d_1%0_1+20_1 %89 + 202 % 6_1 + 409 * 59

1
= :75;[5,24-4514-454.

55. Following the method of Example 9, we have

dop
a Y

(571 — 51) * ((ZxLl — Z/{l).I) .

d
E(Qﬁ”/)) =

Using (19) and the explicit formula for 4, it follows that

d 1
. (px) = N [(left translate by 1 unit of ¢) — (right translate by 1 unit of )
L(x+1) if —2<2<0

™

(—z+1) f0<z<2

™

"3k

otherwise

d

Integrating = (¢ * 1) and using the fact that ¢ ) equal 0 for large |x|, we find

=5 +a) if —2<z<0
Ppxp(x) = ﬁ;@ﬂ +xz) if0<a<?2
0 otherwise

(—% +2) (U — Us).

1z

E ?4—35)(1/{,2 - Z/{o) +

5 -
3

56. Let f(x) = U_o — Uy(x) and g(x) = U_p — Up(z), where 0 < a < b. We have

2 sin aw 2 sin bw
Y ERLLI R R ELL

T oW - w
so - -
F(f*g) sin(aw) sln( w)

Instead of inverting the Fourier transform to find f * g, we will compute f * g by
using the method of Example 9. We have

f/(x) = 5,(1(3:)—5(1(3:);

s w
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So f x g is the second antiderivative of this sum of Dirac deltas, that vanishes at
infinity; that is, f x g(z) = 0 for large |z| (in fact, for |z| > a + b). The reason for
the last assertion is that both f and g have boounded support, so f * ¢g will have
bounded support. To compute the antiderivatives it is best to do it on a graph, as
we did in Example 10. We can also proceed as follows. Antidifferentiate once and
use (17), then

L 0)) = =~ Un-ale) + Uy (@) + Uas () — Uas(2).

5~
3

An antiderivative of U, is the function (x — a) U, or

d
d—(x —a)Uy = Uy ().
x
To see this, just draw the graph of (x — a)Uy; it is continuous and equal to 0 if
z < o and x — a if x > «. Thus its derivative is 0 if x < a and 1 if z > «; thus the
derivative formula is true. So and antiderivative of f * g is

\/% (—(z=b+a) Up—a(x)+(z+b+a) U_(grp) (@) + (2—b—0a) Uaqs (z)— (z+b—a) Ua—p(z)).

If this function vanishes for large |z|, then it would be the desired antiderivative.
Let us check: Take > a + b, then

(—(@—b+a)Up_o(z)+ (z+b+a)U_(g)(x) + (x —b—a) Uays(z) — (z+b—a)Ua.

5
3

:\/%(—(3:—b—|—a)—|—(3:—|—b—|—a)—|—(x—b—a)—(3:—|—b—a):O,

as desired. Similarly, if z < —a — b, then

\/%—ﬂ(— (z=b+a)Up—a(@)+ (2 +b+ a)U_(a1p)(x) + (2 —b— a) Uats(2) — (z +b—a) Uq

=~ (-0+0+0-0)=0.

us

s

This proves that
1
fxg(x) = N ((z4b+a) U_(arp)(2)— (2+b—a) Ua—p(2)— (z—b+a) Up—o(z)+(2—b—a) Uats(z)

More explicitely, we have

0 if |z| >a+b;
1 r+b+a if —a—-b<ax<-b+aq;
f*g(x):E (3;—|-b—|—a)—(3:+b—a) if —b+a<z<b-—a;

(3:—|—b—|—a)—(3:—|—b—a)—(3:—b—|—a) ifb—a<z<a+b

so, after simplifying,

0 if |z| > a + b;
1 z4+b+a if —a-b<zr<-b+a;
f*g(x):‘/zﬂ 2a if —b+a<z<b—a;

—x+b+a fb—a<zx<a-+bd.

The graph of f * g is a nice tent.
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57. Following the method of Example 9, we have

d
E(Qﬁ”/)) =

dy
— %
dxr

(571 —51) * (Z/{fl — Z/{l + Z/{Q — Z/{3)

¢

= 0 1*xU_1—0_1xU +0_1xUs—_1% Uz — 01 xU_4
+51*Z/{1—51*Z/{2+51*Z/{3

Integrating % (¢ 1)

RS
3 3

(Z/{72—Z/{0+u1—Z/{Q—Z/{o+u2—Z/{3+Z/{4)

(U—a — Uo) — (Uo — Ur) — (U3z — Uy)).

and using the fact that ¢ * ¢ equal 0 for large |z| and that

there are no discontinuities on the graph, we find

px(z) =

59. We have

1
°=3

and

1 .
—(z+2) if —2<2z<0

L(—x+2) if0<z<l1

s

fl<z<3

-5 5
Y

——(—z+4) if3<z<4

(a=)
ﬁ
3

otherwise

—~

\/%( z+2)(U_a — Up) + (—x +2)(Uo — Un)
+(Us = Us) + (—z +4)(Us — Us)).

(U~ U 1)+ (Uor— Un) + %(u1 —Uy)

v=U_1— U.
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dy

*
dxr

¢
(571 —51) * (%(Z/{Q — Z/{,l) + (Z/{fl — Z/{1) + %(ul — Z/{Q))

1 1 1 1
55,1 x* U_o — 55,1 xU_1+0_1xU_1—6_1%xU+ 55,1 * Uy — 55,1 * Usg

1 1 1 1
—551*Z/{,2+§51*Z/{,1—51*Z/{,1+51*Z/{1)—§51*L{1+551*Z/{2

1,1 1 1 1
—(cU_3— U2+ U2~ U))+=Uy— U

\/%(2 375 2+ U_2 0)+2 0= 5t

1 1 1 1
——U_1+ Uy~ Uo+ Usz) — U+ U

5 1+2 0 o+ Uz) 5 2+2 3)

1,1 1 1 1 1 1
—%(§u,3+5u,2—5u,1—u0—5u1+5u2+5u3)

(U_g+ U0 — U1 —2Uy — U1 + Uz + Us3)

DO | =
5~
3

1 if —3<zr<-—-2
2 if —2<z<-—1
1 if —1<z<0

X -1 if0<ax<l1

DO =
5~
3

=2 ifl<ax<?2
-1 if2<ax<3

0 otherwise

Integrating % (¢ * 1) and using the fact that ¢ x ¢ equal 0 for large |z| and that
there are no discontinuities on the graph, we find

¢ * (x)

N~

N~

(x+3) if —3<az<-2
2z +5) if —2<z<-1
(x+4) if —1<z<0
1
— X< (—z+4) if0<z<l
V2r
(—2z+5) fl<z<?2
(—z+3) if2<zx<3
0 otherwise
1
E((xm)(u,g —U )+ (22 45)(Us— U_1) + (x +4) (U1 — Uo)

(=2 +4)(Uo — Uy) + (=22 +5) (Us — Us) + (—z + 3)(Us — ug)).
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Solutions to Exercises 7.9

1. Proceed as in Example 1 with ¢ = 1/2. Equation (3) becomes in this case

2
u(z, t) = Eefﬁ/t*(sl(x)
1
= e @Dt
it

since the effect of convolution by ¢; is to shift the function by 1 unit to the right
and multiply by \/%—ﬂ

3. We use the superposition principle (see the discussion preceeding Example 4).
If ¢ is the solution of u; = %um + do, u(z, 0) = 0 and 7 is the solution of u; =
%um—l-(h, u(x, 0) = 0, then ¢+ is the solution of u; = %um—l-zso +41, u(z, 0) =0.
Applying Examples 2 and 4, we find
2_\/56*902# _ %F 1 e
&S Jroo\2' ¢t
_ 2_\/567(%1)% e e 1)? '

T N3 2’ t
5. We use the superposition principle (see the discussion preceeding Example 4). If
¢ is the solution of u; = %um + 8o, u(x, 0) = 0 and ¥ is the solution of u; = %um,
u(x, 0) = Uo(x), then you can check that ¢ + 1 is the solution of u; = %um + do,
u(z, 0) = Up(z). By Examples 1,

Mefrz/t_%r l, x_2
NS Vo2t

P(x, t) =
and

(2

(b({E, t) =

and by Exercise 20, Section 7.4,

Wz, t) = %erf (%) .

7. See the end of Section 7.4 for related topics.
9. Apply Theorem 2 with ¢ =1 and f(z, t) = cos ax; then

u(z, t) = e~ (@=)*/(4(t=9)) cos(ay) dyds

[ ]

—v*/(4(t=9)) cos(a(z — y)) dyds

(Change variables z — y < y)

e ¥’/ (4t=s) cos(ay) dyds

cos(ax)/ot \/127/(: \/2(27—5)

(Integral of odd function is 0.

¢
= cos(ax)/ e~ (=9)dg (Fourier transform of a Guaussian.)
0

= % cos(ax) (1 — e*azt).
a

11. Write the Fourier series of f(z) in the form

fl@)=ao+ Z (an cosna + by, sinnz).

n=1
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It is not hard to derive the solution of
Ut = Ugy + ag, u(z, 0) =0,

as ug(x, t) = apt. Now use superposition and the results of Exercises 9 and 10 to
conclude that the solution of

o0

Ut = Ugq + ag + Z (an cos nx + by, sin n:c)

n=1
is

X 1 — et
u(z, t) = agt + Zl — (an cosnz + by, sinnx).
n=
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Solutions to Exercises 7.10

1. Apply Proposition 1 with f(z, s) = e~(@+9)” then
dU 0
T - (et [ fre s
= e*4m2 - / 2(x + s)ef(m+s)2 ds
0

2z
= e 4’ _ / 20e™"" dv (v=ax+s)

2

3. Use the product rule for differentiation and Proposition 1 and get

%(ﬁ/omf(x, S)ds) = 23:/096]“(3:, s)ds+x2%/0mf($a s)ds

2 mf(x, s)ds+x* | f(x, x) + mﬂf(x, s)ds | .
/ (e [

5. Following Theorem 1, we first solve ¢y = ¢yz, ¢(, 0, s) = e *z2, where s > 0
is fixed. The solution is ¢(z, t, s) = e~*(2t + 22) (see the solution of Exercise 5,
Section 7.4). The the desired solution is given by

u(z, t) = /Ot oz, t —s, s)ds
¢

_ / et — 5) + a?)ds

0

t
= —te™ 425 %+ 2% —z2e
0

= —2+42t+2% +e (2 - 2?).

7. Following Theorem 2, we first solve ¢t = ¢ua, ¢(x, 0, 8) =0, ¢¢(x, 0, s) = cosx
where s > 0 is fixed. By d’Alembert’s method, the solution is

[sin(z + t) — sin(z — t)].

N~

1 x+t
Pz, t, ) = 5/ cosydy =

—t

The the desired solution is given by
t
u(z, t) = / oz, t — s, s)ds
0
1

= 5/O [sin(z +t — s) —sin(z — t + s)]ds

[cos(z +t — ) 4 cos(x —t + 5)] ;

N = N =

= =[2cosz — cos(z +t) — cos(z — t)].
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9. Following Theorem 2, we first solve ¢y = ¢ps, ¢(x, 0, 8) = 0, ¢¢(x, 0, 5) =
cos(s + x) where s > 0 is fixed. By d’Alembert’s method, the solution is

[sin(s +z +t) — sin(s + = — t)].

N~

1 x+t
oo tos) =5 [ cosls+u)dy =

—t

The the desired solution is given by
t
u(z, t) = / oz, t — s, s)ds
0
1

— /t [sin(aj +t)—sin(z —t + 25)] ds
0

DO |

1 1 t
= 3 [ssin(z +1t) + 3 cos(z —t + 2s)]
0

1 1 1
= 3 [tsin(z +t) + 3 cos(z +t) — 3 cos(z —t)].

11. We use superposition and start by solving ¢y = ¢ue, ¢(z, 0, 8) =0, ¢¢(x, 0, 8) =
x cos s where s > 0 is fixed. By d’Alembert’s method, the solution is

1 -+t
(Jj(;p, t, 5) = 5‘/ ycossdy = CO:S [(:E + t)2 — (:E — t)2] = xt coss.
x—t

By Theorem 2, the solution of ¢y = ¢ur +x cost, ¢(x, 0) = 0, ¢¢(z, 0) = 0 is given
by

oz, t) = / bt s, s)ds

dv

b s ——
= / x(t—s)cossds (Integrate by parts.)
0
" ¢
+ / sinsds]
0 Jo

Next, we solve Yy = Yy, ¥(x, 0) = 0, ¥ (x, 0) = z. D’Alembert’s method implies
that

-—x&—QMS

= x(1 —cost).

1 [*tt 1 .+t
t) == dy = ~y? = xt.
Y(z, 1) 2/9H ydy=y°| =u

Thus the solution of the desired problem is
u(z, t) = ¢(z, t) + P(x, t) = x(1 — cost) + xt = x(1 +t — cost).

The validity of this solution can be checked by plugging it back into the equation
and the initial conditions.

13. start by solving ¢y = ¢ue, Pz, 0, 8) = 0, ¢¢(x, 0, s) = do(x) where s > 0 is
fixed. By d’Alembert’s method, the solution is

[Uo(z +t) — Uo(z —t)].

N~

1 x+t
ot =5 [ dal)dy =

—t

By Theorem 2, the solution of wus = gy + do(x), u(z, 0) =0, ¢(x, 0) = 0 is given
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bz, 1) = /O b, 1 — 5, 5)ds

= %/0 [Uo(z +t—35) — Uo(z — t+ s)]ds

[—T(x+t—s)—7(x—t+s)];

N~

= —7(z)+ % [T(z+1t)+7(z—t)],

where 7 = 79 is the antiderivative of Uy described in Example 2, Section 7.8,
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Solutions to Exercises 8.1

1. |11 cos3t| < 11, so (2) holds if you take M = 11 and a any positive number, say
a = 1. Note that (2) also holds with a = 0.

3. The function 5¢% is already in the form that appears in (2). Take M =5 and

a=3.
5. |sinh3t| = | (3 — e73) /2| < (e3! + €3)/2 = 3!, So (2) holds with M =1 and
a=3.

7. Using linearity of the Laplace transform and results from Examples 1 and 2, we
have

L2t +3)(s) 2 L) + 3 L(1)

2 3

s2 s

9. Using linearity of the Laplace transform and results from Examples 1 and 2, we

have
1 1/2 —1/2
aﬁ+%m)zzaw+atw
r'@/2)  T1/2)
$3/2 s1/2
Now I'(1/2) = y/m, so T'(3/2) = (1/2)T'(1/2) = /7 /2. Thus
1 T T
11. Apply Theorem 5:
2 3t _ p(s2 _ 2
£ M) (s) = L) —3) = =3
13. Use Example 3 and Theorem 4:
L(t sindt)(s) = —%ﬁ(sin(élt)) = —%ﬁ
- 8s
T (2 +42)2

15. We have sin?t = #, SO

L(sin®)(s) = L(1/2) —1/2L(cos(2t) = % - m
17. We have
3 3

L(e* sin3t)(s) = L(sin3t)(s —2) = (5—22+32(s—22+9

19. We have
L(te 'sint)(s) = —iﬁ(eft sint)(s) = —iﬁ(sin t)(s+1)
N ds - ds
R
N ds(s+1)2+1
2(s+1)

((s +1)2 +1)?
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21. We have
L((t+2)*cost)(s) L((t* + 4t 4 4) cost)(s)
L(t* cost)(s) +4L(t cost)(s) + 4L(cost)(s)
d? d
— L(cost)(s) — 4— [L(cost)(s)] +4L(cost)(s)
ds? ds
d_2 s .d S n 4s
ds? s +1 ds |s?2+1 241
i—sQ—i-l_ —s2+1 4s
ds (s? +1)2 (s2+1)2  s2+1
2s(s% — 3) s2—1 n 4s
(s24+1)3 (s2+1)2  s2+1
23. We have
at _: _ 3 _ _ 6
L(e* sinft)(s) = L(sin ft)(s — a) Gl
24. We have
ot B N s—«
L(e* cos ft)(s) = L(cos Bt)(s — a) Gl P
25. Since 1
L(t) = 2
then )
£t (S—2> =t
27. Write
Fls) = 3524—1:% 11 2:4;/5 1/\/15 2
2 2
* (W) § +( 3)
= —L (sin %) ;
and so 4 ;
t) = — sin —.
1) = = sin—=
29. Using
atn _ n'
L(et") = (s —a)ntl’
r eattn _ 1 ,
n! (s —a)ntt
s—a

L (eat cos bt) =

(s —a)? + b2’
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we find that

31. Rewrite F as follows:

F(s)
So
32. Partial fractions:
3s+1 B
(s2 —25)2
3s+1 =

Take particular values of s:

s=0 =

€3tt4

1=

+ 3 cost.

s s
$24+254+1  (s+1)2’

s+1 1
(s+1)> (s+1)?

1 1
s+1 (s+1)2

1 n d 1
s+1 dss+1

te=t

fty=et -

3s+1
s2(s —2)2

A B _C D
s 82 s—2 (s—2)%¥

As(s —2)* + B(s — 2)? + Cs*(s — 2) + Ds*

1=4B = B=1/4

s=2 = T7=4D = D=7/4

Compare coefficients of powers of f:

coefficients of s :

coefficient of s :

3=4A-4B = A=1
0=A+C = A=-C = C=

So
1 1 1 7
F = = — R .
() s+452 s—2+4(s—2)2’
t
f&) = 1+ 1 et 4 Ze%t
33. Partial fractions:
2s—1 - 2s—1
2—5—-2  (s=2)(s+1)
J— A + B .
 5—2 541
2s—1 = A(s+1)+ B(s—2)
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Take particular values of s:
s=—-1 = —-3=-3B = B=1

s=2 = 3=34 = A=1

So

L1
s—2 s+1’

F(s) = =
fly = 4o

35. From L(cos2t) = s/(s* + 4), we find that

d s s2 4+ 4 — 252

L(tcos(2t) = TP id 21 )e ;
B s —4
CESE

So )
_ s*—4
L ! (m) = tCOS(2t>

37. Partial fractions:

1 _ A B
$243s+2)  s+2 s+1’
1 = A(s+1)+B(s+2)
-1 1
F(s) = —
() s+2 + s+ 1’
fy = —ete
39. Laplace transformt the equation and use the initial condition y(0) = —2:
L)+ L) = Licos2t)
s
Y —y(0)+Y = ——
sY —y(0) + oL
Y424V °
s = —
s24+4
Y(s+1) 24 "
s = 24—
2 +4°
—2 s
Y =
s+l GrE )
S SVES WS B S B ST
o os+1 5°s+1 5s2+4 5s2+4’
—11 2 1
Yy = T€7t+gsin2t+gcos2t

41. The change of variables 7 = ¢t — 7 transforms the initial value problem 3" +y =
cost, y(m) =0, y/(r) =0, into

y' +y=cos(t+m)=—cost, y(0)=0, y(0)=0
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Laplace transformt the equation and use the given initial conditions:

L)+ L(y) = L(—cosT)
2 - S
Y —sy(0) —y'(0)+Y = @
Y(241) = =——2°
(s +1) 1
v — s 71d 1
N (s24+1)2  2dss?+1
— —Lrsinr = —2(t—m)sin(t—m)
y = —grsint=—g(t—m)sin(t -

1
= §(t —m)sint
42. The change of variables 7 = t — 1 transforms the initial value problem ¢’ —y =
1+t3 y(1) =0, ¢(1) =1, into
Y —y=1+(T+1)2=7*+2r+2, y(0)=0, y(0)=1.

Laplace transformt the equation and use the given initial conditions:

LN —Ly) = LT*+27+2)
2 2 2
S2Y —sy(0) =/ (0)—Y = S—3+S—2+g
2 2 2
Y(?-1)-1 = =S+ +=
s s s
y = 1124242
g2 -1 s s2  s3

We now use partial fractions or simply verify directly the validity of the following

decompositions:
1 - 1 n s
s(s2—-1) s s2-1’
1 _ 11, s
s2(s2—-1)  s| s s2-1
_ 1,1
n s2 0 52 -1’
1 1
s3(s2—1) s 82(s2—1)
I
s | s2 0 s2—1
1 1 s

Similarly, using the previous decompositions, we find

11 11

sHs2—1) &t 2 21
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Using these decompositions, we have

y = 3sinh7—4—27r —72+4coshr
= 3sinh(t—1)—4—2(t—1)— (t —1)* +4cosh(t — 1)

= —3—t>+3sinh(t — 1) + 4cosh(t — 1)

Before we move to the next problem, it is interesting to note the following decom-
positions: for an integer n > 0,

1 B 1 1 1 n I
SQn(SQ _ 1) T g2n g2n—2 s2 21
and
1 B 1 1 1 s
$2nH1 (2 — 1) T~ T g2l g2n-1 T g"' 2 _ 1
Also,
1 1 1 (=™
— = — — —— .} .
sn(s?2+1) s g7l 241
So, for example,
1 1 1 1 1 1 1

= o - -
P(s24+1) 5 st 83 s2 0 s 5241

t

43. Laplace transform the equation y” + 2y +y = te=2! and use the initial

conditions y(0) =1, ¢/(0) = 1:

s2Y — sy(0) — ¢/ (0) +2sY —2y(0) +Y = —%H%;
Y(s2+2s+1) = 5+3+ﬁ;
Y(s+1)? = $+3+ gy
v (ssj23)2+(s+1)21(s+2)2

1 2 1

612 G127 (T 12s127e
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We now find the partial frctions decomposition of the last term on the right. Write

1

A B C D

(s +1)%(s +2)°

s+1++(s+1)2+s+2+(5+2)2;

1 = A+ 1D)(s+2*+B(s+2)2?+C(s+1)*(s+2)+ D(s +1)%
s=—-1 = B=1
s=-2 = D=1,
s=0 = 1=444+4+4+2C+1 = A4+C=0
compare coefficiets of s° = 0=A+C;
= A=-2 C=2
1 -2 1 2 1
GA12(+22 s+l GH1Z s+2  (ro?
y = L, 3 . 2, 1
s+1 (s+1)2 s+2 (s+2)2
y = —e t43tet 422 4te 2,

45.
conditions y(0) =0, y/'(0) = 1:

Laplace transform the equation y” — 3y’ — 6y

= et cost and use the initial

—1
2y — —4/(0) — sY —6Y = —
s sy(0) —y'(0) — sY +y(0) — 6 TESEESE
—1
Y(s2—s—6) = 1+ ———
(s* —s5—06) +(s—1)2+1’
So
1 1 s—1
Y = :
G-3)(6+2)  (-3)(+2) G111
R R S 1 s—1
 5(s+2) 5(s—3) (5—3)(s+2) s2—25+2
-1 1 1 2

5s+2)  Bs-3)

G2 —25+2)  (5-3)s+2)(2—25+2)

We now find the partial frctions decomposition of the last term on the right. Write

1
(s+2)(s2—25+2)
1
s =2

constant term

coefficient of s>

1
(s+2)(s2—2s5+2)

A Bs+C
s+2 s2 —2542’

= A(s* —2s+2)+ (Bs+ O)(s + 2);

= 1=104 = A=1/10

1
= 1:5—1-20 = C =2/5

1
= 0=—+B = B=-1/10;

10
- 1 ‘e —s5+4
10(s+2) 10(s?2 —2s+2)



Also

2
(s—3)(s+2)(s2—25+2)
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A Yy B
s—3 s+ 2

¢S+ D '
(s =3)(s+2)(s2—2s+2)’

2 A(s +2)(s* —2s+2) + B(s — 3)(s* — 25 +2)
+(CS + D) (s —3)(s + 2);
s=-2 B=-1/25
s=-3 A=2/25
constant term 2= LI 6D = D =-6/25;
25 25
coefficient of s C =-1/25;
2 2 1 —s—6
(s —3)(s +2)(s2 — 25+ 2) 25(s—3)  25(s+2) | 25(s2 —25+2)
Ya;
Now
P S S——
5(s+2) 5(s—3)
y = —%e’% + %e?’t - %et cost + %et sint.

47. The function y = sinat is the unique solution of the initial value problem

y'+ad’y=0 y(0)=0, y(0)=a.

Taking the Laplace transform of the initial value problem, we find

$2Y —sy(0) =/ (0) +a’Y =0 = Y(s*+d*) =a

a

= Y=——
s2 + a?

= L(sinat) = a4

s2 +a?
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Solutions to Exercises 8.2
1. To compute the Laplace transform of f(t) =Up(t — 1) —t+ 1, use

—as

£[Uo(t —a)] (s) = ——
SO
LlU(t—1)—t+1](s) = L[Ust—1)]—LI[t]+L[1]
e 1 1

3. To compute the Laplace transform of f(t) = e?'Uy(t — 2), we first prepare the
function to be in a form suitable for the application of Theorem 1. Write

Ut —2) = DUyt —2);
c [6462@*2% t-2)|(s) = ez [62<t*2>u0(t - 2)} (s)
— 646725,6 [6215]

1 672(572)

s—2 s—=2

e46725

Alternatively, we can use Theorem 5 of the previous section and compute the
Laplace transform as follows:

L[e*Up(t—2)] (s) = LUs(t—2)](s—2)
= LU(t—2)](s—2)

672(572)
s—2 7
because
6725
Llt(t—2) () = &
5. Use the identity sint = —sin(¢ — 7). Then
LsintUp(t — )] (s) = —Llsin(t —7)Uo(t — )] (s)
LN () =
= —e int] (s) =
s2+1

vy

—
N

y = 2(Uo(t—2) — Uo(t—3));
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N
t >

! 2 3¢

11. This is the translate of the function in Exercise 10. You can write its formula
by translating the formula in Exercise 10:

y = (t—=1Uo(t—1) = (t =2)Uo(t —2) — Uo(t —2);
Yy
1
/\I
| 1 2
13.
y = (Uo(t—1)— Uo(t —4))+ (t —5) (Uo(t —4) — Uo(t —5))
e~ S 6745 6745 6755
Y= s -2 s + 2 &2
A
1L
1 4/5 !
—1L

The following is a variation on Exercise 13.

13 bis. Find the Laplace transform of the function in the picture

Yy
1 —\
IV
y = (Uo(t—1)— Uo(t —4))+ (5—1t) (Uo(t —4) — Uo(t —5))
= Uo(t—1)— Up(t—4)+ (1t —=5)Uo(t —5) — (t—=5)Up(t — 4)
= Uo(t—1)— Up(t—4)+ (1t —5)Uo(t —5) — (t —4)Uo(t —4) + Uo(t — 4);
e—s 6745 6755 6745 6745
Y:s_s+52_52+s
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—s

15. Let y(t) = ¢, then Y(s) = &; soif f(t) = (t — 1)Uo(t — 1), then F(s) =

52

17. Let y(t) = sint, then Y (s) = so if

2+1 7
f@t) = Uo(t = 1)sin(t — 1),

675
241

19. Let y(t) = cost, then Y (s) = %5. To shift the transform by 3, we multiply
the function by e3t. So, if

then F(s) =

f(t) = e* cost,
s—3
1+ (s—3)2
20. Let y(t) = sinhtt, then Y(s) = . So, if

then F(s) =

F(t) = Uo(t — 3)sinh(t — 3),

6735

(s—1)(s+1)
21. Let y(t) = V7, then Y (s) = 2822 where I'(3/2) = 1T(1/2) = T. If

then F(s) =

o(t) = \f:><1>()

$3/2°

and so if

75

f(t) = \/t— Z/{O(t—l)thenF()_Sg/Q

23. We will compute 1 * ¢ in two different ways. First method: We have

1 £ l;
S
L 1

t — 5—2,

c 1 1 1
1=t - ===
T 5 eT S
1 -1
Y
s3 2
Alternatively,
t
1 5t 1
1xt = /TdT:—7'2 = —t%
0 2 lo 2

25. We will compute ¢ * t in two different ways. First method: We have

s 1
t — 5—2,
s 1
t — 5—2,
s 1 1 1
brt = 9 @~
-t 3
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Alternatively,

t
txt = /(t—T)TdT
0

t:lt3_lt3:lt3
o 2 3 6

t £ !
Sin _—
s24+1’
t £ !
Sin _— N
s2+1’
r 1 1 1 d s

1
int int . = — A
sint xsint — G ST T g 52+1+dss2+1

Ll L 4 s £ L int — tcost] = sint + sint
= — — [sint — tcost] = sint * sint.
28241 dss?2+1 2
Alternatively,
¢
sint * sint = /sin(t—T)sianT
0

= %/0 (cos(t—7—7)—cos(t —7+7))dr

1 t
= 5/ (cos(t —27) — cost) dr
0

(- % sin(t — 27) — (cost)7) dr ;

(sint — tcost).

N = N

1

29. WehaveF(s):m:g'ﬁ,a

nd

So .
f(t) =1xsint :/ sinTdr =1 — cost.
0

L_ So So

31. We have F(s) = m =2 2

f(t) =sint xsint = = (sint — tcost) (by Exercise 27).

N —

33. Passing the equations ¥ +y = do(t — 1),y(0) = 0, ¥/ (0) = 0, through the
Laplace transform, we get:

Y —sy(0) =/ (0)+Y = e
(s +1)Y = ¢°*
Y =
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Thus the solution is

I
y=~L <52+1>'

To compute this inverse transform, we observe

iy L 1
Sin — N
s2+17
. c e *®
Up(t —1 t—1) — :
ol = Dsin(t—1) £

so y = Uo(t — 1)sin(t — 1).

35. Take the Laplace transform on both sides of ¢y + 2y’ + y = 3 (t — 2) and use
the initial conditions y(0) = 1, 3/(0) = 0, and you will get

L' +2¢ +y) = L(3d(t—-2))

L) +2L)+L(y) = 3L(0(—2);
%Y — sy(0) — ¢/ (0) +2(sY —y(0)) +Y = 3e 2
Y —s54+2(sY —1)+Y = 3e

(s+1)?
—_—
Y (s?+2s+1) = 3e 2 +s5+2
v - 3e28 S 2

GrL?  Gr1E  Gr12”

where we have used Theorem 3, Sec. 8.1, and Example 7 of Sec. 8.2. Thus the
solution is the inverse Laplace transform of

3e2s 4 S 4 2
(s+1)2  (s+1)2  (s+1)2

You can use the Table of Laplace transforms at the end of the book to verify the
following computations:

1
temt £
N O
Up(t—2)f(t—2) = e 2F(s);
—2s
—9)e—(t—2) _ £ € .
(t—2)e Up(t —2) — GIE
r 6725
3(t—2)€7(t72)Z/{0(t—2) — 3@,
s
t 1
ft) =te - (s +1)2

fit)y=et—tet = sF(s)— f(0) =
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From this we conclude that

_ 2 _
< (wrm) -

—2s
o (3 <f+ 1>2> = 3(t—2)e Ut - 2);

y(t) = et —te 4 3(t—2)e T UG (t—2)4+2te T = et (1 4+t + 3e(t — 2) Uo(t — 2)).

35 Bis. (This problem has a different initial condition than the original Exercise 35.

Take the Laplace transform on both sides of ¥ 4+ 2y’ + y = 3do(t — 2) and use
the initial conditions y(0) = 1, 3/(0) = 0, and you will get

Ly +2y +y) = L(30(t—2))
L") +2L@H)+L(y) = 3L(0(t —2));
s2Y — sy(0) — ¢/ (0) +2(sY —y(0)) +Y = 3e 2
Y —s—142(sY —1)+Y = 3%
YM(S +1)? = 3¢ *4s5+3;
y o e 5 3

GHIP 1 s+

where we have used Theorem 3, Sec. 8.1, and Example 7 of Sec. 8.2. Thus the
solution is the inverse Laplace transform of

3e~ 28 N s N 3
(s+1)2  (s+1)2  (s+1)2

You can use the Table of Laplace transforms at the end of the book to verify the
following computations:

1
R
N O
Up(t—2)f(t—2) = e 2F(s);
—2s
—9)e—(t—2) _ £ € .
(t—2)e Up(t —2) — GIE
r 6725
3(t—2)€7(t72)Z/{0(t—2) — 3@,
s
t 1
ft) =te - (s +1)2

fit)y=et—tet = sF(s)— f(0) =
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From this we conclude that

_ 3 _
. 1((s+1)2> = 3t

—2s
£t (3(Se+71)2> = 3(t—2)e" DYy (t — 2);
El((stl)Q = ot

and so

y(t) = et —te  43(t—2)e "D UG (t—2)+3te Tt = et (1 —t +3e3(t — 2)Uo(t — 2) + 3t) .

37. Take the Laplace transform on both sides of ¥/ + 4y = Uo(t — 1)e!~! and use
the initial conditions y(0) = 1, 3/(0) = 0, and you will get

L +4y) = E(Z/{O(t—l)etfl)
LY +LMAy) = L(Uo(t—1)e"1);
1
s2Y —sy(0) —y/(0) +4Y = e°* . (s>1)
5 —
LY 44y = &
s—1
Y(a+s) =
s—1
Yy = ¢’

(s —1)(s2+4)’

where we have used Theorem 1, Sec. 8.2. Thus the solution is the inverse Laplace

transform of
67 S

G-DE+4)
Use partial fractions

1 A +Bs+C
(s—=1)(s2+4) s—1 s?2+4

A2 +4)+ (s —1)(Bs+ C)
(s—=1)(s24+4)

1 = A(s*+4)+(s—1)(Bs+O);
Set s=1 = 1=5A4, A=

Set s =2 = 1= (2i—1)(B(2i)+C);

Set s =—-2i = 1= (-2i—1)(B(-2i)+ C);

1 1
= B:—g, C:—g.
Hence
v 1 [L_i]
(s—=1)(s2+4) 5 |s—1 s2+4
and so

e * _e’ 1 s+1
(s—1)(s2+4) 5 |[s—1 s2+4+4
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You can use the Table of Laplace transforms at the end of the book to verify the
following computations:

sin(2t) —

1
5 Sln(Zt) —

cos(2t) —

[et - %sin(2t) - cos(2t)] R

(S

Uo(t —a)f(t —a) — e *F(s);

é [etl - %Sin(Q(t — 1)) — cos(2(t — 1))] U(t-1) £ LL - ]

From this we derive the solution

! (655 [ L s+l D - é [etl - %sin(Z(t— 1)) — cos(2(t — 1))] Up(t—1).

s—1 s2+44

39. Taking the Laplace transform of the equations vy’ +y = f(¢), y(0) =0, ¥/ (0) =
0, we obtain

Y 4+Y = F(s)
F(s) 1
Y = = F(s) -
s2+1 () s2+17

where F' is the Laplace transform of f. So

1
5241

1
5241

y=L""1 (F(s) ) =L N(F(s)x L1 ( ) = f xsint.

41. Taking the Laplace transform of the equations y”’ + 4y = cost, y(0) =
0, ¥/(0) = 0, we obtain

s

s2+1

1 s 2
25241 524227

SY +4Y =
Y =

So

1
y=5 cost  sin(2t).
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43.

(a), (b), and (c) We have

/Ooo ft)e =t dt

00 (k+1)T
Z/k f(t)e =t dt

k=0 kT

(Let 7=t — kT, t =7+ kT, dr = dt)

0o T
Z/ flr+ kT)eiS(TJrkT) dr
k=0"0

(f(r +kT) = f(7) because f is T-periodic.)

o0 T
e~ kT f(r)e" dT]
>,

T o .
[ e ar S [e]
0 k=0

(Sum a geometric series with ratio e ™57 < 1)

r 1
—S8T d [ —
| e dr——s

45. T =2, for 0 <t < 1, f(t) =t and for 1 < t < 2, f(t) = 2 —t; so, by the

previous exercise,

F(s) = L

1

1—e2s

1—e2% |5

rrl 1
/te*stdt+/ (2—t)estdt]
LJO 0

(1 e e 5 e st 2 1 2 et

S S

- 1 [1 2675 e~ 28
T 1—e2s 5_2 e * 52
2s
€ —s —2s
= (€25 — 1)s2 [1_26 +e ]
B (es —1)2 et —1
(et —1)(es +1)s2  (es +1)s2

47. T =m, for 0 <t <7, f(t) = sint; so (with the help of the integral formulas at

the back of the book)

49. We have

sint = (—1) e

1 us
= T s / 675t sint dt
1—e 0
—1 e*St . T
= mm(s&nt-ﬁ-cosﬂo
 d4em 1
1l —e T s241
oo X t2k+1

for all ¢.
k=0
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So for t # 0, we divide by ¢ both sides and get

0 2k
Z 2k+ BT for all t # 0.

As t — 0, the left side approaches 1. The right side is continuous, and so as t — 0,
it approaches the value at 0, which is 1. Hence both sides of the equality approach
1 as t — 0, and so we may take the expansion to be valid for all t. Apply the result
of the previous exercise, then

> 2k
LYW = z(%(—l)kﬁ) (5

= D) e = Y (D).
Z( ) ( )52k+1(2k+1)! Z( ) s2hH1(2k + 1)
k=0 k=0
Recall the expansion of the inverse tangent:
0 w2k
Z lu] < 1.
k=0
So
TR R B
s = §2k+1(2k 4+ 1)
Comparing series, we find that, for s > 1,
int 1
z(s‘%) = tan~!(<).

The formula is in fact valid valid for all s > 0. See Exercise 56.

51. For s # 0,

@
3
—_

s _Z k! 45 :Z k! 22kk+1
k=0 k=0

V)

From
)= Sy (an )
Jo(t) = 1) all t),
= 22k (k1)2
we obtain
> 1k
1/2
o(t kZ:O gy >0
Applying the result of Exercise 48, we find
L ( t1/2 ) i ; — i(_l)k;
22k )2 k+1 92kl gk+1"
k=0 k=0

Comparing series, we conclude that

L
1s

() = er

S
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53. We have

1 2
" 4aZ = m
L (a = ) (s) a\/_ ste dt

2a+as +as dt

a\f

" / ) g

t 1
(Let T = % +as, dT'= —dt.)
a 2a

54. Note that, for a > 0,

£(f(at) (s) = / et flaty di

Using this and Exercise 52, we find

11 »2 1 2
L (erf(at)) (s) = Egeu_?erfc (25_@) = —ewZerfe (i) .

55. Let F(s) denote the Laplace tarnsform of f. Then

/SOOF(u)du = /:o/ooof(t)e“tdtdu
/Ooo /:o e " f(t) dudt
[

= /Ooo %e*stf(t) du dt

- (1)

57. Bessel’s equation of order 0 is

F(t) dudt

zy’ +y +zy=0.
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Applying the Laplace transform, we obtain

L(zy")+ LY) + L(zy) = 0
d 7 / d o
— LW+ L) - Ly) = 0
d 2 / !
—E[SY—sy(O)—y(O)}—l—sY—y(O)—Y -0
[— 2sY — s*Y' + sy(O)] +sY —y(0)—=Y" = 0
~Y(1+s)—-sY = 0
Y+ ——Y = 0
i 0

An integating factor for this first order linear differential equation is

o] T osn(s®) /1 1 2

After multiplyig by the integrating factor, the equation becmes

—[V1+s2Y]=0.
T V1+s%Y]

Integrating both sides, we get

V1+s82Y =K

or

Y= =
V14 s2

where K is a constant.
From Exercise 50, y = K Jy(t).

257
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Solutions to Exercises 8.3
1. The solution is the same as Example 2. Simply take Ty = 70 in that example.

3. The problem is the same as in Example 2, except that the boundary value at
x = 0 is delayed by 2 time units. Hence the solution is the same as in Example 2,
delayed by 2 time units:

0 fo<t<?2

S =Y U t—2) ift> 2,

where U(z, t) is the solution in Example 2. Thus

0 fo<t<?2

100 erfe ( ift> 2,

)

5. Using the formula from Example 3, we get

u(z, t) = /O(t—T)[T—(t—x)Z/{O(T—x)]dT

= /Ot(t —7)rdr - /Ot(t —7)(r — ) (Uo(r — x) dr

t213t

257'—7'

—/ (t—7)(1—2)Uo(T — ) dT
0

0

3 t
= 5 |- —au -z

Note that Uo(T —x) =1if 7 > x and 0 if 7 < z. So the integral is 0 if ¢ < x (since
in this case 7 <t < ). If z < 7 <, then

/ (t—7)(1 —2)Uo(T — x)dT
0

/;(t —7) (T —z)dr

t
= /(t7—t3:—7'2+7':c)d7'

= —tr’ —ter — l7'?’ + 1T2$ '
2 3 2 x
1 1 1 1 1 1
= §t3 — t2$ — gtg —+ §t2$ — §t$2 —+ t$2 —+ gxg — §$3
1 1 1 1
= 3 — x4 —ta? — =23
6 2 2 6
1

Hence
3 ift<ax

g
roum)
&
~
S~—
I
[N [N

-t —x) ift>w,
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or
u(z, t) = éts - é(t —2)3Up(t — ).

7. Let u1 be the solution of

*u  *u
o2 92’
u(0,t) =0, ¢t > 0,

u(z,0)=0, %(z,0)=1, > 0.

z>0,t>0,

Let us be the solution of

Pu  9u
otz oz
u(0,t) =0, t > 0,

u(z,0) =0, %%(z,0)=0, z>0.

—g, z>0,t>0,

You can check that v = u; + uso is the desired solution of

o _
otz oz
u(0,t) =0, t > 0,

u(z,0)=0, %(z,0)=1, z>0.

—g, z>0,t>0,

Now ug is solved in Example 4. We can write

us(z, t) = —g(t2 —(t—2)2Uo(t — 7).

To find uy, we go back to (9),use the initial conditions u(z, 0) = 0 and %(x, 0)=1.
Then the equation becomes

S2U($, S) - S’U,(.I, O) - ut(xa O) = Umx(xa S)
S2U(x, 8) =1 = Uge(z, s);
Umx(xa S) - S2U($, S) = _1a

The associated homogeneous equation has general solution
A(s)e™*" + B(s)e”

Since the transform has to be bounded as s — oo, we take B(s) = 0 and the
solution becomes A(s)e™**. It is easy to verify that a particular solution of

Upe(z, 8) — S2U({E, s)=-1

is 1/s? (constant functionin ). Hence

—ST 1
Uz, s) = A(s)e”** + =
Using the initial conditions,
1
U@,s)=0 = As)=——=;
s
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Taking inverse Laplace transforms,

—ST

up(z, t) = Eil(_es2 )—Fﬁfl(sé);
= (D) Uolt - ) L.
u(z, t) = —(t—x)uo(t—x)—i-t—g(tQ—(t—x)QZ/{o(t—x))

9. Transforming the problem, we find (see Exercise 7 for similar details)

s2U(z, s) — su(z, 0) — u(x, 0)
s2U(z, s) — 1

Upe(z, 0) — 82U (z, 5)

= A(s) =

1+
_ i e 57
o 1+ 52 52

of

= t—(t—2)U

S2

t—x)+sin(t —z)Up(t — x).

11. Use (8) with f(7) = dp(7). Then

u(z, t) =

13. Verify that

2
_ =
xr (& 4(:2

2e/T t3/2

u(zx, t) = ui(x, t) + ua(z, t),

where u; is a solution of

and wus is a solution of

Ut = Ugy;
u(0,t) = 70;
u(z, 0) = 70;

Ut = Ugy;
u(0,t) = 30;

u(z, 0) = 0.
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It is immediate that the solution of the first problem is u; = 70. The solution of
the second problem is similar to Example 2:

us(, t) = 30 erfe (21\/9 .

15. You can verify that the solution of the problem

ou 5 0%u
E = C @, T > O, t> O,
U(O, t) = TOa t> Oa
u(z,0) = Ty, x>0,
is given by w1 + ug, where wu; is a solution of
du 5 0%u
[ - - t
5 vt z>0,1t>0,
u(0,t) = T, t>0,
u(z,0) = Ty, x>0,
and wus is a solution of
ou 5 0%u
[ - - t
5 v z>0,1t>0,
U(O, t) = Ty— Tl, t> O,
u(z,0) = 0, x> 0.

We have vy = 17 and, by Example 2,

uy = (Ty — T) erfe (2i/%> .
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Solutions to Exercises 8.4

9 dz _1 dz 1
Zd a or de 2z
So
- oudz Ou 1
Similarly,
w0 [on 1
or2 Oz |0z 2z

a1\, 10 (i
T o de \2z) 0z 220z \ 9z
—ldzoa 1 ude
222dx 0z 2z 022 dx
—loa 1 9%

423 0z 422 022

(b) Substituting what we found in (a) into (6) and using w in place of @ to simplify
notation, we get

Ut =

<@

NI P
4377 4277 2z ¢

Uzz + —Uy
z

S

3. Use the identity 22.J,(u) = J,—1(u) + Jy41(u). Then

Ho(E f@)E) = s / " @) 2, () de

ST
e 2
. A f(x)—VJl,(sx)x dz
2v J, sx

- 2 /0 F@) o (52) + Joia (s2)]2 da

= oo Hua()(s) + Huga(f)(s)]

2v
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5. Using Exercise 9 of Section 4.3, we find

Ho(x*N Ug(a — 2))(s) = /000 22N Uo(a — z)Jo(sz)x d

/ Jo(sz)x?N T dx
0

(change variables sz < )
1 * N
= v | x Jo(z) dx

1 N N! as
_ _1\noN : 2N+1—n
T g2N+2 7;70:( 1)"2 (N — n)|33 Jnt1() 0

N
1 . ! »
= 2Ntz > (-2t (N_n)!(“5)2N+l Int1(as)
n=0

N' a2N+1fn
_ noN
- Z(_]‘) 2 (N _ n)| Sl+n Jn+1(a5)

7. Letting a — 0 in (b) of Exercise 6, the right side tends to 1/s while the left side
tends to Ho(2)(s). (This is not a proof! but it does yield the correct transform of
1/x.) If we apply the transform directly and change variables, we obtain

X x S

Ho(l)(s) = /000 ng(sx)x dx = /000 Jo(sz) dx = 1/000 Jo(z) dx.

It is a fact (see the proof below) that
I:/ Jo(z)dx =1
0

Using this fact, we obtain the desired formula for Ho(1)(s).

Let us outline a proof of the evaluation of the integral I. Refer to Section 4.9
for the properties of Bessel functions.
(a) Using the aymptotic formula for Jy and the alternating series test, show that
the integral of Jy(z) is (conditionally) convergent. (It is the alternating sum of
areas of arches that are tending to 0.)
(b) Because the integral is converging, we can write

n

I = lim Jo(z)dx = lim I,.

n—oo 0 n—o0o

Now use the integral representation of Jy to conclude that

1 n s
I, = —/ / cos(zsint) dt dz.
m™Jo Jo

Write the inner integral as
T /2 I
/ cos(zsint) dt = / cos(zsint) dt + / cos(x sint) dt.
0 0 /2

In the second integral on the right, make the change of variables ¢t <> 7 — ¢ and
conclude that

g /2
/ cos(zrsint) dt = 2/ cos(zsint) dt
0 0
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and so, after interchanging the order of integration,

) /2 rn
I, = —/ / cos(xsint) dx dt
T Jo 0
_ 2 /“/2 sin(;sint) na_ 2 /“/2 sin(@smt) ”
T Jo sint 0 T Jo sint

Make the change of variables sint «» u, costdt = du = dt = ﬁdu. So
I — 2 /1 sin(nu) 1 .
T Jo U 1 —u?

This integral is quite difficult to evaluate, but there is a closely related integral that
we can evaluate in the limit; namely,

1 n o
5 — g/ sin(nu) du — z/ sinu du,
0 0

m u m u

after making the change of variables nu < u. Hence, using the famous integral
Jo st gy = T, we obtain

0 u 2
lim Snzz/ Smudu:z/ S = 1.
0 0

n—oo m

To complete the proof, we will show that

lim I, — S, =0;

n—oo

from this it will follow that
lim I, = lim S, =1,

n—oo n—oo

as desired. For this, we will need the Riemann-Lebesgue lemma from Section 2.8.
We have

2 (! [sin(nu) 1 sin(nu) 2 [t 1 1
° 7T~/0 [ u V1 —u? U ] “ 7T/0 Sln(nu)u [w/l—u2 ] v

Let

11 4]
o) = r[m 1} if0<z <1
0 if 1 <z <2m.
We claim that f(z) integrale on [0, 27]. Once the claim is established, it will follow
from the Riemann-Lebesgue lemma that

2m
lim f(u)sinnudu =0,

n—oo 0

which is what we want to show. The function f seems to have two problems in
0, 27]; one at * = 0 and one at * = 1. At & = 1, the problem comes from
1/sqrtl — x, which is an integrable function. At = 0, we have

. 1T 1
lim @) = ili%;_ﬁ‘l]

S N P
B xli%x V1 —x2

o L (1 - VI—22)(1+VI—-22)
o x—0 X | m(l‘i‘m)

= lim z =0.

P VI =221+ V1= 2?)
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So at & = 0, the function f(z) is nice and bounded. In conclusion, f is integrbale
on [0, 27]. In fact, if you plot the graph of f on (0, 1), you will notice that it is
positive and tends to 0 at 0. It is not hard to show that

1 1 1
i —_— — = —_— —_ 2 =
/0 - (m 1) dz = —In (1+\/1 p ) ’0 In2.

We can now use the improper integral

/OOOJO(x)d;c_1

and the recurrence relation (5), Section 4.8, to derive

/OOOJn(x)d:c—l

for all n > 0. Indeed, for n = 1, the formula follows from

/°° Ji(z)dx = —Jo(x)| =1.
0

0

For n > 2, use (5), Section 4.8. We also have the interesting identity: for n > 1,
I 1
/ (z) dr = —,
0

which follows from (6), Section 4.8.
The techniques that we used can be applied with ease to obtain the Fourier
transform of Jy(x) and thus provide a different way to compute the integral

/OOOJO(x)d;c_1

Indeed, back to the integral reprepsentation

™

Jo(z) = l/ cos(z sint) dt.
0

s

Making the change of variables ¢ — 7 and then the change of variable u = sint, we

obtain

1 r2

Jo(z) = —/ cos(z sint) dt
™ J)_=
2

1t 1

— ——— cos(zu) du.

m ~/71 V1—u? ( )
Let

f(u) — \/g«/llfuz if |u| < 15
0 if Ju| > 1.

Then the integral representation of Jy(z) shows that

where F(f) is teh Fourier transform of f. Thus, F~1(Jo) = F~Y(F(f)) = f. But
Jo is even, so F~1(Jy) = F(Jy). Thus the formula

2_1__ ifjw| <1,
F(Jo)w) = Vit il
0 if |w] > 1.
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Using this formula at w = 0, we get

1 [ 2 o0
— Jo(x)de =41/ — = Jo(x) dx = 2.
%/,oo o() 2 /700 o()

8. (a), (b), (¢) We have

M) = 3 ((;!1)): (5™
k=0
H0(67a2x2) = /000 ema’e’ i ((;'1)): (%)Qkxdx

k=0

- (_1)k SQk > —a’z? 2k
= Z(k!)Qﬁo e z%r dr

k=0
t dt
(Substitute 2% = per a’z? =t, 2d%cde = dt, xdx = ﬁ)
1 & 2k o )2 2k
= —QZ 22k+1/0 e (T) dt
1 & 52k /Oo .
= — e “thdt
a2 Z 2 %12k [
=kK!
—
1 o~ (=1)F 82 /°° ik
= — t" dt
2a? kzzo (k1) (4a®)* Jo
1 &K (—1)F 2k 674%122_
N 2_; k! (4a?)F 2a?

9. (a) The chain starts to move from rest with an initial velocity of v(z) = /.
(b) We have A = 0 and

So

13. Similar to Example 1.

12. We have to solve

Utt = —0252U
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The solution is

U(s,t) = A(s)cos(cst) + B(s)sin(cst);
U(s,0)=F(s) = A(s)=F(s);
Ui(s,0) =G(s) = ¢sB(s) =G(s)
= B(s) = GC(SS);
U(s,t) = F(s)cos(cst) + GC(? sin(est).
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Solutions to Exercises 12.1
1. We have M(z, y) = 2y, N(z, y) =y, My(x,y) = =, Ny(x, y) = y. The right

side of (4) is equal to
1ol 1
/ / —xdrdy = —=.
o Jo 2

Starting with the side of the square on the z-axis and moving counterclockwise,
label the sides of the square by 1, 2, 3, and 4. We have

/( (z, y)dz + N(z, y) dy) Z/&de M(z, y)dz + N(z, y) dy) = ZIJ"

j=1

On side 1, y = 0, hence M = N =0 and so I; = 0. On side 2, x = 1 and y varies
from 0 to 1; hence M =y, N =y, and dx = 0, and so

! 1
Igz/ydy:—.
0 2

On side 3, y = 1 and « varies form 1 to 0; hence M =z, N = 1, and dy = 0, and

SO
0 1
’ /1x ’ 2

On side 4, z = 0 and y varies form 1 to 0; hence M = 0, N =y, and dx = 0, and

SO
0 1
I pu— d :——'
4 /1 yay 5

1 1 1 1
M dxr + N dy) =04+ — = — = = —=
~/C( (v, y)dx (7, y) y) 0 27973 57

Consequently,

which verifies Green’s theorem in this case.

3. We have M(z, y) =z —y, N(z,y) = y*, My(z,y) = —1, Ny(z,y) = 0. The
right side of (4) is equal to

// dx dy = (area of triangle) = —
D

Starting with the side of the square on the z-axis and moving counterclockwise,
label the sides of the square by 1, 2, and 3. We have

/( (z, y)dz + N(z, y) dy) Z/d M(z, y)dz + N(z, y) dy) = ZIJ"
side j
On side 1, y = 0, hence M =z and N = 0 and so

1
1
11:/ rdr = —.
0 2

On side 2, = 1 and y varies from 0 to 1; hence M =1 —y, N = 42, and dz = 0,

and so
I = dy = —.
’ /oy '73

Parametrize side 3 by z(t) = t and y(t) = ¢, where ¢ varies from 1 to 0. Then
de=dt=dy, M =t —t=0, N=19% =12 and so

0
13:/ t2dt = —
1
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Consequently,

N~
Wl
Wl

/c (M(x, y)dx + N(z, y) dy) =

which verifies Green’s theorem in this case.

5. We have M (z, y) =0, N(z, y) =z, My(z, y) =0, Ny(x, y) = 1. The right side
of (6) is equal to

s 3

// dx dy = (area of annular region) =7 — — = —.
D 4 4

We have

/(M(x,y)d:c—FN(x,y)dy):/ —|—/ (M(z, y)dz + N(z, y)dy) = I + L.
r Ca C1

Parametrize C; by x = cost, y = sint, 0 < t < 27, dox = —sintdt, dy = cost.
Hence
2m
I :/ cos®tdt = .
0
Parametrize Cs by = = %cos t,y = %sin t, t varies from 27 to 0, dz = —% sint dt,

dy = %cos t. Hence

1 0 27 1 T
I, == dt == — —cos?tdt =——.
2 1 ‘/277 ‘/0 1 COSs 1
Consequently,
s 3
r
which verifies Green’s theorem in this case.
7. We have M(z, y) = ﬁ, N(z, y) = ﬁ,
2 2 02 2 2
My(x,y): a 2y :_Qy = 2‘r +2y2,
(z% +y?) (z% +y?)
and ) )
—z% 4y
Ny(z,y) = ————-.
(z, y) (22 + y2)2

The right side of (6) is equal to

// Odxdy = 0.
D

/(M(x, y)dx + Nz, y)dy):/ —|—/ (M(x, y)dx + Nz, y)dy):]l—FIQ.
r Ca Cy

We have

Parametrize C; by x = cost, y =sint, 0 <t < 27, do = —sintdt, dy = cost. On
C1, 224+ y? = 1; hence

27
I = / (sin® t + cos® t) dt = 2.
0

Parametrize Cs by =z = %cos t,y = %sin t, t varies from 27 to 0, dz = —% sint dt,

dy = 3 cost. On Oy, % + y* = 1; hence

0 1 1 27
12:4/2 (Zsin2t—|— Zcos%)dt:—/o dt = —2m.

™
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Consequently,
/ (M(z, y)dz + N(z, y)dy) =21 — 27 =0,
r

which verifies Green’s theorem in this case.

9. Take u(x, y) = y and v(x, y) = . Then V?v = 0, Vu = (0, 1), Vv = (1, 0), so
Vu - Vv =0 and, by (9),

Oz ov
—ds = —ds= ds = 0.
Cyan S /Cuan s /FO s=0

11. Take u(x, y) = x + y and f(z,y) = e®cosy. Then Vv = 0, Vu = (1, 1),
Vo = (€% cosy, —e®siny), so Vu - Vv = e®(cosy —siny) and, by (9),

/y(x+y)8—fds = // e’ (cosy —siny) dx dy
c on D

1,1
//em(cosy—siny)d:cdy
0o Jo

1

1

= em

(siny+cosy)’
0 0

= (e—1)(sinl+cosl—1).

13. Same solution as in Example 1. Use Theorem 2 instead of Theorem 1.

14. We have M(z, y) = 7%=, N(z, y) = =17
2 —|—y2
M 'I) = 7)
y( y) (xQ +y2)2
and
2 —|—y2
N (x, =
I( y) (3:2—|—y2)2

Let T' consits of C' (positive orientation) and —C (negative orientation). Applying
Theorem 2, since N, — M, = 0, we have

/Md:c+Ndy:0.
r

Hence
/Md:c+Ndy+/ Mdx + Ndy =0
c —C,

or

/Md:c+Ndy:/ Mdz + Ndy
c Cr

where C, is positively oriented, centered at the origin, with radius r. Thus, in order
to compute the desired integral, it is enough to compute

/ Mdzx + Ndy.
C,

On C,, x =r cost, y =r sint, dr = —r sint, dy = r cost, and 22 +y? = r2. So

/ Mo+ Ny — /zw —rsint(—rsin t)2+ r cost(r cost) N /277 .
Cyr 0 r 0
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15. Since u is harmonic, it follows that V2u = 0. Switch the notation in (9) v < wu,
then use V?u =0 and v =0 on I':

// (vV%u + Vv - Vu)dxdy Fv@ ds;
Q 371

I
e

/ Vv - Vudzdy
Q

17. We use the 2nd integral in Example 1. Let us parametrize the ellipse by
x(t) = a cost, y(t) = bsint, dy = beostdt, 0 <t < 2.

27
Area = /xdy:/ a costb sintdt
c 0
27 27
1 2t

- ab/ cothdt:ab/ L cos@t)

0 0 2
= Tab.

19. The problem does not have a solution because f(f) does not satisfy the com-
patibility condition (Example 5)
27

£(0)do = 0.
0

Indeed o _
/ f(9)d0:/ sinfdf =2 #£ 0.
0 0
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Solutions to Exercises 12.2

1. The function u(z, y) = €®cosy is harmonic for all (z, y) (check that VZu = 0
for all (x, y)). Applying (1) at (xo, yo) = (0, 0) with r = 1, we obtain

1 27
1=wu(0,0) = %/0 €St cos(sin t) dt.

3. The function u(z, y) = cosz cosh y is harmonic for all (z, y) (check that VZu = 0
for all (x, y)). Applying (1) at (xo, yo) = (1, 2) with r = 1, we obtain

1 2m
coslcosh2 =u(l, 2) = o / cos(1 + cost) cosh(2 + sint) dt.
T Jo

5. u(z, y) = 2% — Y2, Uy = 2, Uyy = —2, Uy + Uyy = 0 for all (x, y). Since u is
harmonic for all (z, y) it is harmonic on the given square region and continuus on
its boundary. Since the region is bounded, u attains its maximum and minimum
values on the boundary, by Corollary 1. Starting with the side of the square on the
z-axis and moving counterclockwise, label the sides of the square by 1, 2, 3, and 4.

Onside 1,0 <z < 1,y = 0, and u(r, y) = u(x, 0) = 2. On this side, the
maximum value is 1 and is attained at the point (1, 0), and the minimum value is
0 and is attained at the point (0, 0).

Onside2, 0 <y <1, z=1,and u(z,y) =u(l,y) =1+y—y* = f(y). On
this side, f'(y) = -2y + 1, f'(y) =0 =y = 1/2. Minimum value f(0) = f(1) = 1,
attained at the points (1, 0) and (1, 1). Maximum value f(1/2) =1-1/4+1/2 =
5/4, attained at the point (1, 1/2).

Onside3,0<z<1,y=1,and u(x, y) = u(zr,1) =22 +2 -1 = f(z). On
this side, f'(z) =2z + 1, f'(z) =0 = = = —1/2. Extremum values occur at the
endpoints: f(0) = —1, f(1) = 1. Thus the minimum value is —1 and is attained at
the point (0, 1). Maximum value is 1 and is attained at the point (1, 1).

Onside 4,0 <y <1,z =0, and u(x, y) = u(0, y) = —y?. On this side, the
maximum value is 0 and is attained at the point (0, 0), and the minimum value is
-1 and is attained at the point (0, 1).

Consequently, the maximum value of u on the square is 5/4 and is attained at
the point (1, 1/2); and the minimum value of u on the square is —1 and is attained
at the point (0, 1) (see figure).

Minimum value —1
attained at

0
0,1 — 54

Plot3D[x*2-y*2+xy, {x, 0, 1}, {y, 0, 1}, ViewPoint » {-2, -2, 1}]

Maximum value 5/4
attained at ( 1, 1/2)
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7. u(x, y) = ;zz- You can check that u is harmonic for all (z, y) # (0, 0). Since
the given region is bounded, u attains its maximum and minimum values on the
boundary, by Corollary 1. Let I'; denote the inner boundary 22 + y? = 1 and Ty
denote the outer boundary z2 + 3% = 4.

OnTy, x = cost, y = sint, where 0 < t < 27, and 2%2+%? = 1. So u(z, y) = cost
on I';. The maximum value is 1 and is attained when ¢ = 0 (or 27) and this
corresponds to the point (1, 0) on I';. The minimum value is —1 and is attained
when ¢t = 7 and this corresponds to the point (—1, 0) on I'y.

On Ty, x = 2cost, y = 2sint, where 0 < ¢t < 27, and z? + y? = 4. So
u(z, y) = 1 cost on I'y. The maximum value is 1 and is attained when ¢ = 0 (or
27) and this corresponds to the point (2, 0) on I';. The minimum value is —3 and
is attained when ¢ = 7 and this corresponds to the point (—2, 0) on I's.

Consequently, the maximum value is 1 and is attained at the point (1, 0) on
I'1, and the minimum value is —1 and is attained at the point (—1, 0) on I'; (see

figure).

<<Graphics ‘ParametricPlot3D"

CylindricalPlot3D[ Cos[t]/r,
{r, 1, 2}, {t, 0, 2Pi}]

Maximum value 1
attained at

(1,0

Minimum value —1
attained at
(_la 0)
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Solutions to Exercises 12.3

1. We have
/ G(xa Y, To, yo) ds = Oa
T

because G(z, y, xo, yo) = 0 for all (z, y) on I' (Theorem 3(ii)).
3. We have
0
/ _G(xa Y, Zo, yo) ds = 27Ta
T 371

by Theorem 2 with u(z, y) = 1.

5. Let u(x, y) = x, then u is harmonic for all (z, y) and so, by Theorem 2,
0 11 1
/annG(x, Y 5 3) s Ty =7
7. By Theorem 4, with f(z, y) =1,

V2 (/ G(xa Y, Zo, yo) dz dy> =2m.
Q

9. By Theorem 4, with f(z, y) = 2292,

V2 (// x2y3 G(xa Y, Zo, yo) dx dy> = 27T$8y8
Q

11. Take I to be a circle with radius » > 0 and center at (zg, yo). Parametrize I’
by x = x¢ + rcost, y = yo + rsint, where 0 <t < 27w. We have

1
(o= 20)* +(y— 90 = 1> and vz, y) = 5 Inl(@ — 20)* + (y — yo)?] =,
and by Proposition 1, Section 12.2,

v _ 1
on 1’

The representation formula of Theorem 1 becomes

1 [ 1 0
u(zo, yo) = o ), [u(zo + 7 cost, yo +Tsint); - 1111"8—Z]ds
1 [ 1
= — [u(zo + 7 cost, yo + rsint)=]ds,
21 Jo T

because

2m 8’[1,
/0 (9% ds = 0,

by the compatibility condition (Example 5, Section 12.1). Also, ds = rdt and so
the

1
2

27
u(xo, Yo) = / u(xo + 7 cost, yo + rsint)dt,
0

which is Gauss’s mean value property.
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15. Take Take u = 1 is Theorem 2 and use (2). Then

1 oG
1 = % F%dS

1 g [1
— 5 [ g |3l 00 =0T 0, |
m Jron |2
= = [l — a0 + (5 90+ s+ o [ S )
- Ar Fan nj{r — xo Y Yo Z, Y, o, Yo)as o0 Fan Z, Y, To, Yo)as
1

_ a 2 2
= I Fa—nln((x—xo) +(y—yo))ds,

because h is harmonic so the compatibility condition implies that

/ ﬂh’(xa Y, To, yo)dS =0.
T 371
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Solutions to Exercises 12.4

1. The function u(r, #) = 1 is harmonic in the unit disk and has boundary values
f(0) = 1. Use (10) with f(#) =1 and you get, for all 0 < r < 1,

1T 172
21 )y 1472 —2rcos(d — ¢

)dt?.

3. For n =1, 2, ..., the function u(r, #) = r™ cosnf is harmonic in the unit disk
and has boundary values (when r = 1) f(6) = cosnf. Use (10) with f(#) = cosné
and you get, for all 0 <r < 1,

(R? —1?) /27T cosnf
" 0= de.
oo 21 Jo R2+r%—2rRcos(0— 0)
5. For n = 1, 2, ..., the function u(r, §) = r™ cosnf is harmonic in the disk of

radius R > 0 and has boundary values (when » = R) f(0) = R™cosnf. Use (10)
with f(0) = R™cosnf and you get, for all 0 < r < R,

R™"(R% —r?) /27T cosnf 0
27 o R24+7r2—2rRcos(f—¢)

r" cosnf =

7. By Theorem 1, Section 4.6, the function u(r, §) = Jo(a,r) is a solution of
Poisson’s problem

VQU’(Ta 9) = —01721,]0(0["7"), U’(la 9) = Oa

on the unit disk. is u(r, #) = Jo(a,r). Since the given integral solves the same
problem, by Theorem 1 of this section, it follows that the integral is equal Jo (7).
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Solutions to Exercises 12.5
1. (a) (3+20)(2—14) =6 —3i+4i — 22 =8 +1.
Eb)) B-)2Z—1)=B-i)2+i)=T+i.

1+i  1+i T—i  (14+49)(1+9)

1—i 1—i T—¢ 12412
3. (a)
1« 0
i 2 =1 !
(b) We have the sequence 1, i, i? = —1,i% = —i,i* = 1,4° = ,i% = —1,4i" =
—i,48 =1,.... In general,
1 ifn =4k,

i ifn—=4k+1,
1 ifn=4k+2,
—i  ifn =4k + 3.

We should note here that (i") is a periodic sequence with period 4. That is, its
values repeat every 4 terms.

(c) Since i = —i, we obtain
1 ifn =4k,
] i ifn=dk+1,
O =C0"D"=9 4 in— k42,

7 if n =4k + 3.

Here too we should note that (Zn) is a periodic sequence with period 4.
5. (a) Arg(i) =Z. (b) |i| = 1. (c) i = €'3.
7. (a) Arg(m) =0. (b) |7| =7. (c) 7 = wetC.

9. (a) Arg(1+i)=F. (b) [L+i| = VIE+ T2 = V2 (c) 1 +i = V2T,

5
0.

In computing the values of Argz, just remember that Arg z takes
its values in the interval (—m, 7]. Consequently, Argz is not al-
ways equal to tan~!(y/z) (see Section 12.5, (8), for the formula
that relates Argz to tan™!(y/x)). You can use Mathematica to
evaluate Argz and the absolute value of z. This is illustrated by
the following exercises.
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11. and 13. On Mathematica. You should do these problems by hand and compare
your answers with Mathematica’s answers. Exercise 13 is interesting by hand.

Arg[-1+1I]

37
4

Abs[-1+1I]

Jz All functions are written
starting with a capital letter.

Sqrt[2] Exp[3Pi/4 1] Also the complex number i

is capitalized.

vz et The exponential functions
Simplify[%] can be written as

Exp[z] or E*(2).
-1+1

Arg[(1+1I)*2]

7T
2

Abs[(1+1I)~2]

2

15. The complex number z = cos o+ ¢ sin « is unimodular; that is, it has modulus
equal to 1. Ths follows from

|z2| = Vcos2 a + sin?a = V1 = 1.

So cos o+ sin « is on the unit circle, on the ray at angle o from the positive x-axis.
Thus arg z = «. If « is in the interval (—m, 7], then we also have Argz = «, but if
« is not in the interval (—m, 7], then by adding or subtracting an integer multiple
of 27 we find the unique value of arg z that belongs to (—m, 7]. This vaue is Arg z.
So Argz = o + 2kw, where k is and integer such that

-1 <o+ 2kt <.

For example, if & = § then Argz = 7. Butifa = 57“ then Argz = 7. Notice that
T — 5™ _ 97, Finally, we have

2 2

cosa+isina =1-¢e® = eilat2km)

17. (a) Apply Euler’s identity, e?* = cos2 + i sin 2.
(b) Use Example 1(d): for z =z + iy,

sin z = sinx cosh y + ¢ cos x sinh y.

So

sini = sin0cosh 144 cosOsinh1 =4 sinh1 =1 ¢
(c) Use Example 1(e): for z =z + iy,

cos z = cosx coshy — i sinx sinhy.
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-1
cos? =cos0coshl — 4 sin0Osinh1 :coshle—i_6 .

(It is real!)
(d) Use Example 1(f): for z =z + iy,

For z =i, il =1 and Argi = 5. So Logi =1Inl+i%5 = i7, because In1 = 0.

19.

Logz = In(|z|) + 4 Arg 2.

Remember that there are many branches of the logarithm, log z,
and Log z is one of them. All other values of log z differ from Log z
by an integer multiple of 27i. This is because the imaginary part
of the logarithm is defined by using a branch of argz, and the
branches of argz differ by integer multiples of 27. (See Applied
Complex Analysis and PDE for more details on the logarithm.) In
particular, the imaginary part of Log z, which is Argz, is in the
interval (—m, 7.

You can use Mathematica to evaluate Logz and e*. This is illus-
trated by the following exercises.

279

On Mathematica. You should do these problems by hand and compare your
answers with Mathematica’s answers.

Exp[-Pi I/ 2]
-1

Exp[2- Pi/21I]

2

-i1e

Log[l - I] We use ComplexExpand[] to force
Mathematcia to evaluate the logarithm.

Log[1l-1]

ComplexExpand[Log[l - I ]]
_in Log[2]
4 2

ComplexExpand[Log[(1- I)*2]]

__12_” +Log[2]

21.

We have (—1) - (=1) =1 but

0= Log1l # Log(—1) + Log(—1) = im + im = 2im.

23. (a) Using the definition of the complex exponential and its properties, we have

o7l = e8] = fer 48] = | [eH] = e 1 = e,

because |e”| = e”, since e” is always positive (when x is real) and |e’V| = 1.

More generally, we conclude that

el — eRc (u)
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(b) Applying the ”More generally” part, we find that
’eiz’ _ eRe(iz) — e Y.
Alternatively,

iz’i

’e el(m“y)’ = ’e”” ~efy’ = ’e”’ . ’efy’ =1-e¥=¢"Y.

25. (a) By definition of the cosine, we have

e’L(’LI) + e*i(im) e 4

cos(iz) = 5 = coshz.
(b) By definition of the since, we have
i(iz) _ ,—i(iz) -z _ T r _ -
sin(iz) = c c e S % —snha.

27 27 2

27. (a) Since
sin z = sinx cosh y + ¢ cos x sinh y,

we have the real part u(z, y) = sinzcoshy and the imaginary part v(z, y) =
coszsinhy. To check the Cauchy-Riemann equations, we compute

Uy = cosx coshy, u, =sinzsinhy, v, = —sinzsinhy, v, = coszcoshy.

It is now clear that u, = vy, and that u, = —v,. Hence the Cauchy-Riemann
equations hold. Also, all the partial derivatives are continuous functions of (x, y).
Hence by Theorem 1, f(z) = sin z is analytic and

f(2) = ug + vy = cosz coshy — i sinx sinhy = cos 2.
(b) We proceed in a similar way. We have

cos z = cosx coshy — i sinx sinhy.

So u(z, y) = cosz coshy, v(z, y) = —sina sinhy, and
Uy = —sinxcoshy, wuy, =coszsinhy, v, = —coszsinhy, v, =—sinzcoshy.
We have u, = v, and that u, = —v,. Hence the Cauchy-Riemann equations

hold. Also, all the partial derivatives are continuous functions of (x, y). Hence by
Theorem 1, f(z) = cos z is analytic and

f(2) = ug +iv, = —sinz coshy — 4 cos xsinhy = — cos z.

29. (a) Note that, for z =z + iy # 0,

xT+iy oz

N —

224y 2%
We claim that this function is not analytic at any z. We have

T Y
= - V= —-——:
$2_|_y2’ $2_|_y2’

SO

—2xy —2xy x? —q?
Uy = ———— Uy = ———=— Vg = —————= Vy = ——=—=.
z (332 —|—y2)2’ Y (332 —|—y2)2’ z (332 —|—y2)2’ Y (332 —|—y2)2
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Since the euqality u, = v, and u, = —v, imply that (z, y) = (0, 0). Hence f is
not analytic at any z =z + i y.
(b) Note that, for z =x + 1y # 0,

T—1y  Z 1
z oz

224y 2% ’
and ths function is anaytic for all z # 0. Using the Cauchy-Riemann equations, we
have
__ =z __ 7y .
“FEaE VT @R
SO

2 —2xy 2xy y? — z?

v —x

Ug = (3:2—|—y2)2’ Uy = (3:2—|—y2)2’ Vo = (3:2—|—y2)2’ Uy = (3:2—|—y2)2'

We have u, = vy, and that u, = —v;. Hence the Cauchy-Riemann equations hold.
Also, all the partial derivatives are continuous functions of (z, y) # (0, 0). Hence
by Theorem 1, f(z) = 1 is analytic for all z # 0 and

y? —z? 2xy

, B o )
f(z) = us+ivg ($2+y2)2+l($2+y2)2

(y+iz)*  (y+iz)®
(@2 +y?)? (22 +92)?

[i(z — iy))? _ 2 -1

(@ +iy)(x—iy)2  (@+iy? 22

31. We leave the verification that u is harmonic as a simple exercise. Before we
apply the technique of Example 6, let us look at the function
u(z, y) = 2* -y + zy.

2

The expression x? — y? is very familiar: It is the real part of the function

f(2) =22 =(x+iy)* =2% —y* +2izy.
From this we infer that 2zy is a harmonic conjugate of 2 — 2. Now consider

(@ —y*)

S fE) =R = iy =y — it

o2 — a2
5 -

This function is also entire. Its real part is xy and its imaginary part is

Thus, a harmonic conjugate of xy is # Adding the two harmonic conjugates,
we find that a harmonic conjugate of u(x, y) = ¥?—y? +xyis v(z, y) = 2xy+ y2;x2 .
So we were able to find a harmonic conjugate taking the imaginary part of an
analytic function that we have guessed and whose real part is the given harmonic
function w.
Let us now find the harmonic conjugate using the technique of Example 6.

Write

u(z, y) =2~y +ay ule,y) =20+y uylr,y) = -2y +a
The first equation of the Cauchy-Riemann equations tells us that u, = vy. So
vy(z, y) =2z +y.

Integrating with respect to y (treating x as a constant), we find

1
v(@, y) = 2zy + Sy +c(x),
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where the constant of integration c(z) is a function of x. The second equation of

the Cauchy-Riemann equations tells us that u, = —v,. So
vz(2,y) = 29+ (2);
—2y—d@) = —2y+uz
dx) = -z
clz) = —%x2 +C.

In conclusion,

1 1
v(z, y) =2y + 51/2 - 5962 +C,

which matches the previous formula up to a additive constant.

33. We leave the verification that u is harmonic as a simple exercise. The function
u(z, y) = €” cosy
is the real part of the entire function
e =e®cosy+ie’siny.
So a harmonic conjugate of e* cosy is e*siny. (By the same token, a harmonic
conjugate of e® siny is —e* cos y.)
Let us now find the harmonic conjugate using the technique of Example 6.

Write
u(z, y) = e cosy uz(z,y) =e®cosy uy(x,y) = —€e"siny.

The first equation of the Cauchy-Riemann equations tells us that u, = vy. So
vy(z, y) = e® cosy.
Integrating with respect to y (treating x as a constant), we find
v(z, y) = e"siny + c(x),

where the constant of integration c(z) is a function of x. The second equation of

the Cauchy-Riemann equations tells us that u, = —v,. So
ve(x,y) = €siny+d(x);
e“siny +d(x) = €”siny;
dx) = 0
clxz) = C.

Hence,
v(z, y) = e®siny + C,

which matches the previous formula up to a additive constant.
35. The function

£(2) i T —1y y+ix Y i T
zZ)= — =1 = = (2
z (ztiy)e—iy) 2P4y* 2P+y? 2P+ y?

is analytic for all z # 0. Its real part

¥y
$2_|_y2
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is harmonic with harmonic conjugate

x
2 + y2 '
37. (a) The level curves are given by
@)= = o
w(z, y) = 55— = —
9 y ZC2 + y2 205

where, for convenience, we have used 1/(2C') instead of the usual C for our arbitrary
constant. The equation becomes

2?49 —2Cy=0 or 2°+(y—C)*=C>

Thus the level curves are circles centered at (0, C') with radius C'.
(b) By Exercise 35, a harmonic conjugate of u(x, y) is

x
U({E, y) - x2+y2'

Thus the orthogonal curves to the family of curves in (a) are given by the level
curves of v, or

T

m:% or (.I—C)2+y202

vz, y) =
Thus the level curves are circles centered at (C, 0) with radius C.
The curves in (a) and (b) are shown in the figure. Note how we defined the
parametric equation of a circle centered at (zo, yo) with radius r > 0: z(t) =
xo +rcost, y(t) = yo + rsint, 0 < t < 2.

ttl = Table[{Abs[r] Cos[t], r+ Abs[r] Sin[t]}, {r, -3, 3}]

tt2 = Table[{r + Abs[r] Cos[t], Abs[r] Sin[t]}, {r, -3, 3}]
ParametricPlot [Evaluate[ttl], {t, 0, 2Pi}, AspectRatio -» Automatic]
ParametricPlot [Evaluate[tt2], {t, 0, 2Pi}, AspectRatio - Automatic]
Show[{%, %$%}]

{{3Cos[t], -3+38in[t]}, {2Cos[t], —2+28Sin[t]}, {Cos[t], -1 +Sin[t]},
{0, 0}, {Cos[t], 1+Sin[t]}, {2Cos[t], 2+25in[t]}, {3Cos[t], 3+3Sin[t]}}

{{-3+3Cos[t], 38in[t]}, {-2+2Cos[t], 28in[t]}, {-1+Cos[t], Sin[t]},
{0, 0}, {1+ Cos[t], Sin[t]}, {2+2Cos[t], 2Sin[t]}, {3+3Cos[t], 3Sin[t]}}
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The curves intersect at right angle.

-3

The two families of curves are superposed to show how
orthogonal families of curves intersect at right angle.

39. (a) and (b) Let n be an integer. The function f(z) = 2™ is analytic for all z
if n > 0, and for z # 0 if n < 0. Write z = 7 ¢, Then

f(z) = e = ¢ (cosnb + i sinnb) .

The real and imaginary parts of an analytic function are harmonic; so 7™ cos nf and
r"sinnf are harmonic functions. Furthermore, " sinnf is a harmonic conjugate
of r™ cosnf, and —r™ cos nf is a harmonic conjugate of 7" sinné.

41. If u(x, y) does not depend on y, then w is a function of = alone. We have
uy = 0 and so uy, = 0. If u is also harmonic, then g, + uyy = 0. But uy, =0, so
Uz = 0. Integrating with respect to = twice, we find u(z, y) = ax + b.

43. Since u does not depend on y on the boundary, it is reasonable to expect the
same from v inside the region. (This is of course not true if u were not harmonic
and constant on each side of the strip. For harmonic functions, we can think of
u as a steady-state solution in a heat problem, as described by Figure 16. Based
on our intuition, we would expect u to be independent of y.) By Exercise 41, we
try u(z, y) = ax + b, where a and b are constants to be determined. Using the
boundary conditions,

u(-3,y) =70 = —3a+b=70;
u(3,y) =-20 = 3a+b=-20;
= 2b=50or b= 25;
= 3a= —45or a = —15;

= u(z,y) =—15z + 25.

At this point, you can check that u is harmonic and satsifies the boundary condi-
tions.

45. We reason as in Example 4 and try for a solution a function of the form
u(r, ) =a Argz + b,

where z =2 + iy and a and b are constant to be determined. Using the boundary
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conditions in Figure 18, we find

9 9m
3T 3T
_—) = —_— b: M
u(r, 5) 0 = a 3 + 0;
97t 67 200
= a(1—0—1—0>—600ra—7,
= b= —120;

2
= u(r, )= 200 Arg z — 120.
T

In terms of (z, y), we can use (10) and conclude that, for y > 0,

200
u(z, y) = —cot ™! (E> —120.
Y

s

47. We simplify the problem by think of it as the sum of two problems as follows:
Let g be harmonic in the upper half-plane and equal to T on the z-axis, and let
ue be harmonic in the upper half-plane and equal to 77 — T, on the x-axis on the
interval a < x < b and 0 outside this interval. Let u = u1 + uo. Then u is harmonic
in the upper half-plane and equal to 77 on the z-axis on the interval a < x < b and
T5 outside this interval (just add the boundary values of u; and ug). Thus w1 + us
is the solution to our problem. Now us is found in Example 5:

uz(z, y) = Lot [cot1 (x—b) —cot™! (x—a)] .
T Y Y

To find wy, think of a harmonic function that is equal to T on the z-axis. The
answer is uj(x, y) = T, and so the solution to our problem is

-1 —-b —
u(z, y) =T + % [cot1 (xy ) —cot™! (x " a)] .

49. As in Exercise 47, we think of the given problem as the sum of two simpler
subproblems. Let uw; be harmonic in the upper half-plane and equal to 100 on the
z-axis for 0 < x < 1 and 0 for all other values of x. Let us be harmonic in the
upper half-plane and equal to 20 on the z-axis for —1 < x < 0 and 0 for all other
values of x. Let u = w1 +u2. Then w is harmonic in the upper half-plane and equal
to 20 on the z-axis for —1 < 2 < 0; 100 for 0 < z < 1; and 0 otherwise. (Just add
the boundary values of u; and ug.) Thus w; + us is the solution to our problem.
Both u; and ug are given by Example 5. We have

ur(z,y) = 1% [cotl (x; 1) —cot-! (5)] :
we) = 2o (£) -t (£E1)]:

1 -1 2 1
u(z,y) = —@cot’1 (E> + Ecot*1 (x ) - —Ocot’1 (i> .
T Y T Y T Y
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Solutions to Exercises 12.6

1. (a) f(z) = 1/z is analytic for all z # 0, by Theorem 2, Section 12.5, since it is
the quotient of two analytic functions. U(u, v) = wv is harmonic since U,, = 0,
Uyy =0, 80 Uyy + Uyy = 0.

(b) We have (this was done several times before)

fo =2 2 Y
z) = = —i )
$2_|_y2 $2_|_y2 $2_|_y2
So
Re(f) = u(z, y) = ——— and Im(f) =v(z, y) = ———2—
Y 22+ 2 Y 22+ 2
(c) We have

$@,y) = Uof(z) =Ul(ule,y), v(z, y)

z —y
= U
(x2+y2’ x2+y2>

%
(22 +12)2°

You can verify directly that ¢(x, y) is harmonic for all (z, y) # (0, 0) or, better
yet, you can apply Theorem 1.

3. (a) f(z) = €7 is analytic for all z (Example 2(c), Section 12.5). U (u, v) = u?—v?
is harmonic since Uy, = 2, Uyy = —2, 50 Uy + Uy = 0.
(b) We have (Example 2(c), Section 12.5)

f(z) = e® cosy + ie” siny.

So
Re(f) =u(z, y) =e®cosy and Im(f) =v(z, y) =e"siny.

(c) We have

oz, y) Uo f(z) =U(u(, y), v(, y))

= U (" cosy, e”siny)

= e*cos’y —e*"sin’y

= e** cos(2y).

You can verify directly that ¢(x, y) is harmonic for all (x, y) or you can note that
é(x, y) is the real part of the entire function g(z) = 2.

5. (a) If zis in S, then z = a + 4,y where b <y < c. So
f(z) =€ = e¥TY = eV,

The complex number w = ee*¥ has modulus e® and argument y. As y varies from
b to ¢, the point w = e%e’Y traces a circular arc of radius e®, bounded by the two
rays at angles b and c.
(b) According to (a), the image of {z =1+4y: 0 <y < x/2} by the mapping e*
is the circular arc with radius e, bounded by the two rays at angles 0 and 7 /2. It
is thus a quarter of a circle of radius e (see figure).

Similarly, the image of {z = 1+ iy : 0 <y < 7} by the mapping e* is the
circular arc with radius e, bounded by the two rays at angles 0 and 7. It is thus a
semi-circle of radius e, centered at the origin (see figure).
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The most basic step is to define the complex variable z=x-+iy, where x and y real. This is done as follows:

Clear([x, y, z, f]
<< Algebra‘ReIm’
x/: Im[x] =0
y/: Im[y] =0
z=x+1y

You can now define any function of z and take its real and imaginary. For example:

flz_] =E*z
Re[f[z]]
Im[£[z]]
exﬂiy

e* Cos[y]

e* sin[y]

fl[t_] =Re[f[z]] /. {x> 1, y-t}

f2[t_] =Im[f[z]] /. {x> 1, y->t}

ParametricPlot[Evaluate[{f1[t], £2[t]}], {t, O, Pi/ 2}, AspectRatio - Automatic]
ParametricPlot [Evaluate[{f1[t], £2[t]}], {t, O, Pi}, AspectRatio -» Automatic]

e Cos[t]
e Sin[t]
e
e
) 2
1
1
-2 -1 1 2 e

7. We have to verify that the solution
1
Pz, y) = 100 cot™! (tana cothy)
7r

satisfies the boundary conditions

(1) lim ¢(z,y) =0 f0<z<7/2
y—0+
(2) 11161+ ¢(z,y) =100 if —7/2 <2 <O0;
y*}
(3) lim ¢(x,y) =0 for fixed y > 0;
=5
4) lim . ¢(z, y) =100 for fixed y > 0.

z——3
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Let us prove (1) and (4). See Figure 10, Section 12.5 to help you evaluate the inverse
cotangent. For (1), since 0 < z < /2, sinz > 0, cosz > 0 and so tanx > 0; hence

cosh
cothytanz = i

- tanz — +oo asy — 0.
sinhy

Consequently,
cot™! (cothytanx) — cot™! (+ oo) =0 asy— 0",

and so (1) holds.
To prove (4), we have y > 0, so cothy > 0; hence

T+
cothytanz — —oc0 asx — —3

Consequently,

cot™! (cothytan:c) — cot™! (— oo) =7 asy— —ng,
and so (4) holds.

It is interesting to see the graph of the function ¢. We do this on Mathemat-
ica. It is important to note that the branch of the inverse cotangent function on
Mathematica is not the one that we have defined in Section 12.5. Ours is the one
that is usually used in calculus. This explains the first few commands that define
our branch of cot™!.

Clear[f]

f[x ] =If[x>0, ArcCot[x], ArcCot[x] +Pi]

£[0] =Pi/2

Plot[ £[x], {x, -10, 10}] These commands define the

branch of the inverse cotangent
that suites us, using the
built-in ArcCot.

If[x >0, ArcCot[x], ArcCot[x] + 7]

ﬁz
2
0

N

10

-10

Plot3D[100/Pi £[Tan[x] Coth[y]], {x, -Pi/2, Pi/ 2},
{y, 0.01, 3}, ViewPoint » {0, -2, 1}, PlotPoints -» 50]

3

The solution ¢ over the rectangle
1 —n/2 < x < m/2. Note the boundary values of the
solution how they match the given boundary conditions.
100  Also note how the maximum and minimum values of
¢ occur on the boundary of the (bounded) rectangular region.
This is a consequence of the maximum and minimum principle.
50 of harmonic function.

1]
1

iy
IIIIIII%I
it
i
il
1111}

i
i

Z,
i 7

iy
iy
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9. We map the region onto the upper half-plane using the mapping f(z) = 22 (see

Example 1). The transformed problem in the uv-plane is V2U = 0 with boundary
values on the w-axis given by U(u, 0) = 100 if 0 < v < 1 and 0 otherwise. The
solution in the uv-plane follows from Example 5, Section 12.5. We have

Ulu, v) = ? [cotl (u; 1) —cot™! (%)] .

The solution in the zy-plane is ¢(x, y) = U o f(2). To find the formula in terms of
(x, y), we write 2 = x +iy, f(2) = 22 = 2% —y? + 2ixy = (u, v). Thus u = 2% — ¢/?

and v = 2zy and so

2 _ .2 2 _ .2
bz, y) = Uof(2) = U(s*—?, 2ay) = 2 [cotl (M) — cot ™! (‘T L )] .
T 2xy 2xy

11. We map the region onto the upper half-plane using the mapping f(z) = z%.

Since f(re??) = r*e*?, a point z = re'? on the ray at angle 7/4, z = re!™/4, is
mapped to a point on the negative u-axis with modulus r%; that is f(re'™/4) = —r*.
With this observation, we can see that the transformed problem in the wv-plane is
V2U = 0 with boundary values on the u-axis given by U(u, 0) = 50 if =16 < u < 0

and 0 otherwise. The solution in the uv-plane follows from Example 5, Section 12.5.

We have 0 61
B P AT N
U(u, v) = - [cot (v) cot ( ” )] .

The solution in the zy-plane is ¢(x, y) = U o f(2). To find the formula in terms of
(z, y), we write z =z + iy,

(u, v) = f(2) = 2* = (2% = y* + 2izy)® = (@ + y*! - 62°¢%) +i(4a’y — day?).

Thus u = z* 4+ y* — 62%y? and v = 423y — 429> and so

¢, y) = Uof(z) =U(a" +y' 62"y, 4z’y — day?)
_ 50 ot ot +yt -6y cot-1 ot 4yt — 62%y% + 64
T dx3y — dxy? dx3y — 4y’ ’

13. We map the region onto the upper half-plane using the mapping f(z) = e*
(see Example 2). The points on the z-axis, z = z, are mapped onto the positive
u-axis, since €* > 0 for all z, as follows: f(z) > 1ifx > 0and 0 < f(z) < 1if
x < 0. The points on the horizontal line z = x + 4w are mapped onto the negative
u-axis, since €T = —e* < 0, as follows: f(x +im) = —e* < —1if x > 0 and
-1 < flz+im) = —e* < 0 if x < 0. With these observations, we see that the
transformed problem in the wv-plane is V2U = 0 with boundary values on the
u-axis given by U(u, 0) = 100 if —1 < v < 1 and 0 otherwise. The solution in the
uv-plane follows from Example 5, Section 12.5. We have

o= 2 oot (A51) et (52)],

The solution in the zy-plane is ¢(x, y) = U o f(2). To find the formula in terms of
(z,y), we write z =z + iy,

(u, v) = f(z) =€* =e€®cosy +ie”siny.
Thus u = e” cosy and v = €® siny and so

¢(z,y) = Uo f(z) =U(e" cosy, e” siny)

_ 100 [cotl (em cosy — 1) ot (em cos.y+ 1)] '
™ et sy ersiny
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15. We map the region onto the upper half-plane using the mapping f(z) = sin z
(see Example 3). The transformed problem in the wv-plane is V2U = 0 with
boundary values on the wu-axis given by U(u, 0) = 100 if —1 < w < 1 and 0
otherwise. The solution in the uv-plane follows from Example 5, Section 12.5. We

have 100 1 1
Ulu, v) = — [cot1 (u— ) —cot™! (u—l— )] .
™ v v

The solution in the zy-plane is ¢(x, y) = U o f(2). To find the formula in terms of
(z, y), we write z =z + iy,

(u, v) = f(z) =sin® = sinz coshy + i cosz sinhy.

Thus v = sinx coshy and v = cosx sinhy and so

¢(x,y) = Uo f(z) =U(sinzcoshy, coszsinhy)
_ 100 [cotl (smxcos%ly—l) — eot=1 (smxcos%ly—i-l)] '
m cos x sinhy cosx sinhy

17. We map the region onto the upper half-plane using the mapping f(z) = 22 (see
Example 1). The transformed problem in the uv-plane is V2U = 0 with boundary
values on the u-axis given by U(u, 0) = uif 0 < u < 1 and 0 otherwise. To solve the
problem in the wv-plane, we apply the Poisson integral formula ((5), Section 7.5).
We have

v [ U(s 0) v [ s
S G P
Ulu, v) w‘/foo(u—s)Q—i-vQ 5 7T/0 (u—8)? 4 v2 5

Now use your calculus skills to compute this integral. We have

v

1
s
— 761 =
7T/0 (u— 5)2 + v2 §

= [§ln[(s—u)2+02]’;+/lu = dt] (s—u=t)

12 40?

= ilni(l—u)Q—l-vQ ¢ anl(t>

1
v u
e
7T/0 (s —u)? 4 02 §

3l
N
>,
w
By
1
[\v}
+|&E
(w4
[\v}
QL
+

3

1—u

v

—Uu

1— 2 2 1— _
IR ) e s PO et A WU ()
27 u? 4+ v? T v v

I k) A [tanl (1 _u> + tan™! (3)] .

27 u? 4+ v? T v v

The solution in the zy-plane is ¢(x, y) = U o f(2). To find the formula in terms of

(z, y), we write z = x +iy, f(2) =22 = 2% — y? + 2izy = (u, v). Thus u = 2% — y?

and v = 22y and so
¢, y) = Ul® -y 2ay)

vy . (1= (2= 9°)* + (2zy)?

T (@ —P)? + (2zy)?

2 _ .2 1 — 22 2 )
+2 =Y [tanl (733 ty >+tan1 (x Y )]
T 2xy 2xy
zy (1= (2® = ¢*)* + (22y)°
= —In
T ($2+y2>2

2 _ 2 1— 2242 2_ .2
+I =Y [tanl (733 Y >+tan1 (x Y )] .
T 2xy 2xy
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(I verified this solution on Mathematica and it works! It is harmonic and has the
right boundary values.)

19. We map the region onto the upper half-plane using the mapping f(z) = e*.
The transformed problem in the wv-plane is V2U = 0 with boundary values on
the w-axis given by U(u, 0) = v if 0 < u < 1 and 0 otherwise. This was solved in

Exercise 17. We have

To get the solution in the xy-plane, substitute u = e” cosy and v = e®siny and so

U(e” cosy, €”siny)

o(z, y)

er siny1 (1 —e”cosy)? + (e®siny)?
n
21 (e® cosy)? + (e® siny)?

+em cosy [tanl (1 — efcosy) + tan-1 (em c9sy>]
™ et sy et siny

_e’smy In e’ cosy t+e i e’ cosy tan=1 e .cosy 4 tan-1 (cot y)
2m e ™ e” siny

oo
- £y [In(1 — 2€” cosy + **) — 2z]
2T
T 1 —e®
SR [tanl <7e .cosy> + tan™* (coty)] .
™ e’ sy

(I verified this solution on Mathematica and it works! It is harmonic and has
the right boundary values.) The function tan~! (cot y) is interesting and deserves
further investigation. In fact, the following figure gives you the answer:
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Plot[ {ArcTan[Cot[x]], Pi/2-x }, {x, 0, Pi}]

/2

-1/2

/2

Plot[ ArcTan[Cot[x]] , {x, -2Pi, 2Pi}, AspectRatio-» 1/ 3]

/2 The function tan-!(cot x) is equal to 7/2 — x for
x in the interval [ 0, t]. It is also periodic with
period w. It is thus equal to the sawtooth function
_n T ‘ that we investigated in Chapter 2. You can vary the
period by considering
the function tan-![cot (a x) ].
—n/2
If you want to construct the periodic function f(z) = z if —7/2 < 2 < /2, you
can use the following.
Plot[ ArcTan[Tan[ x ]] , {x, -Pi, Pi}, AspectRatio-» 1/ 3]

P The function tan~!(tan x) is equal to x for
x in the interval [ —n/2 , 7/2]. It is also periodic
with period ©. You can vary its period by

-7

-1/2

/2 T considering the function tan"![tan ( @ x) ].

P —m/2

21. The mapping f(z) = Logz maps the given annular region onto the 1 x 7-
rectangle in the uv-plane with vertices at (0, 0), (1, 0), (1, ), and (0, 7). With the
help of the discussion in Example 4, you can verify that the transformed Dirichlet
problem on the rectangle has the following boundary conditions: U(u, 0) = 0
and U(u, ) = 0 for 0 < w < 1 (boundary values on the horizontal sides), and
U(0, v) = 100 and U(1, v) = 100 for 0 < v < 7w (boundary values on the vertical
sides). To simplify the notation, we rename the variables z and y instead of u
and v. Consider Figure 3, Section 3.8, and take a = 1, b =m, fi = fo =0, and
f3 = fa = 100. The desired solution is the sum of two functions us(z, y) and
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ug(z, y), where

usa(x, y) = Z D,, sinh nz sin ny;
n=1
2 i .
D, = - / 100 sinny dy
msinhn J,
—200 200 n
N nﬂ'sinhn(cosmr -b= mrsinhn(l - =0
us(x, y) = Z Cp sinh[n(1 — )] sinny;
n=1
2 & .
c, = - / 100 sinny dy
msinhn J,
200
= ——(1—-(=1)"™).
mrsinhn( (=1)%)
Thus (back to the variables u and v)
U(u,v) = wug—+ua
— 200 o :
= ngl m(l — (=1)") sinh nu sinnv
— 200
+nz::1 — (1= (=1)")sinh[n(1 — w)] sinnw

_ @ . sinnwv (1— (_1)")[sinhHU+Sinh[n(1_u)]]

T nsinhn
n=1

~ 400 e sinh[(2n + 1)u] + sinh[(2n + 1)(1 —u)] .
o o (2n + 1) sinh(2n + 1) sin[(2n + 1)v].

To get the solution in the zy-plane, substitute u = 3 In(z?+y?) and v = cot ™! (£).
The solution takes on a neater form if we use polar coordinates and substitute
2?4+ y? =72 and = cot ' (£). Then

o(z, y)

U(% In(z2 + y?), cot ™! (%)) = U(lnr, )

400 = sinh[(2n 4 1) In7] 4 sinh[(2n + 1)(1 — In7)]
I (2n + 1) sinh(2n + 1) sin((2n + 1)6]

n=0

= ¢(r, 09).

It is interesting to verify the boundary conditions for the solution. For example,
when r = 1, we have

400 G~ sinh[(2n + 1)(1)]

(et (2n + 1) sinh(2n + 1)

(1, 0) sin[(2n + 1)6]

400 = sin[(2n + 1)6]
- TZ (2n+1)

This last Fourier sine series is equal to 100 if 0 < 6 < w. (see, for example,
Exercise 1, Section 2.3). Thus the solution equals to 100 on the inner semi-circular
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boundary. On the outer circular boundary, » = e, and we have

400 & sinh(2n + 1) ,
o0 = = 2 Gy Dsmban g 1) nlCrt D

n=0

400 < sin[(2n + 1)6]
T = (2n+1) ’

which is the same series as we found previously; and thus it equals 100 for 0 < 6 < 7.
Now if # = 0 or w (which corresponds to the points on the z-axis), then clearly
¢ = 0. Hence ¢ satisfies the boundary conditions, as expected.

23. As in Exercise 21, f(z) = Logz maps the given annular region onto the 1 x 7-
rectangle in the uv-plane with vertices at (0, 0), (1, 0), (1, ), and (0, 7). With the
help of the discussion in Example 4, you can verify that the transformed Dirichlet
problem on the rectangle has the following boundary conditions: U(u, 0) = 0
and U(u, ) = 0 for 0 < w < 1 (boundary values on the horizontal sides), and
U(0, v) =sin2v and U(1, v) = sinwv for 0 < v < 7 (boundary values on the vertical
sides). To simplify the notation, we rename the variables z and y instead of u
and v. Consider Figure 3, Section 3.8, and take a = 1, b = w, f1 = fo = 0,
and f3 = sin2y, and f; = siny. The desired solution is the sum of two functions
us(z, y) and ug(z, y), where

usa(x, y) = Z D,, sinh(nx) sin ny;
n=1
SR T -
= - sinysinn
msinhn J, 4 v
0 otherwise;
us(x, y) = Z Cp sinh[n(1 — z)] sin ny;
n=1
2 T .
C, = - sin 2y sin ny dy
msinhn J,
o sinlh 2 ifn = 2’
0 otherwise.

Thus (back to the variables u and v)

Ulu,v) = us+uy

1 1
= Snl sinhwusinv + g sinh[2(1 — u)] sin 2v.

To get the solution in the zy-plane, substitute u = $ In(z?+y?) and v = cot ™! (£),
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or use polar coordinates and substitute 22 + y? = r2 and 6 = cot~* (%) Then

1
oz, y) = U(§ In(2? + %), cot™! (%)) =U(lnr, 9)
= L Guhinrsind + —— sinh[2(1 — Inr)] sin 20
= o SinbInrsin oo Sn nr)]sin
_ sin Inr —Inr sin 26 2(1—Inr) —2(1-Inr)
= a1 ) T e c )
sin 1 sin20 e*
= et )t oana Gz ¢ )

= o¢(r, 9).

It is interesting to verify the boundary conditions for the solution. For example,
when r = 1, we have

- sin26 , o oy .
(1, 0) = 2sinh2(e — e %) =sin 26,

as desired. On the outer circular boundary, » = e, and we have

sin 6

_ LDy
= Jsmnil¢ ¢ ) =i,

¢(e, 0)

as desired.

25 We have f(z) =z+z20=z+iy+ao+iyo =x+xo+i(y+yo). Thus f maps
a point (z, y) to the point (x + o, y + yo). Thus f is a translation by (xo, yo).

37 We have .

—
pt+ith=Uof+iVof=(U+iV)of.

Since V' is a harmonic conjugate of U, U + ¢V is analytic. Thus g o f is analytic,
being the composition of two analytic functions. Hence ¢ + ¢ is analytic and so
1 is a harmonic conjugate of ¢.
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Solutions to Exercises 12.7

1. The function ¢(z) = z — 1 is a conformal mapping of €, one-to-one, onto the
unit disk. Apply Theorem 3; then for z = x + iy and zg = 29 + i yp in 2, we have

r4+iy—1l—z90—1tyo+1
1—(xo+iyo—1)(z+iy—1)

G(xa Y, To, yO) = In

- (x —x0) +1i(y — yo) ’
1—(zg—1—dyo)(x—1+1iy)|

= S0’ +(—10)?) — 3 [l~ (zo— L~ igo) (w—1+ip)].

= %111[(35—%0)24'(9—?40)2]

1
—5In [(—zoz + 20 + 2 — yoy)® + (Yoz + yzo — yo — y)*)] -

3. The function ¢(z) = e %% z is a rotation that maps €2, one-to-one, onto the upper
half-plane. Apply Theorem 4; then for z = x + iy and 2y = g+ iyo in 2, we have

G(xa Y, To, yO) = In i P p—
e iz —e'17g

e ' Z— 20 Z— 20

= In|—= — =In —

e '1 z—e€e'2% Z — 120

5. The function ¢(z) = e€* maps (2, one-to-one, onto the upper half-plane. Apply
Theorem 4; then for z = x + iy and 29 = g + iyo in 2, we have

e? — e*o

Gz, y, w0, 90) = In (Note that e= = ¢*.)

e* — e*o

1 e’ cosy + e’ siny — e*° cos yp — 1€”° sinyp
= In

e cosy + 1e* siny — e*° cos Yy + 2e%0 sin yy

(ex cosy — e”° cos y0)2 + (ex siny — e*0 sin y0)2 |

(ex cosy — e*0 cos y0)2 + (ex siny + e*o sin y0)2

1 | €% + %70 — 2120 (cos y cos Yo + sinysinyp)
= -In
2 €2% + e2%0 — 2e7 70 (cosy cos yo — sinysinyo)

2T + 20 — 2eTF0 cog(y — o)
N o2 | e2w0 _ gertao cos(y + yo)

1
-1
2

9. We use the result of Exercise 5 and apply Theorem 2, Section 12.3. Accordingly,

1 [ oG
uteo, ) = 5= [ o) G| da.
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We have

G _ Ly R4 e — 2670 cos(y — o)
(.I, Y, To, yo) - 5 n e2x + €2x0 — Qex+2x0 Cos(y —+ yo)

1
= 3 In (** + €*™ — 2™ cos(y — yo))

1
—3 In (e** + €*™ — 2170 cos(y + yo))

oG 1 2”10 sin(y — yo) ’
Y ly=n 2 e2® + 270 — 2e%+%0 cos(y — yo) ly=n

1 2720 cos(y + yo) ’
2 €27 4 e2%0 — 2ev+w0 sin(y + yg) ly=r

€% sin g
€2 4 e2%0 — 2eT+To cog g

sin yo
eT—T0 4 eT0—T — QoS Yg

Thus the Poisson integral formula in this case is

sin yo / °° 9(x)

2m oo EXTF0 4 eP0TT — 2 oS Yo

u(xo, Yo) =

Let us test this formula in a case where we know the solution. Take g(x) = 1 for
all x. Then, we know that the solution is a linear function of y (see Exercise |,
Section 12.); in fact, it is easy to verify that the solution is

Yo
u(xo, yo) = P

Take g(x) = 1 in the Poisson formula and ask: Do we have

si o 1
% _ 2 / da?

T 27 0o EXTE0 4 e¥o—T — 2 cos Yo

Change variables in the integral: z <= x — 9. Then the last equation becomes

Yo _ sin yo /°° 1 Iz
T 2 J_ o €5+ e —2cosyo

Evaluate the right side in the case yo = 5. The answer should be 1/2. Then try
yo = w/4. The answer should be 1/4. (I tried it on Mathematica. It works.) Out
of this exercise, you can get the interesting integral formula

2y0 e 1
- :/ - — dr (0 <y <m).
sin yo Lo €Y+ 7% —2cosyp
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Appendix A Ordinary Differential Equations: Review of Concepts and Methods

Solutions to Exercises A.1

1. We solve the equation ' +y = 1 in two different ways. The first method basically
rederives formula (2) instead of just appealing to it.
Using an integrating factor. In the notation of Theorem 1, we have p(x) = 1
and ¢(z) = 1. An antiderivative of p(z) is thus [1-dz = z. The integrating factor
is

ILL({E) _ efp(ac)dx — "
Multiplying both sides of the equation by the integrating factor, we obtain the
equivalent equation

ey +y] = e
d
ol =e",

where we have used the product rule for differentiation to set -=[e"y] = e*[y’ + y].
Integrating both sides of the equation gets rid of the derivative on the left side, and
on the right side we obtain [ e®dz = e® + C. Thus,

efy=e"+C = y=14+Ce ",

where the last equality follows by multiplying by e~ the previous equality. This
gives the solution y = 1+ C'e™® up to one arbitrary constant, as expected from the
solution of a first order differential equation

Using formula (2). We have, with p(z) = 1, [p(x)dz = = (note how we took
the constant of integration equal 0):

y=e* [C+/1~emd:c] =e "[C+e’]=1+Ce "

3. This is immediate:
/

Yy =—-5y = y=Ce ",

y=e" [C—F /Sinxemd:c] .

To evaluate the integral, use integration by parts twice

/ sinze *dx

5. According to (2),

—sinze " + / e “coszdx
= —sinze * +cosz(—e ) — / e sinzdx;
I . —X :
/sm xe = —e (snm: 4+ cos 3:)

1
/smaze Tdr = —§e*m(sinx—|—cosx).

So
y=e€" [C— %e*m(sinx—kcosx) =(Ce” — %(sinx—kcosx).

7. Put the equation in standard form:

, 1 cos T
y+-y= .
x

An integrating factor is

efp(m)dx :ef%dxelnm .
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Multiply by the integrating factor (you will see that we just took an unnecessary
detour):

xy +y = cosz;
d
E[my] = cosz;
Ty = /cosazdaz:sinaH—C;
sinz C
y = +
x x

9. We use an integrating factor

efp(m)dx _ eftanmdx _ efln(cosm) _ 1 — sec .
cos T
Then
secry —secxrtanTy = SecT cosI;
d—[ysecx] =1
T
ysecx = z+C=
y = xcosx+ Ccosz.
11.

y=y = y=0Ce
y0)=1 = 1=C

= y=¢e".
22
13. An integrating factor is e=, so

22 , 22 22 d 22 22
ey +tre2 y=xe2 = —le2yl =ez2x

We now use the initial condition:
y0)=0 = 0=1+C
= (C=-1

22

= y=1—e 7.
15. An integrating factor is z, so

2 7 _ i 2 _
Yy +2xy=2 = dx[xy]—aj

1
= 3:2y:/3:d3::§3:2—|—c
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We now use the initial condition:

1 5
2 2x%
17. An integrating factor is sec z (see Exercise 9), so

seczy +ytanxsecr = tanxsecx = e [y sec ] = sec x tan x
x

= ysecx:/tanxsecxda::secx—kc

= y=1+Ccosuz.
We now use the initial condition:

y(0)=1 = 1=1+4C

= C=0
= y=1
19. An integrating factor is
ef e’dr _ eeI )

The equation becomes

@ @ w d @ @
68 y/+€8 emy:emee j E |:68 y:| :emee

= eexy:/eexemd:c:eez—kc

= y=1+ Ce ¢
We now use the initial condition:
y(0) =2 = 2=1+Ce'! = 1=Cec!
= (C=e

= y=1l+e =1+¢'"°,

21. (a) Clear.

(b) e* as a linear combination of the functions cosh z, sinhx: €* = coshz+sinhz.
(¢) Let a, b, cd be any real numbers such that ad—bc # 0. Let y1 = ae®+be™* and
yo = ce® 4+ de™™. Then y; and ys are solutions, since they are linear combinations
of two solutions. We now check that y; and ys are linearly independent:

At Y2
Wiy, y2) = , ,
1 Yo

ae® 4+ be™* ce® 4+ de™"

B ae® — be™* ce® —de "

= —ad+ bc— (ad — be) = —2(ad — be) #£ 0.
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Hence y; and yo are linearly independent by Theorem 7.
23. (a) Clear (b)

W(z, 2%) =

= T

(¢) Note that the Wronskian vanishes at = 0. This does not contradict Theorem
2, because if you put the equation in standard form it becomes

/!

2 2
——y/—|-—2y:O
X X

The coefficients functions are not continuous at x = 0. So we cannot apply Theo-
rem 2 on any interval that that contains 0. Note that W (x, z2) # 0 if z # 0.

25. The general solution is
y = c1e” + cpe*® 4 2z + 3.
Let’s use the initial conditions:
y(0) =0
y'(0)=0
Subtract (*) from (**)

Substitute into (*)

01+02+3:0 (*)
c1+2c+2=0 (%)

co—1=0; co=1

R

c1+4=0; ¢ = —4.

Thus, y = —4e” + ** + 2z + 3.

27. The function e”~!(= e~'e”) is a constant multiple of the ¢”. Hence it is itself
a solution of the homogeneous equation. Similarly, e2(*=1 is a solution of the
homogeneous equation. Using the same particular solution as in Example 3, we
obtain the general solution

y=ce® 4 2@ 4 24 4 3.
From the initial conditions,
y(1) =0
y(1)=2
Subtract (*) from (**)

Substitute into (*)

ci+ca+5=0 (%)
c1+2c+2=2 (%)
ca—3=2;c=5

c1 +10=0; ¢ = —10.

L

Thus, y = —10e*~! 4 5e2®=1D 4+ 22 + 3.

29. As in the previous exercise, here it is easier to start with the general solution
y=ce® 2+ c2e2®=2) 4 24 4 3.
From the initial conditions,
y(2) =0
y'(1) =1
Subtract (*) from (**)

Substitute into (*)

01+02+7:0 (*)
c1+2c0+2=1 (%)
co—5=1; co =6

c1+13=0; ¢cg = —13.

R
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Thus, y = —13e*~2 4 6e2(*~=2) 4+ 22 + 3.

31. Project Problem: Abel’s formula for n = 3.
(a) Let y1, y2, y3 be any three solutions of the third order equation

/1

y" +p2a(x)y” + p1(x)y + po(x)y = 0.

Then the Wronskian is (expand along the 3rd row):

Y1 Y2 Ys

/

Y Yy Ys

Wy, y2, y3)

/!

v s

Y2 Y3 Y1 Y3
- y/l/ / r| y/2/ ! /
Yo Ys U Ys

U Y2

+yg / /

Y1 Ya

= (Y293 — vous)v — (V1y5 — Y193)y2
+(Y1ys — v1y2)ys -
Using the product rule to differentiate W, we find
Wy, y2, y3) = (y2ys — yau3)yh’ + (Yays + v2ys — Yo ys — Yay3)y1
—(1ys — viys)ys — (Y1ys + v1ys — yiys — y15)vs
+(1ys — vhy2)ys + (Whys + Y1y — yi've — ¥1ys)ys
= (y2ys — ¥u3)¥) — (V15 — v1y3)ys' + (V1 — ¥iy2)ys -

(b) For each j =1, 2, 3, we have, from the differential equation,

1" " _

yj' = —p2(2)y] — p1(2)y; — po(2)y;-
Substituting this into the formula for W’ we obtain
W' = —(y2vs — voy3) (p2(2)y) + p1(2)y) + po(z)ys)
(W15 — v1ys) (p2(2)ys + p1(2)ys + po(@)y2)
— (s — y1y2) (p2(2)ys + p1(2)ys + po(2)ys)
= —p2(2)(y2y5 — yaya)yi + p2(2)(V1y5 — Y1Y3)vs
—p2(2) (Y195 — Y1Y2)y3
= —pa(x)W.

(¢) From (b) W satisfies a the first order differential equation W’ = —p, W, whose

solution is
W= eI m@ie,

32. (a) Let f(x) =|z°|,
23 ifx >0
flz) = 0 ifx =0

-3 ifx <0
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Clearly f'(x) exists if x #. For = 0, we have

h— h

L
=
= limh|h| = 0.

h—

Hence the derivative exists for all z and is given by
3x? ifx >0

f(z) = 0 ifz=0
—3z2 ifz<0

Another way of writing the derivative is f'(z) = 322 sgn x, where sgnx = —1,0, or
1, according as < 0, x = 0, or x > 0. We have

3

T |3

W(2®, |2°]) =

32 3r?sgnx
= 32°sgnz — 32|27

You can easily verify that the last expression is identically 0 by considering the
cases ¢ > 0, x = 0, and = < 0 separately.

(b) The functions 2% and |z3| are linearly independent on the real line because one
is not a constant multiple of the other.

(c) This does not contradict Theorem 7 because 23 and |z3| are not solution of a
differential equation of the form (3).
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Using Mathematica to solve ODE

Let us start with the simplest command that you can use to solve an ode. It is the DSolve command. We illustrate by
examples the different applications of this command. The simplest case is to solve y'=y

DSolvel[y’ [x] =y[x], y[x], x]

{{y[x] »e*C[1]}}

The answer is y= C ¢* as you expect. Note how Mathematica denoted the constant by C[1]. The enxt example is a 2nd
order ode

DSolve[y’' [x] ==y[x], y[x], x]
{{y[x] »e*C[1] +e™C[2]}}

Here we need two arbitrary constants C[1] and C[2]. Let's do an intial value problem.

Solving an Initial Value Problem

Here is how you would solve y" =y, y(0)=0, y'(0)=1

DSolve[{y’'[x] = y[x], y[0] =0, y'[0] =1}, y[x], x]

{{y[x] - % e (—l+e2x)}}

As you see, the initial value problem has a unique solution (there are no arbitrary constants in the answer.
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Plotting the Solution

First we need to learn to extract the solution from the output. Here is how it is done. First, solve the problem and call the
output solution:
solution =DSolve[{y’’ [x] = y[x], y[0] =0, y'[0] =1}, y[x], x]
1 -x 2 x
{{y[x] > e (-1l+e )}}

Extract the solution y(x) as follows:

y[x_] =y[x] /. solution[[1]]

1

— e X (-1 2 x
2<e ( + e’ ®)

Now you can plot the solution:

Plot[y[x], {x, 0, 2}]

3.5
3 The solution y(x) goes through the point
2.5 (0, 0). This confirms the initial condition
2 =
s y(0) =0.
1
0.5

Note the intial conditions on the graph: y(0)=0 and y'(0)=1. To confirm that y'(0)=1 (the slope of the graph at x=0 is 1),
plot the tangent line (line with slope 1)

Plot[{y[x], x}, {x, 0, 2}]

3.5 The tangent to the solution y(x) at x =0
3 is the line y = x, whose slope is 1.

2.5 Thus y'(0) = 1, because the derivative

. i is equal to the slope of the tangent line.
1

0.5
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The Wronskian

The Wronskian is a determinat, so we can compute it using the Det command. Here is an illustration.

Clear|[y]
soll = DSolve[y’’ [x] +y[x] =0, y[x], x]

{{y[x] »C[1] Cos[x] +C[2] Sin[x]}}

Two solutions of the differential equation are obtained different values to the constants ¢l and c2. For

Clear[ yl, y2]
yl[x_] = clCos[x];
y2[x_] =c2Sin[x];

Their Wronskian is

w[x_] =Det[{{yl[x], y2[x]}, {y1’'[x], y2'[x]}}]

clc2Cos[x]?+clc28Sin[x]?

Let's simplify using the trig identity cos"2 x + sin”2 x =1
Simplify[w[x]]
clc2
The Wronskian is nonzero if c1\= 0 and c2 \= 0. Let us try a different problem with a nonhomogeneous

Clear|[y]
sol2 =DSolve[y' ' [x] +y[x] =1, y[x], x]

{{y[x] »1+C[1l] Cos[x] +C[2] Sin[x]}}
Two solutions of the differential equation are obtained different values to the constants c1 and c2. For

Clear[ yl, y2]
yl[x_] =1+ Cos[x];
y2[x_] =1+ Sin[x];
These solutions are clearly linearly independent (one is not a multiple of the other). Their Wronskian is

Clear[w]
wlx_] =Det[{{yl[x], y2[x]}, {y1l'[x], y2'[x]}}]

Cos[x] + Cos[x]2 +Sin[x] + Sin[x]2

Let's simplify using the trig identity cos”2 x + sin”2 x =1
Simplify[w([x]]

1 +Cos[x] +Sin[x]

Let's plot w(x):
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Plot [w[x], {x, 0, 2Pi}]

—
o = o N

The Wronskian does vanish at some values of x without being identically 0. Does this contradict Theorem 7 of Appendix
A.1?
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Solutions to Exercises A.2

1.
Equation: y' =4y +3y = 0
Characteristic equation: A —4X+3 = 0
A=1D(A=-3) = 0
Characteristic roots: AM=1, =3
General solution: Y = c1e% + cpe3"
3.
Equation: y' =5y +6y = 0
Characteristic equation: A —5X+6 = 0
A=2)(A=3) = 0
Characteristic roots: A =2; =3
General solution: Yy = c1€%* 4 cped”
5
Equation: y' +2y +y = 0;
Characteristic equation: A 4+2X+1 = 0
A+1)?2 = 0
Characteristic roots: A1 = —1 (double root)
General solution: y=cre " +coxe ™
7.
Equation: 4y" —4y' +y = 0
Characteristic equation: AN2—4X+1 = 0
2A-1)2 = 0
Characteristic roots: A1 = 1/2 (double root);
General solution: y=ce/? 4+ cyxet/?
9.
Equation: ' +y = 0
Characteristic equation: AX+1 = 0
Characteristic roots: A =1 Ao = —i;
Case III: a=0, pB=1,;
General solution: Y =c1€08T + cosinx
11.
Equation: y' —4y = 0
Characteristic equation: XN —-4 =0
A=2)A+2) = 0
Characteristic roots: A =2 =2

General solution: Yy = c1€%* 4 cpe ™27,
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13.
Equation:

Characteristic equation:

Characteristic roots:

Case III:
General solution:
15.
Equation:
Characteristic equation:

Characteristic roots:

Case III:

General solution:

17.
Equation:

Characteristic equation:

Characteristic roots:
General solution:
19.
Equation:

Characteristic equation:

Characteristic roots:

General solution:

21.
Equation:

Characteristic equation:

Characteristic roots:
General solution:
23.
Equation:

Characteristic equation:

Characteristic roots:

General solution:

y=cre*+coe ® +csre® +cyre”

y=-cre® +cozre®+cs z2e® 4 cqe”

y' +4y +5y
AN 4+4X+5

A =244 A=-2-—14
a=-2, [f=1;
y=cie 2% cosxT + coe ¥ sinx
y'+6y +13y

AN +6A+13
A=-3+/—4=-3+2;

A1 =-3+2i, Ao =-3—23
a=-3, [=2;

y = c1e73% cos(2x) + cae 3% sin(2x)

y' =2y +y

A3 =224 A

AN —1)?

A2 =1 (double root)

y=c1+cre*+c3xre”

yW =2y +y
M —202 41
(A2 -1)°

two double roots, Ay =1, Ao = —1;

x

v =3y +3y —y

A3 —3N2+30-1

(- 1)°

A1 = 1 (multiplicity 3);
y=-cie® +coxe +c3ale”

y —6y" +8y —3y

At —6A2 +8)\ -3

(A —1)3(\+3)

1 (multiplicity 3), Ay = —3;

A1
3z

A309

0;
0;
0;
0
0;
= 0
0;
0
0;
= 0
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25.
Equation: Y — 4y +3y = €22
Homogeneous equation: y' —4y +3y = 0
Characteristic equation: A2 —4X+3 = 0
A-D(A-3) = 0
Characteristic roots: AL =1, Ao =3;

Solution of homogeneous equation: 1, = c; €% + ¢z €37.

To find a particular solution, we apply the method of undetermined coefficients.
Accordingly, we try

Yp = Ae?®:
y; = 24¢%%,
yg = 4Ae%*.

Plug into the equation 3’ — 41y + 3y = €2*:

4Ae*" — 4(2Ae*) + 34 = *
—A% = 2
A = -1
Hence y, = —e?* and so the general solution
Yg =cre” +c2 e3® — 2%,
27.
Equation: y' =5y +6y = €+ u;
Homogeneous equation: y' =5y +6y = 0
Characteristic equation: A —5XA+6 = 0
A=2)(A=3) = 0
Characteristic roots: Al =2, Ao =3;

Solution of homogeneous equation: 1y, = c; €2 + ¢y €3*.

To find a particular solution, we apply the method of undetermined coefficients.
Accordingly, we try

yp = Ae®+ Bx+C;
y; = Ae" + B;
yg = Ae".

Plug into the equation y"” — 5y +6y = e* + a:

Ae® —5(Ae*+ B)+6(Ae” + Bx+C) = "4z
2Ae" = €%
6B = 1

6C -5B = 0.
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Hence
A=1/2, B=1/6, C=5/36 yp:§+%+_
and so the general solution
2z 3., ¢ T 5
Yg =cre” +coe +?+E+%'

29.

Equation: y' —4y +3y

Homogeneous equation: y' —4y +3y

Characteristic equation: A2 —4X+3

A=1(A-3)
Characteristic roots: AL =1, Ao =3;

Solution of homogeneous equation: 1, = c; €% + ¢z €37.

To find a particular solution, we apply the method of undetermined coefficients.

Accordingly, we try

Yyp = (Az+Be™™;
y, = € “(Az— B+ A);
y, = e “(Az—B-2A).

x

Plug into the equation ¢y’ — 4y +3y =e™:

e P(Ax — B —2A) —4e ®(Ax — B+ A) +3(Az + B)e™®

8A
—6A +8B
Hence
A=1/8, B=3/32 &3y
= = M = — — e M
) ) y;D 8 32 ’
and so the general solution
3
yg =C1 em —|— (6] 639” —|— (g —|— 3—2)€7m.
31. Using the half-angle formula,
Equation: y' +4y
Homogeneous equation: y' +4y
Characteristic equation: A +4
Characteristic roots: A1 = =24, Ay = 24;

Solution of homogeneous equation: yp = ¢1 cos2x + co sin 2x.

(e} O N[—=

1 .
— 5 Cos 2x;

To find a particular solution, we apply the method of undetermined coefficients.
We also notice that 1/8 is a solution of 3" 4+ 4y = 1/8, so we really do not need to
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look for the solution corresponding to the term 1/8 of the nonhomogeneous part.
We try

1
o= 3 + Az cos 2z + Bx sin 2z;
y, = Acos2x—2Axsin2z 4 Bsin2z + 2Bz cos 21;
y, = —4Asin2r—4Axcos2z + 4B cos2x — 4Bwsin2z.

Plug into the equation v’ + 4y = 1 — 1 cos 2a:

—4Asin2x — 4Ax cos2x + 4B cos 2z — 4Bz sin 2x

1 1 1
+4 (g + Az cos2x + Bx sin2x> = 5~ 5c0s 2z;
. 1
—4Asin2x +4Bcos2x = — cos 2z;
1
4A=0; 4B = —-.
2
Hence 1 1
T .
A=0, B :—g; Yp = 3 gsm2x;
and so the general solution
. 1 =z
Yg = C1 €OS 2T + ¢ sin 2z + 3~ §s1n23:.
33.
Equation: yv'+y = 3+ 3cos2z;
Homogeneous equation: yV'+y = 0;
Characteristic equation: A+1 = 0
Characteristic roots: A1 = —1i, Ao = 1;

Solution of homogeneous equation: 1y, = ¢ cosz + ¢ sinz.

To find a particular solution, we apply the method of undetermined coefficients.
We also use our experience and simplify the solution by trying

1
o= 5 + Acos 2z;
y; = —2Asin2x;
y, = —4Acos2z.

Plug into the equation ¥’ +y = 3 + 3 cos 2z:

1 1 1
—3Acos2x—|—§ = §—|—§cos2x;
1
-3A = <
27
1
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Hence

1 1
Yp = —60052334— >

and so the general solution

1
Yg = €1 €OS 2T + cp sin 2z — Ecos2x—|— —.

2
35.
Equation: YV +2y +y = e %
Homogeneous equation: yv'+2y +y = 0;
Characteristic equation: A 4+22+1 = 0
Characteristic roots: A1 = —1 (double root);

Solution of homogeneous equation: yp, =c1e ™ +coze *.

To find a particular solution, we apply the method of undetermined coefficients:

yp = A z?e ",
y; = —Az?e T +24zxe %
y]’o’ = Az?e ™ —24xe *+24e " —2Axe ",

x.

Plug into the equation vy’ + 2y +y = e :
Az’e ™ —24xe " +24e % — 24z "

—|—2(—A3:267x—|—2A3367x)—|—A332efx = e %
2Ae™" = 7%
1
A=—.
2
Hence
1 2 —x
= —x“e %
y;D 2 )

and so the general solution

1
Yyg=cre “+cpze T+ 53:2679”.

37.
Equation: ' —y —2y = a%—4;
Homogeneous equation: y' -y -2y = 0
Characteristic equation: AX—-A-2 =0
Characteristic roots: A=-1, A=2;

Solution of homogeneous equation: gy, = ¢y e~ + cg €27,

For a particular solution, try
yp = Az’+Bx+C;
y, = 2Ax+B;

y;/ = 2A.
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Plug into the equation 3’ — o/ — 2y = 22 — 4:

24 —2Ax— B —2Ax*> —2Bx —2C = 2% —4;
24 = 1;
1
A=—=;
2

1
B =
2?
1 1
2A-20-B=4 = —--—---20=4
2 2
5
C=":.
4
Hence
1, 1 5
Up =TT T

and so the general solution

1 1 5
2m__ 2 - e
SRR

=cre " +cge
Yg 1 2

39. Even though the equation is first order and we can use the integration factor
method of the previous section, we will use the method of this section to illustrate
another interesting approach.

Equation: ¥y +2y = 2x+sing;
Homogeneous equation: ¥y +2y = 0;
Characteristic equation: A+2 =0
Characteristic root: A= —2;

Solution of homogeneous equation: y, = c; e~ 2%,

For a particular solution, try
yp = Ax+ B+ Ccosxz+ Dsin;

y, = A—Csinz+ Dcosx;

Plug into the equation y' 4+ 2y = 2z + sinz:
A—Csinx+ Dcosx +2Ax+ 2B+ 2Ccosx+ 2Dsine = 2z + sinx;

2A=2 = A=1,;

A+2B=0 = B=—--A=-

2D-C=1land D+20=0 = D:%, C=-

Hence
Yp =T — - — —cosx—|—gsin3:;

2 5
and so the general solution

2m+x—l—lcosx+gsinx
2 5 5 '

Yg = C1€
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41. 2y —y = €%,

Equation: 2y —y = e,
Homogeneous equation: 2y —y = 0
Characteristic equation: 2X-1 = 0

1
Characteristic root: A = 5;

/2

Solution of homogeneous equation: y, = ¢ /<.
For a particular solution, try
Yp = Ae?®,

y; = 24e%T,

Plug into the equation 2y — y = €2*:

4Ae%T — Ae®* = e,
1
3A=1 = A=_-.
3
Hence 1
_ 2z,
y;D - 36 )
and so the general solution
1
Yy = Clem/2 + _€2m'
3
43.
O sinnz
Equation: y'+9 = Z n
n=1
Homogeneous equation: y' +9 = 0
Characteristic roots: A1 = 3d, Ao = —3i;
Solution of homogeneous equation: Yn = €1 COS3x + cosin 3.

To find a particular solution, we note that the term S“’%, which appears in the

nonhomogeneous term, is part of the homogeneous solution. So for a particular
solution that corresponds to this term, we try y3 = Asxsin3x + Bsx cos3z. For
the remaining terms of the nonhomogeneous part, use

6
g B, sinnx.

n=1, n#3
Thus we try
6
Yp = Asxsin3z + Bsxcos3x + Z B, sinnz;
n=1, n#3
6
y]’o = Assin3z + 3Asx cos 3z + Bs cos 3z — 3B3x sin 3z + Z nB, cosnx;
n=1, n#3
y;’ = 3Azco83x + 3A3co83x —9A3xsin3x — 3B3sin3x — 3B3sin 3z

6
—9B3x cos 3x — E n’B, sinnz;
n=1, n#3
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sinnx.
=

Plug into the equation y” + 9y = 132 4 22217 nt3

6

. 6 .
6A3cos3z — 6Bssin3z + . (9 —n?)B,sinnz = sz Yy

n=1, n#3 3 =l met3 n
. sin 3z
6Aszcos3xr — 6B3sin3x = 3 :
y 0 sinnx
2 . B '
Z (9 —n°)Bpsinnz = Z —
n=1, n#3 nel. n3
6A3 =0, —6B3 = 1 — A:=0. B:=— 1
s PThTTWY
(- 0By = n£3) = By=—— 1 _
T " n(9—n?)’
Hence
1 37+ i sinnz
= ——xcos3x e
y;D 18 TL(Q _ 7’L2) 3
n=1, n#3
and so the general solution
1 .
o= o1 cosdut cpsindo — reosde+ FT g

n=1, n#3
45. Write the equation in the form

' —4y +3y = e**sinhz

From Exercise 25, yn, = c1e® + c2e3®. For a particular solution try

yp = Are’® + Bre®.

47. y" 4+ 2y + 2y = cosx + 622 — e~ % sinz. Characteristic equation
MA42XA4+2=0 = A= -1+
So yp, = cre" T cosx 4 cge” P sinz. For a particular solution, try

yp = Acosz + Bsinz + Cz? + Dz + E+ ¢ *(Fazsinz 4+ Gz cosz).

49. y" — 3y + 2y = 3z%e® + x e~ ?* cos 3z. Characteristic equation
M -3XA4+2=0= \=1, \x=2.
So yp, = c1e* + coe®®. For a particular solution, try

yp = v(Az* +Bx® + C2?+ D+ E)e” + (Gx+H) e > cos 3z + (Kx + L) e~ ** sin 3.

51. ¢ + 4y = €2*(sin2x + 2cos2x). We have y, = cj cos2z + casin2x. For a
particular solution, try

= e?®(Asin 2z + B cos 2z).
Yp
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53. ¢y’ — 2y + y = 6z — e®. Characteristic equation
M —2X+1=0 = A\ = 1(double root).
So yn, = c1€¥ + coxe®. For a particular solution, try

yp = Az + B + Cz?e”.

55. From Exercise 25, we have
yn = c1€® + coe®”.

If o # 1 or 3 (the characteristic roots), a particular solution of
Yy — 4y + 3y ="

is yp = Ae®”. Plugging into the equation, we find

Aa?e®® — 4o Ae®® 4+ 34T = 2%,
A(e® —4a+3) = 1 (divide by e** #0);
1
4 = a? —4a+3°
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Note that a? —4a + 3 # 0, because a # 1 or 3. So the general solution in this case

is of the form
eax

— m_|_ 3m+7'
yg c1€ (6] a2 _4a+3

If @« = X is one of the characteristic roots 1 or 3, then we modify the particular

solution and use y, = Aze*®. Then

y; = A 4+ Azhe’®,
yg = AN 4 AN + AxZeM

= 24X 4 Az)2e?T.
Plug into the left side of the equation
2ANM + AzAZeM — 4(Ae)‘x + Ax)\e)‘x) + 3Az)e?®
=0

—~
= Aze® ()\2 — 4N+ 3) —2A\eM

= —24A)eM.
This should equal e**. So —2A =1 or A = —1/2 and hence
x 3z 1 Ax
yg = cC1€e —|— (6] — 5336 .

57. ¢y’ + 4y = coswx. We have
Yp = €1 COS 22 + co sin 2.
If w # 42, a particular solution of

y" + 4y = coswz

is yp = Acoswz. So y, = —Aw? coswz. Plugging into the equation, we find
Acoswr(4—w?) = coswa;
Ad-uw?) = 1
1
A =
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Note that 4 — w? # 0, because w # 42. So the general solution in this case is of

the form
COS WX

Yg = €1 €OS 2x + cosin 2x + —

If w = %2, then we modify the particular solution and use y, = x(A coswz +
Bsinw:c). Then

/

Yp = (Acosw:c + B sinw:c) + xw( — Asinwz + Bcosw:c),
y;’ = wa( — Acoswzx — Bsinw:c) + 2w( — Asinwz + B cosw:c).
Plug into the left side of the equation
xw2(—Acosw:c - Bsinw:c) +2w(—Asinw:c—|—Bcosw:c) +43:(Acosw:c+Bsinw:c).
Using w? = 4, this becomes
2w( — Asinwz + Bcosw:c).

This should equal coswz. So A =0 and 2wB =1 or B =1/(2w).

1
Yg = €1 €COS 22 + co8in 2z + 2% sinwz  (w==£2).
w

Note that if w = 2 or w = —2, the solution is

1
Yg = €1 €08 2x + co sin 2x + 13: sin 2.

59. We have
Yp = €1 COS WX + Co2 SINWX.

If w # 42, a particular solution of
Y + Wy = sin 2z

is yp, = Asin2z. So y,) = —4Asin2x. Plugging into the equation, we find

Asin2z(—4+w?) = sin2;
Aw? —4) = 1;
1
A = ——.
w?—4

Note that w? — 4 # 0, because w # 42. So the general solution in this case is of

the form .
sin 2x

w?2 —4°

If w = £2, then we modify the particular solution and use y, = Az cos 2z. Then

Yg = €1 COSWT + Cpsinwzx +

y, = Acos2r—2Axrsin2z,
yy = —4Asin2z—4Azcos2z.
Plug into the equation and get
—4Asin 2x = sin 2.

So —4A =1 or A= —1/4. The general solution is

1
Yg = €1 €OS 3T + c2 sin3x — Zx cos 2x.
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61. To solve ¢/ —4y =0, y(0) =0, y'(0) = 3, start with the general solution
y(x) = ¢1 cosh 2z + ¢y sinh 2.
Then

y(0) =0 = c¢ycosh0+ casinh0=0

4

c1 = 0; so y(z) = cysinh 2.

y'(0)=3 = 2cpcosh0=3

= (2= =
3 .
= y(z)= 3 sinh 2.
63. To solve 4y” — 4y +y =0, y(0) = —1, 3/(0) = 1, recall the solution of the
homogeneous equation from Exercise 7:
y= c1e%/? + com /2.
Then

y0)=—-1 = c3=-1;s0y(x)= —et? Cox /2.

1
y(0)=1 = —§—|—02:1

3
= 0225

= ylz)=—e?+ gx e®/2.

65. To solve ¢y — 5y + 6y = €%, y(0) =0, 3 (0) = 0, use the general solution
from Exercise 27 (modify it slightly):

1
y=cre2 4y’ + —e”.

2
Then
y(O)ZO = 1 +C=—2;
y/(O) =0 = 2¢+3c=—=
1
= = S = -1

1 1
= ylx)= -+ 5 3T + 5¢"

67. Start with the homogeneous equation y”’ — 4y + 3y = 0. Its characteristic
equation is
AN —4XN+3=0 = A\ =1, \y=3.

Thus
Y = c1€° + coe®”.

For a particular solution of y/ — 4y’ + 3y =xe %, try

y=(Az+be ", ¢y =Ae " — (Az +b)e™ ™, ¢/ = —2Ae™ " + (Ax + b)e”".
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Plug into the equation and get

—24¢™" 4+ (Az + b)e " —4(Ae™® — (Az + b)e ™)+ 3(Ax + b)e ™ = ze ”
e (—2A+b—4A+4b+3b) +xe P(A+4A+34) = ze "
—6A+8 = 0
8A = 1

So the general solution is

=c16” + e’ + (lx—k i)eﬂc
yoae T e 8" T3¢
We can now solve ¢y’ — 4y’ + 3y = xze™*, y(0) =0, v’ (0) = 1. The boundary
conditions imply that

c1+c 4—i = 0
PR T T
1 3
3 ——— = 0
¢+ C2+8 32 ;
c1te = —3
PR T3
1
c1+3ca = 32’
1 1
Co=—;01=—=
2 327 1 ]
Hence
— lm+i3m+(l +3) —x
Y780 T 8" T 32)¢

69. Because of the initial conditions, it is more convenient to take

y = c1 cos[2(x — g)] + e sinf2(z — g)]

as a general solution of ¢/ + 4y = 0. For a particular solution of y"" + 4y = cos 2z,
we try

y= Azxsin2z, y = Asin2x + 2Ax cos 2z, y’ = 4Acos2x — 4 Ax sin 2z.
Plug into the equation,
1
4Acos2x =cos2x = A= 1

So the general solution is

1
y = ¢y cos[2(x — g)] + cosin[2(x — g)] + i sin 2.

Using the initial conditions
yr/2)=1 = ¢ =1

y(r/2)=0 = 202+%c057r:0

s
= @:g;
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and so

1
y = cos[2(x — g)] + gsin[2(x - g)] +7° sin 2z.

using the addition formulas for the cosine and sine, we can write

cos[2(x — g)] =—cos2z and sin[2(z — g)] = —sin 2z,

and so

T . 1 . T 1 .
Yy = —Cos2x — gs1n2x—|— szer: —cos 2z + (— §+ Zx) sin 2.

71. An antiderivative of g(z) = e” sinx is a solution of the differential equation
y = e"sina.

To solve this equation we used the method of undetermined coefficients. The solu-
tion of homogeneous equation y' = 0 is clearly y = ¢. To find a particular solution
of y = e*sinx we try

y = ¢€"(Asinz+ Bcosx)
y = €e"(Asinz + Beosz)+ e"(Acosz — Bsinz)
= ¢e"(A— B)sinx + €*(A + B);
Plugging into the equation, we find
e’(A—B)sinz +e"(A+ B)cosx = e°sinx

1 1
A-B=1 A+B=0 = A=g B=—g;

so
1 1 v
/em sinz dxr = 569” sinz — 569” cosz + C = %(Sinx — cosx) +C.
73. An antiderivative of g(z) = e®® cos bx is a solution of the differential equation
y = e®" cos ba.

We assume throughout this exercise that a # 0 and b # 0. For these special
cases the integral is clear. To solve the differential equation we used the method of
undetermined coefficients. The solution of homogeneous equation y' =0 is y = C.
To find a particular solution of y’ = e%* cosbx we try

y = e"(Acosbr + Bsinbx)
Yy = ae®(Acosbx + Bsinbx) + e**(—bAsinbx + bB cos bx)

= e"(Aa+bB)cosbr + e (aB — bA) sin bz.
Plugging into the equation, we find

e (Aa + bB) cosbx + e**(aB — bA)sinbz = € cosbx
a b
ACL-'—bB:l, CLB—bA:O = A:m,B:m,

SO
ax

/e“cosbxdaz: acosx+bsinb3:) +C.

a2—|—b2(

Concerning Exercises 75-78 and for information about the Vandermonde de-
terminant, please refer to the book “Applied Linear Algebra,” by P. Olver and C.
Shakiban, Prentice Hall, 2006.
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Solutions to Exercises A.3

1. We apply the reduction of order formula and take all constants of integration
equal to 0.

y'+2y -3y =0, v = e’

p(x) = 2; /p(fE) dx = 2$, e*fp(x) dr _ 6721‘;

effp(x) dz . e 2%
y2—y1/Td~’C = ¢€ / o2 dz

Thus the general solution is

y = cre® + cpe 3",

3.2y" —(B3+2)y +3y =0, y1 =e*. We first put the equation in standard form.

3+zx 3 34+
- y’+;y:0, yr =" opla) = ———,

Y
T

/(—§ —1)dz = -3lnz-—uz,

e~ fp(x) de  __ e3 In x+x _ x3€x,

= —z%—32%2—6x—6.

Thus the general solution is
y=c1e® + co(2® + 322 + 62 + 6).

5.9 +4y=0, 1y = cos2z.

y' +4y=0, Y1 = cos 2x;
p(x):(),/p(x)d:c:(), e~ Jr@de — 1.
e~ [p@)de 1
yz—yl/Td:c = cos2x/md:c
= oS 2x/3602 2z dx

1 1
= cos2x [5 tan 23:] = 3 sin 2.
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Thus the general solution is

Y = ¢1 €Os 2x + co sin 2.

Thus the general solution is

y1 = cosh x;

o= Jp@dr _ g,

1
cosh z / 5 dxr
cosh” z

cosh z / sech 2z dx

cosh z [tanh 2] = sinh z.

y = ¢1 coshx + cosinh z.

9. Put the equation in standard form:

(1 —a®)y" — 2z +2y =0,

2x 2
/! /
1—$2 1—$2 ’

Y2

Y1 =T
2z
p(x)_ 1-.@2’
2z
/—l_xQd:c:hl(l—xQ)
71n17x27 1 .
S

1
*’”/mdf”

To evaluate the last integral, we use the partial fractions decomposition

1 1

(1 —x?)x? (1—z)(1+x)x?

A B

i-o) G-2)

A(l+2)2? + B(1 —2)2? + C(1 — 2?)x + D(1 — 2?)

C D
r

A323

(1—2)(1+x)x?

1 = A(l+2)2* + B —2)2*> +C(1 —2*)z + D(1 — ).

Takez =0 = D=1.

Takex =1 = 1=2A4, A=

Takex=—1 = 1=2B, B=
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Checking the coefficient of 23, we find C' = 0. Thus

1 B 1 n 1 Yo 1
(1—-x2)z2 21 -2z) 2(1+2) x?
1 1 1 1
———dr = —=1In(l- —1In(1 - =
/(1—3:2)3:2 v 211( x)+2n( +2) x
1 1 1+z 1
= —-In - —.
2 11—z T
So
1 1+ 1 T 1+
Yo =2 |=1In ——| ==In -1
2 1—2 T 2 1—x
Hence the general solution
B n T 1 1+ 1
y=cx (6] B n 1— = .
11. Put the equation in standard form:
ey +ay —y =0, y1 =
1 1 1
v'+ -y — Sy =0, p(x) = —;
x x x
1
p(x)de = —dr=1Inz
x
effp(x)dx — eflnx: l’
x
1
Yo = x/ s dx
1
- o[37]
-1
2z
Hence the general solution
c
Yy=cx+ 2,
x
13. Put the equation in standard form:
2%y +ay +y =0, y1 = cos(lnx);
1 1 1
v'+ -y + 5y =0, p(z) = —;
x x x
1
p(x)de = —dr=Inz
x
effp(x)dx = e lnx:l
z’
y2 = cos(lnzx) / 5 dx
T CoS hm:
(1 )/ ! du ( 1 d L dx)
= cos(lnz ——du (u=Inz, du=—dx
cos? u ’ x

= cosu tanu =sinu = sin(Inu).
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Hence the general solution

y = ¢y cos(lnz) + cosin(Inu).

15. Put the equation in standard form:

in 2
xy”+2y’+4xy:0, ylZSIlex;
2 2
y'+ -y +4y =0, p(x) = —;
T T
2
p(x)de = —dr=2lnz
T
effp(x) dr  _ 6721nx _ L
z2’
sin 2x/ x? d
= T
b2 x x2sin?(27)
_ sin 2x / . 21 _ sin 2x L cot (22)
x sin®(2z) T -
_ cos2r
T =2
Hence the general solution
sin 2x cos 2x
Yy =c1 + c2 .
T T
17. Put the equation in standard form:
vy’ +2(1—2)y + (2 -2)y =0, y1 = e”;
21—z r—2 2
y' + ( >y’+ y =0, p(x)=——2
T T T

/p(x)d:c = 2lnz -2z

2x
— [ p(z)dx —2Inz+2c € .
e = e = —5;
X
2x
€
x
Y2 = e ———dz
x2e2x

Hence the general solution

xT
y=cre® +cog—.
T

A325
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19. Put the equation in standard form:

2%y —2xy +2y =0, Y1 = x5

2, 2
y'— =y + 5y=0, p(x) = —
X X

2
Yo = xQ/z—4d:c
1
_ 2 _

Yy = 01x2 + cox.

Hence the general solution

21,y — 4y + 3y =e"".
M —4A+3=0 = A-1D(A=-3)=0
= A=1lor\=3.

Linearly independent solutions of the homogeneous equation:

y1=¢€* and yy = e,
Wronskian:
et eBx . . .
W(z) = = 3e™" — ™7 = 2™,
et 363&0

We now apply the variation of parameters formula with

glz) = e
y29(z) y19(z)
= dx + d
T we TR W)
_ 3z x x x
x 3x
- _Z e dr+ — | e *®dx
2
x 3x —x —x
_ € 672x_6_674x:€__6_
4 8 4 8
efx
8

Thus the general solution is
—X
y = c1e” + e + %.
23.3y" +13y' 4+ 10y = sinx.

—134+169—120 —13+7
6 6
20 10

6 :—301')\:—1.

N2+ 1304+10=0 = X=

)\:
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Two linearly independent solutions of the homogeneous equation:

yp=e¢ 3° and gy, =€ ".
Wronskian:
10
e’ e 10 7
_ 13 _ 13 _ 13
W(zx) = o =—e 3%+ —e 3% =—¢ 3"

_Eef.Tx _e % 3 3

3

We now apply the variation of parameters formula with

sinx

g(xr) = 3
B g() . y19(z) .
yp—yl/ ()d-l-z W(x)d

—Y2
w
Tsinx . e~ FTsiny
= 7 — d$+€ ﬁd.f
3 3§e 3T

1 1
= _?6713_%/ e Tsinz dr + ?e x/exsinxdx.

Evaluate the integrals with the help of the formulas in the table at the end of the
book and get

1 10y 6'596 10 i 1 =z e’ ( . )
= ——e¢ 3% ———— | —sinz —cosz —e¥*——— (sinz —cosz
Yr 77 @212 \3 7° 12tz
1 1 10 . n 11 (si )
= —c —sinz — cosx —— (sinx — cosx
R 72
9 (10 . n 1 (si )
= ———=|(—=sinx—coszx — (sinz — cosx
763 \ 3 14
! si cos
= ——sinz— ——cosz
218 218
Thus the general solution is
e R e 13
y=cie co€” 21831nx 518 8%

25. y" +y =secz.
Two linearly independent solutions of the homogeneous equation are:

y1 =cosz and y =sinz.

Wronskian:
cosr sinz

W(z) = =1.

—sinx cosx

We now apply the variation of parameters formula with

1
glx) = secx = p
—y29(x) y1g9(z)
= 27 d
y;D yl W(x) €T + y2 W(x)

sinx .
= —cosx dr +sinx [ dz
CcoS X

= cosz-In(]cosz|) + z sinz.
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Thus the general solution is

y=c1c08x + casinx + cosx - In (| cosz|) + = sinz.

27. 2y’ — (1+2)y +y =23
Two linearly independent solutions of the homogeneous equation are given:

yu=1+x and gy, =e€".
Wronskian:

1+2 €
=" + ze® — ze® = xe”.

1 erx

We now apply the variation of parameters formula with

glz) = = =¥
T
—y29() y1g9(z)
= ——2d d
y;D yl W(.I) €T + y2 W(.I) €T

X

= —(1+4u2) C 2dz e /(1—|—3:)3367I dx
re®

2
= —(1+ 3:)% +e” /(xeﬂc + 2% ") dx

23 2 )
= —?—?—Fe [—aje —e T —x%e T —2xe” " — 2e ]
33
- —%—53:2—33:—3

Thus the general solution is

x ‘IB 3 2
y=ci(l+z)+cee® — — — —x* — 3z — 3.
2 2
This can also be written as
> 3
— 1 x v Y 2'
y=c(l+z)+ coe 5 " 5%

29. 2%y" + 32y + y = /. The homogeneous equation is an Euler equation. The
indicial equation is

422 +1=0 = (r+1)*=0.

We have one double indicial root 7 = —1. Hence the solutions of the homogenous
equation
y1=2"' and 3, =2 'lnz.

Wronskian:

P 1-1

x x —Inw Inx 1

W) = | otme |T B T B3
2 2
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We now apply the variation of parameters formula with

V-

g(z) = 22 =T 23
—y29(x) y19(z)
= —=d d
yp yl W(.I) €T + y2 W(.I)
= —— / hl—xxBx*? dr + hl—x lxgxfg dxr
T T
dv

,-/\u —~
= —l/lnx \/de—i-ln—x/x%d:c
T T

3274 2172

= —l 3/21113: 2x3/2ld:c +1nx2 3/2
T 3 T z 3
2
3

[V )

1
x
Thus the general solution is

4
Y= iz V4 cox M nx + §x1/2.

31. 22y’ + 4y’ + 2y = 0. Euler equation with a = 4, 8 = 2, indicial equation
P +3r+2=0  (r+1)(r+2)=0;

indicial roots: 71 = —1, ro = —2; hence the general solution
Y= 013:71 + 023:72.

33. 2%y’ + 3zy’ + y = 0. See Exercise 29.

35 2%y + zy + 4y = 0. Euler equation with o = 1, 8 = 4, indicial equation

r? 4+ 4 = 0; indicial roots: 7 = —2i, ry = 2i; hence the general solution

y =crcos(2lnzx) + cosin(21Inx).

37 2%y + Try 4+ 13y = 0. Euler equation with o = 7, 8 = 13, indicial equation
r? 4 67+ 13 = 0; indicial roots:

r=—-3+v—-4; r=-3—-21, 7ro=-3+2.

Hence the general solution

y=a"2[cicos(2Inx) 4 cosin(2Inx)].
39. (z—2)%" +3(x—-2)yY +y=0,(x >2). Let t =2 -2, 2 =t+2, ylx) =
y(t+2) =Y (),
,_dy dY dY dt dY
T dx  dx  dtdz dt

; d(dy) dy,__dv'd &Y _,

fY/

~ dz \ dzx dz”  dt do  diZ

The equation becomes t2Y" + 3tY’ +Y = 0, t > 0. Euler equation with o = 3,
[ =1, indicial equation

P?4+2r+1=0 (r+1)°>=0;
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one double indicial root » = —1. Hence the general solution
Y =cit "+t 'n t,
and so

y=ci(x— 2)71 + cox — 2)71 In(z — 2).

41. We have

o=/ p() dz
Y2 = U1 / ————du.
U1

Using the product rule for differentiation

e~ [ p(z)dz e~ [ p(z) dzx
/ /
Y2 = Ui o) dr + 1 5
Y1 1
, / e~ [ p(x)dx e~ [ p(z)de
! yi h
So
— [ p(x) dz
T R L I
Y1, Y2) = ~ [ p(a) da ~ [ p(x) da
y/l y/l f € y% dz + € Y1
— [ p(z)dx — [ p(z) dz
e e
= ylyi/izdﬁe’“(m’“ —yiyl/izdfc
Y1 Y1

= e Jr@dz 4

This also follows from Abel’s formula, (4), Section A.1.
43 In the equation 22y + ay’ + By = 0, let t = Inx, x = e, y(z) = y(e!) = Y (¢).

Then,
a1
dx T '
dy Ay dY dt 1
/ — —:—:——:Y/.—:Y/.it'
4 dr dz dt dx x €
d d d
no_ Yoy -t ot by r Aot
y.o= o [Y e ] e d:c[Y]+Yd:c[e ]
dY' dt dt
I at it at
= rm Ve g
— 672ty// _ 672ty/'
Substituting into the equation and simplifying and using z = e!, 22 = €', we
obtain )
dY dYy
gz e Do 8V =0,

which is a second order linear differential equation in Y with constant coefficients.

45. (a) From Abel’s formula (Theorem 2, Section A.1), the Wronskian is

iy — Yhy2 = Ce™ TP,
where y; and yo are any two solution of (2).
(b) Given y1, set C =1 1in (a)
I'p(z)dz

Y1Yh — Yiya =€
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This is a first-order differential equation in yo that we rewrite as

y/
yy — DLyp = e /P dz,
n
The integrating factor is
eff%dm =e U1 =
n

Multiply by the integrating factor:

/ /
_Y, Ll e

yioy N
or i
4 [9_2 _ L@y de
dr |y1]  wn
Integrating both sides, we get
Y2 _ /iefpmdx] d:
Y1 LY1
/[1 /p(m)dx]
Yo = Y1 —e dx,
Y1

which implies (3).

47. In solving the equation y” — 4y’ + 3y = e*, y; = e*, we follow the steps in
the proof of the previous exercise. Let

y1 = €", ya = ve®, yh =v'e” +ve”, yy =v"e” + 20" 4 ve”.
Then
y' =4y +3y=¢e" = e+ 20" +ve” —4(v'e” +ve”) + ve” = €”
= 0" +20 +v -4 +v) +3v =1 (divide by €*)
= -2 =1

As expected, we arrive at a first order o.d.e. inv’. Its solution (using an integrating
factor) is

672mv// _ 2672mv/ — 672m
d . _ _
el [6 2mv/] = e 2z
dx

—1
672mv/ — /672m dr = 767230 4 C

-1
/ 2x
= — +Ce*".
v > e
Integrating once more,
v = _736+Cle2m+02

—X 3z T
Y2 = vy1:—2 e’ 4+ Ch e’ + Cqye”.

Note that the term Cie® is corresponds to the solution ;.
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49.3y" + 13y + 10y = sinz, y =e 7.
As in the previous exercise, let

yy=e % y=ve ® y =ve ™ —ve ®, ¢y =v"e® - 20" +ve ",
Then
3y +13y + 10y =sinz = 3@'e ™ —20'e™ " +ve )
+13(v'e™® —ve™ ) + 10ve™ = sinx
= 3+ 7 =e"siny
= '+ gv’ = %em sin z.

We now solve the first order o.d.e. in v':

e7m/3,U//_|_Ze’Ym/B,U/ _ 679”/3169”31113:
3 3
di[e”/gv’} _ %elom/ssmx
T
1 /1
eTE /3y = g/gelom/gsmxdaj
1 e1090/3 10 .
= g(lg_o)f_k1(331113:—Cos)—|—C’
©— © (0sing — 2
voo= 109(1031113: 3cos)—|—C.

(We used the table of integrals to evaluate the preceding integral. We will use it
again below.) Integrating once more,

10

U = 109 emsinxdx—% e® cosz dx
10 e* . 9 e .
= m?(smx—cosx)—ﬁ?(cosx—ksmx)—kC
= v *ﬂ(sinx—cosx}—i(cosx—ksinx)—kCe*m
YO TR 654
13

cos T + ! sinz 4+ Ce™™
= ———cosx+ —sinz e T.
218 218
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Solutions to Exercises A.4

1. Using the ratio test, we have that the series
>
om+1

m=0

converges whenever the limit

xmtl x™ . 5m+1
= lim |z| = |z|
5(m+1)+1/ bm+1| m—ooc\5m+6

is less than 1. That is, || < 1. Thus, the interval of convergence is |z| < 1 or
(=1, 1). Since the series is centered at 0, the radius of convergence is 1.

lim
m—00

3. Using the ratio test, we have that the series
0 (_1)m xm+2
>
m=0

converges whenever the limit

(_1)m+1 x(m+1)+2/(_1)m xm+2

||

2

lim
m—0o0

2m+1 2m

is less than 1. That is, 3|2z| < 1 or |z| < 2. Thus, the interval of convergence is
(=2, 2). Since the series is centered at 0, the radius of convergence is 2.

5. Using the ratio test, we have that the series

o0
S
m!

m=1

converges whenever the following limit is < 1:

I (m 4 1)m+L gm+l [ypmgm I (m+1)™(m+1) m! o]
im = lim : ap
m—o0 (m+1)! m! m—o0 (m+1)! mm m
1 m
= |z| lim (ﬂ> = elz|.
m— oo m

We have used the limit

1\™ 1\"
lim (u> = lim (1 + —) =e
m— oo m m— oo m

(see the remark at the end of the solution). From |z|e < 1 we get |z| < 1/e. Hence
the interval of convergence is (—1/e, 1/e). It is centered at 0 and has radius 1/e.

One way to show
. (m +1 ) "
lim ( —— =e
m— 00 m

is to show that the natural logarithm of the limit is 1:

In (m—“>m — min (”%1) — m [In(m + 1) — lnm)].

m

By the mean value theorem (applied to the function f(x) = Inz on the interval
[m, m + 1]), there is a real number ¢, in [m, m + 1] such that

In(m+1) —lnm = f'(cm) = =

Cm
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Note that
1 1 1
< — < —.
m+1~"¢,  m
So
e <m[ln(m+1) —lnm|] <1.
As m — 00, %5 — 1, and so by the sandwich theorem,

m[ln(m+ 1) —Ilnm] — 1.

Taking the exponential, we derive the desired limit.

7. Using the ratio test, we have that the series

m

o0
>
Inm
m=2
converges whenever the limit
merl xm
In(m+1)/ lnm

is less than 1 (see the note at the end of the solution). That is, |z| < 1. Thus the
interval convergence is (—1, 1). It is centered at 0 and has radius 1. To show that

Inm

= ||

= |z| lim
m—

oo In(m + 1)

11m
m— 00

. Inm
lim ———
m—oo In(m + 1)

3

you can use I’Hospital rule. Differentiating numerator and denominator, we obtain

Inm 1/m

i i m+1 1
m —————: m —— = m ——— = 1.
m— o0 1n(m + 1) m—oo 1/(m + 1) m—oo M

11. Using the ratio test, we have that the series

M (- 2)™

m=0

converges whenever the following limit is < 1:

2m+1 (.I _ 2)m+1 /2m (.I _ 2)m

lim
m—0o0

10m+1 10m

2

Thus |z — 2| < 5. Hence the interval of convergence is centered at 2 and has radius
5; that is, (=3, 7)

13. We use the geometric series. For |z| < 1,

3—z 1+x+ 4

1+x 1+ 1+
4

= —1 _

T

= 1+ 4%(-1)%“.
n=0

15. Start with the geometric series

o0

1 n,..n
i > (1) (Jz| < 1).

n=0
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Replace = by z2:

1 n n
H—xQ:Z(_U z? (|22 <1 or |z| < 1).
=0
Differentiate term-by-term:
—2x = n 2n—1
a2 > (=1)"@2n)z (Jo] < 1).

n=1

Divide by —2 both sides,
€ S n n—
Ao~ D e (el <),

n=1

17. Use the Taylor series
e’ = Z Z—' —00 < x < 00.

n=0
Then

> 2n

e“zzzun—| —00 < u < 00.

n=0 )

Hence, for all z,
€3x2+1 = e- e(\/gx)2

n!

& \/§x2n
_ ez( )

n=0
& 3nx2n
= e E .
n!
n=0

19. Using the sine series expansion, we have for all x

) r . ol (2x)2n+1 & 92n+1 It
SNy COSxTr — 53111(2.@) = 7;0(—1) m = 7;0(—1) mx .
21.We have
- 1 B 1
243z 2(1- (—379”)) 2(1 —u)’
where u = —379”. So
1 1 & 1 & TR N — 3"
2+ 3z 2;“ 27;)( 2) ;( T
The series converges if [u| < 1; that is |z| < 3.
23. We have
x+ 23 (322 4+2+1)
ey g et
2 4 3x2 3242
-7 324+ 2
n T
= xr —_—
2(1 — (—3222)
T

S Ay
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where © = —%xQ. So
x+x3 x >
3I—— = = n
n=0
T o0 n
= T+ = ——z?
2 2
n=0
— 3" +1
— n n
e x—l—Z( ) 2n+1x
n=0

The series converges if [u| < 1; that is 2* < 2 or |z| < \/g
25. Let a be any real number # 0, then

1 1
r  a—a+z
1 1
a1 (%)
- 1%(&—3:)"
a a
n=0
1 & n(@—a)
= EZ(_U —
n=0
The series converges if
a—z

<1l or |a—z|<]al

27. Let f(x) be as in Exercise 26. From the formula for the Taylor coefficients, we

know that
> f£(n)
n=0 '
Comparing coeflicients with
& -1 k$2k
o) = S
k=0
we find that
_ D
f(o) - (0|)220 - 17
f1(0) = 0;
1) (=n! " 1
o ez~ TO=-7

(b) In general, since the Taylor series has no terms with odd powers of x, we find
that find f(2*+1)(0) = 0. For the eve powers, we have

0 (DE g (DR

k) (kD)222* (k1)222F
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(c) Integrate term-by-term the Taylor series

1 = (b,
[ @t = 3 g | a™as

k=0
N (=1)* ok-+1|"
B z::(k')222k(2k+1) v ’0
_ < (=1)*
N (k)22 (2k + 1)

We estimate the alternating series (with terms decreasing to 0) by a partial sum.
The error in stopping at the k-th term is less than or equal to the (k + 1)-term.
Thus

= (—1)k 1
< .
kzzo k) 222k 2k +1)| = ((n+ 1))2227+2(2n + 3)

Taking n = 3, we find that the integral is equal to

23: S Gt> AR + Lo L TIOT 1973
— (k!) 222k 2k+ 1) 12 1320 16128 80640 ~
with an error less than
! LI 7.5 %1077,

(4)228(9) ~ 1327104

With Mathematica, using the command NIntegrate, I found

1 1
fz)dx = / Jo(z) dx = 0.91973.
0 0

29. Recall that changing m to m — 1 in the terms of the series requires shifting
the index of summation up by 1. This is what we will do in the second series:

i%—2imxm+l = i%—Qi(m—l)xm
m=1 m=0 m=1 m=1
o0 . 1
= n; x [E —2(m — 1)]
N i —2m2+2m+1xm
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31.
2 2v'm
z Z = m+6
-1
= 4m+ 2" +
S £ 2
= 4v'm
ng —m+T
o0 o0 m 2
x r
= 4 lz™ -4+ —
mZ:B Vm+ 1z +mz_:3[m+7]+8+ 5
- x i x2 4 i 4m+ m
B RCIPAS R 7"
33. Let - -
Y= Z amz™ y = Z My, T
m=0 m=1
Then
Yty = Zmamxm Ly Zamxm
m=1 m=0
= Z (m+ Dapp12™ + Z amx™
m=0 m=0
= Z [(m + l)aerl + am] xm
m=0
35. Let
Y= Z ™ y = Z mamx™ ! Yy = Z m(m — Da,z™ 2
m=0 m=1 m=2
Then

(1 _ x2)y// 4 2$y/

Il
|
&N
(]
2
3
|
g
3
5
3
_l’_
N
S
3
S
3
5

m=2 m=1
= Z m(m — Da,z™ 2% — Z m(m — Da,z™ + Z 2mapa™
m=2 m=2 m=1
= Z (m+2)(m + Dapmp22™ — Z m(m — Dapz™ + Z 2mamx™
m=0 m=2 m=1

= 2as2 + 6azz + Z (m+2)(m + D)ami2z™

m=2

M

m(m — Dapz™ 4+ 2a12 + Z 2ma,x™

m=2

3
I
[\

= 2az+ (2a; + 6a3)x

WK

+ [(m+2)(m+ 1)amyz — m(m — Dap + 2may,] z™

3
I
[\V)
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37. Let
o0 o0 o0
Y= Z amx™ y = Z mamxr™ ! Yy = Z m(m — Da,z™ 2
m=0 m=1 m=2
Then
o0 o0
2y +y = 2° Z m(m — 1)a,z™ % + Z amaz™
m=2 m=0
o0 o0
= Z m(m — Dapz™ + Z Am @
m=2 m=0
o0 o0
= Z m(m — Damz™ +ag + a1z + Z ama™
m=2 m=2
o0
= agtarz+ Z [m(m — 1)am + am] 2™
m=2
o0
= agtarz+ Z (m? —m+ Danz™.
m=2
39. Let
o0 o0
y= Z amz™ y = Z mamz™ .
m=0 m=1
Then
o0 o0 o0 xm
) +y—e° = Zmamxm—i- Z Amr™ — Z o)
m=1 m=0 m=0
o0 o0 o0 xm
S SRS ST
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Solutions to Exercises A.5

1. For the differential equation 3y’ + 2zy = 0, p(z) = 1 is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let Let

o0 o0
Y= Z amz™ y = Z ma,z™ !
m=0 m=1
Then
o0 o0
Yy +2xy = Z mapmz™ "+ 2z Z amx™
— P

= a1+ Z [(m 4+ Dams1 + 2am—1] ™

m=1
So 3/ + 2zy = 0 implies that
o]
ar+ Y [(m+Damir +2am 1]2™ = 0;
m=1
a; = 0
(m+ Dams1 +2am-—1 = 0
2
a = — .
m—+1 m+ 1 Am—1
From the recurrence relation,
ap =az=as=--"=dagk+1 = = 0;
ag is arbitrary;
2
Qa = _—— = —
2 2@0 ao,
B 2 1
ay = _ZQQ - EQOa
B 2 1
ag = —ECM = _5a05
B 2 1
as = —g%‘ = Jao,
—1)k
agpr = %ao.

So
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3. From the previous exercise
o0

Yry=a = 3 [m+ Dam +amla™ =2

m=0
= a1+ap=0 (m=0)
2a0+a1 =1 (m=1)
(m+ Damy1 +am =0 forallm>2

= A1 = ma—:fl for all m > 2.

So ag is arbitrary;

ai = —aop,
1+CLO
ay = —
2 ) )
1 1 1
a3 = ——a ——ag — —
3 3727 33
B 1 1 1
Ay = —7a3 Zao-i-z,
—_1)m
(0753 = ( ? (a,0+1)
m!
So
y=—-14z+ (ag+1) i 1)m M= _14+zxz+Ce”
= 0 3 — =

A341

5. For the differential equation y"” —y = 0, p(z) = 0 is its own power series expansion

about a = 0. So a = 0 is an ordinary point. To solve, let

o0 o0 o0
Y= g amx™ Yy = g ma,z™ ! g m(m — ay,z™ -2,
m=0 m=1

m=2

Then

/!

m(m — Daypz™ Z amx™

(m+2)(m + 1)amppoz™ Z amx™

Il
M i1 iMS

[(m+2)(m+ Damsa — am] ™.

3
]
o

So ¢y —y = 0 implies that

am

2 Datrs — am = g Gm
(m+2)(m+1)ami2 —a 0 =  ams2 T m D

for all m > 0.
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So ag and a; are arbitrary;

aop
az = ?,
- a2 ao
“om 3T
Q4 ap
g = — = —
6 6-5 6!
aop
Aoy = .
2 (2n)!
Similarly,
G = on
and so

y:a‘);(z 2n+1)!

o0
1 .
2"+ aq E 27x2"+1 = qg cosh x + a1 sinh x.
n=

7. For the differential equation y” —x ¢y’ +y = 0, p(x) = —z is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let

o0 o0 o0
Y= E amx™ y = E ma,r™ ! E m(m — ay,z™ -2,
m=0

m=1 m=2

Then

Il
Mo i (D

o0 o0
y' —xy +y m(m — a,z™ 2% -z Z mamz™ ! + Z ™
m=1 m=0
(m+2)(m + 1)ampoz™ Z mamx™ + Z amr™

[(m 4+ 2)(m+ Damio(l — m)ay,]z™.

3
]
o

So y' —zy +y = 0 implies that

. ___(m-1)

(m+2)(m+1)am 2 (1—m)am T ) m 1)

an, for allm > 0.

So ag and a; are arbitrary;

az = _?a
- az 4o
I T
3&4 3
ag = ——F = —00,
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Similarly,
a3 = a1-0=0,
as = 0,
azk+1 — 0, k Z 1.
So
B 1 22zt 3 6
Yy =a1T + ag —?—I—ax~~ .

9. For the differential equation ' +2xy +y = 0, p(x) = 2z is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let

o0 o0 o0
Y= Z amx™ Z ma,x™ Z m(m — Danz m=2
m=0 m=1 m=2
Then
o0 o0
m(m — 1)a,z™ 2% + Z 2ma,z™ + Z amx™

m=1 m=0

y'+2zy +y =

(m+2)(m + D)appoz™ + Z 2mama™ + Z ama™

m=0 m=0

Il
M i P04

[(m+2)(m+ Damsa + 2m+ Day,] x

3
]
o

Soy'" +2xy + y =0 implies that
(m+2)(m + Dams2 + 2m+ Day, =0

(2m+1)

— —any f 11 m > 0.
(m+2)(m+1)a or all m >

= Qm42 = —

So ag and a; are arbitrary;

_ 1
az = _2a’Oa
B 5 5
ag = —m@—zao,
B 5  -9.5
ag = —mzao— 6! ao,
4 = ———a
3 = 3.9 1
B 7 7.3
4 54T T ™
. 11-7-3
ar = T @
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So
_ Lo 5 4 9554
y—%(“?*zx‘w“'“)

. 11-7-
8o Tl T8, )

+a1 (x — =’ + —|x 7

11. 4" -2y +y =0, y(0)=0, y(0)=1.

For the differential equation ' — 2y +y = 0, p(x) = —2 is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let

o) o)
y = E : CLm.Im y/ — E : mamxmfl y// —
m=0 m=1

The initial conditions y(0) = 0, y'(0) =1 tell us that ag = 0 and a; = 1. Then

o0

m(m — Da,z™ 2

m=2

o0 o0 o0
y' -2y +y = m(m — Dapz™ 2 — 2 Z mamz™ + Z amz™
m=2 m=1 m=0
o0 o0
= (m+2)(m+ Damq2z™ — 2 Z (m+ Damyrz™ + Z amx™
m=0 m=0

M i1

[(m4+2)(m+ Damsa — 2(m + Damyr + am] ™.

3
]
o

So y' — 2y’ + y =0 implies that
(m=+2)(m + Damsz2 —2(m + 1)amy1 + am =0

2 A,

= Qm42 = 7)%7#1 - (

—9m forallm > 0.
(m+2 m T 2)(m 1) orallm=0

Using ap = 0 and a; = 1, we find

ay = 1,
_2_ 1t 1
T 37327 Y
L
“oT 9T a3 T
1
ag = —.
r (k—1)!
(It is not difficult to derive this formula by induction.) So
y= T
= (k—1)!

13. To solve (1 — z2)y” — 2zy’ +2y =0, y(0) =0, 3/ (0) = 3, follow the steps in
Example 5 and you will arrive at the recurrence relation

s = m(m+1)—2 m:(m+2)(m—1) m:m_lam, m >0,
(m+2)(m+1) (m+2)(m+1) m+1
The initial conditions give you ag = 0 and a; = 3. So a2 = a4 = --- = 0 and, from

the recurrence relation with m =1,
(1-1
1+1

az = CLOZO.
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So a5 = a7 = --- =0 and hence y = 3x is the solution.

15. Following the steps in Example 5, we find the recurrence relation for the co-
efficients of the solution of (1 — z2)y” — 2y’ + 12y = 0, y(0) =1, ¥/ (0) = 0, to
be

m(m+1) —12 (m—3)(m+4)
= = > 0.
G2 = N )™ mr 2)my i M=
The initial conditions give ag = 1 and a; = 0. So, ag = a5 = --- =0, and, from the
recurrence relation,
A (0—3)(04—4)&07 6
(0+2)(0+1)
o (2-3)(2+4 -6 B
“ = Gynerne Y =3
4-3)4+4 8 4
b _ oBUED 8 4
(4+2)4+1) 30 5

So A
y:1—6x2+3x4+5x6+~~~

17. Put the equation (1 — 22)y” — 22y + 2y = 0 in the form

2x 2
/!
-——— 4+ ——y=0.
4 1— 22 + 1— 27
Apply the reduction of order formula with y; = 2 and p(x) = — 139; >. Then
e Sp@de _  fiEmde
— ln(lfacz) o 1
c T 1—22
e~ [ p(x)dx
Y2 = U / ——dx
Y1
1
= —d
x/ 22(1 — x?) v
Use a partial fractions decomposition
1 _A,B O D
22(1—22) o 22 l-—-2 1+4ux
1 1 1

So

v = x/<%+2(11—$)+2(1ix>> "

= 2 [(_1 - %111(1 — )+ %1n(1+x)]

T

T 1+
= —1+§1n<1_x>
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The following notebook illustrates how we can use Mathematica to solve a
differential equations with poser series.

The solution is y and we will solve for the first 10 coefficients.
Let's define a partial sum of the Taylor series solution (degree 3) and set y[0]=1:
n/62]= seriessol = Series[y[x], {x, 0, 3}] /. y[0] ~»1

ougz= 1 +y' [0] x + % vy’ [0] %% + % vy 10y x3+0[x]"

Next we set equations based on the given differential equation y'+y=0.
in83= leftside = D[seriessol, x] + seriessol
rightside = 0
equat = LogicalExpand[leftside == rightside]

oups= (1+y'101) + (v [0] +y"[01) x+ [Y22L 4+ 2y 107) 52 w02

ouyg4j= 0

oupgs= 1 +y' [0] = 0&8&y' [0] +y”[0] = 0&& < 2[0] + %y@) [0] ==

This gives you a set of equations in the coefficients that Mathematica can solve
n/86/= seriescoeff = Solve[equat]

ougg= {{y'[0] » -1, y"[0] » 1, y*®)[0] »-1}}

Next, we substitute these coefficients in the series solution. This can be done as follows

In/87]= seriessol /. seriescoeff[[1]]

x? x3

oul87]= l—x+7—?+o[x]4

To get a partial sum without the Big O, use

n/88/= Normal[seriessol /. seriescoeff[[1]]]

2 %3

ouy8sl= 1 X+X
o= 2 6
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With the previous example in hand, we can solve Exercises 19-22 using Math-
ematica by repeating and modifying the commands. Here is an illustration with
Exercise 19. We suppress some outcomes to save space.

19. 4" —y' +2y=¢”, y(0) =0, ¥'(0)=1.

Inf70}= Clear [y, seriessol, n, partsol]

n=10
seriessol = Series[y[x], {x, 0, n}] /. {y[0] -0, y'[0] » 1}
leftside = D[seriessol, {x, 2}] - D[seriessol, {x, 1}] + 2 seriessol;

rightside = Series[E“*x, {x, 0, n}];

equat = LogicalExpand[leftside == rightside];
seriescoeff = Solve[equat];

partsol = Normal [seriessol /. seriescoeff[[1]]];

ouy71)= 10
Ooutf72)= x+iy”[0] x2+iy(3)[0] x3+iy(4)[0] x4+ 1 vy [0] x5+
2 6 4 120
(7) 7 (8) 8 (9) 9 (10) 10
L o0y x6s Y0101 y® 101y 0] %  yOOr0] %0 o
720 5040 40320 362880 3628800

The equation can be solved using analytical methods (undetermined coefficients). The exact solution is
sol =DSolve[{y'’[x] - y'[x] +2y[x] =E"x, y[0] =0, y’"[0] =1}, y[x], x];

Inf46/= sss =sol[[1, 1, 2]]

V7 x
2

5

L

17 e*? | -7 Cos[

]+7<eX/2 Cos[

X]2+3\/78in[ ﬁx]+7eX/2 Sin[[;—X]Z

2 2

Let's compare with the partial sum that we found earlier

nf677= Plot[{sss, partsol}, {x, -2, 2}]

-2 -1 1 2

oulf67}= = Graphics =

We have a nice match on the interval [-2, 2]
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Solutions to Exercises A.6

1. For the equation v/ + (1 — 2?)y’ + 2y =0, p(z) = 1 — 2% and ¢(x) = x are both
analytic at a = 0. So a = 0 is a ordinary point.
3. For the equation z3y” + 2%y’ +y =0,

pz) ==,  ople)=1;

z
2
. rogq(r) =

q(z) = 3 %

p(z) and ¢(z) are not analytic at 0. So @ = 0 is a singular point. Since xp(z)
is analytic but x2q(x) is not analytic at a = 0, the point a = 0 is not a regular
singular point.

5. For the equation z%y” + (1 — e®)y’ + 2y = 0,

71—696 l—ex'

p(z)

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. To see
that xp(x) is analytic at 0, derive its Taylor series as follows: for all z,

- 1 z2  x8
x2 2z
1—-¢e" = —=x 2'—5—1-
x  x2
1—e¢" 1 T x2+
T o 21 3! '

Since % has a Taylor series expansion about 0 (valid for all z), it is analytic at
0.

7. For the equation 4 zy" + 6y’ +y = 0,

3 3 3
p( ) %a xp(x)—§, po—ia
1 1
q(z) = s z%q(z) = VR& go =10

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and

x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

1
T(T—l)—l—;?":o = T2+§T:0
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Since r; —rg = % is not an integer, we are in Case I. The solutions are of the form

with ap # 0 and by # 0. Let us determine y;. We use y instead of y to simplify the
notation. We have

o0 o0 o0
Y= E amx™; Yy = E mamz™ Yy = E m(m — Dapz™ 2
m=0 m=0

m=0

Plug into 4zy” + 6y +y = 0:

Z dm(m — Damz™ ! + Z 6mamz™ ! + Z amz™ = 0

m=1 m=1 m=0
Z4m+1mam+1x +26m+1)am+1x +Zamx = 0

m=0 m=0 m=0
Z [4(m + )mamy1 + 6(m + 1)amyr + ap)] ™ = 0

m=0

4(m+ Dmams1 +6(m+ Damsr +am = 0
(m+1)(4m +6)ams1 +am = 0.

This gives the recurrence relation: For all m > 0,

1
Amil = — Q-
1 (m+1)(4m + 6)
Since ag is arbitrary, take ag = 1. Then
1 1
a = _—— = ——
! 6 3
1 1 1
ag = —m(—g) =
B 1 1 1
s 3.1451 70
1 1 1
Yy = a0[1—§x+§x2—ﬁx3+~~]

m=0 m=0 m=0
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Plug into 4zy” + 6y +y = 0:

= 1 3 s e 1 3
> A(m - ) (m = 5)bma™ % + > 6(m— 5)bma™ 3
m=0 m=0
+> bpoa™? = 0
m=0

+3  bpa™E = 0
m=1
=0
1 . 1
A(=5)(=5)boz™ % + 6(~ 5 )box™ 2
2% 2
> 1 3 m—2
+y A(m — 5)(m = 5)bm +6(m = )b + b1 | 2"™7F = 0
m=1
[e3e] 1 s
Z [4bm(m—§)m+bm1] ™7z = 0
m=1
1

I
e

4b,, (m — i)m + by—1

This gives by arbitrary and the recurrence relation: For all m > 1,

b — bmfl o bmfl
" dm(m — 1)  m(4m —2)’

Since by is arbitrary, take by = 1. Then

1
by = 5

b1 1
b = —_——_— = —
2 2(6) 4l

by 1
b = — = ——
° 3-10 6!

1 1 1 1
Y2 = box 3 l—ax+zx2—ax3+~~

9. For the equation 422 y" — 142y’ + (20 — z)y = 0,

7 7 7

p(x):—%, xp(x>:_§a p0:—§;
20—z T

Q(‘T):W, 332‘](@:5—1, go =25

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
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equation

7
T(T—l)—§r+5:() = 292 -9r4+10=0, (r—2)(2r—5)=0

Ty = =% T2:2.

2

Since r; —rg = % is not an integer, we are in Case I. The solutions are of the form

o0 o0
Y1 = E amx™ ™ and gy = E byx™t2
=0 m=0

with ap # 0 and by # 0. Let us determine y;. We use y instead of y to simplify the
notation. We have

o0 o0 o0
y= Z U™, = Z m+2)apaz™ ™ty = Z (m+2)(m+ 1)amz™
=0 m=0

Then
4y —1dzy + (20 — x)y

4(m+2)(m + Dame™? — 14 Z (m + 2)amz™? + (20 — z) Z U™ T2

m=1

[4(m+1) = 14)(m + 2)apn 2™ +20 > apa™? = > apa™t?

m=0

[(4m — 10)(m + 2) + 20]ama™ Z amaz™
[4m? — 2m]a,,z™ Z 1™

[4m? — 2m]an, — ap_1]z™ T2

Il
e iMe i 1M D0

3
Il

This gives the recurrence relation: For all m > 0,

Am—1 m—1

T dm2—2m 2m(2m — 1)

am

Since ag is arbitrary, take ag = 1. Then

1
ay = 5;
1 1
Qa = _—
2 2(12) 4
1 1 1
Qa = _——_— = —
8 416-5 6
Y 1+—x+lx2+ 2+
o= 2T T
We now turn to the second solution:
y = ib mer%. y,: e (m+§)b mer%. y//: i(m+§)(m+§)b mer%
m 9 2 m 9 2 2 m .
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So
422y —1ldzy + (20 —2)y

> 5 3 5 m+§ o0 m+§
= mzzo [4(m—|— 5)(m—|— 5) —14(m + 5)] bypx™ T2 + (Qo_x)mzzobmx 3
= 3 4(m+§)(m—|—§)—14(m—|—§)—|—20 b xm+%_§:b e
m=0 2 2 2 " m=0 "

[4m —|—2m me 1™

M 10

[(4m® + 2m)by, — by—1] ™3

3
Il

This gives by arbitrary and the recurrence relation: For all m > 1,

b — bmfl
™ 2m(2m + 1)
Since by is arbitrary, take by = 1. Then
1
by = 5;
11 1
b = —_—— = —
2 314.5 5
11 1
by = ———==
’ 516.7 70
1 1 1
Y2 = boz”/? 1—|—§x—|—§x —|—ﬁx + -

13. For the equation zy"” + (1 —2)y +y =0,

1—2z
p(z) = ,  xpl@)=1l-2, po=1;

1
Q(x) = Ea x2q(x) =, qo = 0.

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

r(r—1)+r=0 = r =0 (double root).
We are in Case II. The solutions are of the form
= Z amz™ and Yo =y lnz + Z byx™
m=0

with ag # 0. Let us determine y;. We use y instead of y to simplify the notation.
We have

o0 o0 o0
y= g amx™; Yy = g Mamz™ 1 = g m(m — Dapx m=2
m=0 m=0

m=0
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Plugintozy”" + (1 —z)y +y=0:

im —lamxml—FZmamx

m=1 m=1
o0 o0
—E mamxm—kg amx™ = 0
m=1 m=0

o0
Z (m+ D)mayp12™ + Z m+ Dampra™
m=0

m=0
o0 o0
—E mamxm—kg amz™ = 0
m=1 m=0

o0
Z m~+ Dmame12™ + a1 + Z (m+ Dapyrz™
m=1

m=1
o0 o0
—Zmamxm—FaO—FZamx =0
m=1 m=1
o0
ao + a1 + Z [((m 4+ D)mams1 + (m+ Damer — may, + ap)z™ = 0
m=1
o0
ap + a1 + Z [(m+1)2ame1 + (1 —m)an] 2™ = 0

m=1

This gives ag + a3 = 0 and the recurrence relation: For all m > 1,

1-m
a = m.
T 2
Take ag = 1. Then a; = —1 and as =az =---=0. Soy; =1 — 2. We now turn
to the second solution: (use y1 =1—z, y) = -1, yf =0)
o0
y = wyilnz+ Z bz™
m=0
y o0
y = yilnz+ Zl 4 Zombmxmfl;
P

2 1 >
"o /1 / —2
Yy = y lnx+ Eyl — Fyl —|—mz m(m — )by, x™ 7.
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Plug into zy” + (1 —x)y' +y = 0:

1 o0
mgmx+2%—;yy+§:wmn—mmﬂm4

m=0

+(1 —2)yyInx + ‘1—1(1 —x)+ (1 —x) Z Mmbma™ ' +y1 Inx + Z ba™ = 0

m=0 m=0

-2 — l(1 —x)+ i m(m — 1)bpaz™ !

r m=1 "

+M+imb xmfl—imb xm—|—ib 2™ = 0
T m m m

m=0 m=0 m=0

—3+z+ Z [(m + D)mbyy1 + (M 4 D)bpyr — mby, +bpJz™ = 0
m=0

=3+ z+ Y [(m+1)%bmi1 + (L —m)by]z™ = 0

m=0

For the constant term, we get by + by — 3 = 0. Take by = 0. Then b; = 3. For the
term in x, we get

1
14262 +202—b1+b1=0 = b2:—1,
For all m > 3,
b B m—1
m+1 — (m+1)2 m -
Then
1 1 1
b p— —_ [E—— e —
’ 5071~ 36
2 1 1
b = —_— ) =
: 16736~ “2s8
Y = —3$——$2—ix3+...
? 1" 7 36
17. For the equation 2y” +4xy' + (2 —2%)y = 0,
4
p(.I) = Ea xp(x) :45 Do _43
2 —x?
o) =2 g =20t go=2

p(z) and ¢(z) are not analytic at 0. So a = 0 is a singular point. Since zp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

rir—1)+4r4+2=0 = P 4+3r+2=0

= T1:—2 T2:—1.
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We are in Case III. The solutions are of the form
o0 o0
Y1 = Z ama™ t and yo =kyilnz + Z bx™ 2,
m=0 m=0

with ag # 0, bg # 0. Let us determine ;. We use y instead of y to simplify the
notation. We have

Y= Z ama™ oy = Z (m — Damaz™ 2 o = Z (m —1)(m — 2)amz™ 3.
m=0 =

m=0 m=0

Plug into 2%y +4xy' + (2 — 22)y = 0:

m=0 m=0
Z 2am,x" T — Z amz™™t = 0
m=0 m=0
(=) (=2)agz™" + > (m —1)(m — 2)ama™ "
m=2

+4(=Dagz™" + Z 4(m — 1)a,z™ !
m=2

a0z ' + 2a1 + Z 2amx™ !t — Z Am_or™ 1 = 0
m=2 m=2
2a1 + Z [(m —1)(m — 2)am + 4(m — 1)am2am — am_o]z™ ' = 0
m=2
2a1 + Z [(M? 4+ M)am — am_2]z™ ' = 0
m=2

This gives the recurrence relation: For all m > 1,

1
am——m2+mam,2.
Take ag = 1 and a; = 0. Then a3 = a5 =--- =0 and
- 17 1
2 = 5Ty
_ 1 11 1
“oT T A" T 506 5
1 1 1 1 1
a, = = —=-—— =
6 62 + 65! 765 Tl

1 1 1
y1 = aopx ! (1—§x2+—x4——x6+~~>
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We now turn to the second solution:

y = kyllnx—Fmexm*%

m=0

© = kyina+ kL2 — 2™,
yilnz+ k=4 (m = 2)bma"™ %

y =
m=0
2k k =
"o /" / m—4
y' = kyilnz+ ?yl—ﬁyl—k Z(m—2)(m—3)bmx .

m=0

Plug into zy” + (1 —x)y' +y = 0:

2kxyy + kyi2? Inx — kyy + Z (m — 2)(m — 3)bpa™ 2+
m=0

Aky xInz + dky; + Z 4(m — 2)byz™?

m=0
+(2 —2Hky, Inz + (2 — 2?) Z bpz™ 2 = 0
m=0
2kxy, + 3kyr + > [(m+2)2 — (m +2)bmia +bplz™ = 0
m=0
(m+2)? = (m+2)bpmia+bn = 0
Take k = 0 and for all m > 0,
b = b
T it 2)(m+ 1)

Take by = 1 and b; = 0. (Note that by setting b; = 1 and by = 0, you will get y;.)
Then

b2 = —_ =

by =

1 1
Yo = bOxQ(l——x2+1x4—~~>.



